Microstructures and Mechanical Properties of Austempering ... - MDPI

9 downloads 0 Views 5MB Size Report
Feb 15, 2016 - Keywords: stainless steel; austempering; bainite; mechanical properties. 1. Introduction. SUS440 is a high-chrome and carbon martensite ...
metals Article

Microstructures and Mechanical Properties of Austempering SUS440 Steel Thin Plates Cheng-Yi Chen, Fei-Yi Hung *, Truan-Sheng Lui and Li-Hui Chen Department of Materials Science and Engineering, National Cheng Kung University, Tainan 701, Taiwan; [email protected] (C.-Y.C.); [email protected] (T.-S.L.); [email protected] (L.-H.C.) * Correspondence: [email protected]; Tel.: +886-6-2757575 (ext. 62950); Fax: +886-6-2346290 Academic Editor: Hugo F. Lopez Received: 30 November 2015; Accepted: 30 January 2016; Published: 15 February 2016

Abstract: SUS440 is a high-carbon stainless steel, and its martensite matrix has high heat resistance, high corrosion resistance, and high pressure resistance. It has been widely used in mechanical parts and critical materials. However, the SUS440 martempered matrix has reliability problems in thin plate applications and thus research uses different austempering heat treatments (tempering temperature: 200 ˝ C–400 ˝ C) to obtain a matrix containing bainite, retained austenite, martensite, and the M7C3 phase to investigate the relationships between the resulting microstructure and tensile mechanical properties. Experimental data showed that the austempering conditions of the specimen affected the volume fraction of phases and distribution of carbides. After austenitizing heat treatment (1080 ˝ C for 30 min), the austempering of the SUS440 thin plates was carried out at a salt-bath temperature 300 ˝ C for 120 min and water quenching was then used to obtain the bainite matrix with fine carbides, with the resulting material having a higher tensile fracture strength and average hardness (HRA 76) makes it suitable for use as a high-strength thin plate for industrial applications. Keywords: stainless steel; austempering; bainite; mechanical properties

1. Introduction SUS440 is a high-chrome and carbon martensite stainless steel with high strength and corrosion resistance properties and thus been widely used in machine parts, screws, and knives [1,2]. In general, martensite stainless steel almost always undergoes austenitizing heat treatment, followed by quenching and tempering. However, if this process is carried out improperly, then this will adversely affect the mechanical properties of the resulting materials [3,4]. This is because the quenching rate and temper-brittleness, and especially quench-tempering, can lead to reliability problems with regard to thin plates [5,6]. In the current study, SUS440 plate is made into a double-loop type thin plate specimen by a punch-shear process, in order to highlight the stress concentration and study the effects on brittleness. Austempering heat treatment can produce excellent mechanical properties in iron-based materials [7,8], although the characteristics of austempered SUS440 have still not been studied. Notably, the salt that was used in the current study can also meet the demand for a more environmentally-friendly process [9]. Therefore, this research controlled the heat treatment conditions (Ms temperature is about ´40 ˝ C [10]) to obtain SUS440 with a bainite matrix, retained austenite, and stable MC carbides, and then investigated the tensile strength and hardness of this material in order to obtain data for use in SUS440 thin plate applications [11]. 2. Experimental Procedure The chemical composition of SUS440 is given in Table 1, the carbon content is 0.75% by mass, the chrome content is 18% by mass, and it contains other alloying elements, such as Si, Mn, and V.

