Rev. Téc. Ing. Univ. Zulia . Vol. 25. Nº 1, 3 -11. 2002
Passivity-based controller for chemical processes 1
Osear Camacho 1 , Rubén Rojas , Alpha Pemía-Espinoza and Mercedes Pérez de la parte2
1
1Postgrado en Auiomatización e Instrumentación,
Grupo en Nuevas Estrategias de Control A vanzadas (GINECA) , Facultad de Ingeniería,
Universidad de Los A ndes. Mérida 5 101 , Venezuela. Te /.: 58-2 74 -2402891.
Fax: 58-274-2402890. E-mail: ocam
[email protected].
2DepartamenLo de S istemas y A u tomática, Escuela Superior de Ingenieros ,
Un iversidad de SeviLla. Camino d [os Descubrimientos, s / n_ Sevilla 41092, España
Abstract This p ape r presents lh e developme nt of a Passivity -B ased ControUer (PBCr) from a Firsl-Order Plus- Dead -Tim e model of thc process. This approach res ults in a fixed structure controller that d epe nds on lh e ch aracterisUc para meters of the model. T his a llows a unique controller of adj u stablc parameters that can be u sed in s evera] processes. Compu ter simula lions on a n onlinea r che m icaJ proC'ess judge the conlroll er perfonnancc . Thc sim uJaUon r esu ll showed ("ffe tiveness and good p erfonnanc for lh stud ied case. Key words: PassiVit.y-based control. non linear chemical proces ses. dead -time .
Conirol basado en pasividad para procesos químicos Resumen E n esle trab Jo se pres nta e l d sarrollo de un con trolador basado en Pas ividad derivado a partir del modelo de Primer Orden Mas T iem po Mu erto (POMTM) de l proces o. El resultado de esta prop ues ta es un controlador de estru ctura fija qu e depend e de los parámetros caracleristicos del mod elo. Por tanto s e cuenta con un controla dor único de parámetros ajustables que puede ser empleado e n dife rentes proce sos. Para la eval u ación del controlador se realizaron simulaciones s obre u n proceso químico no lineal. Los resultados muestran la er: ctiVidad y bu en d esem peño del controlador en e l cas o estudiado.
Palabras clave: Control b asado en p asivida d , procesos qu ímicos no-lineales, líempo mu rto .
l. Introduction The theory aboul pa s ivity for non linear process control W G S [¡rs tly s ludied by Willems [11 who built a gen eral lh ory of dissipalive sys te ms. Popov [2 ] inlrodu ced the concep t of passivity as a fun dame ntal property of feedback syslems . A syste m is said lo be passive ir lhe increase in lh e s tored cn e rgy. in a given time interval. is lower or equallo the energy supplied to the ys
tem, in th same interva l. This characteris lic made a pa ssive system sLable in Lhe sense of Lia pu n ov . The passivity stra tegy uses the prop erty of sta bility of lile passive systems to d el;ve a fe dback control la w . Also another con¡;ept. the d amping iryection, is uscd to ensure Lh e asymp lolically convergence of Lhe system to the desired equilibrium s latc . Th e passiVity meU10d has fo u nd m any p plications in the electrical and mechanical fields
Rev. Téc. Ing . Univ. Zulia. Vol. 25, No . 1, 2002
4
Camacho y col.
