Nonlinear Systems and Control Lecture # 2 Examples of Nonlinear ...

82 downloads 787 Views 87KB Size Report
viscous friction. When the mass is at rest, there is a static friction force Fs that acts parallel to the surface and is limited to ±µsmg. (0 < µs < 1). Fs takes whatever ...
Nonlinear Systems and Control Lecture # 2 Examples of Nonlinear Systems

– p. 1/1

Pendulum Equation

l θ

• mg

mlθ¨ = −mg sin θ − klθ˙ x1 = θ,

x2 = θ˙

– p. 2/1

x˙ 1 = x2 x˙ 2 = −

g l

sin x1 −

k m

x2

Equilibrium Points: 0 = x2 0 = −

g l

sin x1 −

k m

x2

(nπ, 0) for n = 0, ±1, ±2, . . .

Nontrivial equilibrium points at (0, 0) and (π, 0)

– p. 3/1

Pendulum without friction: x˙ 1 = x2 x˙ 2 = −

g l

sin x1

Pendulum with torque input: x˙ 1 = x2 x˙ 2 = −

g l

sin x1 −

k m

x2 +

1 ml2

T

– p. 4/1

Tunnel-Diode Circuit

iL X X  

R E

P P    P P P    P P P    P P

s

 L   + vL

CC

i,mA

iC

CC

1

iR

i=h(v) 0.5

+

vC C

+

J

J

J

vR

−0.5

(a)

iC = C

0

0

0.5

1 v,V

(b)

dvC dt

,

vL = L

x1 = vC , x2 = iL ,

diL dt

u=E

– p. 5/1

iC + iR − iL = 0 ⇒ iC = −h(x1 ) + x2 vC − E + RiL + vL = 0 ⇒ vL = −x1 − Rx2 + u x˙ 1 = x˙ 2 =

1 C 1 L

[−h(x1 ) + x2 ] [−x1 − Rx2 + u]

Equilibrium Points: 0 = −h(x1 ) + x2 0 = −x1 − Rx2 + u

– p. 6/1

h(x1 ) = i

E R



1 R

x1

R 1.2 1 0.8 0.6

Q 1

Q 2

0.4 Q 3

0.2 0 0

0.5

1

v

R

– p. 7/1

Mass–Spring System Fsp B B B B B B

 Ff

m p

F-y

m¨ y + Ff + Fsp = F

Sources of nonlinearity: Nonlinear spring restoring force Fsp = g(y) Static or Coulomb friction

– p. 8/1

Fsp = g(y) g(y) = k(1 − a2 y 2 )y,

|ay| < 1 (softening spring)

g(y) = k(1 + a2 y 2 )y (hardening spring) Ff may have components due to static, Coulomb, and viscous friction

When the mass is at rest, there is a static friction force Fs that acts parallel to the surface and is limited to ±µs mg (0 < µs < 1). Fs takes whatever value, between its limits, to keep the mass at rest Once motion has started, the resistive force Ff is modeled as a function of the sliding velocity v = y˙

– p. 9/1

Ff

Ff

v

v

(b)

(a)

Ff

F

f

v

(c)

v

(d)

(a) Coulomb friction; (b) Coulomb plus linear viscous friction; (c) static, Coulomb, and linear viscous friction; (d) static, Coulomb, and linear viscous friction—Stribeck effect

– p. 10/1

Negative-Resistance Oscillator   L 

C CC

iC

CC

i

X X  

iL

+

v

i = h(v) Resistive Element

v

(a)

(b)

h(0) = 0,

h′ (0) < 0

h(v) → ∞ as v → ∞, and h(v) → −∞ as v → −∞

– p. 11/1

iC + iL + i = 0 C

dv dt

+

1 L

Z

t

v(s) ds + h(v) = 0 −∞

Differentiating with respect to t and multiplying by L: CL

d2 v dt2



+ v + Lh (v)

dv dt

=0



τ = t/ CL dv dτ

=



CL

dv dt

,

d2 v dτ 2

= CL

d2 v dt2

– p. 12/1

Denote the derivative of v with respect to τ by v˙ p ′ v ¨ + εh (v)v˙ + v = 0, ε = L/C Special case: Van der Pol equation

h(v) = −v + 13 v 3 v ¨ − ε(1 − v 2 )v˙ + v = 0

State model: x1 = v,

x2 = v˙

x˙ 1 = x2 x˙ 2 = −x1 − εh′ (x1 )x2

– p. 13/1

Another State Model:

z1 = iL ,

z˙ 1 = z˙ 2

Change of variables:

1

z2 = vC

z2

ε = −ε[z1 + h(z2 )] z = T (x)

x1 = v = z2 r √ dv L dv x2 = CL = = [−iL − h(vC )] dτ dt C = ε[−z1 − h(z2 )] # " # " z2 −h(x1 ) − 1ε x2 −1 , T (z) = T (x) = x1 −εz1 − εh(z2 )

– p. 14/1

Adaptive Control P lant :

y˙ p = ap yp + kp u

Ref erenceM odel :

y˙ m = am ym + km r

u(t) = θ1∗ r(t) + θ2∗ yp (t) θ1∗

=

km kp

and

θ2∗

=

am − ap kp

When ap and kp are unknown, we may use u(t) = θ1 (t)r(t) + θ2 (t)yp (t)

where θ1 (t) and θ2 (t) are adjusted on-line

– p. 15/1

Adaptive Law (gradient algorithm): θ˙1 = −γ(yp − ym )r θ˙2 = −γ(yp − ym )yp ,

γ>0

State Variables: eo = yp − ym , φ1 = θ1 − θ1∗ , φ2 = θ2 − θ2∗ y˙ m = ap ym + kp (θ1∗ r + θ2∗ ym ) y˙ p = ap yp + kp (θ1 r + θ2 yp ) e˙ o = ap eo + kp (θ1 − θ1∗ )r + kp (θ2 yp − θ2∗ ym ) = · · · · · · + kp [θ2∗ yp − θ2∗ yp ]

= (ap + kp θ2∗ )eo + kp (θ1 − θ1∗ )r + kp (θ2 − θ2∗ )yp

– p. 16/1

Closed-Loop System: e˙ o = am eo + kp φ1 r(t) + kp φ2 [eo + ym (t)] φ˙ 1 = −γeo r(t) φ˙ 2 = −γeo [eo + ym (t)]

– p. 17/1