Aug 9, 2010 ... Microelectronic Circuit Design. Fourth Edition - Part I. Solutions to Exercises.
CHAPTER 1. Page 11. VLSB = 5.12V. 210 bits. = 5.12V. 1024bits.
Microelectronic Circuit Design Fourth Edition - Part I Solutions to Exercises CHAPTER 1 Page 11 5.12V 5.12V VLSB = 10 = = 5.00 mV 2 bits 1024bits 11000100012 = 29 + 28 + 2 4 + 20 = 78510 or
€
€
(
5.12V = 2.560V 2 VO = 785(5.00mV ) = 3.925 V VMSB =
)
VO = 2−1 + 2−2 + 2−6 + 2−10 5.12V = 3.925 V
Page 12 5.0V 5.00V 1.2V VLSB = 8 = = 19.53 mV N= 256bits = 61.44bits 5.00V 2 bits 256bits 61 = 32 + 16 + 8 + 4 + 1 = 25 + 2 4 + 23 + 22 + 20 = 001111012 Page 12 The dc component is VA = 4V. The signal consists of the remaining portion of vA: va = (5 sin 2000πt + 3 cos 1000 πt) Volts. Page 23 vo = −5cos 2000πt + 25o = − −5sin 2000πt + 25o − 90 o = 5sin 2000πt − 65o
) [
(
Vo = 5∠ − 65
€
Page 25 R Av = − 2 R1
o
|
Vi = 0.001∠0
−5=−
o
)]
(
(
)
5∠ − 65o Av = = 5000∠ − 65o o 0.001∠0
R2 → R2 = 50 kΩ 10kΩ
€
1
©R. C. Jaeger and T. N. Blalock 08/09/10
Page 26 vs = 0.5sin (2000πt ) + sin (4000πt ) + 1.5sin (6000πt )
[
]
The three spectral component frequencies are f1 = 1000 Hz
f2 = 2000 Hz
f3 = 3000 Hz
(a ) The gain of the band - pass filter is zero at both f and f . At f , V = 10(1V ) = 10V , and v = 10.0sin (4000πt ) volts. (b) The gain of the low - pass filter is zero at both f and f . At f , V = 6(0.5V ) = 3V , and v = 3.00sin (2000πt ) volts. 1
3
2
o
o
2
3
2
o
o
Page 27 €
39kΩ(1− 0.1) ≤ R ≤ 39kΩ(1+ 0.1)
or
3.6kΩ(1− 0.01) ≤ R ≤ 3.6kΩ(1+ 0.01)
€
Page 29 VI2 P= R1 + R2 P
max
=
P nom =
(1.1x15)
35.1 kΩ ≤ R ≤ 42.9 kΩ or
152 = 4.17 mW 54kΩ
2
0.95x54kΩ
3.56 kΩ ≤ R ≤ 3.64 kΩ
= 5.31 mW
P
min
=
(0.9x15)
2
1.05x54kΩ
= 3.21 mW
Page 33 €
10−3 R = 10kΩ 1+ o (−55 − 25) oC = 9.20 kΩ C
10−3 R = 10kΩ 1+ o (85 − 25) oC = 10.6 kΩ C
€
2
©R. C. Jaeger and T. N. Blalock 08/08/10
CHAPTER 2 Page 47 ni =
(2.31x10
30
K cm −3
−6
)
−0.66eV (300K ) exp 8.62x10−5 eV / K 300K = 2.27x1013 cm3 ( ) 3
(
)
Page 47 €
ni =
(1.08x10
31
ni =
(1.08x10
31
K cm
−6
K cm
−6
−3
−3
)
−1.12eV (50K ) exp 8.62x10−5 eV / K 50K = 4.34x10−39 cm3 ( )
)
−1.12eV (325K ) exp 8.62x10−5 eV / K 325K = 4.01x1010 cm3 ( )
3
(
)
3
(
)
3
−2 m cm 3 10 L = 10 → L = 6.13x10 m −39 cm 4.34x10 3
Page 49 €
v p = µ p E = 500 E=
€
cm2 V 3 cm 10 = 5.00x10 V − s cm s
vn = −µn E = −1350
cm2 V 6 cm 1000 = −1.35x10 V − s cm s
V 1 V V = = 5.00x103 −4 L 2x10 cm cm
Page 49 (a) From Fig. 2.5 : The drift velocity for Ge saturates at 6x106 cm / sec. At low fields the slope is constant. Choose E = 100 V/cm v v 4.3x105 cm / s cm2 2.1x105 cm / s cm2 µn = n = = 4300 µp = p = = 2100 E 100V / cm s E 100V / cm s 7 (b) The velocity peaks at 2x10 cm / sec
µn =
vn 8.5x105 cm / s cm2 = = 8500 E 100V / cm s
€
3
©R. C. Jaeger and T. N. Blalock 08/09/10
Page 51 3 −1.12 = 5.40x1024 / cm 6 | ni = 2.32x1012 / cm3 ni2 = 1.08x1031 (400) exp −5 8.62x10 400 ( )
ρ=
1 1 = = 1450 Ω − cm −19 12 σ 1.60x10 2.32x10 (1350) + 2.32x1012 (500)
[(
)
(
]
)
3 −1.12 = 1.88x10−77 / cm6 | ni = 4.34x10−39 / cm3 ni2 = 1.08x1031 (50) exp −5 8.62x10 (50)
ρ=
1 1 = = 1.69x1053 Ω − cm σ 1.60x10−19 4.34x10−39 (6500) + 4.34x10−39 (2000)
[(
)
(
)
]
Page 55 €
3 −1.12 = 5.40x1024 / cm 6 ni2 = 1.08x1031 (400) exp −5 8.62x10 (400) p = N A − N D = 1016 − 2x1015 = 8x1015
holes cm3
n=
ni2 5.40x1024 electrons = = 6.75x108 15 p 8x10 cm3
−−− Antimony (Sb) is a Column - V element, so it is a donor impurity. p=
ni2 1020 holes = = 5.00x103 16 n 2x10 cm3
n = N D = 2x1016
electrons cm 3
n > p → n - type silicon
Page 56 €
Reading from the graph for NT = 1016/cm3, 1230 cm2/V-s and 405 cm2/V-s. Reading from the graph for NT = 1017/cm3, 800 cm2/V-s and 230 cm2/V-s.
