Operational Impacts of Space Weather

4 downloads 2853 Views 2MB Size Report
Apr 3, 2001 - TEC as Function of Azimuth and Elevation around Millstone .... MHR3. EGL2. TEC Disturbances on 15 July 2000 ... FPS-85 Florida. -50. 50. 150.
Paper

Presentation Paper

Animation 1 Paper Animation 2

Next Paper Topic

Animation 3 Paper Animation 4

Table Paper of Contents

Operational Impacts of Space Weather R. Lambour, A. J. Coster, R. Clouser, L. E. Thornton, J. Sharma, and A. Cott MIT Lincoln Laboratory

2001 Space Control Conference

3 April 2001 2001 Space Control Conf. -1 RLL 4/3/2001

MIT Lincoln Laboratory

Outline

• Introduction – Space Weather • Effects on Space-Based Systems • Effects on Ground-Based systems • Conclusions

2001 Space Control Conf. -2 RLL 4/3/2001

MIT Lincoln Laboratory

Space Weather • Definition: – “Conditions on the Sun and in the solar wind, magnetosphere, ionosphere, and thermosphere that can affect performance and reliability of space-based and ground-based technological systems.”*

* 2001 Space Control Conf. -3 RLL 4/3/2001

MIT Lincoln Laboratory

Solar Flare

Stop

Coronal Mass Ejection

Stop

Effects of Space Weather on Earth SOHO – Solar Flare

SOHO – Coronal Mass Ejection

Solar Flare of 14 July 2000 Biggest Solar Storm in Nine Years Caused very large magnetic storm and ionospheric effects

2001 Space Control Conf. -4 RLL 4/3/2001

MIT Lincoln Laboratory

Solar Flare

Stop

Coronal Mass Ejection

Stop

Effects of Space Weather on Earth SOHO – Solar Flare

SOHO – Coronal Mass Ejection

Solar Flare of 14 July 2000 Biggest Solar Storm in Nine Years Caused very large magnetic storm and ionospheric effects

2001 Space Control Conf. -4 RLL 4/3/2001

MIT Lincoln Laboratory

Solar Flare

Stop

Coronal Mass Ejection

Stop

Effects of Space Weather on Earth SOHO – Solar Flare

SOHO – Coronal Mass Ejection

Solar Flare of 14 July 2000 Biggest Solar Storm in Nine Years Caused very large magnetic storm and ionospheric effects

Near peak of 11 Year solar cycle Activity on Sun, magnetosphere and ionosphere will be a maximum for the next 2-3 years

2001 Space Control Conf. -4 RLL 4/3/2001

MIT Lincoln Laboratory

Outline

• Introduction – Space Weather • Effects on Space-Based Systems – Space-Based Visible sensor South Atlantic Anomaly Transient effects Long-term (?) effects

• Effects on Ground-Based systems • Conclusions

2001 Space Control Conf. -5 RLL 4/3/2001

MIT Lincoln Laboratory

Play Animation

Stop

SBV Sensor • 15 cm high straylight rejection telescope

• 4 - 420x420 Lincoln Laboratory CCD

• 1.4 x 1.4 deg field of view •

2001 Space Control Conf. -6 RLL 4/3/2001

per CCD Staring sensor

MIT Lincoln Laboratory

Play Animation

Stop

SBV Sensor • 15 cm high straylight rejection telescope

• 4 - 420x420 Lincoln Laboratory CCD

• 1.4 x 1.4 deg field of view •

per CCD Staring sensor

• Target and star detection • Clutter rejection • Data compression

2001 Space Control Conf. -6 RLL 4/3/2001

MIT Lincoln Laboratory

Space Environment Effects on SBV

2001 Space Control Conf. -7 RLL 4/3/2001

MIT Lincoln Laboratory

South Atlantic Anomaly (SAA)

Flux contours of E > 50 MeV Protons at 500 km

SAA

Energetic particle enhancement at low altitudes due to offset of magnetic field

2001 Space Control Conf. -8 RLL 4/3/2001

MIT Lincoln Laboratory

Play Animation

Stop

SAA Effects on SBV

Protons with energy > 10 MeV affect SBV focal plane and inhibit ability to observe valid target streaks 2001 Space Control Conf. -9 RLL 4/3/2001

MIT Lincoln Laboratory

Transient Effects: 14 July 2000 Solar Proton Event

Solar Proton Arrival

NOAA Geosynchronous Space Environment Summary 2001 Space Control Conf. -10 RLL 4/3/2001