Metals 2016, 6, 35; doi:10.3390/met6020035

www.mdpi.com/journal/metals

Metals 2016, 6, 35 Metals 2016, 6, 35  Metals 2016, 6, 35 

2 of 11 2 of 11  2 of 11 

punch‐shear process on brittleness. Figure 1 shows the dimensions of the specimen. Figure 2 shows  This research uses a double loop-type thin plate (t = 0.78 mm) specimen to examine the effects of the punch‐shear process on brittleness. Figure 1 shows the dimensions of the specimen. Figure 2 shows  a diagram of the austempering process. The heat treatment condition of the specimen was 1080 °C  punch-shear process on brittleness. Figure 1 shows the dimensions of the specimen. Figure 2 shows a diagram of the austempering process. The heat treatment condition of the specimen was 1080 °C  (vacuum) held for 30 min for austenitic treatment (the austenite conditions of all specimens are the  a diagram of the austempering process. The heat treatment condition of the specimen was 1080 ˝ C (vacuum) held for 30 min for austenitic treatment (the austenite conditions of all specimens are the  same),  and  then  the  specimen  was  immediately  moved  into  a  salt‐bath  furnace  for  austempering.  (vacuum) held for 30specimen  min for austenitic treatmentmoved  (the austenite conditions of all for  specimens are the same),  and  then  the  was  immediately  into  a  salt‐bath  furnace  austempering.  There  were  two  different  conditions  for  the  salt‐bath  phase  and  thus  two  sets  of  specimens  were  same), and then the specimen was immediately moved into a salt-bath furnace for austempering. There  were  two  different  conditions  for  the  salt‐bath  phase  and  thus  two  sets  of  specimens  were  prepared.  The  first  set  underwent  the  same  salt‐bath  time  (120  min)  and  of different  constant  There wereThe  twofirst  different conditions for salt-bath phase and(120  thusmin)  two and  sets specimens were prepared.  set  underwent  the the same  salt‐bath  time  different  constant  temperatures (200, 300, and 400 °C), and were then quenched in the water. The second set underwent  prepared. The first set underwent the same salt-bath time (120 min) and different constant temperatures temperatures (200, 300, and 400 °C), and were then quenched in the water. The second set underwent  the same salt‐bath temperature (300 °C) and different time intervals (30, 60, 90, and 120 min), and  (200, 300, and 400 ˝ C), and were then quenched in the water. The second set underwent the same the same salt‐bath temperature (300 °C) and different time intervals (30, 60, 90, and 120 min), and  were then quenched in the water. Each austempering condition was called x °C‐y min, based on the  salt-bath temperature (300 ˝ C) and different time intervals (30, 60, 90, and 120 min), and were then were then quenched in the water. Each austempering condition was called x °C‐y min, based on the  salt‐bath condition, such as 200 °C‐120 min [7,8].  quenched in the water. Each austempering condition was called x ˝ C-y min, based on the salt-bath salt‐bath condition, such as 200 °C‐120 min [7,8].  condition, such as 200 ˝ C-120 min [7,8]. Table 1. The chemical composition of the SUS440 (mass %).  Table 1. The chemical composition of the SUS440 (mass %).  Table 1. The chemical composition of the SUS440 (mass %).

Element  Element  Element Content  Content  Content

C  C  C 0.75  0.75 

0.75

Mn  Si  P  S  V  Cr  Mo  Fe  Mn  Si  P  S  V  Cr  Mo  Fe  Mn Si P S V Cr Mo Bal.  Fe 1.00  1.00  0.04  0.04  0.15  18.20  0.30  1.00  1.00  0.04  0.04  0.15  18.20  0.30  Bal. 

1.00

1.00

0.04

0.04

0.15

18.20

0.30

Bal.

   Figure 1. Configuration of a double-loop thin plate specimen. Figure 1. Configuration of a double‐loop thin plate specimen.  Figure 1. Configuration of a double‐loop thin plate specimen. 

   Figure 2. The tempering process with different salt‐bath temperatures.  Figure 2. The tempering process with different salt-bath temperatures. Figure 2. The tempering process with different salt‐bath temperatures. 

The  characteristics  of  each  austempered  specimen  were  determined  quantitatively  by  SEM  The  austempered  specimen  determined  quantitatively  The characteristics  characteristics of  of each  each austempered specimen were  were determined quantitatively by  by SEM  SEM (Hitachi SU8000, Hitachi, Tokyo, Japan) and an image analyzer (Oxford Instrument, Abingdon, UK).  (Hitachi SU8000, Hitachi, Tokyo, Japan) and an image analyzer (Oxford Instrument, Abingdon, UK).  (Hitachi SU8000, Hitachi, Tokyo, Japan) and an image analyzer (Oxford Instrument, Abingdon, UK). −1)  of  each  specimen  were  The  hardness  (HRA)  and  the  tensile  properties  (tensile  rate:  1  mm∙min´−1 The  hardness  (HRA) (HRA) and and the the tensile tensile properties properties (tensile (tensile rate: rate: 11 mm¨ mm∙min The hardness min 1) ) of  of each  each specimen  specimen were  were evaluated.  The  structural  phases  were  identified  by  XRD  (Bruker  AXS,  Karlsruhe,  Germany).  The  evaluated.  The structural structural phases phases  were  identified  XRD  (Bruker  Karlsruhe,  Germany).  The  evaluated. The were identified by by  XRD (Bruker AXS,AXS,  Karlsruhe, Germany). The short short (30 min) and long (120 min) tempering affected the precipitation of the tempering carbides, and  short (30 min) and long (120 min) tempering affected the precipitation of the tempering carbides, and  (30 min) and long (120 min) tempering affected the precipitation of the tempering carbides, and Electron  Spectroscopy  for  Chemical  Analysis  (ESCA,  PHI  5000  V,  ULVAC‐PHI,  Inc.,  Kanagawa,  Electron  Spectroscopy for for  Chemical  Analysis  (ESCA,  V,  ULVAC‐PHI,  Inc.,  Kanagawa,  Electron Spectroscopy Chemical Analysis (ESCA, PHIPHI  50005000  V, ULVAC-PHI, Inc., Kanagawa, Japan) Japan) was used to assess this. In addition, SEM and OM were used to observe the fracture surface  Japan) was used to assess this. In addition, SEM and OM were used to observe the fracture surface  was used to assess this. In addition, SEM and OM were used to observe the fracture surface and and subsurface of the specimen to clarify the tensile failure characteristics of thin plate specimens  and subsurface of the specimen to clarify the tensile failure characteristics of thin plate specimens  subsurface of the specimen to clarify the tensile failure characteristics of thin plate specimens [11]. [11].  [11]. 

