Microstructure and Mechanical Properties of TiC0.7N0.3-HfC ... - MDPI

0 downloads 0 Views 2MB Size Report
Jun 8, 2018 - TiC0.7N0.3-HfC-WC-Ni-Mo Cermet Tool Materials. Jiaojiao ..... Advanced Technical Ceramics)—Test Method for Flexural Strength of Monolithic ...
materials Article

Microstructure and Mechanical Properties of TiC0.7N0.3-HfC-WC-Ni-Mo Cermet Tool Materials Jiaojiao Gao 1,2 , Jinpeng Song 1,2, * and Ming Lv 1,2, * 1 2

*

School of Mechanical Engineering, Taiyuan University of Technology, Taiyuan 030024, China; [email protected] Shanxi Key Laboratory of Precision Machining, The Shanxi Science and Technology Department, Taiyuan University of Technology, Taiyuan 030024, China Correspondence: [email protected] (J.S.); [email protected] (M.L.)

Received: 3 May 2018; Accepted: 5 June 2018; Published: 8 June 2018

 

Abstract: TiC0.7 N0.3 -HfC-WC-Ni-Mo cermet tool materials were fabricated by hot pressing technology at 1450 ◦ C. The effects of WC (tungsten carbide) content on the microstructure and mechanical properties of TiC0.7 N0.3 -HfC-WC-Ni-Mo cermet tool materials were investigated. The results showed that the TiC0.7 N0.3 -HfC-WC-Ni-Mo cermets were mainly composed of TiC0.7 N0.3 , Ni, and (Ti, Hf, W, Mo)(C, N); there were three phases: a dark phase, a gray phase, and a light gray phase. The dark phase was the undissolved TiC0.7 N0.3 , the gray phase was the solid solution (Ti, Hf, W, Mo)(C, N) poor in Hf, W, and Mo, and the light gray phase was the solid solution (Ti, Hf, W, Mo)(C, N) rich in Hf, W, and Mo. The increase of WC content could promote the process of HfC to form a solid solution and the HfC formed a solid solution more easily with WC than with TiCN. The increase of the solid solution made the microstructure more uniform and the mechanical properties better. In addition, the Vickers hardness, flexural strength, and fracture toughness of the TiC0.7 N0.3 -HfC-WC-Ni-Mo cermet increased with the increase of WC content. When the content of WC was 32 wt %, the cermet obtained the optimal comprehensive mechanical properties in this investigation. The toughening mechanism of TiC0.7 N0.3 -HfC-WC-Ni-Mo cermet tool materials included solid solution toughening, particle dispersion toughening, crack bridging, and crack deflection. Keywords: TiCN-HfC-WC cermet; hot-pressed sintering; microstructure; mechanical properties

1. Introduction TiCN-based cermet tool material has developed rapidly in recent years and exhibits excellent characteristics in high-speed cutting [1]. It has excellent properties such as good wear resistance, excellent high temperature hardness, a relatively low friction coefficient, and superior chemical stability [2,3]. Compared with the traditional WC-Co tool, the TiCN cermet tool has better thermal stability, high temperature oxidation resistance, high temperature hardness, and lower fracture toughness [4–6]. Recently, researchers have conducted a lot of research on how to improve the fracture toughness of TiCN cermet. Yin et al. [2] investigated the effect of the microwave sintering process and WC/Mo2 C ratio on the mechanical properties of TiCN-based cermet cutting tool material, and reported that the fracture toughness was 10.08 MPa·m1/2 and the hardness was 16.83 GPa. Verma et al. [5] investigated the effect of TaC addition on the mechanical properties of Ti(CN)-5 wt % WC-20 wt % Ni/Co cermets and reported that the fracture toughness was 9.51 MPa·m1/2 and the hardness was 17.01 GPa. Liu et al. [1] investigated the influence of Mo2 C and TaC additions on the mechanical properties of TiCN-based cermets, and pointed out that the fracture toughness was about 13.5 MPa·m1/2 , the transverse rupture strength was about 1690 MPa, and the hardness was about 91.4 HRA. Park et al. [7] investigated carbide/binder interfaces in Ti(CN)-(Ti, W)C/(Ti, Materials 2018, 11, 968; doi:10.3390/ma11060968

www.mdpi.com/journal/materials

Materials 2018, 11, 968

2 of 9

W)(CN)-based cermets and the result showed that the fracture toughness was 12.2 MPa·m1/2 and the hardness was 14 GPa. Sun et al. [8] investigated the effect of short carbon fiber concentration on the mechanical properties of TiCN-based cermets and stated that the fracture toughness was 11.66 MPa·m1/2 , the bending strength was 643.3 MPa, and the hardness was 79.1 HRA. It can be noted that there has been a great breakthrough in improving the fracture toughness of TiCN-based cermet, but its hardness has not improved simultaneously. Its low hardness limits its extensive application in high-speed cutting. Therefore, it is necessary to improve the comprehensive mechanical properties of TiCN-based cermet. In many investigations, WC plays an important role in enhancing the microstructure and mechanical properties of TiCN-based cermet. Dong et al. [9] reported that the mechanical properties of nano Ti(C, N)-based cermet were improved with the increase of WC addition. Qu et al. [10] reported that the lattice constant of the Ti(C, N) hard phase increased with the increase of WC content. Wang et al. [11] reported that WC can enhance density, facilitate sintering, and decrease the particle growth rate of TiCN-based cermet, and that Mo is almost necessary for Ti(CN)-based cermets. However, there are few reports on the effect of WC on the microstructure and mechanical properties of TiCN-HfC cermet. Besides, Mun et al. [12] reported that the addition of HfC could improve the cutting performance of TiCN-based cermet tools and Song et al. [13] pointed out that HfC addition could inhibit grain growth in TiN-based and TiB2 -based ceramic tools. Based on our previous investigation [14], HfC plays a positive role in improving the microstructure and mechanical properties of TiCN-based cermet tools. In order to further improve the comprehensive mechanical properties of TiCN-HfC cermet, the effect of WC content on the microstructure and mechanical properties of TiCN-HfC-Ni-Mo cremet was investigated in this work. 2. Experimental Procedure The composition of TiC0.7 N0.3 -HfC-WC-Ni-Mo cermets and the specifications of raw powders are showed in Tables 1 and 2. Table 1. Composition ratios of TiC0.7 N0.3 -HfC-WC-Ni-Mo cermets (wt %). Specimen