MIT Lincoln Laboratory

Transient Effects: 14 July 2000 Solar Proton Event •

Solar flare occurred at end of pinch point CONOPS testing



One DCE produced no data (day 197)



Decrease in valid streaks over polar regions seen



Decrease not attributable to anomalies

Valid Streaks per Frameset

2.0

1.5

1.0

0.5

0.0 190

|Latitude| < 60 |Latitude| > 60 Flare Storm 192

194

196

198

200

Day of Year 2000

2001 Space Control Conf. -11 RLL 4/3/2001

MIT Lincoln Laboratory

Transient Effects: 14 July 2000 Solar Proton Event

False Streaks per Frameset

2.0

1.5

|Latitude| > 60 |Latitude| < 60 Flare Storm

• False streaks per

frameset increased significantly after solar flare

1.0

0.5

0.0 190

192

194

196

198

200

Day of Year 2000

2001 Space Control Conf. -12 RLL 4/3/2001

MIT Lincoln Laboratory

Transient Effects: 14 July 2000 Solar Proton Event

False Streaks per Frameset

2.0

|Latitude| > 60 |Latitude| < 60 Flare Storm

1.5

• False streaks per

frameset increased significantly after solar flare

1.0

0.5

0.0 190

192

194

196

198

200

Day of Year 2000

Influx of solar protons over poles degraded SBV performance 2001 Space Control Conf. -12 RLL 4/3/2001

MIT Lincoln Laboratory

Long Term (?) Space Environment Effects

SAA

2001 Space Control Conf. -13 RLL 4/3/2001

MIT Lincoln Laboratory

Long Term (?) Space Environment Effects

SAA

2001 Space Control Conf. -13 RLL 4/3/2001

MIT Lincoln Laboratory

Long Term (?) Space Environment Effects

SAA

• Area with reduced detections south of SAA noticed in 1998-1999 • Effect investigated by looking geographic distribution of valid and false streaks

2001 Space Control Conf. -13 RLL 4/3/2001

MIT Lincoln Laboratory

Long Term (?) Space Environment Effects SAA

Region of interest

2001 Space Control Conf. -14 RLL 4/3/2001

MIT Lincoln Laboratory

Long Term (?) Space Environment Effects SAA

Region of interest Area of degraded performance persists into 2000

2001 Space Control Conf. -14 RLL 4/3/2001

MIT Lincoln Laboratory

Energetic Particle Source Regions > 6900 keV proton data from NOAA POES MEPED sensor **SEM-2 system

SAA Trapped Protons 0°°-detector

90°°-detector

• NOAA baseline plots show increase in trapped outer-zone protons south of SAA in recent years

• Consistent with location of degraded SBV performance 2001 Space Control Conf. -15 RLL 4/3/2001

MIT Lincoln Laboratory

Outline

• Introduction – Space Weather • Effects on Space-Based systems • Effects on Ground-Based systems – Range Delay – Scintillation – July 14-15th storm

• Conclusions

2001 Space Control Conf. -16 RLL 4/3/2001

MIT Lincoln Laboratory

2

m2

2001 Space Control Conf. -17 RLL 4/3/2001

MIT Lincoln Laboratory

Illustration of Atmospheric Effects Range Delay

n ionosphere

AN e ≈1− f 2

40.3 ∆Rion (meters) = f2

2001 Space Control Conf. -18 RLL 4/3/2001



R

0

N e dr

MIT Lincoln Laboratory

Illustration of Atmospheric Effects Range Delay

n ionosphere

AN e ≈1− f 2

40.3 ∆Rion (meters) = f2



R

0

Range Delay

S-Band

L-Band

UHF

VHF

Elev

Ionosphere

6m

32 m

280 m

2 km

< 20 °

2001 Space Control Conf. -18 RLL 4/3/2001

N e dr

MIT Lincoln Laboratory

Play Animation

Stop

GRIMS: GPS Real-Time Ionospheric Monitoring System • MIT Lincoln Laboratory built the first real-time ionospheric monitoring system based on GPS (1991).

– Purpose: Part of a radar calibration system. Operational systems online at FPS-85, ALTAIR, and Millstone satellite tracking radars. TEC as Function of Azimuth and Elevation around Millstone Hill Radar, MA

2001 Space Control Conf. -19 RLL 4/3/2001

MIT Lincoln Laboratory

Scintillation

Scintillation can cause additional errors.

For GPS, the primary issue is loss of lock. For radars, the primary issue is degradation of coherent integration capabilities.