Metals 2016, 6, 35 Metals 2016, 6, 35 

3 of 11 3 of 11 

3. Results and Discussion 3. Results and Discussion  Figure 3 shows the microstructures of the austempered bainite specimens (1080 ˝ C-30 min) Figure 3 shows the microstructures of the austempered bainite specimens (1080 °C‐30 min) with  with different salt-bath conditions. The matrix is the feather bainite structure. Notably, the major different salt‐bath conditions. The matrix is the feather bainite structure. Notably, the major phases  phases were the retained austenite phases combined with martensite, and the particles were the were the retained austenite phases combined with martensite, and the particles were the carbides. In  carbides. In addition, the salt-bath specimen at 300 ˝ C, became coarser was the austempering duration addition, the salt‐bath specimen at 300 °C, became coarser was the austempering duration increased  increased (Figure 4). A fully bainite with finer primary carbides achievedwith  witha a longer (Figure  4).  A  fully  bainite  matrix matrix with  finer  primary  carbides  can can be be achieved  longer  austempering However, if  if the  the tempering  tempering time  time was  was insufficient, then no austempering  time time  [5,12–14]. [5,12–14].  However,  insufficient,  then  no  feathery feathery  structure was seen in the matrix after etching. structure was seen in the matrix after etching. 

  (a) 

(b) 

  (c)  Figure 3. Microstructural characteristics of the austempered specimens (1080 °C‐30 min) with a salt‐ Figure 3. Microstructural characteristics of the austempered specimens (1080 ˝ C-30 min) with bath time of 120 min and different salt‐bath temperatures: (a) 200 °C, (b) 300 °C, and (c) 400 °C.  a salt-bath time of 120 min and different salt-bath temperatures: (a) 200 ˝ C, (b) 300 ˝ C, and (c) 400 ˝ C.

Metals 2016, 6, 35 Metals 2016, 6, 35 

4 of 11 4 of 11 

  (a) 

(b) 

  (c) 

(d) 

Figure 4. Microstructural characteristics of the austempered specimens (1080 °C‐30 min) with a salt‐ Figure 4. Microstructural characteristics of the austempered specimens (1080 ˝ C-30 min) with bath temperature of 300 °C and different salt‐bath times: (a) 30 min, (b) 60 min, (c) 90 min, and (d) 120  a salt-bath temperature of 300 ˝ C and different salt-bath times: (a) 30 min, (b) 60 min, (c) 90 min, min. (d) 120 min. and

The  XRD  patterns  of  the  specimens  produced  under  different  salt‐bath  conditions  after  The XRD patterns of the specimens produced under different salt-bath conditions after austempering at 1080 °C‐30 min, are shown in Figures 5 and 6. All the specimens shown in the figure  austempering at 1080 ˝ C-30 min, are shown in Figures 5 and 6. All the specimens shown in the have  a  bainite  matrix,  M7C3  carbide,  and  retained  austenite  combining  martensite,  while  the  figure have a bainite matrix, M7C3 carbide, and retained austenite combining martensite, while the specimen produced at an austempering temperature of 200 °C had more martensite phases [8,15,16].  specimen produced at an austempering temperature of 200 ˝ C had more martensite phases [8,15,16]. Figure  5  shows  that  the  retained  austenite  content  of  the  specimen  produced  at  a  salt‐bath  Figure 5 shows that the retained austenite content of the specimen produced at a salt-bath temperature temperature of 400 °C is the highest, while Figure 6 shows that the austenite content of the specimen  of 400 ˝ C is the highest, while Figure 6 shows that the austenite content of the specimen decreases as decreases as the austempering time increases.  the austempering time increases.