TiC0.7 N0.3

HfC

WC

Ni

Mo

W8 W16 W24 W32

64 56 48 40

20 20 20 20

8 16 24 32

4 4 4 4

4 4 4 4

Table 2. Specifications of raw powders. Powders

Size

Purity

Manufacturer

TiC0.7 N0.3 HfC WC Ni Mo

1 µm 0.8 µm 0.1 µm 1 µm 1 µm

>99% >99% >99% >99% >99%

Shanghai ST-Nano Science and Technology Co., Ltd., Shanghai, China Shanghai Chaowei Nanomaterials Co., Ltd., Shanghai, China Shanghai Yunfu Nanotechnology Co., Ltd., Shanghai, China Shanghai Yunfu Nanotechnology Co., Ltd., Shanghai, China Shanghai Yunfu Nanotechnology Co., Ltd., Shanghai, China

The powders were mixed and milled for 48 h in a polyethylene jar with WC (tungsten carbide) balls and alcohol as mediums. Then the mixed slurry was dried in vacuum and sieved by a 200-mesh sieve. Then, the mixed powder was sealed and compacted into graphite mold at room. The compacted powders were sintered in a vacuum ((1.2−2.4) × 10−3 Pa) hot-press sintering furnace (ZT-40-20, Shanghai Chenhua Technology Co., Ltd., Shanghai, China). The sintering parameters were as follows: the sintering temperature was 1450 ◦ C, the holding time was 30 min, the heating rate was 50 ◦ C/min, and the sintering pressure was 30 MPa. The sintered samples were cut into testing specimens by

Materials 2018, 11, 968

3 of 9

the electrical discharge wire cutting  method and the surfaces of the testing bars were polished Materials 2018, 11, x FOR PEER REVIEW  3 of 9 using diamond slurries. The dimensions of the specimen were 3 mm × 4 mm × 40 mm. specimens by the electrical discharge wire cutting method and the surfaces of the testing bars were  Flexural strength was measured at a span of 30 mm and across a head speed of 0.5 mm/min by the polished using diamond slurries. The dimensions of the specimen were 3 mm × 4 mm × 40 mm.  three-point bending test method on an electron universal tester (CREE-8003G, Dongguan City Kerry Flexural strength was measured at a span of 30 mm and across a head speed of 0.5 mm/min by  Instrument Technology Co., Ltd., Dongguan, China) according to Chinese National Standards GB/T the three‐point bending test method on an electron universal tester (CREE‐8003G, Dongguan City  6569-2006/ISO 14704: 2000 [15]. Fracture toughness (KIC ) was measured via the direct indentation Kerry Instrument Technology Co., Ltd., Dongguan, China) according to Chinese National Standards  method [16,17]. Vickers hardness was[15].  measured ontoughness  the polished using a diamond pyramid GB/T  6569‐2006/ISO  14704:  2000  Fracture  (KIC) surfaces was  measured  via  the  direct  indenter (HVS-30, Shanghai Precision Instruments Co., measured  Ltd., Shanghai, China) under a loadusing  of 196a N for indentation  method  [16,17].  Vickers  hardness  was  on  the  polished  surfaces  diamond  Precision  Instruments [18]. Co., The Ltd.,  Shanghai,  China)  15 s by HV-120pyramid  based onindenter  Chinese(HVS‐30,  NationalShanghai  Standards GB/T 16534-2009 relative density of each under a load of 196 N for 15 s by HV‐120 based on Chinese National Standards GB/T 16534‐2009 [18].  specimen was measured by the Archimedes method with distilled water as the medium. The theoretical The relative density of each specimen was measured by the Archimedes method with distilled water  density was calculated according to the rule of mixtures based on the following densities: 5.08, 12.7, as the medium. The theoretical density was calculated according to the rule of mixtures based on the  15.6, 8.90, and 10.20 g/cm3 for TiC0.7 N0.3 , HfC, WC, Ni, and Mo, respectively. At least 15 specimens following  densities:  5.08,  12.7,  15.6,  8.90,  and  10.20  g/cm3  for  TiC0.7N0.3,  HfC,  WC,  Ni,  and  Mo,  were tested for each experimental condition. X-ray diffraction (XRD, EMPYREAN, PANalytical B.V., respectively.  At  least  15  specimens  were  tested  for  each  experimental  condition.  X‐ray  diffraction  Almelo, The Netherlands) and energy dispersive spectrometry (EDS, ACT-350, Oxford Instruments, (XRD, EMPYREAN, PANalytical B.V., Almelo, The Netherlands) and energy dispersive spectrometry  Oxford, UK) were used to analyze the compositions the used  composite. A scanning electron microscope (EDS,  ACT‐350,  Oxford  Instruments,  Oxford,  UK) of were  to  analyze  the  compositions  of  the  and acomposite. A scanning electron microscope and a back‐scattered electron microscope (SEM, Supra‐ back-scattered electron microscope (SEM, Supra-55, Carl Zeiss AG, Oberkochen, Germany) were used55, Carl Zeiss AG, Oberkochen, Germany) were used to observe the polished surface and fractured  to observe the polished surface and fractured surface morphologies. surface morphologies. 

