Parallel DSMC Gas flow Simulation of an In-line ... - Semantic Scholar

1 downloads 0 Views 1MB Size Report
Fraunhofer. Institut. Schicht- und. Oberflächentechnik. Domain decomposition in YZ plane. DSMC model of an in-line coater. ZP3 ZP2. ZP1. ZM. ZV1. ZV2. 425.
Euro-PVM/MPI 2006, Sept. 17-20, 2006

Parallel DSMC Gas flow Simulation of an In-line Coater for Reactive Sputtering

Andreas Pflug, Michael Siemers, Bernd Szyszka

Fraunhofer Institute for Surface Engineering and Thin Films IST Bonn, September 20, 2006

Pfl, Sie, Szy 2006-09-20

Fraunhofer Institut Schicht- und Oberflächentechnik

Euro-PVM/MPI 2006, Sept. 17-20, 2006

Outline 1.

Introduction

2.

Details of parallel DSMC implementation

3.

DSMC model of an in-line coater

4.

3D Gas flow simulation with moving glass substrates

5.

Conclusion Pfl, Sie, Szy 2006-09-20

Fraunhofer Institut Schicht- und Oberflächentechnik

Euro-PVM/MPI 2006, Sept. 17-20, 2006

Outline 1.

Introduction

2.

Details of parallel DSMC implementation

3.

DSMC model of an in-line coater

4.

3D Gas flow simulation with moving glass substrates

5.

Summary and outlook Pfl, Sie, Szy 2006-09-20

Fraunhofer Institut Schicht- und Oberflächentechnik

Introduction / Motivation

Reactive magnetron sputtering Sketch of an in-line sputtering compartment and a magnetron Magnetron

Compartment of an in-line sputtering coater

a) Cross section through a magnetron sputtertarget B

B

E

E N

to MF generator

S

E S

Vacuum

Vacuum

N

N

S

+/-

S

N

N

S

-/+

S

N

TargetMaterial Shielding

b) Erosion track on target surface

Gas inlet e. g. Ar, O2, ...

Shielding

Glass substrate Transport

Gas inlet e. g. Ar, O2, ...

system

Pfl, Sie, Szy 2006-09-20

Fraunhofer Institut Schicht- und Oberflächentechnik

Introduction / Motivation

Goals for simulation of reactive magnetron sputtering  Process stability

- Feedback control for non-stable transition mode - Coupling of magnetrons - Pumping speed, noise and latency times

 Homogeneity

- Lateral homogeneity: influence of substrate movement - Vertical homogeneity: magnetron drift current

 Productivity

- Fast access of operation conditions after maintenance or product change

Pfl, Sie, Szy 2006-09-20

Fraunhofer Institut Schicht- und Oberflächentechnik

Introduction / Motivation

Concept of DOGMA Dynamic, spatially resolved, coupled, macroscopic model Runge-Kutta integration (fast!)

Flow conductances

Surface chemistry

Monte Carlo simulation

Heuristic model of the plasma impedance

DSMC - Gas flow Monte Carlo simulation

Balance between surface and volume Berg‘s Model 1986 Surface metallization

Pressure distribution Time consuming MC calculations (initial step)

PIC-MC plasma Sputter particles

Fraunhofer Institut Schicht- und Oberflächentechnik

 A. Pflug et al.; Thin Solid Films 442 (2003) 21-6. Pfl, Sie, Szy 2006-09-20

Introduction / Motivation

Gas flow models Pressure regimes DSMC Method

Boltzmann transport equation without collision treatment

Boltzmann transport equation

FEM flow simulation Euler

Navier Stokes

Fluid limit

0

0.01

0.1

1.0

10

100

Typical process conditions

Limit of free particles



Kn = λ/d (nach Bird 94)

 G. A. Bird, Molecular gas dynamics and the direct simulation of gas flows, Oxford Engineering Science Series 42 (1994) Pfl, Sie, Szy 2006-09-20

Fraunhofer Institut Schicht- und Oberflächentechnik

Introduction / Motivation

»Direct Simulation Monte Carlo« (DSMC) - Method 

Introduced by Bird, 1981

Argon partial pressure [mPa] 720.0 710.0 700.0 690.0 680.0 670.0 660.0 650.0 640.0 630.0 620.0 610.0 600.0



Statistically obtained solution of the Boltzmann transport equation incl. collision term



Especially suited for low pressure and high velocity  Simulation of turbo blades  Satellite reentrance into earth atmosphere



With increasing pressure the computational effort rapidly increases (~ p2…p4)



Fraunhofer IST: 3D parallel implementation based on domain decomposition. Capable of multiple particle resolutions.