Metals 2016, 6, 35  Metals 2016, 6, 35 Metals 2016, 6, 35 

5 of 11  55 of 11  of 11

    ˝ C-30 min)  Figure  5. 5.  XRD  120  min min  and and  Figure XRD of  of austempered  austempered specimens  specimens (1080  (1080 °C‐30  min) with  with a  a salt‐bath  salt-bath time  time of  of 120 Figure  5.  XRD  of  austempered  specimens  (1080  °C‐30  min)  with  a  salt‐bath  time  of  120  min  and  different salt‐bath temperatures.  different salt-bath temperatures. different salt‐bath temperatures. 

˝ C-30

   

Figure 6. XRD of austempered specimen (1080 min) with a salt-bath temperature of 300 ˝ C and Figure 6. XRD of austempered specimen (1080 °C‐30 min) with a salt‐bath temperature of 300 °C and  Figure 6. XRD of austempered specimen (1080 °C‐30 min) with a salt‐bath temperature of 300 °C and  different salt-bath time. different salt‐bath time.  different salt‐bath time. 

Figure 7 is the schematic diagram of the tensile test method in this study we use two pins to  Figure 7 is the schematic diagram of the tensile test method in this study we use two pins to Figure 7 is the schematic diagram of the tensile test method in this study we use two pins to  insert into the double‐loop type thin plate specimen and vertical. Figure 8 shows a comparison of the  insert into the double-loop type thin plate specimen and vertical. Figure 8 shows a comparison of the insert into the double‐loop type thin plate specimen and vertical. Figure 8 shows a comparison of the  tensile properties obtained with different salt‐bath temperatures. The tensile properties of the 300 °C  tensile properties obtained with different salt-bath temperatures. The tensile properties of the 300 ˝ C tensile properties obtained with different salt‐bath temperatures. The tensile properties of the 300 °C  specimen are significantly better than those of the other specimens. The main reason for this is that  specimen are significantly better than those of the other specimens. The main reason for this is that the specimen are significantly better than those of the other specimens. The main reason for this is that  the austempering temperature of 200 °C is too low for complete austempering and thus the matrix  austempering temperature of 200 ˝ C is too low for complete austempering and thus the matrix also the austempering temperature of 200 °C is too low for complete austempering and thus the matrix  also contains martensite, which increases the brittleness of the material [5,17,18]. The 400 °C specimen  contains martensite, which increases the brittleness of the material [5,17,18]. The 400 ˝ C specimen has also contains martensite, which increases the brittleness of the material [5,17,18]. The 400 °C specimen  has more retained austenite, which results in lower tensile mechanical properties. In the hardness  more retained austenite, which results in lower tensile mechanical properties. In the hardness tests, has more retained austenite, which results in lower tensile mechanical properties. In the hardness  ˝ C specimen had greater hardness because of the martensite inside the matrix [2,19], while the tests, the 200 °C specimen had greater hardness because of the martensite inside the matrix [2,19],  the 200 tests, the 200 °C specimen had greater hardness because of the martensite inside the matrix [2,19],  while the other specimens had an HRA of about 76.  other specimens had an HRA of about 76. while the other specimens had an HRA of about 76. 

Metals 2016, 6, 35 Metals 2016, 6, 35  Metals 2016, 6, 35 

66 of 11  of 11 6 of 11 

   Figure 7. The schematic diagram of the tensile test method. Figure 7. The schematic diagram of the tensile test method.  Figure 7. The schematic diagram of the tensile test method. 

   Figure 8. The mechanical properties of the austempered specimens (1080 °C‐30 min) with a salt‐bath  Figure 8. The mechanical properties of the austempered specimens (1080 °C‐30 min) with a salt‐bath  Figure 8. The mechanical properties of the austempered specimens (1080 ˝ C-30 min) with a salt-bath time of 120 min and different salt‐bath temperatures.  time of 120 min and different salt‐bath temperatures.  time of 120 min and different salt-bath temperatures.