3. Results and Discussion 3. Results and Discussion 

3.1. Effects of WC Content on the Microstructure of TiC0.7 N0.3 -HfC-WC-Ni-Mo Cermets 3.1. Effects of WC Content on the Microstructure of TiC0.7N0.3‐HfC‐WC‐Ni‐Mo Cermets 

Figure 1 exhibits the XRD patterns of TiC0.7 N0.3 -HfC-WC-Ni-Mo cermet tool materials. The main Figure 1 exhibits the XRD patterns of TiC 0.7N0.3‐HfC‐WC‐Ni‐Mo cermet tool materials. The main  phases were TiC0.7 N0.3 , Ni and (Ti, Hf, W, Mo)(C, N). The solid solution (Ti, Hf, W, Mo)(C, N) had a phases were TiC 0.7N0.3, Ni and (Ti, Hf, W, Mo)(C, N). The solid solution (Ti, Hf, W, Mo)(C, N) had a  similar lattice structure to that of TiC0.7 N0.3 and solid solutions similar to that of (Ti, W/Ta/Mo . . . ) similar lattice structure to that of TiC0.7N0.3 and solid solutions similar to that of (Ti, W/Ta/Mo…)(C,  (C, N) were also found in other researches [1,5,11]. In the liquid-phase sintering stage, TiC0.7 N0.3 , WC, N) were also found in other researches [1,5,11]. In the liquid‐phase sintering stage, TiC0.7N0.3, WC,  HfC, and Mo dissolved, and then precipitated as a complex solid solution, (Ti, Hf, W, Mo)(C, N). HfC, and Mo dissolved, and then precipitated as a complex solid solution, (Ti, Hf, W, Mo)(C, N).  TiC

N0.3 Ni (Ti,Hf,W,Mo)(C,N)

0.7

Relative intensity





  



20

30



40

 





50

60



70



80

90

2 (deg.)

 

Figure 1. R‐ray diffraction (XRD) patterns of TiC0.7N0.3‐HfC‐WC‐Ni‐Mo cermet tool materials. 

Figure 1. R-ray diffraction (XRD) patterns of TiC0.7 N0.3 -HfC-WC-Ni-Mo cermet tool materials.

Figure 2 shows the SEM micrographs of polished surfaces of TiC0.7N0.3‐HfC‐WC‐Ni‐Mo cermet 

Figure 2 shows the SEM micrographs of polished surfaces of TiC0.7 N0.3 -HfC-WC-Ni-Mo cermet tool materials with different WC contents. There were three phases including a dark phase, a gray  phase, and a light gray phase, as shown by the arrows in Figure 2. The EDS result of each phase is  tool materials with different WC contents. There were three phases including a dark phase, a gray exhibited in Figure 3. Based on the results of the XRD and EDS, the dark phase was the remanent  phase, and a light gray phase, as shown by the arrows in Figure 2. The EDS result of each phase is TiCN with abundant Ti and scanty W, Hf, and Mo, as shown in Figure 3a; the gray phase was the  exhibited in Figure 3. Based on the results of the XRD and EDS, the dark phase was the remanent TiCN complex solid solution (Ti, Hf, W, Mo)(C, N) poor in W, Hf, Mo and rich in Ti, as shown in Figure 3b;  with abundant Ti and scanty W, Hf, and Mo, as shown in Figure 3a; the gray phase was the complex and  the light  gray  phase was  the  complex solid solution (Ti, Hf,  W,  Mo)(C, N)  rich in W,  Hf,  Mo  solid solution (Ti, Hf, W, Mo)(C, N) poor in W, Hf, Mo and rich in Ti, as shown in Figure 3b; and the light elements but poor in Ti, as shown in Figure 3c. Qu et al. [10] reported that WC and Mo dissolved and  gray then reprecipitated as  phase was the complex solid solution (Ti, Hf, W, Mo)(C,Mo)(C, N) in  N) rich in W,the Ti(C,  Hf, Mo N)‐WC‐Mo‐Ni  elements but poor solid solutions  (Ti, W)(C, N) and (Ti,  in Ti,cermet,  as shown in Figure 3c. Qu et al. [10] reported that WC and Mo dissolved and then reprecipitated respectively;  Mun  et  al.  [12]  reported  that  the  solid  solution  (Ti,  Hf)C  formed  in  the  as solid solutions (Ti, W)(C, N) and (Ti, Mo)(C, N) in the Ti(C, N)-WC-Mo-Ni cermet, respectively; Mun et al. [12] reported that the solid solution (Ti, Hf)C formed in the dissolution-reprecipitation

Materials 2018, 11, 968

4 of 9

process in the TiC-HfC-Ni cermet;  Kumar et al. [19] reported that (Ti, W/Nb/Ta/Hf)CN 4 of 9  formed Materials 2018, 11, x FOR PEER REVIEW  and reprecipitated around the undissolved TiCN in the TiCN-based cermets; therefore, the solid dissolution‐reprecipitation  in from the  TiC‐HfC‐Ni  cermet;  Kumar  et  al.  [19]  reported  that  solution (Ti, Hf, W, Mo)(C, N)process  resulted the dissolution-reprecipitation process. Zhou et (Ti,  al. [20] W/Nb/Ta/Hf)CN  formed  and  reprecipitated  around  the  undissolved  TiCN  in  the  TiCN‐based  reported that the solid solution (Mo, Ti)(C, N) can improve the interface bonding strength between the  solid  solution  Hf,  W,  Mo)(C,  from N)  resulted  Ti(C,cermets;  N) and therefore,  Ni. In Figure 2 with the WC(Ti,  content increased 8 to 32 from  wt %,the  thedissolution‐ change in the reprecipitation process. Zhou et al. [20] reported that the solid solution (Mo, Ti)(C, N) can improve  size of the dark phase was not obvious, which was in the range of 0.5–3 µm, but the number of the interface bonding strength between Ti(C, N) and Ni. In Figure 2 with the WC content increased  the dark phase decreased gradually, which indicated that the higher content of WC promoted the from 8 to 32 wt %, the change in the size of the dark phase was not obvious, which was in the range  dissolution-reprecipitation process. In addition, there were some flaws (marked by circles) in Figure 2 of 0.5–3 μm, but the number of the dark phase decreased gradually, which indicated that the higher  and content of WC promoted the dissolution‐reprecipitation process. In addition, there were some flaws  the flaw mostly presented in the light gray phase, which showed that the light gray phase was a weak phase. With the WC content increasing, the number of flaws decreased gradually. In particular, (marked by circles) in Figure 2 and the flaw mostly presented in the light gray phase, which showed  when the WC content increased to 32 wt %, there were almost no flaws in Figure 2d, which indicated that the light gray phase was a weak phase. With the WC content increasing, the number of flaws  thatdecreased gradually. In particular, when the WC content increased to 32 wt %, there were almost no  the quality of the polished surface was improved. The shapes of the flaws showed that the flaws in Figure 2d, which indicated that the quality of the polished surface was improved. The shapes  formation of flaws was mainly due to the pull-off of the grains during the grinding and polishing of the flaws showed that the formation of flaws was mainly due to the pull‐off of the grains during  process [13], which showed that the grain bonding strength was weak. So the improved quality of the the grinding and polishing process [13], which showed that the grain bonding strength was weak. So  polished surface indicated that the grains bonding strength increased with the WC content increasing. the improved quality of the polished surface indicated that the grains bonding strength increased  The main reason for this was that the wettability of Ni to WC was very good, far superior to the with the WC content increasing. The main reason for this was that the wettability of Ni to WC was  wettability of Ni to TiCN and HfC. Therefore, with the WC content increasing, the number of flaws very good, far superior to the wettability of Ni to TiCN and HfC. Therefore, with the WC content  decreased gradually. The improvement of the grain bonding strength can restrain crack propagation increasing, the number of flaws decreased gradually. The improvement of the grain bonding strength  and then improve the fracture toughness of the cermet. Apart from the removed grains, some pores can restrain crack propagation and then improve the fracture toughness of the cermet. Apart from  probably forming in the sintering process were parts of the flaws. the removed grains, some pores probably forming in the sintering process were parts of the flaws. 