Fraunhofer Institut Schicht- und Oberflächentechnik

TwinMag targets

To pumps in next module Substrate holder

y

x

z

z

x

y

Pfl, Sie, Szy 2006-09-20

Euro-PVM/MPI 2006, Sept. 17-20, 2006

Outline 1.

Introduction

2.

Details of parallel DSMC implementation

3.

DSMC model of an in-line coater

4.

3D Gas flow simulation with moving glass substrates

5.

Summary and outlook Pfl, Sie, Szy 2006-09-20

Fraunhofer Institut Schicht- und Oberflächentechnik

Details of parallel DSMC implementation

»Direct Simulation Monte Carlo« (DSMC) - method Geometry a) Volume elements z r2

nz = 4

y

nx = 10 Lx

r1

b) Connections between volume elements

Averaging cycles

Tube_A

z

Evaluation

nr = 4 nϕ = 12

L

Movement Collision Pumping New particles

n

y

=3

Time cycles

Lz

Lz

Initialization Super particles Maxwellian distribution

nz = 6

Schedule

Cube

Tube_B

planar surface

connecting surface bent in 3D

y x

Fraunhofer Institut Schicht- und Oberflächentechnik

planar surface

Pfl, Sie, Szy 2006-09-20

Details of parallel DSMC implementation

Parallel DSMC code Overall layout of software framework

libc

RIG-VM

RIG-VM RIG-VM APIAPI

Object oriented scripting language with a C style syntax

DSMC Master

Sub class of RIG-VM

DSMC Worker

DSMC Worker

PVM3 PVM3 API API DSMC Worker

Particle Particle exchange exchange DSMC Worker Pfl, Sie, Szy 2006-09-20

Fraunhofer Institut Schicht- und Oberflächentechnik

Details of parallel DSMC implementation

Parallel DSMC code Layout of worker processes 

Object oriented, C++

 Abstract base class for - Border type - Volume element (geometry)  Further geometric volume elements and border types can easily be added without loss in performance

DSMC_Base

DSMC_Volume

DSMC_Quad

DSMC_Cone

DSMC_Border

DSMC_SVT

DSMC_Diffuse_Border

DSMC_Specular_Border

DSMC_CylinderJunction

DSMC_Open_Border

Further volume types

DSMC_Outlet_Border

Transformation between 3D volume coordinates and 2D surface coordinates (one class for each combination)

DSMC_Combined_Border Pfl, Sie, Szy 2006-09-20

Fraunhofer Institut Schicht- und Oberflächentechnik

Details of parallel DSMC implementation

Parallel DSMC code General parallelization scheme RIG-VM interpreter calls method of DSMC-master module

Worker 2 Worker 3

Wait for 'DSMCC_SUCCESS'

Perform task Perform task Perform task

Worker 4

Sucess code DSMCC_SUCCESS

Worker 1

PVM messages PVM messages

Master

Further proceeding of RIG-VM script

Perform task

Time axis Pfl, Sie, Szy 2006-09-20

Fraunhofer Institut Schicht- und Oberflächentechnik

Details of parallel DSMC implementation

Parallel DSMC code Parallelization scheme – Particle transfer between workers 

Particle transfer should be handled solely between workers, i. e. should be invisible for the master

Typical particle transfer scenarios in a DSMC setup consisting of three worker tasks A-C

p1

A

 Within a fixed time step δt, a particle trajectory could span over multiple workers (see right graph)

B p2

C

 The main problem for a worker is finding out the right moment to say ‘DSMCC_SUCCESS’

Pfl, Sie, Szy 2006-09-20

Fraunhofer Institut Schicht- und Oberflächentechnik

Details of parallel DSMC implementation

Parallel DSMC code Parallelization scheme – Asynchronous particle exchange Active state

Waiting state

Particle generation

Collision treatment Particle Movement

NS particles are sent to neighbour processes via

Send NS==0?

Yes to master

Switch to waiting state Pfl, Sie, Szy 2006-09-20

Fraunhofer Institut Schicht- und Oberflächentechnik

Details of parallel DSMC implementation

Parallel DSMC code Parallelization scheme – Asynchronous particle exchange p1

A

B p2

C

Master A B C

Command

Wait for 'DSMCC_SUCCESS' Move, one p article has stopped

Move, no transfer Move, transfer two particles, remember: n=2

Wait for two particles

Receive: 1

n=1

Move, stop -> n=0

Move, wall collision, move, transfer one particle

Move, no transfer

Time axis Fraunhofer Institut Schicht- und Oberflächentechnik

Pfl, Sie, Szy 2006-09-20

Euro-PVM/MPI 2006, Sept. 17-20, 2006

Outline 1.

