Numerical Simulation of a Counter Rotating Micro-Turbine

2 downloads 0 Views 2MB Size Report
Numerical Simulation of a Counter Rotating Micro-Turbine ... Turbine specific speed 0.313 .... New axial turbine to recover energy lost in release valves. ➢ Multi- ...
Numerical Simulation of a Counter Rotating Micro-Turbine

Cécile Münch-Alligné Sylvain Richard

Bastien Meier

Vlad Hasmatuchi

François Avellan

Institut Systèmes industriels

Small Hydro in Switzerland  P < 10 MW  1’400 small scale hydro power plants  860 MW installed power  3’800 GWh / year

 5 % of the electricity production  Potential : increasing the production

of 2010 by 40-50% by 2050

Introduction

Case Study

Numerical Setup

Results

Conclusions

2

Institut Systèmes industriels

Objective  Recover the energy lost in release valves of water supply network

Water Reservoir

Industrial installation Garage, Garden Bathroom plumbing

Micro-turbine

LMH

Release valve

Laboratory for Hydraulic Machines

Introduction

Case Study

Numerical Setup

Results

Conclusions

3

Institut Systèmes industriels

Case Study  Counter-rotating micro-turbine  Concept

LMH

Component

Value

Shroud radius

50 mm

Hub radius

40 mm

Number of blades : runner A

5

Number of blades : runner B

7

Laboratory for Hydraulic Machines

Introduction

Case Study

Numerical Setup

Results

Conclusions

4

Institut Systèmes industriels

Case Study  Counter-rotating micro-turbine Exemple

LMH

Discharge

8.7 l/s

Pressure drop

2 bars

Hydraulic power

1.7 kW

Efficiency

> 0.85

Mechanical power

1.45 kW

Nominal speed

3’000 rpm

Turbine specific speed

0.313

Runner specific speed

0.526

Laboratory for Hydraulic Machines

Introduction

Case Study

Numerical Setup

Results

Conclusions

5

Institut Systèmes industriels

Numerical Simulation Setup  RANS simulations  Ansys CFX 13.0  Scheme: 2nd order in space  SST turbulence model

 Computational domains

LMH

Laboratory for Hydraulic Machines

Introduction

Case Study

Numerical Setup

Results

Conclusions

6

Institut Systèmes industriels

Numerical Simulation Setup  Spatial discretization

Case

Number of nodes

In-line turbine

3.2 M

Turbine with elbows and shafts

4.5 M

Turbine with honeycomb, elbows and shafts.

4.2 M

LMH

Laboratory for Hydraulic Machines

Introduction

Case Study

Numerical Setup

Results

Conclusions

7

Institut Systèmes industriels

Numerical Simulation Setup  Boundary conditions  Inlet : constant discharge  Outlet : uniform pressure  Solid walls : no-slip condition  Stator-rotor interface : stage condition  Rotor-rotor interface : frozen condition

LMH

Laboratory for Hydraulic Machines

Introduction

Case Study

Numerical Setup

Results

Conclusions

8

Institut Systèmes industriels

Influence of the Computational Domain a)

c)

b)

LMH

Laboratory for Hydraulic Machines

Introduction

Case Study

Numerical Setup

Results

Conclusions

9

Institut Systèmes industriels

Influence of the Computational Domain Q  8.7 l  s-1

A  B  314.16 rad  s-1

Losses in Losses Elbows in Honeycomb

LMH

Laboratory for Hydraulic Machines

Introduction

Case Study

Numerical Setup

Results

Conclusions

10

Institut Systèmes industriels

Performances



B.E.P

Q

Rs 3  Rs 2  Rh 2 

2E  2R 2 P   mec Phyd

 

BEP :

 =88% for  =0.235,  =2.38 expected BEP : for  =0.196,  =1.59 BEP : Q  10.42 l  s-1, H  29.9 m P  2.65 kW

LMH

Laboratory for Hydraulic Machines

Introduction

Case Study

Numerical Setup

Results

Conclusions

11

Institut Systèmes industriels

Influence of the Relative Rotational Speed  Regulation of the turbine in case of discharge variation:   B  A

  1.2   0.8

LMH

 

  f  ,  



   BEP

Laboratory for Hydraulic Machines

Introduction

Case Study

Numerical Setup

Results

Conclusions

12

Institut Systèmes industriels

Unsteady simulations

Introduction

Case Study

Numerical Setup

Results

Conclusions

13

Institut Systèmes industriels

Conclusions  New axial turbine to recover energy lost in release valves  Multi-stages  Two counter rotating runners per stage  Medium head

 Development using numerical simulations  Efficiency : 88 % for BEP operating conditions  Regulation using the ratio between the two rotational speeds Introduction

Case Study

Numerical Setup

Results

Conclusions

14

Institut Systèmes industriels

Outlooks  Comparison with experiments  Test rig with elbow and external generator at EPFL Laboratory  Test rig in axial configuration at HES SO Valais

Introduction

Case Study

Numerical Setup

Results

Conclusions

15

Thank You !

LMH

Laboratory for Hydraulic Machines

[email protected]

Suggest Documents