 

 

 

 

Figure 2. SEM micrographs of polished surfaces of TiC0.7N0.3‐HfC‐WC‐Ni‐Mo cermet tool materials 

Figure 2. SEM micrographs of polished surfaces of TiC0.7 N0.3 -HfC-WC-Ni-Mo cermet tool materials 0.7N0.3‐HfC‐8 wt % WC (W8); (b) TiC 0.7N0.3‐HfC‐16 wt % WC (W16);  with different WC contents: (a) TiC with(c) TiC different WC contents: (a) TiC N -HfC-8 wt % WC (W8); (b) TiC N 0.7 0.3 0.7 0.3 -HfC-16 wt % WC 0.7N0.3‐HfC‐24 wt % WC (W24); (d) TiC0.7N0.3‐HfC‐32 wt % WC (W32).  (W16); (c) TiC0.7 N0.3 -HfC-24 wt % WC (W24); (d) TiC0.7 N0.3 -HfC-32 wt % WC (W32).

Materials 2018, 11, 968

5 of 9

Materials 2018, 11, x FOR PEER REVIEW   

5 of 9 

(a)

(b)

Dark phase

(c)

Gray phase

Light gray phase

Ti

Hf

Materials 2018, 11, x FOR PEER REVIEW    Hf

(a) N CTi

0

(b)

Dark phase Ti

Hf

Ti

Mo

2

5 of 9 

Ti

4

W NiHf

6

N C

Hf

8

Ti

Hf Mo

 0

10

2

Hf Ni

4

6

8

W

Ti

(c)

Gray phase Hf W Hf W

Light gray phase C

 0

10

2

Hf W

Ti

Mo

4

Ni

6

8

W Hf W

10

Hf

 

Ti Figure 3. 3. Energy Energy dispersive dispersive spectrometry spectrometry (EDS) (EDS)  results ofof the the phases phases  TiC ‐HfC‐WC‐Ni‐Mo  Figure results inin  TiC NN0.30.3-HfC-WC-Ni-Mo 0.70.7 Hf cermet tool materials: (a) EDS results of the dark phase; (b) EDS results of the gray phase; (c) EDS  cermet tool materials: (a) EDS results of the dark phase; (b) EDS results of theTi gray phase; (c) EDS W Hf W Ti W N of Hf Hf W results of the light gray phase.  results Hf the light gray phase. N Hf Mo Hf W Ti Ti W Ni Hf W CTi