2001 Space Control Conf. -20 RLL 4/3/2001

MIT Lincoln Laboratory

ALTAIR VHF Observations on CAL Sphere 2826: Normal Conditions versus Severe Scintillation

0 -1 0 -2 0 -3 0 -4 0

-5

0 5 Frequency (Hz)

-5 0

10

6 4 8 0 0

10 0 -10 -20 -30 -40 -50 6 4 9 0 0 64900

RCS (dBsm)

Normal Spectrum

-10

Spectrum in Severe Scintillation

-10 2001 Space Control Conf. -21 RLL 4/3/2001

RCS (dBsm)

Power spectral density (Log)

1 0

RCS (dBsm)

10 dB

Power spectral density (log)

ALTAIR VHF Tracks Calibration Sphere 2826 .5 m diameter, 850 km circular orbit

-5

0 5 Frequency (Hz)

10

Negligible scintillation

6 5 0 0 0 6 5 1 0 0 6 5 2 0 0 6 5 3 0 0 65100 65200 65300 65400 G M T S E C O N D S Time of day (sec GMT)

6 5 4 0 0 65500

Intense scintillation Moderate scintillation 10 0 -10 -20 Cable -30 wrap -40 -50 44000 44100 44200 44300 44400 44500 44600 Time of day (sec GMT)

MIT Lincoln Laboratory

Solar Flare

Stop

Coronal Mass Ejection

Stop

Solar Flare of 14 July 2000 Biggest Solar Storm in Nine Years Strikes Earth

2001 Space Control Conf. -22 RLL 4/3/2001

MIT Lincoln Laboratory

Solar Flare

Stop

Coronal Mass Ejection

Stop

Solar Flare of 14 July 2000 Biggest Solar Storm in Nine Years Strikes Earth

Est. Planetary Kp (3 Hr.)

Begin: 2000 Jul 14 0000 UT

NOAA/SEC Boulder, CO USA 2001 Space Control Conf. -22 RLL 4/3/2001

es

MIT Lincoln Laboratory

TEC Disturbances on 15 July 2000 180 160

POR4 WES2 NRC1 MHR3 EGL2

140 TEC Units

120 100 80 60 40 20 0 0

5

10

15

20

25

30

UTC Time (Hours) starting at day 197 2001 Space Control Conf. -23 RLL 4/3/2001

MIT Lincoln Laboratory

TEC Disturbances on 15 July 2000 180 160

POR4 WES2 NRC1 MHR3 EGL2

140 TEC Units

120 100 80 60 40 20 0 0

5

10

15

20

25

30

UTC Time (Hours) starting at day 197 2001 Space Control Conf. -23 RLL 4/3/2001

MIT Lincoln Laboratory

GPS Loss of Lock at Ottawa and Millstone Hill No. of Satellites

GPS Loss of Lock at Ottawa

V West (m/s)

Local Westward Ion Velocity at Millstone Hill

Zenith TEC Over Millstone Hill 4 5

TEC units TEC units

4 0

Loss of Lock on GPS L2 signal

3 5 3 0 2 5 2 0 1 5 1 0 5 0

15.5

1 5 . 5

2001 Space Control Conf. -24 RLL 4/3/2001

1 5 . 7 5

15.75

1 6 Day of16 Month D

a y

o

f

M

o

1 6 . 2 5

n

t h

16.25

1 6 . 5

16.5

MIT Lincoln Laboratory

Range Residuals (m)

Range Residuals on Calibration Sphere 7646 FPS-85 Florida 350 250

Typical Residuals

150 50 -50

Range Residuals (m)

201.87

201.872

201.874

201.876

201.878

201.88

400 300

July 15th storm effects

200 100 0 197.968

197.97

197.972

197.974

197.976

Day of Year (2000) 2001 Space Control Conf. -25 RLL 4/3/2001

MIT Lincoln Laboratory

Paper

Presentation Paper

Next Paper Topic Table Paper of Contents

Summary •



Space-Based Visible sensor sensitive to proton radiation environment (e.g., SAA) –

Transient effects (solar proton events) can degrade SBV performance



Long-term changes in the radiation environment may also affect performance of space-based sensors

Ground-based radar measurements: ionosphere introduces errors –

Range Delay and Angle Errors



Scintillation



In general, geomagnetic storms make these errors larger and harder to model



Understanding of space environment facilitates future spacebased and ground-based systems

2001 Space Control Conf. -26 RLL 4/3/2001

MIT Lincoln Laboratory