Meta-Level Control of Approximate Reasoning - Resource Bounded
Recommend Documents
The term âanytime algorithmâ was coined by Dean in the late 1980's in the context of ..... of the 1989 Workshop on Uncertainty in Artificial Intelligence, Windsor,.
F. Fisher, T. Barrett, G. Stebbins, and D. Tran. ASPEN - Automated Planning and Scheduling ... Raymond M. Smullyan. First-Order Logic. Dover Publications, 1995.
Sep 1, 2008 - OA] 1 Sep 2008. ON BOUNDED APPROXIMATE IDENTITIES AND EXISTENCE. OF DENSE IDEALS IN REAL LOCALLY C*- AND LOCALLY.
associated with the slightly heightened symptom values whereas level ni indicates the dangerous symptom intensity (Rakus-Andersson, 2009). Universe Y ...
Jan 30, 2018 - particular) can be represented by a function that map key values ... rst assume that all keys to be indexed are stored in a sorted array and the ...
Nov 5, 2005 - A novel framework for providing probabilistically-bounded approximate answers to non-holistic aggregate range queries in. OLAP is presented ...
It uses the max-sum algorithm to optimally solve the resulting tree structured .... for finding minimum spanning trees [15]) that forms a tree structured constraint ...
Inform atica, CPS, Mar a del Luna 3, E-50015 Zaragoza,. Spain. 1 ...... BPP = E2 (an oracle relative to which these classes coincide can be found in. Heller He86]) then, by (7.1), ...... Etude Critique de la Notion de Collectif. Gauthiers-. Villars .
meaning number of mechanisms of attack can lead to a web service system ..... description fields, and the service requestor's subnet mask. Assuming that the ...
explosion problem, which frequently arises in inductive learn- ... proaches in an inductive logic programming setting. The sys- ..... 75â93). Amsterdam: IOS Press.
Dung argumentation framework is itself instantiated by arguments that make state- ... then be uniformly characterised by metalevel argumentation in a Dung ...
Sep 3, 1994 - by simple induction on n = 1(w), where z is a function, n e domain(z) C ... Now given such A. w, and z, for each m e domain(z) if z(m) says w,2, ...
Accuracy, coverage;. â Lift and ... associate its rows to objects, its columns to attributes and its cells to values o
Nov 5, 2017 - Approximate controllability; fractional control systems; time delay; ..... of the nonlinear control systems driven by fractional-order involving time ...
Mar 7, 2006 - a Google Inc. e-mail address: [email protected] ..... We consider a few examples, to illustrate the metric â see the book by Whitt [Whi02].
theory as well as their applications in data mining. This generalized method is called the approximate boolean reasoning (ABR) approach. Structure of the paper.
This work presents a stochastic propositionalization technique for rela- tional descriptions .... Let E : h(a) â q(a, b),c(b),t(b, c) an example, C = consts(E) = {a, b, c}, and Ï ...... Morgan Kaufmann, San Francisco (1998). 6. Boddy, M., Dean, T.
and total demand at the lowest price is divided among those firms offering that .... 4Our simulation testbed comprises two dedicated workstations to run the ... the TAC game server, and background processes on other machines to control the ...
We interpret fuzzy linear programming (FLP) problems (where some or all coeffi- ..... a generally non-convex and non-differentiable mathematical programming.
email: [email protected], [email protected] ..... list of propositions, called the premises, followed by a word such as 'therefore' or. 'so' and then ...
inference, Zadeh's implication, operation risk, symptom levels, parametric membership .... the universe X = âsymptom levelsâ = {1,â¦,k,â¦,n}. Let us assume that ...
Department of Industrial Engineering and Management Systems. Amirkabir University of .... TFN could be devoted to each index in each one of the MOEAs.
Jun 28, 2017 - Abstract. There are two notions of approximate Birkhoff-James orthogonality in a normed space. We characterize both the no-.