4
©R. C. Jaeger and T. N. Blalock 08/08/10
Page 58
(
1 = 0.001 Ω − cm σ
)
σ = 1000 = 1.60x10−19 µn n → un n = 6.25x1021 / cm3 = 6.25x1019 (100) | ρ = −−− (a) N D = 2x1016 / cm 3
µn = 92 +
| N A = 0 / cm3
1270 0.91
2x10 1+ 17 1.3x10 16
| N T = 2x1016 / cm 3
= 1170 cm 2 /V − s | µ p = 48 +
| 447 0.76
2x10 1+ 16 6.3x10 16
= 363 cm2 /V − s
(b) N T = N D + N A = 2x1016 / cm 3 + 3x1016 / cm3 = 5x1016 / cm3
µn = 92 +
€
1270 0.91
5x1016 1+ 17 1.3x10
= 990 cm 2 /V − s | µ p = 48 +
447 0.76
5x1016 1+ 16 6.3x10
= 291 cm2 /V − s
Page 59 Boron (B) is a Column - III element, so it is an acceptor impurity. p = N A − N D = 4x1018
holes cm3
| n=
ni2 1020 electrons = = 25 18 p 4x10 cm3
| p - type material
4x1018 and mobilities from Fig. 2.8 : µn = 150 cm 2 /V − s | µp = 70 cm2 /V − s 3 cm 1 1 ρ≅ = = 0.022 Ω − cm qµ p p 1.60x10−19 4x1018 (70) NT =
(
)
--Indium (In) is a Column - III element, so it is an acceptor impurity. holes p = N A − N D = 7x10 cm3 19
ni2 1020 electrons | n= = = 1.43 | p - type material 19 p 7x10 cm3
7x1019 and mobilities from Fig. 2.8 : µn = 100 cm 2 /V − s | µp = 50 cm2 /V − s 3 cm 1 1 ρ= = = 1.79 mΩ − cm −19 σ 1.60x10 7x1019 (50) NT =
(
)
€
5
©R. C. Jaeger and T. N. Blalock 08/09/10
Page 60 −23 1.38x10−23 (300) kT 1.38x10 (50) VT = = = 4.31 mV | VT = = 25.8 mV q 1.602x10−19 1.602x10−19 VT =
1.38x10−23 (400) 1.602x10−19
= 34.5mV
−−− Dn =
kT cm2 cm 2 µn = 25.8mV 1362 = 35.1 q V − s s
| Dp =
kT cm2 cm2 µ p = 25.8mV 495 = 12.8 q V − s s
−−− jn = qDn
cm2 1016 10 4 µm dn A = 1.60x10−19 C 20 3 = 320 2 dx s cm − µm cm cm
j p = −qD p
cm2 1016 10 4 µm dp A = −1.60x10−19 C 4 3 = −64 2 dx cm s cm − µm cm
€
6
©R. C. Jaeger and T. N. Blalock 08/08/10
CHAPTER 3 Page 79 2x1018 1020 N N A D φ j = VT ln 2 = 0.025V ln 1020 ni
( ) = 1.05 V
(
)
2(11.7) 8.85x10−14 1 2εs 1 1 1 wdo = + + 1.05) = 2.63x10−6 cm = 0.0263 µm φ j = −19 18 20 ( q N A ND 1.60x10 10 2x10
€
Page 80 qN A x p 1 0 Emax = ∫ −qN A dx = εs −x p εs Emax =
Emax
1 =− εs
( )( 11.7(8.854x10 F / cm)
1.6x10−19 C 1017 / cm3 1.13x10−5 cm −14
xn
∫ qN
D
dx =
0
qN D x n εs
For the values in Ex.3.2 :
) = 175 kV
cm
−−− 2(1.05V )
kV cm 2.63x10 cm −1 2x1018 x p = 0.0263µm1+ = 0.0258 µm 1020
Emax =
−6
= 798
−1
1020 −4 xn = 0.0263µm1+ = 5.16x10 µm 18 2x10
Page 83 1.381x10 (300) kT 300 n =1 = 0.0259 | T = = 291 K −19 q 1.03 1.602x10 −23
€
Page 85 €
0.55 0.70 −15 iD = 40x10−15 Aexp −1 = 143 µA iD = 40x10 Aexp −1 = 57.9 mA 0.025 0.025 6x10−3 A VD = (0.025V ) ln1+ = 0.643 V −15 40x10 A −−− −0.04 −2.0 −15 iD = 5x10−15 Aexp −1 = −3.99 fA | iD = 5x10 Aexp −1 = −5.00 fA 0.025 0.025
€ 7
©R. C. Jaeger and T. N. Blalock 08/09/10
Page 87 40x10−6 A I D a V = V ln 1+ = 0.025V ln 1+ = 0.593 V ( ) BE T I −15 2x10 A S 400x10−6 A I VBE = VT ln1+ D = 0.025V ln1+ = 0.651 V ΔVBE = 57.6 mV 2x10−15 A IS 40x10−6 A I (b) VBE = VT ln1+ ID = 0.0258V ln1+ 2x10−15 A = 0.612 V S −6 400x10 A I VBE = VT ln1+ D = 0.0258V ln1+ = 0.671 V ΔVBE = 59.4 mV 2x10−15 A IS