wilh good resu lts [3. 4]. Recently. these concepts als o h a ve b een a p p lied to chem ical and b iological p rocesses [5. 6 ]. To develop a Passivity-Based Con lroller . PBCr. knowledgc of th e p rocess rnodel r ela ting the con1.rolled variable , X c(t). t o the manip ula ted variable, U(t). is n ecessary. Malhem atica l rnode1s of t he sys tem s olve m ost of lhe control problem . In the ind ustry. t.he re are rnany cornpIex pro cesses whose accurale rna lh ema tical mod els are nol available or difficult to obt.ain . As far as ch emical processes are con cem ed . the d evelop ment of a complet e rnod el is d ifficu It d u e mainly to lh e complexi ty o[ Lhe process itself. and to the lack of knowledge o[ sorne p rocess parameters. Second. mosl p roces s models relating the con trolJed and the manipula lcd variables are of h igher-order. Generally, t he PBC procedure pro duces a compiex controller , which could contain fou r or more parameier s resu lting in a d ifficult l uning j obo Th erefore. lhe u se of lhe tradlUonal p ro e du res of PBC would present d isadvant a ges in lheir application lo chemical pr ocesses. Jt is a com m on proc dure Lo u s e app roxl mating syslem m odels fo r controIler designo JI Lhe
frequ ency responses of fue a pproxirnaUng mod el and the original sysiem coincide wilhin drawi ng a ccuracy. so do lhe elosed-Ioop res ponses of both s ysi ms [7]. An efficienl m odelin g rnelhod al ter n a tive for p roces s control ls lh e u se of empírica! rnodels. wh ich u se low or de r lin ar models wilh dead time . Many times, First-Ord r -Plu s Dead ti m e (F'OPDT) models are a dequat for ch em ical proces s control analysis and d esign [8] . Som e times these reduced m odels pres en l uncertain ties arising frorn imperlecl rnod eling of lhe pro cess no nlineariLies Lhat contribute lo perform ance degradation of the controUer [9[. The aim of lhis pa per 1s lo design a PBCr b ased on an FOPOT m odel of the actual p rocess. The overall idea is 1.0 d evelop a gen eral PBCr . wh ic h can be u s ed for self-regulating ch emieal processes. It is expeet ed that due to lhe r obust ness s h own by PBCr . the propo sed eontroller wo u ld deal wiLh m odel u neertainlies and pertur bations . This arUcle is organized as follows. Sec Lio o 2 pres ents s orne hasic concepts of the P BC th ory. S clion:3 sh ows th e pr ocedu re to de s ign a PBCr u s ing the FO PDT model. Tu n ing equ tions
for the controller a r c also given in th is seclion. In Section 4 the simula tion of the PBCr for a nonlin ear che mical reac tor is p r esen ted . Section 5 con eludes the pap er.
2. Passivity Background Definitions Considering a S ISO system represen ted by
z = J(z) + g(z)u
( 1)
y = h(z)
where z E Z e R" is the state vector. u E U e R is the control inp ut a n d y E yc R is lhe outp u l func tion of the syslem . The vector fi eldsfiz) and g(z)are assumecllo b e s m oolh veelor fields 00 Z. Ass u m ing tha t an associa led energy s tor age fun c lion S:Z H m+ exists . Th e suppiy r ate is defined as a fu n ction w, U x Y H m.
Definition 1 Sys tem (1) is Said lo be passive with resp c l Lo t he s upply rate w = u y ifthc foll owing rela tion holds
s( z( t))
(2)
::: u(t)· y(t)
Thi relation is caBed th e pas s ivity inequ al ily [6].
Definition 2 Syslem (2) is said to b ecorne passive wiili respect to th e storage fu nction S if t h ere exisls a regular affine feedback law of lhe fonu u = a (z) + ,8(z )w
a (z ) E R; ,8(2) E ffi
(3)
wh ere ,8(Z) is a o on -zero scalar fu n ction in Z. a nd s u ch lha t thc losed -Ioop syslem (1 )- (3 ) becomes passive with re pect to a n ew scalar c ntrol in p ut w[6].
3. Passivity-Based Control from an FOPDT Model of tbe Process ThiS section pre s ents the d ev lopment of a paC r from an F OPDT rnodel of the process.
Rev. T' C . Ing. Univ. Zulia . Vol. 25. No. 1. 2002
Passivily -b ased con trolJer for chemical p rocesses
5
o and
1 b ut beyond the a pproximatio n brakes down . On oth er hand. the Taylor series approxi maU on improves as f.o increase . The fi rsL~ o rde r Taylor approxim a Lion or the Padé app roximaUon can be considered a s good approximaUons for Lhe dea dtime term for ch emical processes as has been shown previously [10] .
