stgcs e e eee y p m p m m e ij ij e kk ij p e i. Ï. Ï. Ï. µ δ λ Ï Ï. 0. )(2. )( 0. 2. 2. MC. LOCAL. PROBLEM. Flow direction ? Threshold ? Tangential. Normal ...
Multi-scale modeling of imperfect interfaces Serge Dumont, Frédéric Lebon, Raffaella Rizzoni
International Workshop MULTI-SCALE MODELING AND CHARACTERIZATION OF INNOVATIVE MATERIALS AND STRUCTURES Cetara, Amalfi Coast - May 1-5, 2013
Plan of the presentation • Motivation • Methodology • Stiff interfaces in Elasto-statics (with a focus on an energy approach) • An example of soft interface • A Justification of Coulomb’s friction ? • Conclusion Multi-scale modeling
2
Motivation
Multi-scale modeling
3
Tyre Cornering
Large speed Multi-scale modeling
4
Pellet-Cladding interaction Pressurized Water Reactor
µm scale Multi-scale modeling
5
Molecular Adhesion
Spatial Slicer Multi-scale modeling
nm scale
6
Forming Process
Pressurized Water Reactor Multi-scale modeling
7
Modelling of masonry structures
Multi-scale modeling
8
Interfaces in pavements
Roughness
Multi-scale modeling
9
Conclusions • Multi-scale problems (from nm to structure) • How to take into account scale changes ?
• Various problems • A (too ?) large number of models Web of Science® Topic=(interface + mechanics) Results: 7,661
Multi-scale modeling
10
(At least) two families of models • Phenomenological 3
2,5
2
1,5
manip Aron E=25961,21brique pleine E=8300 Brique pleine E=8300 Brique sans picots E=25961,21Brique sans picots
1
0,5
0 -0,05
0
0,05
0,1
0,15
0,2
0,25
-0,5
Multi-scale modeling
11
(At least) two families of models • Phenomenological 3
2,5
2
1,5
manip Aron E=25961,21brique pleine E=8300 Brique pleine E=8300 Brique sans picots E=25961,21Brique sans picots
1
0,5
0 -0,05
0
0,05
0,1
0,15
0,2
0,25
-0,5
Coulomb ? Multi-scale modeling
12
(At least) two families of models • Deductive 1 2 3 4 5
Behavior, Fissure, roughness, etc. At local scale Multi-scale modeling
13
Methodology
Multi-scale modeling
14
Deductive models : Introduction Thin Layers (Soft ?)
Perfect Adhesion ?
At least one small parameter (multiscale) : thickness
Behavior ? Roughness ? Curvature ?
ε
Multi-scale modeling
15
Design (Structure finite elements) Low thickness Low stiffness ? Non linear ?
Large number of DOF Ill-conditioned systems Amplification of negative effects, Time step ??
Fiability and cost of numerical computations ???
Multi-scale modeling
16
Asymptotic studies
Interphase
ε
Interface Interface law (memory of characteristics ?) Multi-scale modeling
17
Asymptotic studies
Interphase
lim →
Multi-scale modeling
Interface
18
Asymptotic studies
Multi-scale modeling
19
Asymptotic studies
Multi-scale modeling
20
Elasto-statics
Multi-scale modeling
21
Plane Stiff Interface
Multi-scale modeling
22
Stiff Interface
Multi-scale modeling
23
Stiff Interface
Multi-scale modeling
24
Stiff Interface
Multi-scale modeling
25
Stiff Interface
Lebon, F., Rizzoni, R.: Asymptotic analysis of a thin interface: the case involving similar rigidity, International Journal of Engineering Sciences, Vol. 48, pp. 473-486, 2010. Multi-scale modeling
26
Stiff Interface
Multi-scale modeling
27
Multi-scale modeling
28
Multi-scale modeling
29
Multi-scale modeling
30
Multi-scale modeling
31
Mathematical results (order 0)
Multi-scale modeling
32
Multi-scale modeling
33
Multi-scale modeling
34
Multi-scale modeling
35
Multi-scale modeling
36
Multi-scale modeling
37
Multi-scale modeling
38
Mathematical results (Order 1)
Multi-scale modeling
39
Multi-scale modeling
40
Multi-scale modeling
41
Multi-scale modeling
42
Multi-scale modeling
43
Lebon, F., Rizzoni, R.: Asymptotic analysis of a thin interface: the case involving similar rigidity, International Journal of Engineering Sciences, Vol. 48, pp. 473-486, 2010. Multi-scale modeling
44
Rescaled energy
Expansions
Multi-scale modeling
45
Multi-scale modeling
46
Hypothesis
Multi-scale modeling
47