€
Page 89 i ln D = ln (iD ) − ln ( I S ) | Assume iD is constant, and EG = EGO IS E dvD k iD kT 1 dI S v d 1 dI S = ln − = − VT | I S = Kni2 = KBT 3 exp − GO dT q I S q I S dT T I S dT kT E E E dI S = 3KBT 2 exp− GO + KBT 3 exp − GO + GO2 dT kT kT kT 1 dI S 3 EGO 3 qVGO 3 VGO dvD v d 1 dI S v d − VGO − 3VT = + 2= + = + | = − VT = 2 I S dT T kT T kT T VT T dT T I S dT T Page 90
€
wd = 0.113µm 1+
2(V + φ j ) 2(10.979V ) 10V kV = 0.378 µm | Emax = = = 581 −4 0.979V wd cm 0.378x10 cm
−−− I S = 10 fA 1+
€
10V = 36.7 fA 0.8V
Page 93 11.7 8.854x10−14 F / cm nF nF C jo = = 91.7 2 | C j(0V ) = 91.7 2 10−2 cm 1.25x10−2 cm = 11.5 pF −4 0.113x10 cm cm cm 11.5 pF C j (5V ) = = 4.64 pF 5V 1+ 0.979V −−−
(
)
(
)(
)
10−5 A −8 8x10−4 A −8 5x10−2 A −8 CD = 10 s = 4.00 pF | CD = 10 s = 320 pF | CD = 10 s = 0.02 µF 0.025V 0.025V 0.025V
8 €
©R. C. Jaeger and T. N. Blalock 08/08/10
Page 98 5V = 1 mA; I D = 0, VD = 5V 5kΩ The intersection of the two curves occurs at the Q - pt : (0.88 mA, 0.6 V) Two points on the load line : VD = 0, I D =
Page 100 €
10 = 10 4 I D + VD
I I | VD = VT ln1+ D | 10 = 10 4 I D + 0.025ln1+ D IS IS
Page 101 fzero(@(id) (10-10000*id-0.025*log(1+id/1e-13), 5e-4)
€
ans = 9.4258e-004 Page 102 fzero(@(id) (10-10000*(1e-14)*(exp(40*vd)-1)-vd), 0.5) ans = 0.6316 Page 109 From the answer, the diodes are on,on,off. 10V - VB VB − 0.6V − (−20V ) VB − 0.6V − (−10V ) = + = 0 → VB = 1.87 V 2.5kΩ 10kΩ 10kΩ 1.87 − 0.6 − (−20V ) 1.87 − 0.6 − (−10V ) I D1 = = 2.13 mA | I D2 = = 1.13 mA | VD3 = −(1.87 − 0.6) = −1.27 V 10kΩ 10kΩ I D1 > 0, I D2 > 0, VD3 < 0. These results are consistent with the assumptions. I1 = I D1 + I D2
€
€
Page 111 5kΩ 1kΩ Rmin = = 1.67 kΩ | VO = 20V = 3.33 V (VZ is off) | VO = 5 V (VZ is conducting) 20 5kΩ + 1kΩ −1 5 Page 112 VL − 20V VL − 5V V 6.25V − 5V + + L = 0 → VL = 6.25 V | I Z = = 12.5mA 1kΩ 0.1kΩ 5kΩ 0.1kΩ 2
PZ = 5V (12.5mA) + 100Ω(12.5mA) = 78.1 mW −−− Line Regulation =
€
0.1kΩ mV = 19.6 0.1kΩ + 5kΩ V
Load Regulation = 0.1kΩ 5kΩ = 98.0 Ω
9
©R. C. Jaeger and T. N. Blalock 08/09/10
Page 118 Vdc = VP − Von = 6.3 2 −1 = 7.91 V ΔT =
I dc =
7.91V = 15.8 A 0.5Ω
0.527V 1 V 1 2 r = 2 = 0.912 ms ω VP 2π (60) 8.91V
Vr =
I dc 15.8 A 1 T= s = 0.527 V C 0.5F 60
θ c = 120π (0.912ms)
180 o = 19.7 o π
−−− Vdc = VP − Von = 10 2 −1 = 13.1 V ΔT =
I dc =
13.1V = 6.57 A 2Ω
0.1V 1 V 1 2 r = 2 = 0.316 ms ω VP 2π (60) 14.1V
C=
I dc 6.57 A 1 T= s = 1.10 F Vr 0.1F 60
θ c = 120π (0.316ms)
180 o = 6.82 o π
Page 120 €
−23 kT I D 1.38x10 J / K (300K ) 48.6 A At 300K : VD = ln1+ = ln1+ −15 = 0.994 V q IS 1.60x10−19 C 10 A −23 kT I D 1.38x10 J / K (273K + 50K ) 48.6 A At 50 C : VD = ln1+ = ln1+ −15 = 1.07 V q IS 1.60x10−19 C 10 A 48.6 A kT I D Note : For VT = 0.025V , VD = ln1+ = 0.025V ln1+ −15 = 0.961 V q IS 10 A o