NiHf

Mo

Hf

Ni

C

C

Mo

2 4 6 8 10   0 2 4 6 8 10    0 Figure  4  shows  the  fracture  morphologies  of  TiC0.7N0.3‐HfC‐WC‐Ni‐Mo  cermet  tool  materials  Figure Figure  4 shows the fracture ofresults  TiC0.7of Nthe  cermet tool materials 3.  Energy  dispersive morphologies spectrometry  (EDS)  phases  in  TiC0.7N0.3‐HfC‐WC‐Ni‐Mo  0.3 -HfC-WC-Ni-Mo with different WC contents. The core‐rim structure (marked by squares) was obvious in these cermets.  cermet tool materials: (a) EDS results of the dark phase; (b) EDS results of the gray phase; (c) EDS  with different WC contents. The core-rim structure (marked by squares) was obvious in these cermets. During the sintering, HfC, WC, and Mo dissolved and then reprecipitated as the solid solution (Ti,  results of the light gray phase.  During the sintering, HfC, WC, and Mo dissolved and then reprecipitated as the solid solution (Ti, Hf, Hf, W, Mo)(C, N) to form the rim around the core—undissolved TiCN. When the WC content was 8  W, Mo)(C, N) to form the rim aroundmorphologies  the core—undissolved TiCN. When the WCtool  content was 8 and Figure  4  shows  the  fracture  of  TiC0.7N0.3‐HfC‐WC‐Ni‐Mo  cermet  materials  and 16 wt %, there were some big size dark phases (marked by circles in Figure 4a,b) which made the  16 wt %,with different WC contents. The core‐rim structure (marked by squares) was obvious in these cermets.  there were some big size dark phases (marked by circles in Figure 4a,b) which made the microstructure uneven. In contrast, the microstructure was fine and uniform in Figure 4c,d when the  microstructure uneven. In contrast, the microstructure was fine and uniform in Figure 4c,d when the During the sintering, HfC, WC, and Mo dissolved and then reprecipitated as the solid solution (Ti,  WC content was 24 and 32 wt %, respectively. The main reason for this was that as the WC content  Hf, W, Mo)(C, N) to form the rim around the core—undissolved TiCN. When the WC content was 8  WC content was 24 and 32 wt %, respectively. The main reason for this was that as the WC content increased, the rim tended to be complete, which isolated the direct contact of the TiCN and, in turn,  and 16 wt %, there were some big size dark phases (marked by circles in Figure 4a,b) which made the  increased, the rim tended to be complete, which isolated the direct contact of the TiCN and, in turn, microstructure uneven. In contrast, the microstructure was fine and uniform in Figure 4c,d when the  inhibited  the  growth  of  TiCN.  In  addition,  there  were  some  white  dots  on  the  fracture  surfaces  inhibited the growth of TiCN. In addition, there were some white dots on the fracture surfaces (marked WC content was 24 and 32 wt %, respectively. The main reason for this was that as the WC content  (marked by the red arrows in Figure 4) and they decreased gradually as the WC content increased.  by the red arrows in Figure 4) and they decreased gradually as the WC content increased. Especially increased, the rim tended to be complete, which isolated the direct contact of the TiCN and, in turn,  Especially when the WC content was 32 wt % (in Figure 4d), the white dots were very few, which  when the WC content wasof  32TiCN.  wt %In (in Figurethere  4d), were  the white dots were very which could also inhibited  the  growth  addition,  some  white  dots  on  the few, fracture  surfaces  could also be validated in Figure 2d. According to our previous finding [14], the white dots were HfC  (marked by the red arrows in Figure 4) and they decreased gradually as the WC content increased.  be validated in Figure 2d. According to our previous finding [14], the white dots were HfC particles. particles. Therefore, these indicated that the increase of WC content could promote the process of  Especially when the WC content was 32 wt % (in Figure 4d), the white dots were very few, which  Therefore, these indicated that the increase of WC content could promote the process of HfC to form a HfC to form a solid solution and that HfC formed a solid solution more easily with WC than with  could also be validated in Figure 2d. According to our previous finding [14], the white dots were HfC  solid solution and that HfC formed a solid solution more easily with WC than with TiCN. Besides, HfC particles. Therefore, these indicated that the increase of WC content could promote the process of  TiCN.  Besides,  HfC  particles  locating  at  grain  boundaries  can  play  a  very  good  pinning  role  for  particlesHfC to form a solid solution and that HfC formed a solid solution more easily with WC than with  locating at grain boundaries can play a very good pinning role for improving the mechanical improving the mechanical properties of the cermet. In addition, there were some pores (marked by  properties of the cermet. addition, thereat were some pores (marked thegood  yellow arrows Figure 4) TiCN.  Besides,  HfC In particles  locating  grain  boundaries  can  play  a by very  pinning  role infor  the yellow arrows in Figure 4) in the fracture surface. These pores were composed of the micro‐void  in the fracture surface. These pores were composed of the micro-void left by the pull-out grains in improving the mechanical properties of the cermet. In addition, there were some pores (marked by  left by the pull‐out grains in the fracture process and the pore formation in the sintering process. The  the yellow arrows in Figure 4) in the fracture surface. These pores were composed of the micro‐void  the fracture process and the pore formation in the sintering process. The pull-out effect of grains pull‐out effect of grains was advantageous to improve the mechanical properties of cermets, while  left by the pull‐out grains in the fracture process and the pore formation in the sintering process. The  was advantageous to improve the mechanical properties of cermets, while the pore formation in the the pore formation in the sintering process was harmful to the mechanical properties of cermets.  pull‐out effect of grains was advantageous to improve the mechanical properties of cermets, while  sintering process was harmful to the mechanical properties of cermets. 0

2

4

6

8

10

the pore formation in the sintering process was harmful to the mechanical properties of cermets. 

 

Figure  4. Cont.

 

 

Materials 2018, 11, 968

6 of 9

Materials 2018, 11, x FOR PEER REVIEW   

6 of 9 

 

 

Figure 4. Fracture morphologies of TiC0.7N0.3‐HfC‐WC‐Ni‐Mo cermet tool materials with different WC 

Figure 4. Fracture morphologies of TiC0.7 N0.3 -HfC-WC-Ni-Mo cermet tool materials with different 0.7N0.3‐HfC‐8 wt % WC (W8); (b) TiC 0.7N0.3‐HfC‐16 wt % WC (W16); (c) TiC0.7N0.3‐HfC‐ contents: (a) TiC WC contents: (a) TiC0.7 N0.3 -HfC-8 wt % WC (W8); (b) TiC0.7 N0.3 -HfC-16 wt % WC (W16); 0.7N0.3‐HfC‐32 wt % WC (W32).  24 wt % WC (W24); (d) TiC (c) TiC0.7 N0.3 -HfC-24 wt % WC (W24); (d) TiC0.7 N0.3 -HfC-32 wt % WC (W32). 3.2. Effects of WC Content on the Relative Density and Mechanical Properties of TiC0.7N0.3‐HfC‐WC‐Ni‐Mo  Cermets 

3.2. Effects of WC Content on the Relative Density and Mechanical Properties of TiC0.7 N0.3 -HfC-WCNi-Mo Cermets Figure 5 presents the relative density and mechanical properties of TiC0.7N0.3‐HfC‐WC‐Ni‐Mo  cermet tool materials with different WC contents. With the WC content increasing from 8 to 32 wt %, 