3 .1 Study of the process model: FOPDT The Fl rst Order plus Dead -Time (FOPDT) m odel of Lhe process is exp r essed by
(Ke-'' ' )
X; (s) U (s) rs + 1
(4)
If the firsL-order Taylor series app roxima tion is su bsLilu led jnlo equation (4) . it is obtained
wher e X I (s) is th e Laplace transform of the con trolled variable. lhe lran srrú Uer ou lput . and U(s) is lhe Laplace l ransform oflh c manipulated vari a b l . the control1er outpu t. 8 0th X J (s) a n d U(s) ar deviaUon variables . The chara cteris tlc pa rameters of the process are: dead t ime. to . static gain. K. and tim con slant. r. Th e dead time can be approximaled in two different ways. A firs t-order Taylor series ap proximation lo Lhe dea d time tenn p roduces
X; (s) U (s )
Equ aUon (7) r epresents a minimum phase system and equalion (8) re presenLs a non m ínimum p hase system. Up to n ow . Ule pass ivi ta tion procedu r e h a s been applied to minimu m phase syslems [4. 61. Sín ce . the Padé approxima Uon p rod u ces a non~ mini mum phase syst m; lhe actu al p rocedure can not be drrectly usee! to syn thesize tll e passive conLroller for Lhis kind of sys tems . Therefo re, the Taylor series a ppr oxim a Lion is chosen to design the controJler.
Figure 1 sh ows a comparison amo ng the dead time term and Lhe firsl-order TayJor series and Padé Approximalions . The figu re shows that lh e Padé Approximation works very well between 12~
On Lhe othcr s ide. it was h own in [ 1 1] tha t the first.-ord er TayJor series a pproximation can
r-----------------------------------------------------------,
1 - - - - - - ~ - - - - - - ..: - - - . . - - -:- - - - - . . - r 1\ ' ,
,.- I \
: ,} ·""' - -- 1------.- -- -- ,
~ '-
I
¡
I
I
... - - - - -
I
,
. '" - - .. _..
. . ..
I
.... . ... ... _
... ,.J ......
I
I
' ~_--..~ _ -,,-
-.................
I
I
t
I
_.' '"
.. ., -
... ...... ...... "'1 '" ... ... -
,
- - 1- -
:
~
- _(
.. --- ~-
._ -- -:~ ----
___ _ _ _ i _ .. _ _ __
.. -:--
.
I
~-
- - - - - . ' - - - - - - -: - - - - - -
I
'
- l -- - --- ~ -- --
..
_
...
I
--. - · ----~I
1
t'"
I
:
~
... ... ~ ... -
_______
... ... -
-o:
-----:, -- - -
"
, _ __ __ _ _ : _ __ _ _ __ :. _ _ _ _ _ _
1•
...
-
... ...
_ ;
... -
......
-
- _ L....
•
...
~
I ............ - , .. -
... -
I
... -
I ..... - .... -
j
r
I
:'-=--...2..: . ~
•
- "
l
i t
I
; -- - - -- ' . -- - ... -;- - ---- -,_._--
,
_
.. ...... -
...
I
:
- . . . . - . , - ...... - - - -, ... - - - -
I
¡- _ __ __ .. I, ___
-
t
, ............ _ ... t ... .........
;
I
:
~ .................. •
?__ ----o
r - ... ... ... - - r - ... - ... ... - -t ...... ,
--- - - -
,
.! _ .... __ ... . ' _ _ _ ......... _. _ ..... ... ... ... . '. _ ...... _ ... _
...
L..: ...... t- - - ... ... ......
,
... _
... _ _
I
• t
- - ... - - ...
I
1. -
I
1 ...... ... - ... - - , '" ... ... - ... - - , - ...... - ... - ... 1
~
r
,
I
............ ...
...
_
•
'
=-:- _ ... ... ... ... ... ... - _ ...
: ___ . __. ~~~_=~::_ ~~ -
- - - - - -
I
I
... .~.".--: ... .l
~
,- -- - -- -r - -- - ... r---·-
... J ... _ _ ... _ _ "," _ ... _ ...... _ _ ' _ ... __ ...... _'. ... _ ... _ _ ..