Page 127 €
Vrms =
Vdc + Von 2
=
15 + 1 2
= 11.3 V | C =
I dc 2A 1 T= s = 0.222F = 222,000 µF Vr 60 0.01(15V )
I SC = ωCVP = 2π (60Hz )(0.222F )(16V ) = 1340 A ΔT =
(0.01)(15) = 0.363 ms | I = I 2T = 2 A 2s 1 V 1 2 r = 2 = 184 A P dc ω VP 2π (60) 16 ΔT 60(0.363ms)
€
10
©R. C. Jaeger and T. N. Blalock 08/08/10
CHAPTER 4 Page 153
(
)
14 εox cm2 3.9 8.854x10 F / cm C µA K = µn = 500 = 69.1x10−6 2 = 69.1 2 −7 Tox V −s 25x10 cm V −s V --W µA 20µm µA µA 60µm µA Kn = Kn' = 50 2 = 1000 2 Kn = 50 2 = 1000 2 L V 1µm V V 3µm V µA 10µm µA Kn = 50 2 = 2000 2 V 0.25µm V --For VGS = 0V and 1V , VGS < VTN and the transistor is off. Therefore I D = 0. ' n
VGS - VTN = 2 -1.5 = 0.5V and VDS = 0.1 V → Triode region operation W V µA 10µm 0.1 2 I D = Kn' VGS − VTN − DS VDS = 25 2 2 −1.5 − 0.1V = 11.3 µA L 2 2 V 1µm VGS - VTN = 3 -1.5 = 1.5V and VDS = 0.1 V → Triode region operation W V µA 10µm 0.1 2 I D = Kn' VGS − VTN − DS VDS = 25 2 3 −1.5 − 0.1V = 36.3 µA L 2 2 V 1µm Kn' = 25
µA 100µm µA = 250 2 2 V 1µm V
Page 154 €
1 1 = 4.00 kΩ | Ron = = 1.00 kΩ µA µA ' W Kn (VGS − VTN ) 250 2 (2 −1) 250 2 (4 −1) L V V 1 1 VGS = VTN + = 1V + = 3.00 V µA Kn Ron 250 2 (2000Ω) V Ron =
1
=
€
11
©R. C. Jaeger and T. N. Blalock 08/09/10
Page 157 VGS - VTN = 5 -1 = 4 V and VDS = 10 V → Saturation region operation 2 2 Kn 1 mA VGS − VTN ) = 5 −1) V 2 = 8.00 mA ( 2 ( 2 2V W W 1mA 25 Kn = Kn' → = = W = 25L = 8.75 µm L L 40µA 1
ID =
−−− Assuming saturation region operation, 2 2 Kn 1 mA VGS − VTN ) = 2.5 −1) V 2 = 1.13 mA ( 2 ( 2 2V mA g m = Kn (VGS − VTN ) = 1 2 (2.5 −1)V = 1.50 mS V 2I D 2(1.125mA) Checking : g m = = 1.50 mS VGS − VTN (2.5 −1)V
ID =
€
Page 158 VGS - VTN = 5 -1 = 4 V and VDS = 10 V → Saturation region operation 2 2 Kn 1 mA VGS − VTN ) (1+ λVDS ) = 5 −1) V 2 1+ 0.02(10) = 9.60 mA ( 2 ( 2 2V 2 2 K 1 mA I D = n (VGS − VTN ) (1+ λVDS ) = 5 −1) V 2 1+ 0(10) = 8.00 mA 2 ( 2 2V --VGS - VTN = 4 -1 = 3 V and VDS = 5 V → Saturation region operation
[
ID =
[
]
]
2 2 2 Kn 25 µA VGS − VTN ) (1+ λVDS ) = 4 −1 V 1+ 0.01(5) = 118 µA ( ( ) 2 2 V2 2 2 K 25 µA I D = n (VGS − VTN ) (1+ λVDS ) = 5 −1) V 2 1+ 0.01(10) = 220 µA 2 ( 2 2 V
[
ID =
[
]
]
Page 159 €
Assuming pinchoff region operation, I D = VGS = VTN +
2 2 Kn 50 µA 0 − VTN ) = +2V ) = 100 µA ( 2 ( 2 2 V
2(100 µA) 2I D = 2V + = 4.00 V Kn 50µA /V 2
−−− Assuming pinchoff region operation, I D =
€
2 2 Kn 50 µA VGS − VTN ) = 1− −2V = 225 µA ( ( ) 2 2 V2
[
12
]
©R. C. Jaeger and T. N. Blalock 08/08/10
Page 161
( V + 0.6V − 0.6V ) = 1+ 0.75( = 1+ 0.75( 1.5 + 0.6 − 0.6 ) = 1.51 V | V
VTN = VTO + γ VTN
)
0 + 0.6 − 0.6 = 1 V
SB
TN
(
)
= 1+ 0.75 3 + 0.6 − 0.6 = 1.84 V
---
(a ) V
is less than the threshold voltage, so the transistor is cut off and ID = 0.
( b) V