Sep 8, 2010 - COMMA'2010 (Desenzano del Garda, Italy). Wolfgang DvoÅák, Stefan Szeider, Stefan Woltran. Database and Artificial Intelligence Group.
Meta-Level Control of Approximate Reasoning - Resource Bounded
importantly, what design methodologies simplify the task of the programmer developing such ... F rom a pragmatic point of view, it may seem useful to de fi ne a ...
!#"$%'&( *) +,! ./ 0 +)+ 2143 56780'5*093 :=@?BA?DCFEG=GH I#JLKNMOI#E@P QR#S*TVUBWYXOZ9[B\L]^X`_V\LX6aX`TVb+ZcWYS*X`_dWfehgi_B]^jkXLZYlc]mWon5R#prqsb+lclYbt\YuhUVlcXLWcWYl`eb#TBTBZYRf{]^Sb+WYX7ZYXfb+lcRt_V]^_BBk!XlcuVRfWYuÅ`; Ã{KDÃhPÒE@A Á JLI#Å+EGKOIAs?II+PI Á JOItKNI#P>Å8I?{ѧKNMO?Å`;>ÃBKYMLEGÅ!I+ÉBI+PVMLK#È =GE@AsE@MOI#Ê¥Å+?{A Á ÇM`ÃdMLE@?BP>Ãh=JLI#KO?{Ç>JLÅ+I#K#ÈkÃ{P>ÊsP?BEGKOÍ5KOI+P>KOE@P>ÄÊI+ÉÃ{Ä{I#AI#PVM ?hÑ Á JLI#Å+EGKOE@?BPÏ Ö ;I#PÌÃ!KNÍKNMOI#A(EGK*Å+?{A Á ?VKNItÊ?{Ñ9ÃDPÃdM Á JL?ÊÇ>Å8Isà Á>Á JO?kÂ=M`K+ÈFE@A Á ?{JOMLÃ{PBM%AsI8MO;>?KÃ{JOEKOIJOI#ÄBÃ{JLÊEGPÄ¥ML;IAsÃ{P>ÃhÄBI8× AsI+PVM¦?{ÑÇ>P>Å8I#JNM`ÃhEGPBMYÍ ÃhP>Ê Á JLI#Å+EGKOEG?{PÏ{Ø?dÓÒÅ#ÃhPMO;>I Á I#JNѨ?BJOA¥Ã{P>Å8I?hÑML;Ià Á>Á JO?kÂEGA¥ÃdMOI Å8?BA Á ?BPI+PVMLK H IÊItKOÅ+JOEGHFI#Ê>Ù5Ø ?dÓ·Ê?VItKiMO;I*?BÇM Á ÇMÆVÇ>Ãh=GE@MYÍ¢?hÑÃA?ÊÇ>=@IÊI Á I#P>Ê?{P MO;>I Á JLI#Å8EKOE@?BPÌ?{Ñ9ML;I¢EGP Á ÇMEM JOItÅ8I+EGÉ{ItKLÙ¢Ø ?dÓ4KN;?BÇ=ÊML;I¢I+ÂÃhÄBI#ÊÎKO?Ã{KMO?AsÃhÂE@AsEGË+IDE@MLK?dÉBI+J`Ãh=G= Á I#JNѨ?BJOA¥Ã{P>Å8IkÙ À P>ÊÎAs?BKNM EGA Á ?