,
~5
(8)
(rs
U (s)
(6 )
1+ 0.5tas
(7)
K (l- 0.5t as ) + 1)(1 + O.5tos )
...X¡ (s)
-- = -
The bove approxima tion can a lso be writ len as a first~ o rde r Padé Approximation
= 1- O·5tos
K
+ l )(tos + 1)
(r s
an do if it is r eplaced thc Padé pproxim Lion into equation (4). the follow"ing resuJt is obta ined
(5)
e~l o'
=
r
.,.
.. •..,
-:--- ---
.J _ ___ .. _ ...... ___ _ _ ' _ __ .. _ .. _
,
,
J ~ , ~--------------~~--~~--~----~----~----~----~----~ e,i J[ O
x Figure 1. Compa rison among e
-x
(1). T,tylor (2 ) ancl Pa dé (3) approximations.
Rev. Téc . rng . Univ. Zu lia. Vol. 25 . No. l. 2002
6
Camac ho y col.
u
U~,---_(_1S_:_J_)-lI-X_2_(S_)-~'II"H
I
Using an auxiliary variable X 2 (s) the system m odel giv n by equalion (7) can be schematized as s hows Figure 2. Now , the model ofLhe process can be reWIit ten in staie variables a s follows: =( xz -x¡)D -A
x,
'flx.
= (x 2
-
x¡ )D - A -~
x2
2
= -T- - "' yD + W -X
(14)
2
y=x¡
This system has a passivity inequality ofthe form S(x) ~ x.W, S o , t ransforma tion (13) results in a passive system operator relaUng th e n ew in put W and tile output variable XI ' Now, the overall passive system can be re WIitten in the canon ical form [1 2]
x = - R(x )x -
fx. = - -x 2 + B + CU 2 r
(1 3 )
Sub Uluting this cxpr s s ion in lo lhe sys tem model (9) we obtain
be used lO h an d le U 1C dead ti m e ierm with out any p roblem for chemical processes.
l
~C (w.3.. - x¡D - B) x 2
Figure 2 . Bl ock d iagram realiza lion
of the syslem mod el given by equ tion (7).
x,
=
J(x)x + M (x)W
(1 5)
(9)
in lhis ca s e
y=x¡
-R(X)=(-~l
wh ere
(10)
-Yr)
-J(X\~ -~)
with M(x)
~I = (D+ ~ ) =
(xJ
(16)
where R(x) is a p ositive semi-defi nite matrix. and and
Wc a ssume that lhe va lue of the varia bles XI are always p ositive for all Um s (xtt) ~ O).
X2
Fol1owing fue passivi ta tion procedu re pro po ed by Sira and Angu lo [6 1: for chemical pro cesses , the following stora ge function can be u sed : 1 T S(x)= - xx 2
(1 1)
wh ere x is the s l t e vecto r. For the sys te m given by equation (9), the torage fu n clion d erivaltve is obtained
J{x) is an a n U-symmetric matrix .
3.2. Passivity Based feedback controller synthesis Th derivation of the control law was done based on a modified storage [uncUon Sct(x) a n d damping u-yection tbrough feedb a ck [6J , Th e modified storage funcHon, S d(X). is relaled to the Lya p unov slorage runcUon . 11s prope rties wer e u sed to der ivate an auxilia ry system frcm which lhe contr ol law was obta ined. The damping inJec tion was used to ensure lhe a ymptotically con vergence of the system to th e desíred equilíbriu m s tate.
2
.
2
S(x) = x¡x 2 D - X. D -
Ax. +
~
Bxz - -
r
+ Cxp (12) .