Figure 9 shows a comparison of the tensile properties for specimens obtained at different salt‐ Figure 9 shows a comparison of the tensile properties for specimens obtained at different salt‐ Figure 9 shows a comparison of the tensile properties for specimens obtained at different salt-bath bath times (30–120 min, fixed salt‐bath temperature at 300 °C) after austenitizing at 1080 °C for 30  bath times (30–120 min, fixed salt‐bath temperature at 300 °C) after austenitizing at 1080 °C for 30  times (30–120 min, fixed salt-bath temperature at 300 ˝ C) after austenitizing at 1080 ˝ C for 30 min. min. The average tensile strength of the 90 min specimen was greater than that of the others (>1100  min. The average tensile strength of the 90 min specimen was greater than that of the others (>1100  The average tensile strength of the 90 min specimen was greater than that of the others (>1100 MPa), MPa), and the hardness of all four heat treatment conditions was above HRA 76 [17,18]. Therefore,  MPa), and the hardness of all four heat treatment conditions was above HRA 76 [17,18]. Therefore,  and the hardness of all four heat treatment conditions was above HRA 76 [17,18]. Therefore, the the  of  at  1080  °C  for  30  followed  by  at  the  condition  condition  of  austenitizing  austenitizing  for  30  min,  min,  by  austempering  austempering  at  salt‐bath  salt‐bath  ˝ C 1080  condition of austenitizing at 1080 at  for 30°C  min, followed byfollowed  austempering at salt-bath temperature of temperature of 300 °C for 90 min, led to the best tensile properties and hardness (and the composition  temperature of 300 °C for 90 min, led to the best tensile properties and hardness (and the composition  ˝ C for 90 min, led to the best tensile properties and hardness (and the composition of the resulting 300 of  microstructure  was  68.8%  bainite  +  12.6%  martensite  +  austenite  +  of  the  the  resulting  resulting  microstructure  68.8%  bainite + + 15.5% 12.6% austenite martensite  +  15.5%  15.5%  austenite  +  3.1%  3.1%  microstructure was 68.8% bainite was  + 12.6% martensite + 3.1% carbides). The fracture carbides). The fracture characteristics of the various specimens were then compared using a tensile  carbides). The fracture characteristics of the various specimens were then compared using a tensile  characteristics of the various specimens were then compared using a tensile test. test.  test.    

Metals 2016, 6, 35 Metals 2016, 6, 35  Metals 2016, 6, 35 

7 of 11

7 of 11  7 of 11 

 

 

Figure 9. The mechanical properties of the austempered specimens (1080 °C‐30 min) with a salt‐bath  Figure 9. The mechanical properties of the austempered specimens (1080 ˝ C-30 min) with a salt-bath Figure 9. The mechanical properties of the austempered specimens (1080 °C‐30 min) with a salt‐bath  temperature of 300 °C and different salt‐bath times.  temperature of 300 ˝ C and different salt-bath times. temperature of 300 °C and different salt‐bath times. 