{JOMLÃ{PVMO=GÍ{ÈÓ6;>ÃhM¥ÊI#KOE@ÄBPÛAsI8ML;?Ê?{=G?{ÄBE@ItKsKNEGA Á =@E@Ñ¨Í ML;I!MLÃBKNÜ ?{ÑML;I Á JL?{Ä{J`ÃhAsAsI+J ÊI#É{I+=G? Á E@PÄ¥KOÇ>Å`;KNÍKNMOI+A¥K`Ù Ö I; ÃkÉ{I ÊI+É{I#=@? Á ItÊÃ{PI+Ý¥Å+E@I#PVM§As?ÊI#=rML;>ÃdMÃ{P>KNÓiI+J`KMO;ItKNI¥ÆVÇI#KNMOEG?{P K+ÏÞcPMO;EK As?ÊI+=oÈVà ÁÁ JL?kÂE@A¥ÃdMLIJOItÃ{KO?{PEGPÄ*EKÇ>KOI#Ê¥ÃBKÃ*ÉdÃh=GÇ>ÃhH>=@I AsItÅ`;>ÃhPEKOAßML?*MOJ`Ã{ÊI6?{àÊI#Å8E@× KOE@?BPsÆVÇ>Ã{=@E@MYÍѨ?BJ¦ÊI#=@EGH I#JLÃhMOEG?{P¥Å8?VKYM`K+ÏBÐ;EGKAItÅ`;>ÃhP>EGKOAáÃ{=@=G?dÓ KÃhP¥EGPVMOI+=G=GE@ÄBI+PVM¦ÃhÄBI+PVM7MO? Å8?BPVMOJL?{=MO;>I*=@I#É{I+=¤?hÑ Á JOItÅ8EKNEG?{P!?hÑ7I#ÃBÅ`;!Å+?{A Á ?{PI#PBMÃ{P>Ê!A¥ÃdÂE@AsEGË+I§ML;IÃ{Å`;EGI+ÉBI+AsI+PVM ?hÑ7E@MLKML? Á ×w=@I#É{I#=FÄB?BÃ{=GK#Ï Ð;I¢H Ã{KOEGÅ¥Å+?{P>KNMOJLÇ>ÅfM`K?{Ñi?BÇJ5As?ÊI+=iÃhJLI¢ÃhPÃdM Ѩ?{JLA ÃK Á I#Å8EÃh=9MYÍ Á I ?hÑà ÁÁ JL?kÂÏÐ;I+ÍÎÃ{JOIDÅ`; ÃhJ`Ã{ÅfMLI+JLE@Ë#I#ÊÌHP>ÅfMLE@?BP ?{ѤMOEGAsI{Ï À PVÍVMLE@AsI*Ãh=GÄ{?BJOE@MO;A¥K ?hàI+JÃKOEGA Á =@IAsItÃhP>KHEGÅ`;ÃsKNÍKNMOI#AÔÅ+Ã{P!MOJ`Ã{ÊI+×o?{àÊI#Å+EGKOE@?BP!ÆVÇ>Ã{=@E@MY͢Ѩ?BJ ÊI+=GEGH× I+J`ÃdMLE@?BPÅ8?BKNMLK#ÏÞcPÃBÊÊE@MOEG?{PÈMO;I A?ÊI#=¤EGP>Å8=GÇ>ÊItKÃsP?dÉBI+=MLI#Å`;P>EGÆVÇI*ML?DÅ8?BPVMOJL?{=ÃhPKNEGPÄ5Ã{P¥Ã{Êà Á MOEGÉ{IBÈ{ÊI#Å+EGKOEG?{P×oMO;I#?{JLI8MLEGÅ6à ÁÁ JL?BÃ{Å`;¤ÏhæÝ¢Å8EGI+PVM9Å+?{PVMOJL?{=
