(PDF) Data Sheet - Maxim

16 downloads 177 Views 379KB Size Report
10V references offer excellent accuracy and very low .... mV. Long-Term Output Drift. 50 ppm/kh. TEMP PIN. Voltage Output. VTEMP. TA = +25°C. 570. mV.
19-0038; Rev 3; 6/07

Low-Power, Low-Drift, +2.5V/+5V/+10V Precision Voltage References The MAX873/MAX875/MAX876 precision 2.5V, 5V, and 10V references offer excellent accuracy and very low power consumption. Extremely low temperature drift combined with excellent line and load regulation permit stable operation over a wide range of electrical and environmental conditions. Operation for the MAX873 is guaranteed with a +4.5V supply, making the part ideal in systems running from a +5V ±10% supply. Low 10Hz to 1kHz noise—typically 3.8µVRMS, 9µVRMS, and 18µVRMS, respectively, for the MAX873, MAX875, MAX876—make the parts suitable for 12-bit data-acquisition systems. A TRIM pin facilitates adjustment of the reference voltage over a ±6% range, using only a 100kΩ potentiometer. A voltage output proportional to temperature provides a source for temperature compensation circuits, temperature warning circuits, and other applications.

Features ♦ MAX873/MAX875/MAX876 +2.5V/+5V/+10V Outputs ±1.5mV/±2.0mV/±3.0mV (max) Initial Accuracy ♦ 7ppm/°C (max) Temperature Coefficient ♦ 450µA (max) Quiescent Current ♦ Low Noise: 3.8µVP-P (typ at 2.5V) ♦ Sources 10mA, Sinks 2mA ♦ 15ppm/mA Load Regulation (max) ♦ 4ppm/V Line Regulation (max) ♦ Wide Supply Voltage Range, +4.5V to +18V (MAX873) ♦ TEMP Output Proportional to Temperature

Applications 12-Bit ADCs and DACs

Typical Operating Circuit V+

Digital Multimeters Portable Data-Acquisition Systems

IN

Low-Power Test Equipment 0.1µF*

MAX873 MAX875 MAX876

+2.5V (MAX873) +5.0V (MAX875) +10.0V (MAX876)

GND

*OPTIONAL

Pin Configuration appears at end of data sheet.

OUT

0V

Ordering Information/Selector Guide PINPACKAGE

PART

OUTPUT VOLTAGE (V)

MAX TEMPCO (ppm/°C)

INITIAL ACCURACY %

PKG CODE S8-4

MAX873AESA+

8 SO

2.500

7

± 0.06

MAX873BESA+

8 SO

2.500

20

± 0.10

S8-4

MAX875AESA+

8 SO

5.000

7

± 0.04

S8-4

MAX875BESA+

8 SO

5.000

20

± 0.06

S8-4

MAX876AESA+

8 SO

10.000

7

± 0.03

S8-4

± 0.05

S8-4

MAX876BESA+ 8 SO 10.000 20 +Denotes a lead-free package. Note: All devices are specified over the -40°C to +85°C operating temperature range.

________________________________________________________________ Maxim Integrated Products

For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com.

1

MAX873/MAX875/MAX876

General Description

MAX873/MAX875/MAX876

Low-Power, Low-Drift, +2.5V/+5V/+10V Precision Voltage References ABSOLUTE MAXIMUM RATINGS IN to GND ...............................................................-0.3V to +20V OUT, TRIM, TEMP, TEST ..............................- 0.3V to (IN + 0.3V) Output Short-Circuit Duration (to GND)....................................5s Continuous Power Dissipation (TA = +70°C) SO (derate 5.88mW/°C above +70°C) .........................471mW

Operating Temperature Ranges: MAX87_ _E_A ..................................................-40°C to +85°C Storage Temperature Range .............................-65°C to +150°C Lead Temperature (soldering, 10s) .................................+300°C Junction Temperature (TJ) ...............................................+150°C

Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS—MAX873 (VIN = +5V, IL = 0mA, CLOAD < 100pF, TA = -40°C to +85°C, unless otherwise noted.) PARAMETER Output Voltage Output-Voltage Drift (Note 1) Output-Noise Voltage

SYMBOL VOUT TCVOUT en

Line Regulation

CONDITIONS

2.4985

2.5000

2.5015

2.4975

2.5000

2.5025

MAX873A

2

7

MAX873B

5

20

TA = +25°C

IL = 0 to -1mA (sink)

ISC

UNITS V ppm/°C

0.1Hz to 10Hz

3.8

µVP-P

10Hz to 1kHz

6.8

µVRMS

TA = +25°C

1

4.0

TA = -40°C to +85°C

2

6

TA = +25°C

3

15

TA = -40°C to +85°C

Load Regulation

Short-Circuit Output Current

MAX

MAX873A (0.06%)

IL = 0 to 10mA (source)

IQ

TYP

MAX873B (0.10%)

TA = +25°C

VIN = 4.5V to 18V

Quiescent Supply Current

MIN

3

20

TA = +25°C

100

900

TA = -40°C to +85°C

150

1900

TA = +25°C

300

450

TA = -40°C to +85°C

300

600

Output shorted to GND

60

VOUT Adjust Range Long-Term Output Drift

ppm/V

ppm/mA

µA mA

±100

mV

50

ppm/kh

TEMP PIN Voltage Output Temperature Sensitivity

VTEMP

TA = +25°C

TCVTEMP

570

mV

1.9

mV/°C

ELECTRICAL CHARACTERISTICS—MAX875 (VIN = +15V, IL = 0mA, CLOAD < 100pF, TA = -40°C to +85°C, unless otherwise noted.) PARAMETER Output Voltage Output Voltage Drift (Note 1) Output-Noise Voltage Line Regulation

2

SYMBOL VOUT TCVOUT en

CONDITIONS TA = +25°C

MIN

TYP

MAX

MAX875A (0.04%)

4.998

5.000

5.002

MAX875B (0.06%)

4.997

5.000

5.003

MAX875A

2

7

MAX875B

5

20

TA = +25°C VIN = 7V to 18V

UNITS V ppm/°C

0.1Hz to 10Hz

9

µVP-P

10Hz to 1kHz

14.5

µVRMS

TA = +25°C

1

4.0

TA = -40°C to +85°C

2

6

_______________________________________________________________________________________

ppm/V

Low-Power, Low-Drift, +2.5V/+5V/+10V Precision Voltage References (VIN = +15V, IL = 0mA, CLOAD < 100pF, TA = -40°C to +85°C, unless otherwise noted.) PARAMETER

SYMBOL

CONDITIONS IL = 0 to 10mA (source)

Load Regulation IL = 0 to -1mA (sink) Quiescent Supply Current

IQ

Short-Circuit Output Current

ISC

MIN

TYP

MAX

TA = +25°C

3

15

TA = -40°C to +85°C

3

20

TA = +25°C

100

900

TA = -40°C to +85°C

150

1900

TA = +25°C

320

550

TA = -40°C to +85°C

320

700

Output shorted to GND

60

VOUT Adjust Range Long-Term Output Drift

UNITS

ppm/mA

µA mA

±300

mV

50

ppm/kh

TEMP PIN Voltage Output

VTEMP

Temperature Sensitivity

TA = +25°C

TCVTEMP

630

mV

2.1

mV/°C

ELECTRICAL CHARACTERISTICS—MAX876 (VIN = +15V, IL = 0mA, CLOAD < 100pF, TA = -40°C to +85°C, unless otherwise noted.) PARAMETER Output Voltage

SYMBOL VOUT

Output Voltage Drift (Note 1)

TCVOUT

Output-Noise Voltage

en

Line Regulation

CONDITIONS TA = +25°C

9.997

10.000

10.003

MAX876B (0.05%)

9.995

10.000

10.005 7

5

20

TA = +25°C

IL = 0 to -1mA (sink)