Figure  10  shows  the  strain‐stress  curve  of  the  specimens  produced  under  different  salt‐bath  Figure 10 strain-stress curve of the specimens produced under different salt-bath times times (30–120 min, fixed salt‐bath temperature at 300 °C) after austenitizing at 1080 °C‐30 min. There  Figure  10 shows shows the the  strain‐stress  curve  of  the  specimens  produced  under  different  salt‐bath  ˝ C) after austenitizing at 1080 ˝ C-30 min. There is (30–120 min, fixed salt-bath temperature at 300 is no necking characteristics that could be observed, so it is the brittle failure. Figure 11 shows the  times (30–120 min, fixed salt‐bath temperature at 300 °C) after austenitizing at 1080 °C‐30 min. There  no necking characteristics that could be observed, so it is the brittle failure. Figure 11 shows the fracture surfaces of the specimens produced at 300 °C with different austempering durations. It can  is no necking characteristics that could be observed, so it is the brittle failure. Figure 11 shows the  fracture surfaces of the specimens produced at 300 ˝ C with different austempering durations. It can be seen that there are many peel‐off structures, and this confirms the characteristics of ductile‐brittle  fracture surfaces of the specimens produced at 300 °C with different austempering durations. It can  be failure (Figure 11a–c). Figure 11d shows the peel‐off microstructure, but some splitting behavior also  seen that there are many peel-off structures, and this confirms the characteristics of ductile-brittle be seen that there are many peel‐off structures, and this confirms the characteristics of ductile‐brittle  occurred on the fractured surface, and this was due to the brittle fracture mode. Figure 12 shows the  failure (Figure 11a–c). Figure 11d shows the peel-off microstructure, but some splitting behavior also failure (Figure 11a–c). Figure 11d shows the peel‐off microstructure, but some splitting behavior also  subsurface of the 300 °C specimens produced with salt‐bath times of 30 min and 120 min. When the  occurred on the fractured surface, and this was due to the brittle fracture mode. Figure 12 shows the occurred on the fractured surface, and this was due to the brittle fracture mode. Figure 12 shows the  matrix was composed of a fine feather structure and martensite and subjected to a short duration (30  subsurface of the 300 ˝ C specimens produced with salt-bath times of 30 min and 120 min. When the subsurface of the 300 °C specimens produced with salt‐bath times of 30 min and 120 min. When the  min) was of  austempering,  brittleness  became  significant  and  caused  the  subsurface  to  become  matrix composed of the  a fine feather structure and martensite and subjected to a short duration matrix was composed of a fine feather structure and martensite and subjected to a short duration (30  irregular (Figure 12a) [12,20]. Figure 12b shows the flat fracture characteristic that was obtained with  (30 min) of austempering, the brittleness became significant and caused the subsurface to become min)  of  austempering,  the  brittleness  became  significant  and  caused  the  subsurface  to  become  a longer austempering time (120 min). Since the austempering duration affected carbide precipitation  irregular (Figure 12a) [12,20]. Figure 12b shows the flat fracture characteristic that was obtained with a irregular (Figure 12a) [12,20]. Figure 12b shows the flat fracture characteristic that was obtained with  and the tensile fracture behavior, electron spectroscopy chemical analysis (ESCA) was applied to the  longer austempering time (120 min). Since the austempering duration affected carbide precipitation a longer austempering time (120 min). Since the austempering duration affected carbide precipitation  austempered SUS440 to measure the carbide contents (Figure 13). With the shorter austempering time  and the tensile fracture behavior, electron spectroscopy chemical analysis (ESCA) was applied to the and the tensile fracture behavior, electron spectroscopy chemical analysis (ESCA) was applied to the  (30  min),  the  main  carbides  were  the  M23C6  (M7C3)  precipitate  phases  (Figure  13a).  As  the  austempered SUS440 to measure the carbide contents (Figure 13). With the shorter austempering austempered SUS440 to measure the carbide contents (Figure 13). With the shorter austempering time  austempering  time increased  (Figure  13b),  the  content  of  M23C6 (M7C3)  precipitate  (particle‐like)  timemin),  (30 min), the main carbides were M23C6 (M7C3)precipitate  precipitatephases  phases(Figure  (Figure 13a).  13a). As  As the  the (30  the  main  carbides  were  the the M23C6  (M7C3)  decreased, and the amount of stable M7C3 carbides increased [21].  austempering time increased  time increased (Figure  (Figure 13b),  13b), the  the content  content of  of M23C6 (M7C3)  M23C6 (M7C3) precipitate  precipitate (particle‐like)  (particle-like) austempering  decreased, and the amount of stable M7C3 carbides increased [21]. decreased, and the amount of stable M7C3 carbides increased [21]. 

  Figure 10. The strain‐stress curve of the austempered specimens (1080 °C‐30 min) with a salt‐bath    temperature of 300 °C and different salt‐bath times. 

Figure 10. The strain-stress curve of the austempered specimens (1080 ˝ C-30 min) with a salt-bath Figure 10. The strain‐stress curve of the austempered specimens (1080 °C‐30 min) with a salt‐bath  temperature of 300 ˝ C and different salt-bath times. temperature of 300 °C and different salt‐bath times. 

Metals 2016, 6, 35 Metals 2016, 6, 35  Metals 2016, 6, 35 

8 of 11 8 of 11  8 of 11 

   (a)  (a) 

(b)  (b) 

   (c)  (d)  (c)  (d)  Figure  11.  The  fracture  surfaces  of  the  austempered  specimens  (1080  °C‐30  salt‐bath  ˝ Figure 11. The fracture  fracture surfaces  surfaces of  of the  the austempered specimens (1080  (1080 °C‐30  C-30 min)  min) with  with a  a salt-bath Figure  11.  The  austempered  specimens  min)  with  a  salt‐bath  temperature of 300 °C and different salt‐bath times: (a) 30 min, (b) 60 min, (c) 90 min, and (d) 120 min.  temperature of 300 ˝ C and different salt-bath times: (a) 30 min, (b) 60 min, (c) 90 min, and (d) 120 min. temperature of 300 °C and different salt‐bath times: (a) 30 min, (b) 60 min, (c) 90 min, and (d) 120 min. 