Introduction

2.

Details of parallel DSMC implementation

3.

DSMC model of an in-line coater

4.

3D Gas flow simulation with moving glass substrates

5.

Summary and outlook Pfl, Sie, Szy 2006-09-20

Fraunhofer Institut Schicht- und Oberflächentechnik

DSMC model of an in-line coater

In-line coater at Applied Materials (former Applied Films) Sketch of compartments M5-M11 »BigMag« experimental inline coater - Compartment width: 4.35 m (same as for »Jumbo sized« substrates) - 7 Compartments à 0.6 m length - 4 Compartments à 0.7 m length - Total length ~ 8 m 3x Turbo Leybold 1600

M11 (Empty)

M10 (Pumping)

0.7 m

0.7 m

Glass transport system

Dual rotatables

3x Turbo Leybold 1600

M9

0.7 m

Gas inlet

2x Turbo Leybold 1600

M8 (Pumping)

M7 (Empty)

M6 (process)

M5 (pumping)

0.7 m

0.6 m

0.6 m

0.6 m

To load lock in M1 Moving glass substrate Substrate size: 1.0 x 3.21 m²

Pfl, Sie, Szy 2006-09-20

Fraunhofer Institut Schicht- und Oberflächentechnik

DSMC model of an in-line coater

In-line coater at Applied Materials (former Applied Films) Slits for pumping of sputter View into sputter compartment M9 compartment

»BigMag« – M9 •

Compartment width of 4.35 m



Gas inlet is hidden beneath shielding



Connection to pumping compartments via 20 rectangular orifices, left and right.



Different target types M8 can be mounted

M9

M10 Pfl, Sie, Szy 2006-09-20

Fraunhofer Institut Schicht- und Oberflächentechnik

Shielded gas inlet system

DSMC model of an in-line coater

Domain decomposition in XY plane M10

Sputter compartment M9

MO

LO 85x103 34

BL_J 81.2x9.4 BL_I 62.0x9.4 BL_H

40

74x11 0 BL_F 17.5 17.5

44.7x17.9

125.1x9.4 KC 147.4x9.4 KB 170.7x9.4 KA

332x43.7

5 3x11.9

438x26.3 700 x16

OG_10 U9_1 23x32 U9_2: 33x 10

U9_L 115.5 x 100

23x23

U5

U6

U9_UL172.5 x 23 U9_UM

MM MG

OG _9

335 x 23

34

BR_ G

680x306

74x 110 BR_F

BR _E 123x9.4 17.5 BR_D 118x9.4 17.5 BR_C 119x9.4 17.5 B R_B 70.5x9.4 B R_A 53x9.4

RG HG

53x11.9

49. 5 x 29. 5

44 .7x17.9

OG_8

U9_OR: 14 8.5 x5

U9_O M: 267 x27

U9_M 221 x 77

40

U9_4 23x32 U9_3: 3 3x10

U7

U8

700 x16

U9 8_A 30. 5x3 0

U9_R

U8_R

115.5 x 100

95x100

U9_UR 172.5 x 23 U98_ B U98_C

700x16

49.2x9.4

KD d = 220 m m

BL_E 123x9.4 BL_D 118x9 .4 17.5 119x 9.4 BL_C BL_B 17.5 70 .5x9.4 BL_A 53x9.4

49. 5 x 29. 5

81.2x9.4 BR_J 62 .0x9.4 B R_I BR_H

20 x 60 (x 1 50 in z -dir ection)

Glass substrate

HG RG

8 8.7x 85.6

49.2x9.4

BL_G

680x306

85x103

170.7x9.4 KG 147.4x9.4 KF 125.1x9.4 KE

39*85.6

y

RO

510*138

39*85.6

2 0 x 60 (x 150 in z dire ction)

M8

x Pfl, Sie, Szy 2006-09-20

Fraunhofer Institut Schicht- und Oberflächentechnik

DSMC model of an in-line coater

Domain decomposition in YZ plane DSMC gas flow model comprises - Total volume of 7.5 m³ - 1005 Volume elements

Connecting slots between M8-M9 and M9-M10

y

37.5 25

Area above glass substrate

75

150

ZP3

ZP2

ZP1

ZM

ZV1

ZV2

ZV3

425

300

600

1700

600

300

425

Area of glass substrate transport

ZP3

ZP2

ZP1

ZPM

ZV1

ZV2

ZV3

450

275

600

1700

600

275

450

Area between transpo rt rolls

z

Pfl, Sie, Szy 2006-09-20

Fraunhofer Institut Schicht- und Oberflächentechnik

Euro-PVM/MPI 2006, Sept. 17-20, 2006

Outline 1.