ISC

MAX876A (0.03%)

2

Load Regulation

Short-Circuit Output Current

MAX

MAX876B

IL = 0 to 10mA (source)

IQ

TYP

MAX876A

VIN = 12V to 18V

Quiescent Supply Current

MIN

0.1Hz to 10Hz

18

10Hz to 1kHz

29

TA = +25°C

1

4.0

TA = -40°C to +85°C

1

6

TA = +25°C

1

15

TA = -40°C to +85°C

1

20

TA = +25°C

100

900

TA = -40°C to +85°C

150

1900 550

TA = -40°C to +85°C

340

700

Long-Term Output Drift

ppm/°C

µVRMS

320

Output shorted to GND

V

µVP-P

TA = +25°C

VOUT Adjust Range

UNITS

60

ppm/V

ppm/mA

µA mA

±600

mV

50

ppm/kh

TEMP PIN Voltage Output

VTEMP

Temperature Sensitivity

TCVTEMP

TA = +25°C

630

mV

2.1

mV/°C

Note 1: Temperature coefficient is defined as maximum ∆VOUT divided by maximum ∆T of the temperature range.

_______________________________________________________________________________________

3

MAX873/MAX875/MAX876

ELECTRICAL CHARACTERISTICS—MAX875 (continued)

Typical Operating Characteristics (VIN = +5V for VOUT = +2.5V, VIN = +15V for VOUT = +10V, IOUT = 0, TA = +25°C, unless otherwise noted.)

2.500

2.499

MAX873/75/76 toc02

LOAD REGULATION vs. SOURCE CURRENT (VOUT = 2.5V)

10.001 10.000 9.999 9.998 9.997 9.996 9.995 9.994

THREE TYPICAL PARTS 2.498 -25

0

25

50

75

100

125

0

-0.25 TA = +125°C

-50

-25

0

25

50

75

100

-0.50

125

0

5

10

15

20

25

TEMPERATURE (°C)

SOURCE CURRENT (mA)

LOAD REGULATION vs. SOURCE CURRENT (VOUT = 10V)

LOAD REGULATION vs. SINK CURRENT (VOUT = 2.5V)

LOAD REGULATION vs. SINK CURRENT (VOUT = 10V)

0

-0.25 TA = -40°C -0.50

TA = +25°C

0.50 TA = +125°C 0.25 0

TA = -40°C -0.25

5

10

15

20

25

30

TA = -40°C TA = +125°C

0.5 0

TA = +25°C

-0.5 -1.0

-0.50 0

1.5 1.0

30

MAX873/75/76 toc06

0.75

2.0 OUTPUT VOLTAGE CHANGE (mV)

TA = +125°C

MAX873/75/76 toc05

TA = +25°C 0.25

1.00 OUTPUT VOLTAGE CHANGE (mV)

MAX873/75/76 toc04

0

0.5

1.0

1.5

0

2.0

0.5

1.0

1.5

2.0

SOURCE CURRENT (mA)

SINK CURRENT (mA)

SINK CURRENT (mA)

LINE REGULATION vs. TEMPERATURE (VOUT = 2.5V)

LINE REGULATION vs. TEMPERATURE (VOUT = 10V)

MINIMUM INPUT-OUTPUT DIFFERENTIAL vs. SOURCE CURRENT (VOUT = 2.5V)

60 TA = +125°C 40

20

250 TA = +125°C 200 TA = -40°C

150 100 50

10

15

20

25

INPUT VOLTAGE (V)

30

35

40

TA = +125°C 1.5 TA = +25°C 1.0

TA = -40°C

0.5

0 5

2.0

TA = +25°C

TA = +25°C 0

MAX873/75/76 toc09

TA = -40°C

2.5

DROPOUT VOLTAGE (V)

80

300

OUTPUT VOLTAGE CHANGE (µV)

MAX873/75/76 toc07

100

MAX873/75/76 toc08

OUTPUT VOLTAGE CHANGE (mV)

TA = +25°C

TEMPERATURE (°C)