- VTN = 2 -1 = 1 V and VDS = 0.5 V → Triode region operation
GS
GS
V mA 0.5 2 I D = KnVGS − VTN − DS VDS = 1 2 2 −1− 0.5V = 375 µA 2 2 V (c) VGS - VTN = 2 -1 = 1 V and VDS = 2 V → Saturation region operation 2 2 Kn mA VGS − VTN ) (1+ λVDS ) = 0.5 2 (2 −1) V 2 1+ 0.02(2) = 520 µA ( 2 V
[
ID =
€
]
Page 163 (a ) VGS is greater than the threshold voltage, so the transistor is cut off and I D = 0.
( b) V
GS
- VTN = -2 + 1 = 1 V and VDS = 0.5 V → Triode region operation
V mA −0.5 2 I D = KnVGS − VTN − DS VDS = 0.4 2 −2 + 1− (−0.5)V = 150 µA 2 2 V
(c) V
GS
ID =
- VTN = −2 + 1 = 1 V and VDS = 2 V → Saturation region operation
2 2 Kn 0.4 mA VGS − VTN ) (1+ λVDS ) = −2 + 1) V 2 1+ 0.02(2) = 208 µA ( 2 ( 2 2 V
[
]
€
13
©R. C. Jaeger and T. N. Blalock 08/09/10
Page 167 µF CGC = 200 2 5x10−6 m 0.5x10−6 m = 0.500 fF m
(
)(
)
CGC pF −6 + CGSOW = 0.25 fF + 300 5x10 m = 1.75 fF 2 m 2 pF −6 Saturation region : CGS = CGC + CGSOW = 0.333 fF + 300 5x10 m = 1.83 fF 3 m pF −6 CGD = CGSOW = 300 5x10 m = 1.50 fF m Triode region : CGD = CGS =
(
€
(
)
(
)
)
Page 169 KP = Kn = 150U | LAMBDA = λ = 0.0133 | VTO = VTN = 1 | PHI = 2φ F = 0.6 W = W = 1.5U | L = L = 0.25U Page 170
€
1µm 2 Circuits/cm ∝ α = = 16 0.25µm 2
2
Power - Delay Product ∝
€
1 1 1 = 3= → 64 times improvement 3 64 α 4
Page 171 ε W /α v DS * * iD* = µn ox vGS − VTN − v DS = α iD | P = VDD iD = VDD (α iD ) = α P Tox / α L / α 2 P* αP P = = α3 * A A (W / α )( L / α ) −−−
(a ) fT =
1 500cm2 /V − s (1V ) = 7.96 GHz | 2 −4 2π 10 cm
(
)
(b) fT =
1 500cm2 /V − s (1V ) = 127 GHz 2π 0.25x10−4 cm 2
(
)
−−− 5 V −5 V V V −4 ≥ 105 → L = 105 10 cm = 10 V | L = 10 10 cm = 1 V L cm cm cm
(
)
(
)
€
14
©R. C. Jaeger and T. N. Blalock 08/08/10
Page 172 (a ) From the graph for VGS = 0.25 V , I D ≅ 10−18 A |
(b) From the graph for V = V − 0.5 V , I ≅ 3x10 (c) I = (10 transistors)(3x10 A/transistors) = 3 µA GS
9
TN
D
−15
A
-15
Page 176 2
€
Active area = 10Λ(12Λ) = 120Λ2 = 120(0.125µm ) = 1.88 µm 2 L = 2Λ = 0.250 µm | W = 10Λ = 1.25 µm 2
Gate area = 2Λ(10Λ) = 20Λ2 = 20(0.125µm) = 0.313 µm 2 2
Transistor area = (10Λ + 2Λ + 2Λ)(12Λ + 2Λ + 2Λ) = 224Λ2 = 224(0.125µm ) = 3.50 µm 2
(10 µm) N= 4
3.50µm
€
2
2
= 28.6 x 106 transistors
Page 180 Assume saturation region operation and λ = 0. Then I D is indpendent of VDS , and I D = 50 µA. VDS = VDD − I D RD = 10 − 50kΩ(50µA) = 7.50 V. VDS ≥ VGS − VTN , so our assumption was correct. Q - Point = (50.0 µA, 7.50 V ) --270kΩ 10V = 2.647 V | REQ = 270kΩ 750kΩ | Assume saturation region. 270kΩ + 750kΩ 2 2 25x10−6 A ID = 2.647 −1 V = 33.9 µA | VDS = VDD − I D RD = 10 −100kΩ(33.9µA) = 6.61 V. ( ) 2 V2 VDS ≥ VGS − VTN , so our assumption was correct. Q - Point = (33.9 µA, 6.61 V ) VEQ =
--2 30x10−6 A 3 −1) V 2 = 60.0 µA 2 ( 2 V = VDD − I D RD = 10 −100kΩ(60.0µA) = 4.00 V. VDS ≥ VGS − VTN , so our assumption was correct.