To ensure the passivily ineq uality fulfill m ent, equalion (21. ii is essen( la l lo define a sia le-dep n d n l inpul coordina te transfo rma líon as follows:
Then a passivity- based controller was pro posed for a system gíven in lhe equation (15) form o considering Ule following modifie d slorage fun cUon
Rev. Téc. Ing. Un ív. Zulia. Vol. 25. No. 1, 2002
(17)
Pas sivity-based controll r for chemical processes
7
where xd is an a uxiliary state vector to b e defined latero Along the solution of the system (l5). the function Sd(x,xd) have the followmg time deriva tive
(he controllaw via feedback. Then, x2d is s et to a desired eonstant equilib rium value x2 . Tnis is re 1él.~~ d to the component valu~ in the equilibrium state ofthe origin al state vector (z). It has to be in the in lcrval 0< x2 < ;;, to be consistent with the coordinate transfonnation (lO), where the con stant value A was taken as positive.
Completing tenns in the right s lde and a dd ing a damp ing iryection term of the fonn - R di (x - xd). so that Rm == R + Rdi b a positive d e fined matrix. asymptotic stability is ensure. For sim plicity ~i is taken to be a constant m atrix.
Lctting. thus, X 2d = x2 , and after sorne mathematica l manipulations the dynamic feed back controller is obtained (24)
RUi
=
( ~O R¿O)
. ; Wlth
~.
R¿ > O
[19)
So the modified storage function derivative can be wIi tt n as follows: Sd(X , x d
)
== [x - xJ[(R+ Ru, )(x - x ct )
xd
-
J(x - x d
)
-Rxd - Jxd + Ru,(x-xd )+ MW , (20)
Now, let the a uxiliary ,'ta le vector xd(t) sat isly lhe following state eq uaüon representation
Finally, replacing W in equation ( 13). \.he expression of the general passivity controller ba sed on fue FOPDT moc\el is obtain ed
fu = ~ [- D(x¡ - x
1~d
= - (D +
ld ) -
R)x2
-
x
2 )]
~ )X¡d+ Dx'l. + ~(-"i -
+ ti (25) -"id )
Thu s . a Passivity-Ba sed controllcr of [iXed structu re has b een d esigned with adjusting pa ramet rs:
(21)
C, D. Note that is a time varying linear syste m for the a uxiliary stalexd' Then, R¡ and R2 are ch osen so that fu e time d erivative of Sd(x.xd) satisfies (22)
lt follows that the
eelor x(t) exponentially asymptotieally converges towards the auxiliary vector trajectory x d(t). S ubs tituting R(x), J(x) and M(x) as defined. equation (1 6). in equ ation (21) the fo llowmg state equation is oblained
(23)
This system is s tab le in the Lya p u nov sens e wilh s torage function given by equ ation (17). Be ca use of linear charaeteristics, it is easy to obtain
~
and R,
e anc\ D d epending entirely of the charae len tic parameters of Che process : K. r and too ~ and R, are tuning parameters chosen to satisfy (18).
On th e other hand, e and D de termine the agressivHy ofthe controll r, while ~ and R, deter mine the d amping factor and the setLing time of the proces s. In sorne cases, the obtained PBCr , p res ents steady tate error differen t of zero . II cou ld be 'a u s ed by th c imperf c tion of the modeling. The FOP DT model is a redu ced orde r model that presents uncerlainties arising from imp erfe ct. knowledge of the system, and the process non linear effects that. c ontribute to performance d cgradation ofthe controller. In order to improve th eontroll er closed loop performa nce an inLc gral tenn was a d d ed . Then eq uation (25) wa s m odified . a n d the fin al controller based on l h e FOPDT m odel is
Rev . Tée. lng. Univ. Zu lia. Vol. 25 , No. 1. 2 002
8
iu :
Camacho y col.
j iD X 'rl -
:,1
~ (-DI: - "')- I~ -~, Id' - R,lx, - x,1] + ti + ~ )x,rl + D X2 + R,(x¡ - X'c1)
Ma nlpulaled Va riable u
Controlled Variable ."
x
Internal Variable
(26)
Figu re 3 shows Lh e m odified s(ructure of the controller . The _~ dynamic is represent ed by the second line in equ aLion (26).