0.50

0

TA = -40°C

0.25

THREE TYPICAL PARTS

9.993 -50

4

0.50 OUTPUT VOLTAGE CHANGE (mV)

10.002

OUTPUT VOLTAGE (V)

2.501 OUTPUT VOLTAGE (V)

10.003

MAX873/75/76 toc01

2.502

OUTPUT VOLTAGE vs. TEMPERATURE (VOUT = 10V)

MAX873/75/76 toc03

OUTPUT VOLTAGE vs. TEMPERATURE (VOUT = 2.5V)

OUTPUT VOLTAGE CHANGE (µV)

MAX873/MAX875/MAX876

Low-Power, Low-Drift, +2.5V/+5V/+10V Precision Voltage References

12

16

20

24

28

32

INPUT VOLTAGE (V)

36

40

0

4

8

12

SOURCE CURRENT (mA)

_______________________________________________________________________________________

16

20

Low-Power, Low-Drift, +2.5V/+5V/+10V Precision Voltage References MAX873/MAX875/MAX876

Typical Operating Characteristics (continued) (VIN = +5V for VOUT = +2.5V, VIN = +15V for VOUT = +10V, IOUT = 0, TA = +25°C, unless otherwise noted.)

-40

TA = +25°C

-20 -40 PSRR (dB)

PSRR (dB)

1.5

MAX873/75/76 toc12

-20

TA = +125°C

0

MAX873/75/76 toc11

2.0

DROPOUT VOLTAGE (V)

0

MAX873/75/76 toc10

2.5

POWER-SUPPLY REJECTION RATIO vs. FREQUENCY (VOUT = 10V)

POWER-SUPPLY REJECTION RATIO vs. FREQUENCY (VOUT = 2.5V)

MINIMUM INPUT-OUTPUT DIFFERENTIAL vs. SOURCE CURRENT (VOUT = 10V)

-60 -80

-60 -80

-100

TA = -40°C

1.0

-100

-120 -140 0.001

0.5 0

4

8

12

16

20

0.1

1

10

100

-120 0.001

1000

0.01

0.1

1

10

100

1000

SOURCE CURRENT (mA)

FREQUENCY (kHz)

FREQUENCY (kHz)

OUTPUT IMPEDANCE vs. FREQUENCY (VOUT = 2.5V)

SUPPLY CURRENT vs. INPUT VOLTAGE (VOUT = 2.5V)

SUPPLY CURRENT vs. INPUT VOLTAGE (VOUT = 10V)

0.1

350 300

TA = +25°C

250 TA = -40°C

200 150

400

MAX873/75/76 toc15

TA = +125°C

TA = +125°C

350 SUPPLY CURRENT (µA)

1

MAX873/75/76 toc14

10

400

SUPPLY CURRENT (µA)

MAX873/75/76 toc13

100

OUTPUT IMPEDANCE (Ω)

0.01

300 250

TA = +25°C

200 TA = -40°C

150

100

100

50

50

0.01

0.01

0.1

1

10

100

0

1000

5

10

15

20

25

30

35

0

40

5

10

15

20

25

30

35

FREQUENCY (kHz)

INPUT VOLTAGE (V)

INPUT VOLTAGE (V)

SUPPLY CURRENT vs. TEMPERATURE (VOUT = 2.5V)

SUPPLY CURRENT vs. TEMPERATURE (VOUT = 10V)

TEMP VOLTAGE vs. TEMPERATURE (VOUT = 2.5V)

275

325

300

-25

0

25

50

75

TEMPERATURE (°C)

100

125

600

400

250 -50

700

500

275

250

MAX873/75/76 toc18

350

40

800

TEMP VOLTAGE (mV)

300

MAX873/75/76 toc17

325

375

SUPPLY CURRENT (µA)

MAX873/75/76 toc16

350

SUPPLY CURRENT (µA)

0

0

0.001

-50

-25

0

25

50

75

TEMPERATURE (°C)

100

125

-50

-25

0

25

50

75

100

125

TEMPERATURE (°C)

_______________________________________________________________________________________

5

Typical Operating Characteristics (continued) (VIN = +5V for VOUT = +2.5V, VIN = +15V for VOUT = +10V, IOUT = 0, TA = +25°C, unless otherwise noted.)