Multi-scale modeling
48
Isotropic materials
Multi-scale modeling
49
Curved Stiff Interfaces
Lebon, F., Rizzoni, R. : Imperfect interfaces as asymptotic models of thin curved elastic adhesive interphases, Mechanics Research Communications, accepted, 2013. Multi-scale modeling
50
Multi-scale modeling
51
Multi-scale modeling
52
Multi-scale modeling
53
Multi-scale modeling
54
Multi-scale modeling
55
Multi-scale modeling
56
Numerical Results
Dumont, S., Lebon, F., Rizzoni, R. : An asymptotic approach to the adhesion of thin stiff films, Mechanics Research Communications, in preparation. Multi-scale modeling
57
Numerical Results
Multi-scale modeling
58
Multi-scale modeling
59
The problem is not stable, we add Stable for D=0
Multi-scale modeling
60
Numerical Results Validation
Multi-scale modeling
61
Real
Approximated
Multi-scale modeling
62
Multi-scale modeling
63
An example of soft interface
Rekik, A., Lebon, F.: Identification of the representative crack length evolution for a multi-level interface model for quasi-brittle masonry, International Journal of Solids and Structures, Vol. 47, pp. 3011-3021, 2010. Rekik, A., Lebon, F.: Homogenization methods for interface modeling in damaged masonry, Advances in Engineering Software, Vol. 46, pp. 35-42, 2012. Multi-scale modeling
64
Multi-scale modeling
65
Multi-scale modeling
66
Multi-scale modeling
67
Multi-scale modeling
68
Multi-scale modeling
69
Multi-scale modeling
70
Multi-scale modeling
71
Multi-scale modeling
72
Multi-scale modeling
73
Multi-scale modeling
74
Multi-scale modeling
75
Multi-scale modeling
76
Multi-scale modeling
77
Multi-scale modeling
78
Multi-scale modeling
79
Multi-scale modeling
80
Multi-scale modeling
81
Multi-scale modeling
82
Multi-scale modeling
83
Multi-scale modeling
84
Multi-scale modeling
85
Multi-scale modeling
86
Multi-scale modeling
87
A justification of Coulomb friction ?
Lebon F., Ronel-Idrissi, S. : Asymptotic studies of Mohr-Coulomb and Drucker-Prager soft thin layers, International Journal of Steel and Composite Structures, Vol. 4, pp. 133-148, 2004 Multi-scale modeling
88
A justification of Coulomb friction ? The NonAssociated Plasticity Case Plane problems, small deformations, perfect adhesion, adherents : elastic Adhesive x 1
ε/2
•p
-ε/2 Γ1 x2
S
bp (σ , e ) = c em + (tgθ − tgϕ)[sm − c] e
•p
+ χKe (e ) + χKσ (σ )
Drucker-Prager
•p • p • p K e = e , e m ≥ tgθ e d ) K σ = {σ , tσ ≤ c − tgϕ nσ } Mohr-Coulomb
Γ0
•p
•p
K σ = {σ , s ≤ c − tgϕ s m }
Bε
•p
•p
•p
bp (σ,e ) = cem − tgϕ[nσ −c] e
•p
+ χK)e (e ) + χK)σ (σ) Multi-scale modeling
) • p • p K e = e , e m ≥ 0 89
A justification of Coulomb friction ? Formal asymptotic expansions
σ 12 = µ ([u ] − [u ]) e 1
Tangential
LOCAL PROBLEM
p 1
σ 22 = (λ + 2µ )([u2e ] − [u2p ])
Normal ∂σ i 2 =0 ∂y2 e = ee + e p σ ij = λ ( ekk ) e δ ij + 2 µ ( eij ) e s ≤ c − tgϕ sm •p If s < c − tgϕ sm then e = 0 •p If s = c − tgϕ sm then e = −k s
Multi-scale modeling
DP
MC
• p u = − k s.n , k > 0
• p u = − k t , k > 0 Flow direction ? Threshold ? 90
A justification of Coulomb friction ? Numerical Quantization
• 3 examples
87
65
43 89 ε/2
Thickness (mm) 1 Substrata Young modulus (Gpa) 200 Substrata Poisson ratio 0.3 Thin layer Young modulus (Gpa) 30 Thin layer Poisson ratio 0.3 Cohesion (Mpa) 1 Friction angle (°) 30 Dilatance angle (°) 0 -2 F1 (N/mm) a) (3.6E )*step b) (3.6E-2)*step F2 (N/mm) a) 0 -2 b) (1.8E )*step Finite element 8-node quadrangle
-ε/2 148
60
40
S
100
2
1
1
100
1
Multi-scale modeling
Thickness (mm) 0.5 Substrata Young modulus (Gpa) 240 Substrata Poisson ratio 0.38 Thin layer Young modulus (Gpa) 30 Thin layer Poisson ratio 0.3 Cohesion (Mpa) 1 Friction angle (°) 30 Dilatance angle (°) 0 F1 (N/mm) (0.8E-2)*step 91 Finite element 6-node triangle
A justification of Coulomb friction ? Numerical results 1 Elasticity Step 13 - Ratio tangential stress (Mpa)/tangential displacement (mm) along the thin layer