Introduction

2.

Details of parallel DSMC implementation

3.

DSMC model of an in-line coater

4.

3D Gas flow simulation with moving glass substrates

5.

Summary and outlook Pfl, Sie, Szy 2006-09-20

Fraunhofer Institut Schicht- und Oberflächentechnik

3D Gas flow simulation with moving substrate

DSMC implementation data Linux cluster at Fraunhofer IST Implementation details 

    



Linux cluster with 5 nodes à 2 Opteron-250 (2.4 GHz) processors and GBit ethernet 4 GB (8x512 MB) of memory for each node Debian sarge, g++ 3.3.5, pvm 3.4.1 Time cycle = 2.5x10-5 s 150000 cycles for first glass position 25000 cycles for each of 56 subsequent glass positions (+10000 cycles for time averaging) Approx. 106 simulation particles in total Pfl, Sie, Szy 2006-09-20

Fraunhofer Institut Schicht- und Oberflächentechnik

3D Gas flow simulation with moving substrate

DSMC model of BigMag coater Pressure distribution around sputter compartment M9 Argon-Druck [mPa] 180.0 170.0 160.0 150.0 140.0 130.0 120.0 110.0 100.0 90.0 80.0 70.0 60.0

M10

M9

M8

Without glass substrate Ohne Glassubstrat

Pfl, Sie, Szy 2006-09-20

Fraunhofer Institut Schicht- und Oberflächentechnik

3D Gas flow simulation with moving substrate

DSMC model of BigMag coater Influence of glass substrate Argon-Druck [mPa] 180.0 170.0 160.0 150.0 140.0 130.0 120.0 110.0 100.0 90.0 80.0 70.0 60.0

M10

M9

M8

WithGlassubstrat glass substrate Mit

Pfl, Sie, Szy 2006-09-20

Fraunhofer Institut Schicht- und Oberflächentechnik

3D Gas flow simulation with moving substrate

Substrate movement Influence of substrate movement on total pressure in M10 Simulation vs. Measurement





Good agreement between simulation and experiment

127

Experimental values taken from coign of chamber M10

126

Absolute values of pressure measurements are very difficult to obtain

Pressure [mPa]



128

Deposition range

125 124 BigMag-Logfile: Si3N4 deposition Ionivac BAG 100 in M10 scaled by factor 1/2.79 DSMC simulation in M10 (Ar pressure)

123 122 121 0.0

0.5

1.0

1.5

Glass front position [m]

Fraunhofer Institut Schicht- und Oberflächentechnik

2.0 Pfl, Sie, Szy 2006-09-20

3D Gas flow simulation with moving substrate

DSMC model of BigMag coater Load balancing Load balance  Equally distributed load per process  Load can be either estimated from total number of particles or measured via the clock() function during test cycles  Auxiliary condition: Minimizing the number of communication paths over network (typically 2000200)  »Simulated Annealing«

M

Load balance by number of particles

Load balance by averaged CPU clock() results

Time for 1000 cycles [s]

Time for 1000 cycles [s]

η Speedup [%]

η Speedup [%]

1

438

438

2

297

74

272

81

3

255

57

219

67

4

241

45

170

64

5

213

41

150

58

6

169

43

141

52

7

148

42

122

51

8

152

36

114

49

9

127

38

122

40

10

145

30

118

37 Pfl, Sie, Szy 2006-09-20

Fraunhofer Institut Schicht- und Oberflächentechnik

3D Gas flow simulation with moving substrate

Heuristic simulation of reactive magnetron sputtering •



Simplified model of the whole process Model of in-line coater uses 2D pressure distribution averaged along target direction (z-Axis)



Pflug et al., Proc. 47th SVC Tech. Conf. (2004) 155-60.



Pflug et al.; Proc. 49th SVC Tech. Conf. (2006) 14-20.

_ Relative thickness deviation ∆ t / t [%]

Substrate movement Heuristic simulation of resulting film thickness profile 2.5 2.0

Heuristic model Reactive ZnO, 11.02.2004, center Reactive SiO2, 16.06.2004, center

1.5 1.0 0.5 0.0 -0.5 -1.0 -1.5 0.0

Fraunhofer Institut Schicht- und Oberflächentechnik

0.2

0.4

0.6

0.8

Location ~x on substrate [m]

1.0 Pfl, Sie, Szy 2006-09-20

3D Gas flow simulation with moving substrate

 “Phase shift” in gas pressure distribution between different positions along target axis.