  

(a)  (b)  (a)  (b)  Figure  12.  The  subsurface  of  the  austempered  specimens  (1080  °C‐30  min)  with  a  salt‐bath  Figure  12. The The  subsurface  of austempered the  austempered  specimens  (1080  °C‐30  with temperature a  salt‐bath  Figure 12. subsurface of the specimens (1080 ˝ C-30 min) withmin)  a salt-bath temperature of 300 °C and different salt‐bath times: (a) 30 min, and (b) 120 min.  temperature of 300 °C and different salt‐bath times: (a) 30 min, and (b) 120 min.  ˝ of 300 C and different salt-bath times: (a) 30 min, and (b) 120 min.

Metals 2016, 6, 35 Metals 2016, 6, 35 

9 of 11 9 of 11 

Metals 2016, 6, 35 

9 of 11 

   

 

 

Figure 13. ESCA of carbides: (a) 30 min, and (b) 120min. Figure 13. ESCA of carbides: (a) 30 min, and (b) 120min.  Figure 13. ESCA of carbides: (a) 30 min, and (b) 120min. 

Figure 14 shows the mechanical properties of the corresponding microstructures at different salt‐ Figure 14 shows the mechanical properties of the corresponding microstructures at different Figure 14 shows the mechanical properties of the corresponding microstructures at different salt‐ bath  conditions.  The The bainite  (high‐retained  austenite)  with  M7C3  coarsened  as  the  salt‐bath  salt-bath conditions. bainite (high-retained austenite) with M7C3 coarsened the salt-bath bath  conditions.  The  bainite  (high‐retained  austenite)  with  M7C3  coarsened  as  as the  salt‐bath  ˝ temperature  increased.  As  the  austempering  time  rose,  the  salt‐bath  condition  of  300  °C‐90  min,  temperature increased. time rose,  rose,the  thesalt‐bath  salt-bathcondition  condition 300 C-90 min, temperature  increased. As As the the austempering austempering  time  of of 300  °C‐90  min,  produced the specimen with the highest fracture strength. The results showed that an SUS440 thin  produced the specimen with the highest fracture strength. The results showed that an SUS440 thin produced the specimen with the highest fracture strength. The results showed that an SUS440 thin  plate with a suitable bainite matrix can have both lower brittleness and greater reliability with regard  plate with a suitable bainite matrix can have both lower brittleness and greater reliability with regard plate with a suitable bainite matrix can have both lower brittleness and greater reliability with regard  to the tensile mechanical properties.  to to the tensile mechanical properties.  the tensile mechanical properties.

(a)  (b)  (a)  (b)  Figure 14. Diagram of tensile mechanical properties with different salt‐bath conditions: (a) different  Figure 14. Diagram of tensile mechanical properties with different salt-bath conditions: (a) different Figure 14. Diagram of tensile mechanical properties with different salt‐bath conditions: (a) different  salt‐bath temperatures, and (b) different salt‐bath times.  salt-bath temperatures, and (b) different salt-bath times. salt‐bath temperatures, and (b) different salt‐bath times. 

 

 

Metals 2016, 6, 35

10 of 11

4. Conclusions (1) The brittleness of an SUS440 thin plate produced with a short austempering time will increase due to the martensite phases in the matrix. A longer austempering time reduces the strength of the SUS440 thin plate due to changes in the content of retained austenite and M7C3 precipitate. The 300 ˝ C-90 min specimen had the best mechanical properties. (2) The martensite and retained austenite of the bainite matrix have a close relationship with the tensile brittleness of an SUS440 thin plate. The distribution of tempering M7C3 precipitate phases affected the failure mechanism. Acknowledgments: The authors are grateful to The Instrument Center of National Cheng Kung University and 103-2221-E-006-066 for financial support for this research. Author Contributions: C.-Y.C. and F.-Y.H. designed the research and wrote the manuscript with help from the other authors; C.-Y.C. performed the experiments and analyzed the data; F.-Y.H. C.-S.L. and L.-H.C. gave the support and comments. Conflicts of Interest: The authors declare no conflict of interest.