Figure 5 presents the relative density and mechanical properties of TiC0.7 N0.3 -HfC-WC-Ni-Mo the relative density increased from (99.02 ± 0.03)% to (99.73 ± 0.02)%, the Vickers hardness increased  cermet from 17.79 ± 0.30 to 21.06 ± 0.22 GPa, the flexural strength increased from 1042.61 ± 21 to 1270.56 ± 20  tool materials with different WC contents. With the WC content increasing from 8 to 1/2. The improvement  32 wt %,MPa, and the fracture toughness increased from 7.82 ± 0.37 to 9.47 ± 0.31 MPa∙m the relative density increased from (99.02 ± 0.03)% to (99.73 ± 0.02)%, the Vickers hardness of the relative density and Vickers hardness was mainly due to the wettability of Ni between WC  increased from 17.79 ± 0.30 to 21.06 ± 0.22 GPa, the flexural strength increased from 1042.61 ± 21 being  much  better  than  that  of  Ni  between  TiCN.  Better  wettability  can  improve  the  sintering  to 1270.56 ± 20 MPa, and the fracture toughness increased from 7.82 ± 0.37 to 9.47 ± 0.31 MPa·m1/2 . property of the material, so better densification and hardness were obtained. Therefore, the higher  The improvement of the relative density and Vickers hardness was mainly due to the wettability of the content of WC was, the higher relative density and hardness of the material was. Besides, the  Ni between WC being much better than that of Ni between TiCN. Better wettability can improve the reduction of flaws promoted the improvement of the relative density of materials. In addition, the  sintering property of the material, so better densification and hardness were obtained. Therefore, fine microstructure was also benefit for the enhancement of hardness. W32 had the best hardness of  21.06 ± 0.22 GPa, which was higher than the value of 19.4 GPa reported in TiC 0.7N 0.3‐20 wt % HfC‐Ni‐ the higher the content of WC was, the higher relative density and hardness of the material was. Besides, Co cermet [14] and higher than the value of 17.54 GPa reported in TiCN‐WC‐Mo 2C‐Ni‐Mo cermet [2].  the reduction of flaws promoted the improvement of the relative density of materials. In addition, For the flexural strength, it increased with the increase of WC content, which can be explained  the fine microstructure was also benefit for the enhancement of hardness. W32 had the best hardness by the Griffith‐Orowan equation [21]:  of 21.06 ± 0.22 GPa, which was higher than the value of 19.4 GPa reported in TiC0.7 N0.3 -20 wt % 1/2   (2 EPof/ 17.54 L) HfC-Ni-Co cermet [14] and higher than the value   GPa reported in TiCN-WC-Mo2 C-Ni-Mo cermet [2]. where E, P, and L represent the Young’s modulus, plastic deformation work due to crack stretching,  Forand the length of the crack, respectively. The Young’s modulus values of TiC, TiN, HfC, and WC are  the flexural strength, it increased with the increase of WC content, which can be explained by 510,  350,  470,  and  731  GPa  [22],  respectively.  E(WC)  is  much  greater  than  E(TiC),  E(TiN),  and  E(HfC).  the Griffith-Orowan equation [21]: Therefore, the flexural strength increased with the increase of WC content. Meanwhile, the improved  σ = (2EP/πL)1/2 flexural strength also benefited from the increase of grain bonding strength and the decrease of the 

where E,weak light gray phase. When the material was subjected to external forces, the material with higher  P, and L represent the Young’s modulus, plastic deformation work due to crack stretching, grain bonding strength would easily succumb to transgranular fracture. At this point, more fracture  and the length of the crack, respectively. The Young’s modulus values of TiC, TiN, HfC, and WC energy  would  be  consumed.  Besides,  the  increase  of  the  solid  solution  was  also  advantage  to  the  are 510, 350, 470, and 731 GPa [22], respectively. E(WC) is much greater than E(TiC) , E(TiN) , and E(HfC) . flexural strength. W32 had the best flexural strength of 1270.56 ± 20 MPa, which was higher than the  Therefore, the flexural strength increased with the increase of WC content. Meanwhile, the improved value of 1018.04 MPa reported in TiC 0.7N0.3‐20 wt % HfC‐Ni‐Co cermet [14].  flexural strength also benefited from the increase of grain bonding strength and the decrease of the As for fracture toughness, it increased with the increase of WC content. The solubility of WC in  Ni is higher than that of TiC in Ni [22]. The higher solubility was favorable for the toughness of the  weak light gray phase. When the material was subjected to external forces, the material with higher material. Also, the increase of grain bonding strength could efficiently inhibit crack propagation, so  grain bonding strength would easily succumb to transgranular fracture. At this point, more fracture energy would be consumed. Besides, the increase of the solid solution was also advantage to the flexural strength. W32 had the best flexural strength of 1270.56 ± 20 MPa, which was higher than the value of 1018.04 MPa reported in TiC0.7 N0.3 -20 wt % HfC-Ni-Co cermet [14]. As for fracture toughness, it increased with the increase of WC content. The solubility of WC in Ni is higher than that of TiC in Ni [22]. The higher solubility was favorable for the toughness of

Materials 2018, 11, 968

7 of 9

the material. Also, the increase of grain bonding strength could efficiently inhibit crack propagation, Materials 2018, 11, x FOR PEER REVIEW    7 of 9  so the fracture toughness increased. In addition, the uneven distribution of grains (as shown in Materials 2018, 11, x FOR PEER REVIEW    7 of 9  Figure 4a,b) lead to the lower fracture toughness of W8 and W16 cermets. The reduction of the weak the fracture toughness increased. In addition, the uneven distribution of grains (as shown in Figure  light4a,b) lead to the lower fracture toughness of W8 and W16 cermets. The reduction of the weak light  gray phase was also advantageous to the improvement of the fracture toughness. W32 had the the fracture toughness increased. In addition, the uneven distribution of grains (as shown in Figure  best gray phase was also advantageous to the improvement of the fracture toughness. W32 had the best  fracture toughness of 9.47 ± 0.31 MPa·m1/2 , which was higher than the value of 8.6 MPa·m1/2 4a,b) lead to the lower fracture toughness of W8 and W16 cermets. The reduction of the weak light  reported in TiC0.7 N0.3 -20 wt % HfC-Ni-Co1/2cermet [14], indicating that the formation of1/2a reported  mass of solid fracture toughness of 9.47 ± 0.31 MPa∙m , which was higher than the value of 8.6 MPa∙m gray phase was also advantageous to the improvement of the fracture toughness. W32 had the best  1/2, which was higher than the value of 8.6 MPa∙m 1/2 reported  in TiC 0.7N 0.3‐20 wt % HfC‐Ni‐Co cermet [14], indicating that the formation of a mass of solid solution  solution can improve the fracture toughness. In order to further determine the toughening mechanisms fracture toughness of 9.47 ± 0.31 MPa∙m can improve the fracture toughness. In order to further determine the toughening mechanisms that  in TiC 0.7 N 0.3 ‐20 wt % HfC‐Ni‐Co cermet [14], indicating that the formation of a mass of solid solution  that operated in TiC0.7 N0.3 -HfC-WC-Ni-Mo cermet tool material, an SEM micrograph of the crack operated  in  TiC N0.3‐HfC‐WC‐Ni‐Mo  an  SEM  micrograph  of  the bridging crack  in can improve the fracture toughness. In order to further determine the toughening mechanisms that  propagation path is 0.7 exhibited in Figure 6.cermet  There tool  werematerial,  mainly crack deflection and crack propagation path is exhibited in Figure 6. There were mainly crack deflection and crack bridging in  operated  in  TiC 0.7N0.3‐HfC‐WC‐Ni‐Mo  cermet  tool  material,  an  SEM  micrograph  of  the  crack  TiC0.7 N0.3 -HfC-WC-Ni-Mo cermet tool materials. In the process of crack propagation, crack deflection TiC 0.7N0.3‐HfC‐WC‐Ni‐Mo cermet tool materials. In the process of crack propagation, crack deflection  propagation path is exhibited in Figure 6. There were mainly crack deflection and crack bridging in  and crack bridging can consume more crack propagation energy, so the crack deflection and crack and crack bridging can consume more crack propagation energy, so the crack deflection and crack  TiC0.7N0.3‐HfC‐WC‐Ni‐Mo cermet tool materials. In the process of crack propagation, crack deflection  bridging were advantageous to the improvement of the fracture toughness of the cermet. bridging were advantageous to the improvement of the fracture toughness of the cermet.  and crack bridging can consume more crack propagation energy, so the crack deflection and crack  bridging were advantageous to the improvement of the fracture toughness of the cermet.  21.5 22.0 21.0 21.5