?{ÑiÅ8?BA Á ÇMLÃhMOEG?{P>Ã{=7JOItKN?BÇJLÅ+I#KEGK Á I+JOѨ?{JLAsI#ÊHP×MLE@AsIiAs?{PE@MO?BJOEGPÄ Á JO?Å8ItKOK#ÏiÍ*AsI#Å`; ÃhPEGË8× EGPÄ¥ML;I5Å8?BPVMOJL?{=?{Ñ Á JOItÅ8EKNEG?{PÈ>Ó9I§M`ÃhÜ{I ÃhPE@A Á ?{JOMLÃ{PBM%KYMLI Á MO?dÓÃhJ`ÊKiML;I5Ó6EÊI#K Á JLI#ÃBÊ Ç>KOI§?hÑà ÁÁ JO?kÂEGAsÃhMOI%JOItÃ{KO?{PEGPÄ Ï Ð;IJLI#KNM ?hÑ7ML;I Á à Á I#J ?{ÇML=@EGPItK6?{ÇJAI+MO;?Ê?B=@?BÄ{Í!ÃhP>Ê!E@MLKà ÁÁ =GEGÅ#ÃdMLE@?BPÏ :E@PÄMLI#Å`;P>EGÆVÇIBÏi:K#Ï E@P Ãh=G=@ÍBÈF:IH I#P I >MLK¢?{Ñ%?BÇJDà ÁÁ JL?BÃ{Å`;ÒÃhP>ÊyÊEKLÅ8Ç>KLKNItK¢KO?{AsIÊEGJOItÅfMOEG?{P KѨ?{J ѨÇJOMO;>I+J6Ói?{JLÜFÏ
¬ ¹9¿i´±O²áµ·¬ ½Yº¯® ±c´²4¸
À VP ÍVMLE@AsI5Ã{=@ÄB?{JLEML;A¥K6ÃhJLIÃh=GÄ{?{JLE@MO;A¥K6Ó6;?VKNIÆVÇ>Ã{=@E@MYÍD?{ÑJOItKNÇ=@MLK E@A Á JL?dÉ{ItKÄ{J`Ã{ÊÇ>Ã{=@=GÍ ÃBK¦Å8?BA Á ÇMLÃhMOEG?{PsMLE@AsIEGP>Å+JOItÃ{KOI#K#ÏhÐ;I+Ís?hàI+JiçMOJ`Ã{ÊI+?hà H I+MYÓ9I#I+P¢JLI#KO?{ÇJ`Å8I6Å+?{P>KOÇA Á × MLE@?BPÃhP>Ê?BÇM Á ÇMÆVÇ>Ã{=@E@MYÍ{Ï ÃhPÄ MLI#Å`;P>EGÆVÇItK Á JL?ÊÇ>Å+I¢Ç>KOI8× Ñ¨Ç=6Ã{PVÍVMLE@AsIÃh=GÄ{?{JLE@MO;A¥K#ÏæÂÃ{A Á =@ItK5EGP>Å+=@Ç>ÊI E@MOI#JLÃhMOEGÉ{I ÊI+I Á I+P>E@PÄKOI#ÃhJ`Å`;ÈÉdÃhJLEGÃ{H=@I Á JLI#Å+EGKOEG?{P=G?{ÄBEGÅ{ÈÃhP>ÊJLÃ{P>Ê?BAEGË+ItÊMLI#Å`;PEÆVÇI#K*KOÇ>Å`;ÌÃ{ K ?BPBML I iÃ{JO=G?Ãh=GÄ{?{JLE@MO;A¥K%?{J >P>Ä{I+J Á JLE@PVMLE@PÄ Ï ?{J ÃsKOÇJLÉ{I+ÍD?hÑÃ{PPEGÆVÇItK6KNI#I â kåwÏ ÃhJLEG?{Ç>K6AsI+MOJLEGÅ#KÅ+Ã{PH I5Ç>KNItÊ!MO?¢AsItÃ{KOÇJOI§ML;I5ÆVÇ>Ã{=@E@MYÍ ?{ÑÃ¥JOItKNÇ>=M Á JL?ÊÇ>Å+I#ÊH=MO? ÊI >PI à "!$#&%(' MYÍ Á I*?{ÑÆVÇ>Ã{=@E@MYÍDAsItÃ{KOÇJOI%ML?¥H I5à ÁÁ =GE@ItÊ!MO?¢Ã{=@=¤Ã{PItÅfMLE@PÄMO;IÊI#Ä{JLI+I ?hÑ%Å+I+JOMLÃ{E@PVMYÍÌMO;>ÃhM ML;I JLI#KOÇ=@M¢EGK Å8?