References 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18.

Bee, J.V.; Powell, G.L.F.; Bednarz, B. A substructure within the austenitic matrix of high chromium white irons. Scr. Metall. Mater. 1994, 31, 1735–1736. [CrossRef] Salleh, S.H.; Omar, M.Z.; Syarif, J. Carbide formation during precipitation hardening of SS440C steel. Eur. J. Sci. Res. 2009, 34, 83–91. Lin, Y.L.; Lin, C.; Tsai, T. Microstructure and mechanical properties of 0.63C-12.7Cr martensitic stainless steel during various tempering treatments. Mater. Manuf. Proc. 2010, 25, 246–248. [CrossRef] Salih, A.A.; Omar, M.Z.; Junaidi, S.; Sajuri, Z. Effect of different heat treatment on the SS440C martensitic stainless steel. Aust. J. Basic Appl. Sci. 2011, 5, 867–871. Bhadeshia, H. Martensite and bainite in steels: Transformation mechanism & mechanical properties. J. Phys. IV 1997, 7, 367–376. Lee, H.Y.; Yen, H.; Chang, H.; Yang, J. Substructures of martensite in Fe-1C-17Cr stainless steel. Scr. Mater. 2010, 62, 670–673. [CrossRef] Salleh, S.H. Investigation of microstructures and properties of 440C martensitic stainless steel. Int. J. Mech. Mater. Eng. 2009, 4, 123–126. Carpenter, S.D.; Carpenter, D. X-ray diffraction study of M7C3 carbide within a high chromium white iron. Mater. Lett. 2003, 57, 4456–4459. [CrossRef] Carpenter, S.D.; Carpenter, D.; Pearce, J.T.H. XRD and electron microscope study of an as-cast 26.6% chromium white iron microstructure. Mater. Chem. Phys. 2004, 85, 32–40. [CrossRef] Liu, C.; Zhao, Z.; Northwood, D.O.; Liu, Y. A new empirical formula for the calculation of MS temperatures in pure iron and super-low carbon alloy steels. J. Mater. Proc. Technol. 2001, 113, 556–562. [CrossRef] Chen, C.Y.; Hung, F.; Lui, T.; Chen, L. Microstructures and mechanical properties of austempering Cr-Mo (SCM 435) alloy steel. Mater. Trans. 2013, 54, 56–60. [CrossRef] Tsuzaki, K.; Maki, T. Some aspects of bainite transformation in Fe-based alloys. J. Phys. IV 1995, 5, 61–70. [CrossRef] Funatani, K. Low-temperature salt bath nitriding of steels. Met. Sci. Heat Treat. 2004, 46, 277–281. [CrossRef] Lee, B.-J. On the stability of Cr carbides. Calphad 1992, 16, 121–149. [CrossRef] Kwok, C.T.; Lo, K.; Cheng, F.; Man, H. Effect of processing conditions on the corrosion performance of laser surface-melted AISI 440C martensitic stainless steel. Surf. Coat. Technol. 2003, 166, 221–230. [CrossRef] Carpenter, S.D.; Carpenter, D.; Pearce, J.T.H. XRD and electron microscope study of a heat treated 26.6% chromium white iron microstructure. Mater. Chem. Phys. 2007, 101, 49–55. [CrossRef] Avishan, B.; Yazdani, S.; Nedjad, S.H. Toughness variations in nanostructured bainitic steels. Mater. Sci. Eng. A 2012, 548, 106–111. [CrossRef] Luo, Y.; Peng, J.; Wang, H.; Wu, X. Effect of tempering on microstructure and mechanical properties of a non-quenched bainitic steel. Mater. Sci. Eng. A 2010, 527, 3433–3437. [CrossRef]

Metals 2016, 6, 35

19. 20. 21.

11 of 11

Yang, J.R.; Yu, T.H.; Wang, C.H. Martensitic transformations in AISI 440C stainless steel. Mater. Sci. Eng. A 2006, 438, 276–280. [CrossRef] Sajjadi, S.A.; Zebarjad, S.M. Isothermal transformation of austenite to bainite in high carbon steels. J. Mater. Proc. Technol. 2007, 189, 107–113. [CrossRef] Isfahany, A.N.; Saghafian, H.; Borhani, G. The effect of heat treatment on mechanical properties and corrosion behavior of AISI420 martensitic stainless steel. J. Alloys Compd. 2011, 509, 3931–3936. [CrossRef] © 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).