Vickers hardness (GPa) Vickers hardness (GPa)

99.8 99.6

22.0

(a) (a)

19.5 20.0 19.0 19.5

99.4 99.2

18.5 19.0 18.0 18.5

99.2 99.0 99.0 98.8 98.8

8 8

1400

Flexural strength (MPa) Flexural strength (MPa)

1400 1350 1350 1300

16

24

WC16content /wt% 24 WC content /wt%

17.5 18.0 17.0 17.5

32 32

(c) (c)

   

8 8

10.5 10.5 10.0

(d) (d)

16

24

WC16content /wt% 24 WC content /wt%

32 32

   

9.5 9.0

1250 1200

9.0 8.5

1200 1150

8.5 8.0

1150 1100

8.0 7.5

1100 1050

1000

17.0

10.0 9.5

1300 1250

1050 1000

(b) (b)

20.5 21.0 20.0 20.5

99.6 99.4

Fracture toughness (MPa m) 1/2) Fracture toughness (MPa m1/2

Relative density Relative density (%)(%)

99.8

8

16

24 /24 wt%

WC 16content WC content /wt%

7.5 7.0

32

7.0

8

16

24

32

WC wt% 8 16 content /24 32     WC content / wt%   Figure  5.  Relative  density  and  mechanical  properties  of  TiC0.7N0.3‐HfC‐WC‐Ni‐Mo  cermet  tool   8

32

Figure 5. Relative density and mechanical properties of TiC0.7 N0.3 -HfC-WC-Ni-Mo cermet tool materials with different WC contents: (a) relative density; (b) Vickers hardness; (c) flexural strength;  Figure  5.  Relative  density  and  mechanical  properties  of  TiC0.7N0.3‐HfC‐WC‐Ni‐Mo  cermet  tool  materials with different WC contents: (a) relative density; (b) Vickers hardness; (c) flexural strength; (d) fracture toughness.  materials with different WC contents: (a) relative density; (b) Vickers hardness; (c) flexural strength;  (d) fracture toughness. (d) fracture toughness. 

    Figure 6. SEM micrograph of crack propagation of TiC0.7N0.3‐HfC‐WC‐Ni‐Mo cermet tool materials.  Figure 6. SEM micrograph of crack propagation of TiC0.7N0.3‐HfC‐WC‐Ni‐Mo cermet tool materials.   

Figure 6. SEM micrograph of crack propagation of TiC0.7 N0.3 -HfC-WC-Ni-Mo cermet tool materials.  

Materials 2018, 11, 968

8 of 9

4. Conclusions TiC0.7 N0.3 -HfC-WC-Ni-Mo cermet tool materials with different WC content were sintered at 1450 ◦ C by hot pressing sintering technology. Effects of WC content on the microstructure and mechanical properties of TiC0.7 N0.3 -HfC-WC-Ni-Mo cermet tool materials were investigated. The conclusions were as follows: (1)

(2)

(3)

TiC0.7 N0.3 -HfC-WC-Ni-Mo cermets were mainly composed of TiC0.7 N0.3 , Ni, and (Ti, Hf, W, Mo)(C, N). There were three phases: a dark phase, a gray phase, and a light gray phase. The dark phase was the undissolved TiC0.7 N0.3 , the gray phase was the solid solution (Ti, Hf, W, Mo)(C, N) poor in Hf, W, and Mo, and the light gray phase was the solid solution (Ti, Hf, W, Mo)(C, N) rich in Hf, W, and Mo. The solid solution (Ti, Hf, W, Mo)(C, N) resulted from the dissolution-reprecipitation process. With the WC content increasing, the grain bonding strength increased, which can restrain the crack propagation and then improve the fracture toughness of the cermet. In addition, the increase of WC content could promote the process of HfC to form a solid solution. Also, the HfC formed a solid solution more easily with WC than with TiCN. The relative density, hardness, flexural strength, and fracture toughness of the TiC0.7 N0.3 -HfC-WC-Ni-Mo cermet tool materials increased with the increase of the WC content in this investigation. When the content of WC was 32 wt %, the cermet obtained the optimal relative density and comprehensive mechanical properties: their values were (99.73 ± 0.02)%, 21.06 ± 0.22 GPa, 1270.56 ± 20 MPa, and 9.47 ± 0.31 MPa·m1/2 , respectively.

Author Contributions: J.S. and J.G. conceived and designed the experiments; J.G. performed the experiments; J.S. and J.G. analyzed the data; M.L. contributed reagents/materials/analysis tools; J.S. and J.G. wrote the paper. Funding: This research was funded by National Natural Science Foundation of China grant number 51405326 and 51575375, and by Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi grant number 2014122. Conflicts of Interest: The authors declare no conflict of interest.

References 1. 2. 3.

4. 5. 6. 7. 8.

9.

