On detectability of nonstationarity from data using

2 downloads 0 Views 2MB Size Report
model (SSS) with Gaussian distribution, mean = 4, standard deviation = 1 and. Hurst coefficientH = 0.9 (the three component generator in Koutsoyiannis, 2002 ...
EuropeanȱGeosciencesȱUnionȱGeneralȱAssemblyȱ2008

Vienna,ȱAustria,ȱ13Ȭ18ȱAprilȱ2008ȱ

SessionȱIS40:ȱGeophysicalȱExtremes:ȱscalingȱversusȱnonstationarity

Onȱdetectability ofȱnonstationarityȱfromȱdataȱusingȱstatisticalȱtools D.ȱKoutsoyiannis,ȱDepartmentȱofȱWaterȱResourcesȱandȱEnvironmentalȱEngineering,ȱNationalȱTechnicalȱUniversityȱofȱAthensȱȱ(www.itia.ntua.gr/dk) 1.Abstract

4.Whatisstationarityandnonstationarity?

7.Falsespectralestimationduetosmallsample

10.Spectralestimationfor(natural)cumulativeprocesses 100000

1000

Ithasbeenacommonpracticeingeophysicalresearchtocharacterize observedtimeseriesasnonstationaryandtoapplystatisticaltoolstodetect nonstationarity.However,inmanycasesthelogicofsuchdetectionsis flawed,principallybecausestationarityandnonstationarityare not propertiesofthetimeseries(phenomena)butofthemathematicalprocesses (noumena)devisedtomodelthephenomena,andalsodependonour currentknowledgeofthesystemstate.Oneofthemostcommonflawsis therejectionofastationarityhypothesisbasedonaclassicalstatisticaltest whichassumesthattheprocessisindependentintime,whilstit iswell understandablethattimeindependenceisnotanappropriateassumption forgeophysicalprocesses.Inthecasethatascalingbehaviourisverifiedor assumed,oneofthemostcommonmisusesofstatisticsisthe characterizationofatimeseriesasnonstationarybasedonanestimateofa Hurstexponentgreaterthan1.Amongthetoolsusedforsuchestimationsis thespectralrepresentationofthetimeseries.Todemonstratecommon flaws,severalexamplesaresynthesized,usingdatageneratedfrom hypothesizedmodels,knownaprioritobestationaryornonstationary.The examplesaimtodemonstratethaterroneousconclusionsareveryprobable andtolocatetheoriginofflawedresults.



2.Isthistimeseriesnonstationary?

5.Arecumulativeprocessesnonstationary?

8.Spectralestimationfor(abstract)cumulativeprocesses

• Atypicalcaseofanonstationaryprocessisacumulativeprocess thatindiscretetimei canbe expressedasYi =Yi1 +Xi,whereXi isanystationaryprocess,i =1,2,…,andY0 =0.Examples: – ArandomwalkandaWienerprocessinwhichconsecutiveXi areindependent(white noise)withzeromean( =0).TheresultingmeanofYi isE[Yi]=0(notafunctionoftime); yettheyarenonstationarybecauseVar[Yi]v i. – ABrownianmotion,inwhichconsecutiveXi aredependentwithMarkovian autocorrelation;forlargetimei,ithasessentiallythesamepropertieswiththeWiener process(E[Yi]=0,Var[Yi]v i). – Aselfsimilarprocess,alsoknownasthefractionalBrownianmotion,inwhich consecutiveXi aremembersofan SSSprocess(E[Yi]=0,Var[Yi]v i2H,whereH isthe Hurstcoefficient). • Suchcumulativeprocessareabstractconstructions,whosematerializationcanbedonein severalcases,i.e.inmotionofmoleculesandinstoringofinflowsXi inareservoir;inthelater case,theinflowsarenonnegativesothatµ :=E[Xi]>0;hencethemeanofstorageYi is proportionaltotime(E[Yi]=µ i). • However,whenthesearematerializeinrealworldprocesses,theychangefrom nonstationarytostationary: – ABrownianmotionoccurswithinboundaries(e.g.theglasscontainingwater);bound Brownianmotionisstationary(exceptinatransitionperiod;Papoulis,1991). – Inarealworldstorageprocess,therearealwayssomelosses(e.g.evaporation,leakage, spills),sothatthecumulativeprocessshouldwriteYi =aYi1 +Xi,where0

Suggest Documents