3
1,20E+04 1,10E+04
1
1,00E+04 9,00E+03 8,00E+03
Step 30 -Ratio tangential stress (Mpa)/tangential displacement (mm) along the thin layer
7,00E+03 6,00E+03
3,50E+04
5,00E+03 4,00E+03 400
450
500
550
600
650
700
750
3,00E+04
800
∠12/u1
Nodes
Step 15 - Ratio tangential stress (Mpa)/tangential displacement (mm) along the thin layer
2,50E+04 2,00E+04 1,50E+04
1,20E+04
1,00E+04
1,10E+04
4
1,00E+04
104
154
204
254
304
354
404
Nodes
9,00E+03
∠12/u1
2
54
8,00E+03 7,00E+03 6,00E+03 5,00E+03 4,00E+03 400
450
500
550
600
650
700
750
800
Nodes
Multi-scale modeling
92
A justification of Coulomb friction ? Numerical results 2 Plasticity Step 22 - Ratio normal stress (Mpa) /normal displacement (mm) along the thin layer
3
4,00E+04 3,50E+04
1
3,00E+04 2,50E+04
Step 50 - Ratio normal stress (Mpa) /normal displacement (mm) along the thin layer
2,00E+04
7,00E+04
1,50E+04 1,00E+04 400
6,00E+04 450
500
550
600
650
700
750
800
5,00E+04
∠2/u2
Nodes
4,00E+04 3,00E+04
Step 24 - Ratio normal stress (Mpa) /normal displacement (mm) along the thin layer
2,00E+04
4,00E+04
1,00E+04 4
3,50E+04
104
154
204
254
304
354
404
Nodes
3,00E+04
◊ 2/u2
2
54
2,50E+04 2,00E+04 1,50E+04 1,00E+04 400
450
500
550
600
650
700
750
800
Nodes
Multi-scale modeling
93
A justification of Coulomb friction ? Numerical results 3 Plastic yield 3
Step 22- Plastic Yield along the thin layer
Real yield
Step 50- Plastic Yield along the thin layer
2,2 Simplified Drucker-Prager 2,4
s ≤ c − tgϕ s m
Simplified Drucker-Prager
1,8
Plastic Yield (Mpa)
1
Plastic Yield MPa
2
1,6 1,4
Real Drucker-Prager
1,2 1
2,2
2 Real Drucker-Prager
Simplified
1,8
1,6
400
450
500
550
600
650
700
750
800
4
54
104
154
204
254
304
354
Nodes Nodes
Step24- Plastic Yield along the thin layer
404
σ.n ⊗sn
Step 50- Relative difference between the plastic yields
2,6 Simplified Drucker-Prager
Relative difference
2
Plastic Yield (Mpa)
2,4 2,2 2 1,8 1,6 1,4
Real Drucker-Prager
1,2 1 400
0,03 0,02 0,01 0 -0,01
4
54
104
154
204
-0,02
500
550
600
650
700
750
304
354
404
deviatoric
-0,03
spheric
-0,04 -0,05
450
254
Nodes
800
Nodes
Multi-scale modeling
Stress vector
94
A justification of Coulomb friction ? Numerical results 4 Plastic strain Evolution of the plastic strain components
3
4,00E-05
Strain12 Node710
3,50E-05
Strain12 Node780
2,00E-05 1,50E-05
Strain22 Node780
Strain12 Node710
3,50E-05
Strain22 Node710
3,00E-05
Plastic Strain
Plastic Strain
1
Strain12 Node650
Real strain
4,00E-05
Strain22 Node710
3,00E-05 2,50E-05
Evolution of the plastic strain components
Strain22 Node650
1,00E-05
Strain12 Node650
2,50E-05
Strain12 Node780
2,00E-05 1,50E-05
Strain22 Node780
ep
Strain22 Node650
1,00E-05
Simplified
5,00E-06 5,00E-06
0,00E+00 12
14
16
18
20
0,00E+00
22
-5,00E-06
12
Step
14
16
18
20
22
-5,00E-06
Strain11
Step
Strain11
Step 50: Equivalent plastic strain along the thin layer
Evolution of the plastic strain components
ep.n ⊗sn
5,0E-04 4,00E-04
Strain22 Node16
3,00E-04
Strain22 Node50
2
Plastic Strain
2,50E-04
Strain12 Node80
2,00E-04
4,5E-04
Strain12 Node16
Strain12 Node50
Equivalent plastic strain
3,50E-04
Strain22 Node80
1,50E-04 1,00E-04
Real plastic strain
4,0E-04
Simplified plastic strain
3,5E-04 3,0E-04 2,5E-04 2,0E-04 1,5E-04 1,0E-04 5,0E-05 0,0E+00
5,00E-05
0
100
200
300
400
0,00E+00
25
30
35
40
45
Nodes
50
-5,00E-05
Step
Strain11
Multi-scale modeling
95
A justification of Coulomb friction ? Numerical results 5 Conclusions • Local problem : quantization • Plastic yield : simplified version • Plastic strain : simplified version σ.n
• Contact law
[u]
Multi-scale modeling
96
Conclusion • • • •
Elasto-statics plane/curved stiff interfaces Efficient solver Elasto-statics plane soft interfaces Plasticity vs Coulomb
Outlook • Elasto-statics curved soft interfaces • Comparison stiff/soft • Elasto-dynamics Multi-scale modeling
97
Thank You for Your Attention
Multi-scale modeling
98