Liu, C.; Lin, N.; He, Y.H. Influence of Mo2 C and TaC additions on the microstructure and mechanical properties of Ti(C, N)-based cermets. Ceram. Int. 2016, 42, 3569–3574. [CrossRef] Yin, Z.B.; Yan, S.Y.; Xu, W.W.; Yuan, J.T. Microwave sintering of Ti(C, N)-based cermet cutting tool material. Ceram. Int. 2018, 44, 1034–1040. [CrossRef] Zhao, Y.J.; Zheng, Y.; Li, Y.; Zhou, W.; Zhang, G.T.; Zhang, J.J.; Xiong, W.H. Microstructure and performance of graded Ti(C, N)-based cermets modified by nitriding treatment during different sintering stages. Int. J. Refract. Met. Hard Mater. 2017, 62, 1–8. [CrossRef] Wu, Y.M.; Xiong, J.; Guo, Z.X.; Yang, M.; Chen, J.Z.; Xiong, S.J.; Fan, H.Y.; Luo, J.J. Microstructure and fracture toughness of Ti(C0.7 N0.3 )-WC-Ni cermets. Int. J. Refract. Met. Hard Mater. 2011, 29, 85–89. [CrossRef] Vikas Verma, B.V.; Kumar, M. Processing of TiCN-WC-Ni/Co cermets via conventional and spark plasma sintering technique. Trans. Indian Inst. Met. 2017, 70, 843–853. [CrossRef] Park, c.; Nam, S.; Kang, S. Enhanced toughness of titanium carbonitride-based cermets by addition of (Ti, W)C carbides. Mat. Sci. Eng. A 2016, 649, 400–406. Park, C.; Kang, S. Carbide/binder interfaces in Ti(CN)-(Ti, W)C/(Ti, W)(CN)-based cermets. J. Alloy. Compd. 2016, 657, 671–677. Sun, W.C.; Zhang, P.; Li, P.; She, X.L.; Zhang, Y.J.; Chen, X.G. Effect of short carbon fibre concentration on microstructure and mechanical properties of TiCN-based cermets. Adv. Appl. Ceram. 2016, 115, 216–223. [CrossRef] Dong, G.B.; Xiong, J.; Chen, J.Z.; Guo, Z.X.; Wan, W.C.; Yi, C.H.; Chen, H.S. Effect of WC on the microstructure and mechanical properties of nano Ti(C, N)-based cermets. Int. J. Refract. Met. Hard Mater. 2012, 35, 159–162. [CrossRef]

Materials 2018, 11, 968

10.

11. 12. 13.

14.

15.

16.

17.

18.

19. 20. 21.

22.

9 of 9

Qu, J.; Xiong, W.H.; Ye, D.M.; Yao, Z.H.; Liu, W.J.; Lin, S.J. Effect of WC content on the microstructure and mechanical properties of Ti(C0.5 N0.5 )-WC-Mo-Ni cermets. Int. J. Refract. Met. Hard Mater. 2010, 28, 243–249. [CrossRef] Wang, J.; Liu, Y.; Zhang, P.; Peng, J.C.; Ye, J.W.; Tu, M.J. Effect of WC on the microstructure and mechanical properties in the Ti(C0.7 N0.3 )-xWC-Mo2 C-(Co, Ni) system. Int. J. Refract. Met. Hard Mater. 2009, 27, 9–13. Mun, S.; Kang, S. Effect of HfC addition on microstructure of Ti(CN)-Ni cermet system. Powder Metall. 1999, 42, 251–256. [CrossRef] Song, J.P.; Jiang, L.K.; Liang, G.X.; Gao, J.J.; An, J.; Cao, L.; Xie, J.C.; Wang, S.Y.; Lv, M. Strengthening and toughening of TiN-based and TiB2 -based ceramic tool materials with HfC additive. Ceram. Int. 2017, 43, 8202–8207. [CrossRef] Gao, J.J.; Song, J.P.; Liang, G.X.; An, J.; Cao, L.; Xie, J.C.; Lv, M. Effects of HfC addition on microstructures and mechanical properties ofTiC0.7 N0.3 -based and TiC0.5 N0.5 -based ceramic tool materials. Ceram. Int. 2017, 43, 14945–14950. [CrossRef] China State Bureau of Technological Supervision. Chinese National Standards-Fine Ceramics (Advanced Ceramics, Advanced Technical Ceramics)—Test Method for Flexural Strength of Monolithic Ceramics at Room Temperature; Chinese Standard Publishing House: Beijing, China, 2006. An, J.; Song, J.P.; Liang, G.X.; Gao, J.J.; Xie, J.C.; Cao, L.; Wang, S.Y.; Lv, M. Effects of HfB2 and HfN additions on the microstructures and mechanical properties of TiB2 -based ceramic tool materials. Materials 2017, 10, 461. [CrossRef] [PubMed] Song, J.P.; Cao, L.; Jiang, L.K.; Liang, G.X.; Gao, J.J.; Li, D.X.; Wang, S.Y.; Lv, M. Effect of HfN, HfC and HfB2 additives on phase transformation, microstructure and mechanical properties of ZrO2 -based ceramics. Ceram. Int. 2018, 44, 5371–5377. [CrossRef] China State Bureau of Technological Supervision. Chinese National Standards-Fine Ceramics (Advanced Ceramics, Advanced Technical Ceramics)—Test Method for Hardness of Monolithic Ceramics at Room Temperature; Chinese Standard Publishing House: Beijing, China, 2009. Manoj Kumar, B.V.; Bikramjit, B. Mechanisms of material removal during high temperature fretting of TiCN-Ni based cermets. Int. J. Refract. Met. Hard Mater. 2008, 26, 504–513. [CrossRef] Zhou, S.Q.; Zhao, W.; Xiong, W.H.; Zhou, Y.N. Effect of Mo and Mo2 C on the microstructure and properties of the cermets based on Ti(C, N). Acta Metall. Sin. 2008, 21, 211–219. [CrossRef] Liu, N.; Zhao, C.L.; Zhao, X.Z.; Zhou, F.Y.; Hu, Z.H.; Cui, K.; Xu, W.B. The influence of the adding contents of TiN and WC on the microstructure and mechanical properties of Ti(C, N)-based cermets. Cem. Carbide 1994, 11, 13–16. Li, R.J. Ceramic—Metal Composite Materials, Seconded; Metallurgical Industry Press: Beijing, China, 2004. © 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

Suggest Documents