VGS does not change : VGS = 3.00 V | I D = VDS
Q - Point = (60.0 µA, 4.00 V )
€
15
©R. C. Jaeger and T. N. Blalock 08/09/10
Page 181 2 25x10−6 A 3 −1.5) V 2 = 28.1 µA 2 ( 2 V = VDD − I D RD = 10 −100kΩ(28.1µA) = 7.19 V. VDS ≥ VGS − VTN , so our assumption was correct.
VGS does not change : VGS = 3.00 V | I D = VDS
Q - Point = (28.1 µA, 7.19 V ) --VDS = 10 − VDS =
( ) (3 −1) (1+ 0.01V ) → V 2
25x10−6 105
10 − 5 V = 4.76 V 1.05
2
DS
ID =
DS
= 10 − 5(1+ 0.01VDS )
2 25x10−6 3 −1) 1+ 0.01(4.76) = 52.4 µA ( 2
[
]
Page 182 €
10V = 150µA. 66.7kΩ = 3 - V curve at I D = 50 µA, VDS = 6.7 V.
For I D = 0, VDS = 10 V. For VDS = 0, I D = The load line intersects the VGS
€
16
©R. C. Jaeger and T. N. Blalock 08/08/10
Page 185 Upper group 2 2V V + VGS − 2VTN + VTN2 − EQ = 0 Kn RS Kn RS 2 GS
2
1 1 2V | VGS = − − VTN ± − VTN − VTN2 + EQ Kn RS Kn RS Kn RS
2
1 2VTN 2V 1 1 VGS = VTN − ± + VTN2 − VTN2 + EQ = VTN + − Kn RS Kn RS Kn RS Kn RS Kn RS
( 1+ 2K R (V n
S
EQ
)
− VTN ) −1
−−− Assume saturation region operation. ID =
1 2Kn RS2
(
)
2
1+ 2Kn RS (VEQ − VTN ) −1 =
1 2(30µA)(39kΩ)
2
(
)
2
1+ 2(30µA)(39kΩ)(4 −1) −1 = 36.8 µA
VDS = 10 −114kΩ(36.8µA) = 5.81 V | Saturation region is correct. | Q - Point : (36.8 µA, 5.81 V ) −−− Assume saturation region operation. I D =
1 2(25µA)(39kΩ)
2
(
)
2
1+ 2(25µA)(39kΩ)(4 −1.5) −1 = 26.7 µA
VDS = 10 −114kΩ(26.7µA) = 6.96 V | Saturation region is correct. | Q - Point : (26.7 µA, 6.96 V ) Assume saturation region operation. I D =
1 2(25µA)(62kΩ)
2
(
)
2
1+ 2(25µA)(62kΩ)(4 −1) −1 = 36.8 µA
VDS = 10 −137kΩ(25.4µA) = 6.52 V | Saturation region is correct. | Q - Point : (25.4 µA, 6.52 V )
€
17
©R. C. Jaeger and T. N. Blalock 08/09/10
Page 185 Lower group R1 1MΩ VEQ = VDD = 10V = 4 V | Assume saturation region operation. R1 + R2 1MΩ + 1.5MΩ ID =
1 2Kn RS2
(
)
2
1+ 2Kn RS (VEQ − VTN ) −1 =
1 2(25µA)(1.8kΩ)
2
(
)
2
1+ 2(25µA)(1.8kΩ)(4 −1) −1 = 99.5 µA
VDS = 10 − 40.8kΩ(99.5µA) = 5.94 V | Saturation region is correct. | Q - Point : (99.5 µA, 5.94 V ) VEQ = ID =
R1 1.5MΩ VDD = 10V = 6 V | Assume saturation region operation. R1 + R2 1.5MΩ + 1MΩ 1
2(25µA)(22kΩ)
2
(
)
2
1+ 2(25µA)(22kΩ)(6 −1) −1 = 99.2 µA
VDS = 10 − 40kΩ(99.2µA) = 6.03 V | Saturation region is correct. | Q - Point : (99.2 µA, 6.03 V ) −−− I Bias =
