Motivation Parameter Estimation Mathematical model ...

2 downloads 0 Views 3MB Size Report
Aim. • Interaction parameters estimation & validation. → independent on geometry. Hanin Jildeh1, Menwer Attarakih2, Matthias Mickler1, Hans-Jörg Bart1.
Jahrestreffen der Fachgruppen Extraktion und Mehrphasenströmungen, 19-20 March 2013, Kongresshaus Baden Baden

Hanin Jildeh1, Menwer Attarakih2, Matthias Mickler1, Hans-Jörg Bart1 1

TU Kaiserslautern, Lehrstuhl für Thermische Verfahrenstechnik, Centre of Mathematical and Computational Modelling 2 University of Jordan, Department of Chemical Engineering

Parameter Estimation for Breakage and Coalescence Models in Liquid Extraction Columns Motivation

Mathematical model

Column performance prediction

Population Balance Equation (PBE)

• Steady state and dynamic response

• Classes Method (CM) [1] or Method of Moment (MOM) [2]

• Scale down or scale up

• Combination [3]: “One Primary and One Secondary Particle Method” (OPOSPM)

• Process synthesis, design and control

CM:

Problem • Model parameters (breakage & coalescence) • Column geometry • Chemical test system Aim

Inverse problem

• Interaction parameters estimation & validation independent on geometry

Parameter Estimation

Breakage model Schmidt [4], Garthe [5] • Γ = f(B1-B5, d, N), physical properties & geometry Coalescence model Coulaloglou and Tavlarides [6] • ω = f(C1-C2, ε, N), physical properties & hydrodynamics

1 2 OPOSPM [7,8]: Given Bi, Ci: S = K b [ (ϑ − 1)ΓN ] − K c  ω N  2  2 learning parameters Ki

various chemical test systems & different Kühni column size

Breakage model DN 80 DN 150

DN 80 DN 150

(a) Exp. data [4,5]

(b) Exp. data [4,5]

DN 80

DN 32

(c) Exp. data [5]

(d) Exp. data [9]

Fig. 1: Breakage probability a) Schmidt and Garthe model b) re-optimized Schmidt parameters c) validation at different mother droplet size d) scale down

Coalescence model • Solving inverse population balance problem DN 150

Fig. 2: Optimization of coalescence parameters

DN 150

a) steady state

b) transient

Fig. 3: Simulated mean holdup using the CM-PBM and OPOSPM

Conclusions Droplet interaction parameters (breakage & coalescence) successful estimated (inverse PBE ) Good accord with experimental data - for different EFCE chemical test systems - for different Kühni column geometry CPU time OPOSPM ≤ 3 % CM Online Performance Prediction OUTLOOK: Validation using CFD [10] and online prediction (OMST [11]) Transfer to reactive and gas-liquid systems

Email: [email protected]

Fig. 4: Breakage probability for EFCE reactive system ZnSO4 with 1% D2EHPA

References: [1] M. Attarakih et al. (2006), Chem. Eng. Sci. 61 (1): 113-123. [2] M. Attarakih et al. (2009), Chem. Eng. Sci. 64: 742-752. [3] M. Attarakih et al. (2009), Comp. Aided Chem. Engng 26: 1333-1338. [4] S. A. Schmidt (2006), PhD thesis, Shaker Verlag, TU Kaiserslautern. [5] D. Garthe (2006), PHD thesis, Verlag Dr Hut, TU München. [6] C. A. Coulaloglou and L. L. Tavlarides (1977), Chem. Eng. Sci. 32 (11): 1289–1297. [7] H. Jildeh et al. (2012), Comp. Aided Chem. Engng 30: 1043–1047. [8] H. Jildeh et al. (2012), Comp. Aided Chem. Engng 31: 960-964. [9] T. Steinmetz (2007), PhD thesis, TU Kaiserslautern, VDI Verlag, Düsseldorf. [10] H. Jildeh et al. (2012), Procedia Engineering 42: 1692–1710. [11] M. Mickler et al. (2013), accepted Can. J. Chem. Eng..

http://www.uni-kl.de/tvt/

Suggest Documents