4. Evaluation oí the PBCr designed ThiS s ecUon pres en t a simula tion test of the proposecl conlroller , previously c1esignecl, in the regulation of an exolhennic continuously s ti rred tank reactor (CSTR) system. The process m odel assumes that [8 ]: the re actor a n d Lhe jacket are perfecUy m ixed ; al] the volumes ancl phys ical properties remai n con stant and lhe heat losses may be neglect d .
(27)
, INTEGRAL TERM
Figure 3. PBCr scheme. (m 3 ), Pe is t he de nsity of the coolant in Lhe j acket (kg/m 3 ). C{;c is l he specific heat of lhe coolanl P kg'l oC ). Pe i5 lhe coo)ant rate (m 3 /sl. T ó iS t h e coolanl inIel lem peratur (OC). ka is lhe Ar rhen ius frequ ency p aramctcr (m 3 S ' l kgmor l ). E is th a ctivation energy of the reaclion (J / kgmol). R is lbe ideal gas law constant (J kgmo r l {{- l) . FCmax is the m aximu m Oow Lhrough lhe control valve (m 3 / s) and a is fue rangeability parameter. Sim ula lions were performed using fue fol !owing valu es [8]:
Cp = 1.81 15 X 10 5 J kgmor 1 S , I; 3
where z¡ is the c oncentraU n of lhe reaclan t in the reaclor (kgmol/m 3 l. Z2 is the temperalure in llie reactor (OC) . 2 3 is the jacket temperatu re (oC) , u !s lhe conlroller output signal limited lo the in terval [0 ,1] and represenls t h e position fu nction of an equal percentage valve . F is the feed ra le (m 3 /sl. V is lhe r actor volu me (m 3 l. CAi is lh e concenlration of lhe r acla nt in lhe feed (kgmol/ m 3 ), k 1s the rcaction rale coefficient (m 3 kgmol' I s' 1). Ti is the temperatu re of the feed (OC), L\H R is (:h e heal ol" lhe re clion , assumed to be cons lan t (J kgmor11. pis the c1ensity oU he reac tor contents (kgmol/m 3 ), C p is the hea t capaci ty of the reactanls (J kgmor l S ·l). UT i the overall h cat lransfer coefficient (J s' 1m 2 ° . 1). AT is the heat transfer area (m 2 ), Ve is Lh e jacket volume
2
3
Ve =1.82 m ; AT = 5 .4 0 m ; Pe = 1000 kg/m ;
ka = 0. 0744 m 3 Cpc
S·I
= 41 84 J kg
kgmor l ;
1 De
l;
7 E= 1.182 x 10 J/ k gmol; F Cmax
F= 7 .5 X 10,3 m 3 /s; a
=0.020 ro 3 /s;
= 50;
H R = -9 .86 X 10 7 J kgmor l ;
UT
=3 550 J
S · I m,2
°c
l
;
CAí = 2 .88 kgmol/ m 3 ;
T ei = 27°C; Tí =66°C
and th equilibrium states of lhe process for a non -zero constanl u as:
Rev. Téc. Jng. Univ. Zulia. Vol. 25.
o. 1, 2002
Passivi ty-b ased conlroller for c h emical processes
9
a
L - (OC)
' l
106.4
I
0 75
\/·----··---------·-··--··..-··---i (o)
106.2
--
b
Valv e Pos¡lion
106 6,--,.,...tl-----~------.-------.-~]
106
07
\Jv~~------------i '")
105_8 105.6 1054
1
1052 105
i
104 .8 104 _6
06 5
06
0 55 0 .2
, 5
0.5 T rrn e (5 )
0 .4
0 .6
0.8
\ 2 T,m e (s)
1.4
16
1.8
2 .2
x 10~
x 10 '
Figure 4. C losed -Ioop sys lem response and control signal whe n CA; changes by 10% . (a) wilho ut integral term o(b) with integral termo Z2 (OC )
Zc ('C )
106
106 K, K i 5 0C!~ , K -50%
10 5.5
10 5.5
105
105
104
104 5
104
104
o
0 .5
o
1.5 Ti m e (s)
X
02
0 .4
0_ 6
08
10