VDD V 10V → R1 + R2 = DD = = 5 MΩ R1 + R2 I Bias 2µA
VEQ =
V R1 4V VDD → R1 = ( R1 + R2 ) EQ = 5MΩ = 2 MΩ R1 + R2 VDD 10V
R2 = 5MΩ − R1 = 3 MΩ | REQ = R1 R2 = 1.2 MΩ
Page 187 €
(
VGS = 6 − 22000I D VSB = 22000I D VTN = 1+ 0.75 VSB + 0.6 − 0.6
)
ID =
2 25µA VGS − VTN ) ( 2
Spreadsheet iteration yields ID = 83.2 µA. Page 183 €
[
(
)
]
Equation 4.55 becomes 6 - 1 + 0.75 VSB + 0.6 − 0.6 + 2.83 − VSB = 0. VSB2 − 6.065VSB + 7.231 = 0 → VSB = 1.63V. RS =
1.63V = 16.3 kΩ →16 kΩ 10−4 A
RD =
(10 − 6 −1.63)V = 23.7kΩ → 24 kΩ 10−4 A
€
18
©R. C. Jaeger and T. N. Blalock 08/08/10
Page 189 Assume saturation region operation. 10 − 6 =
(
25x10−6 62x10 4 2
) (V
GS
2
+ 1) − VGS → VGS2 + 0.710VGS − 4.161 = 0 → VGS = −2.426V , + 1.716V
2 25x10 −2.426 + 1) = 25.4 µA | VDS = − 10 −137kΩ(25.4µA) = −6.52 V ( 2 Saturation region is correct. | Q - Point : (25.4 µA, - 6.52 V ) −6
ID =
€
[
]
Page 195 (a) VDS = 3 V , VGS − VP = −2 − (−3.5) = +1.5 V. The transistor is pinched off. 2
−2V V 2 I D = I DSS 1− GS = 1mA 1− = 184 µA | Pinchoff requires VDS ≥ VGS − VP = +1.5 V VP −3.5V
(b)
VDS = 6 V , VGS − VP = −1− (−3.5) = +2.5 V. The transistor is pinched off. 2
2 −1V VGS I D = I DSS 1− = 1mA 1− = 510 µA | Pinchoff requires VDS ≥ VGS − VP = +2.5 V VP −3.5V
(c)
VDS = 0.5 V , VGS − VP = −2 − (−3.5) = +1.5 V. The transistor is in the triode region.
ID =
2(1mA) 2I DSS VDS 0.5 V − V − V = −2 + 3.5 − 0.5 = 51.0 µA GS P DS 2 2 2 VP2 −3.5 ( )
Pinchoff requires VDS ≥ VGS − VP = +1.5 V −−−
(a )
VDS = 0.5 V , VGS − VP = −2 − (−4) = +2 V. The transistor is in the triode region.
ID =
(b)
2(0.2mA) 2I DSS VDS 0.5 V − V − V = −2 + 4 − 0.5 = 21.9 µA GS P DS 2 2 2 VP2 (−4)
VDS = 6 V , VGS − VP = −1− (−4) = +3 V. The transistor is pinched off. 2
−1V V 2 I D = I DSS 1− GS = 0.2mA 1− = 113 µA VP −4V
€
19
©R. C. Jaeger and T. N. Blalock 08/09/10
Page 197 (a) VDS = −3 V , VGS − VP = 3 − 4 = −1 V. The transistor is pinched off. VGS 2 3V 2 I D = I DSS 1− = 2.5mA 1− = 156 µA | Pinchoff requires VDS ≤ VGS − VP = −1 V 4V VP
( b)
VDS = −6 V , VGS − VP = 1− (4) = −3 V. The transistor is pinched off.
VGS 2 1V 2 I D = I DSS 1− = 2.5mA 1− = 1.41 mA | Pinchoff requires VDS ≤ VGS − VP = −3 V 4V VP
(c)
VDS = −0.5 V , VGS − VP = 2 − (4) = −2 V. The transistor is in the triode region.