Argon pressure [mPa]

3D gas pressure distribution Phase shift at different positions within chamber 0.181 0.180 0.179 0.178 0.177 0.176 0.175 0.174 0.173 0.172 0.171 0.170 0.169 0.168 0.167 0.166

Segments ZP3 / ZVP ZP1 / ZV1 ZM

0.0

0.5

y

x150

1.5

2.0

Position of glass front [m]

Connecting slots between compartments 37.5 25

1.0

Upper area

75

x

x

x

x

ZP3

ZP2

ZP1

ZM

ZV1

ZV2

ZV3

425

300

600

1700

600

300

425

Glass substrate

ZP3

ZP2

ZP1

ZPM

ZV1

ZV2

ZV3

450

275

600

1700

600

275

450

Lower area z

Fraunhofer Institut Schicht- und Oberflächentechnik

Pfl, Sie, Szy 2006-09-20

Euro-PVM/MPI 2006, Sept. 17-20, 2006

Summary 1.

A high precision parallel DSMC code for rarefied gas flow simulation has been developed at Fraunhofer IST

2.

The DSMC code has been applied to an in-line coater with a moving substrate

3.

The simulation is in good agreement with pressure measurements. A 2D heuristic model derived from the DSMC simulations is partially capable of describing the resulting film thickness distribution on substrate

4.

In many cases a 2D heuristic model is not an appropriate description for large in-line coaters. This is most probably caused by the phase shift in the XZ-pressure distribution between different locations along target axis

Pfl, Sie, Szy 2006-09-20

Fraunhofer Institut Schicht- und Oberflächentechnik

Euro-PVM/MPI 2006, Sept. 17-20, 2006

Outlook 1.

Network latency of GBit ethernet cards seems to be a significant limitation. This will be further investigated.

2.

A PIC-MC plasma simulation system has been implemented based on the parallel DSMC code  M. Siemers et al., Proc. 49th SVC Tech. Conf. (2006) 60-63.

Pfl, Sie, Szy 2006-09-20

Fraunhofer Institut Schicht- und Oberflächentechnik

49th Annual SVC Technical Conference 2006

Thank you very much for your attention!

This work has partially been funded by

Bundesministerium für Bildung und Forschung (BMBF) and

VolkswagenStiftung Hannover

Pfl, Sie, Szy 2006-09-20

Fraunhofer Institut Schicht- und Oberflächentechnik

Euro-PVM/MPI 2006, Sept. 17-20, 2006

Backup slides

Pfl, Sie, Szy 2006-09-20

Fraunhofer Institut Schicht- und Oberflächentechnik

Introduction / Motivation

Low-E coatings: Demand on film thickness homogeneity Influence of film thickness deviations for double-Ag-low-E Dependency of color coordinates a*, b* on thickness 79

79

3.5 2.5

78 77

Ag d1

d2 [nm]

approx. 180 nm

NiCrOx

-3.0 -3.5 -4.0

78

-2.5

3.0

-1.0

2.0

-1.5

0.50

0 0.50

75

4.0

3.0

1.0

77

-0.50

76

3.5

2.5

-2.0

d2 [nm]

Example: SnO2 based double-Ag low-E stack

1 nm

1.5

2.0 1.5

76 -1.0

75

0

-2.5

SnO2

74

d2

74

-3.0 -1.5

1.0

-0.50

-2.0 -3.5

43

44

d3

45

46 47 d1 [nm]

48

43

44

45

46 47 d1 [nm]

48

Demand on large area coatings: (substrate size: 6.0*3.21 m²)

Float dAg + dNiCrOx = 9 nm



Fraunhofer Institut Schicht- und Oberflächentechnik

Pfl, Sie, Szy 2006-09-20

Details of parallel DSMC imlementation

»Direct Simulation Monte Carlo« (DSMC) - method Overall calculation schedule Initialisation Geometry

Time cycles Volume elements

Species and collision parameters

Particle move ment during interval [t, t+δ t]

Mesh of sub cells Boundary surfaces and pumping

Save final state (= velocitiy, coordin ates of each sim ulation particle) in to sta te file Perform Navg cycles of tim e averaging

Results

Initial particle distribution Random (M axwellian distribu tion)

Evaluation

New particle generation

N time cycles Collision treatment δt = 10-7...10-4 s during interval [t , t+δ t]

Averaged net flows of pa rticles Density Averaged velocity compon ents , ,

Restore from state file Data loggi ng (every m steps)

Averages square velocity

Pfl, Sie, Szy 2006-09-20

Fraunhofer Institut Schicht- und Oberflächentechnik

Suggest Documents