{JLJLI#ÅfMtÈÃ{Å#Å8ÇJ`Ã{Å+, Í *ÛJL I >ItÅfMOEGPÄML;IÊEKYM`ÃhP>Å+IHFI8MYÓiI+I+PÒML;Ià Á>Á JO?kÂEGA¥ÃdMOI JLI#KOÇ=@MÃ{P>Ê¥ML;I§I8ÂÃ{Å8MÃ{P>KNÓiI+JtÈÃhP>Ê K Á I#Å+-E FÅ8E@MY. Í *sJL I I#ÅfMLE@P>Ä5ML;I§=@I#É{I+=?{ÑrÊI8M`ÃhEG=?hÑML;I JLI#KOÇ=@M#Ï q 1.00
0.80
0.60
0.40
0.20
0.00 0.00
1.00
/1032F 54Ã{=@E@MYÍ{Ï
E@ÄBÇJLI5ã9KO;?dÓ KÃ6MYÍ
G0 J\`6 J % 0 G!^ }:0` '
I ÊEKYMLE@PÄBÇEKN;HFI8MYÓiI+I+PEGPVMOI+JLJLÇ Á MOEGH=GIÃhP>Ê!Å8?BPVMOJ`Ã{ÅfM Ã{=@ÄB?{JLEML;A¥K+Ï À P!EGPVMOI#JOJLÇ Á MLE@H=GI Ö 5 Ãh=GÄ{?BJOE@MO;>A EK ÃhPÃ{PVÍVMLE@AsIÃh=GÄ{?BJOE@MO;>A MO; ÃdMÅ#ÃhPH I5E@PVMOI#JOJLÇ Á MLI#ÊÃdM%ÃhPÊÆVÇ>Ã{=@E@MYÍ ?hÑJLI#KOÇ=M`K+ÈdH>ÇMMO;>IMO?hM`Ãh=I+ÂKNMH I6ÜÅ+I{ÏdÞwÑE@PVMLI+JLJOÇ Á MOI#Ê ÃdMÃ{PVÍ Á ?BE@PVM*H I+Ѩ?{JLIMO;IsMLI+JLAEGP>ÃhMOEG?{PÌ?hѦML;I¢Å8?BPVMOJ`Ã{ÅfM%MOEGAsI{ÈE@MA¥ÃkÍÍKOI8× Ñ¨Ç=6JLI#KOÇ=@MLK#ÏÞcPÛA¥ÃhPK#ÈrEGPVMOI+JLJLÇ Á MOEGH=GI!Ã{=@ÄB?{JLEML;A¥K Ã{JOI As?{JLI ÊItKNEGJLÃ{H=GI{È HÇM%MO;>I+ÍÃhJLI5Ãh=KO?¢As?{JLI5Å8?BA Á =@EÅ+ÃhMOI#ÊMO? Å+?{P>KNMOJLÇ>Å8M#ÏFÞcPâ åÓiI KO;?dÓ MO;>ÃhM%à KNEGA Á =@IBÈ Ä{I#PI+J`Ãh=FÅ8?BP>KYMLJOÇ ÅfMOEG?{P¢Å#ÃhP Á JL?ÊÇ>Å+IÃhPDE@PVMOI#JOJLÇ Á MLE@H>=@I ÉBI+J`KNEG?{PsѨ?BJ9Ã{PVÍÄ{EGÉ{I#P¢Å8?BPBMLJLÃBÅfM Ãh=GÄ{?BJOE@MO;>A(Ó6EML;Ì?BP=GÍà KOA¥Ãh=G=ÈÅ+?{P>KNMLÃ{PVM Á I+P>Ã{=MYÍBϤÐ;EK%MO;I#?{JLI+A Ã{=@=G?dÓ K%Ç>K%MO?Å8?BP× Å8I#PVMOJ`ÃdMOI6?BPMO;IÅ+?{P>KNMOJLÇ>Å8MOEG?{Ps?hÑÅ8?BPVMOJ`Ã{ÅfMÃ{=@ÄB?{JLEML;A¥K7Ѩ?{J¦Å+?{A Á =GI8ÂsÊI#Å+EGKOE@?BP×wAsÃ{Ü