ID =
2(2.5mA) 2I DSS VDS −0.5 V − V − V = 2 − 4 − (−0.5) = 273 µA GS P DS 2 2 VP2 42
Pinchoff requires VDS ≤ VGS − VP = −2 V Page 198 €
BETA =
I DSS 2.5mA = = 0.625 mA | VTO = VP = −2 V | LAMBDA = λ = 0.025 V -1 2 2 VP (−2)
−−− BETA =
I DSS 5mA = 2 = 1.25 mA | VTO = VP = 2 V | LAMBDA = λ = 0.02 V -1 2 VP 2
€
20
©R. C. Jaeger and T. N. Blalock 08/08/10
Page 200 VTO = VP = −5 V | BETA =
I DSS 5mA = = 0.2 mA | LAMBDA = λ = 0.02 V -1 VP2 (−5)2
−−− VGS = VG − VS = −IG RG − I S RS = 0 − I D RS = −I D RS 2
2
V V 2 K K K VGS = − n (VGS − VTN ) RS = − n VTN2 RS GS −1 = −I DSS RS 1− GS for I DSS = n VTN2 and VP = VTN 2 2 2 VTN VP 2
2
V V 2 0.4mA VGS = − −5) (1kΩ)1− GS = 51+ GS → VGS2 −15VGS + 25 = 0 and the rest is identical. ( 2 5 −5 --Assuming pinchoff, I D = 1.91 mA and VDS = 9 −1.91mA(2kΩ + 1kΩ) = 3.27 V. VGS − VP = 3.09 V , VDS > VGS − VP , and pinchoff is correct. --2
V VGS 2 −3 3 2 GS Assuming pinchoff, VGS = −I DSS RS 1− = − 5x10 2x10 1+ → VGS + 12.5VGS + 25 = 0 5 VP
(
)(
)
2
2 V −2.5 GS VGS = −2.5 V | I D = I DSS 1− = 5mA1− = 1.25 mA −5 VP
VDS = 12 −1.25mA(2kΩ + 2kΩ) = 7.00 V. VGS − VP = −2.5 − (−5) = +2.5 V , VDS > VGS − VP , and pinchoff is correct. Q - Point : (1.25 mA, 7.00 V ) ---
(a ) V
G
= −IG RG = −10nA(680kΩ) = −6.80 mV. 2
2 VGS VGS −3 3 2 VGS = VG − VS = −IG RG − I DSS RS 1− = −.00680 − 5x10 10 1+ → VGS −15VGS + 25 = 0 V 5 P
(
)( )
The value of VG is insignificant with respect to the constant term of 25. So the answers are the same to 3 significant digits.
(b) V
G
= −IG RG = −1µA(680kΩ) = 0.680 V and now cannot be neglected.
2 V 2 VGS −3 3 2 GS VGS = VG − VS = −IG RG − I DSS RS 1− = −0.680 − 5x10 10 1+ → VGS −15VGS + 28.4 = 0 V 5 P
(
)( )
2
V −2.226 2 GS VGS = −2.226 V | I D = I DSS 1− = 5mA1− = 1.54 mA −5 VP VDS = 12 −1.54mA(2kΩ + 1kΩ) = 7.38 V | Q - Point : (1.54 mA, 7.38 V )
€
21
©R. C. Jaeger and T. N. Blalock 08/09/10
CHAPTER 5 Page 223
(a )
βF =
αF 0.970 0.993 0.250 = = 32.3 | β F = = 142 | β F = = 0.333 1− α F 1− 0.970 1− 0.993 1− .250
(b)
αF =
βF 40 200 3 = = 0.976 | α F = = 0.995 | α F = = 0.750 β F + 1 41 201 4
Page 225 €
0.700 −9.30 10−15 A −9.30 iC = 10−15 Aexp − exp exp − −1 = 1.45 mA 0.5 0.025 0.025 0.025 0.700 −9.30 10−15 A 0.700 iE = 10−15 Aexp − exp exp + −1 = 1.46 mA 0.025 100 0.025 0.025 10−15 A 0.700 10−15 A −9.30 iB = exp exp −1 + −1 = 14.5 µA 100 0.025 0.5 0.025
Page 227 €
0.750 0.700 10−16 A 0.700 iC = 10−16 Aexp exp − exp − −1 = 563 µA 0.4 0.025 0.025 0.025 0.750 0.700 10−16 A 0.750 iE = 10−16 Aexp − exp exp + −1 = 938 µA 75 0.025 0.025 0.025
iB =
10−16 A 0.750 10−16 A 0.700 exp exp −1 + −1 = 376 µA 75 0.025 0.4 0.025
−−− 0.750 −2 iT = 10−15 Aexp − exp = 10.7 mA 0.025 0.025 0.750 −4.25 iT = 10−16 Aexp − exp = 1.07 mA 0.025 0.025
€
22
©R. C. Jaeger and T. N. Blalock 08/08/10
Page 230 10−4 A I VBE = VT ln C + 1 = 0.025V ln −16 + 1 = 0.691 V IS 10 A 10−3 A I VBE = VT ln C + 1 = 0.025V ln −16 + 1 = 0.748 V IS 10 A Page 231 €
€
npn :VBE > 0, VBC < 0 → Forward − Active Region | pnp :VEB > 0, VCB > 0 → Saturation Region Page 233 αF 0.95 βF = = = 19 1− α F 0.05 VBE = 0, VBC
I E = I S = 0.100 fA
IB = −
IS 10−16 A =− = −0.300 fA βR 0.333
VBE