600

2.60

TWO TYPICAL PARTS 2.501

2.55 VOUT (V)

700

2.502

MAX873/75/76 toc20

800

2.65

OUTPUT VOLTAGE (V)

MAX873/75/76 toc19

900

2.50

2.500

2.45 2.499

500

2.40

400

2.498

2.35 -25

0

25

50

75

100

125

0

0.5

1.0

1.5

2.0

200

400

800

TIME (hours)

LONG-TERM STABILITY vs. TIME (VOUT = 10.0V)

OUTPUT-VOLTAGE NOISE DENSITY vs. FREQUENCY (VOUT = 2.5V)

OUTPUT-VOLTAGE NOISE DENSITY vs. FREQUENCY (VOUT = 10V)

10.000

9.999

9.998

100 200

400

600

800

1000

10,000

1000

100 0.1

1

TIME (hours)

10 100 FREQUENCY (Hz)

1000

0.1

1

10 100 FREQUENCY (Hz)

0.1Hz TO 10Hz OUTPUT NOISE (VOUT = 10V)

0.1Hz TO 10Hz OUTPUT NOISE (VOUT = 2.5V)

MAX873/75/76 toc26

MAX873/75/76 toc25

4µV/div

1µV/div

1s/div

1000

MAX873/75/76 toc24

10.001

1000

OUTPUT VOLTAGE-NOISE DENSITY (nV/√Hz)

MAX873/75/76 toc22

TWO TYPICAL PARTS

6

600

TRIM VOLTAGE (V)

10.002

0

0

2.5

TEMPERATURE (°C)

OUTPUT VOLTAGE-NOISE DENSITY (nV/√Hz)

-50

MAX873/75/76 toc23

TEMP VOLTAGE (mV)

LONG-TERM STABILITY vs. TIME (VOUT = 2.500V)

OUTPUT VOLTAGE vs. TRIM VOLTAGE (VOUT = 2.5V)

MAX873/75/76 toc21

TEMP VOLTAGE vs. TEMPERATURE (VOUT = 10V)

VOUT (V)

MAX873/MAX875/MAX876

Low-Power, Low-Drift, +2.5V/+5V/+10V Precision Voltage References

1s/div

_______________________________________________________________________________________

1000

Low-Power, Low-Drift, +2.5V/+5V/+10V Precision Voltage References MAX873/MAX875/MAX876

Typical Operating Characteristics (continued) (VIN = +5V for VOUT = +2.5V, VIN = +15V for VOUT = +10V, IOUT = 0, TA = +25°C, unless otherwise noted.)

LOAD TRANSIENT (VOUT = 10V, COUT = 0, 0 TO 20mA)

LOAD TRANSIENT (VOUT = 2.5V, COUT = 0, 0 TO 20mA)

MAX873/75/76 toc28

MAX873/75/76 toc27

20mA IOUT

20mA IOUT

0

0 VOUT AC-COUPLED 1V/div

VOUT AC-COUPLED 1V/div

10µs/div

10µs/div

LOAD TRANSIENT (VOUT = 10V, COUT = 1µF, 0 TO 20mA)

LOAD TRANSIENT (VOUT = 2.5V, COUT = 1µF, 0 TO +20mA)

MAX873/75/76 toc30

MAX873/75/76 toc29

20mA 20mA IOUT

IOUT

0

0

VOUT AC-COUPLED 50mV/div

VOUT AC-COUPLED 100mV/div

100µs/div

200µs/div

LOAD TRANSIENT (VOUT = 10V, COUT = 0, 0 TO -2mA)

LOAD TRANSIENT (VOUT = 2.5V, COUT = 0, 0 TO -2mA)

MAX873/75/76 toc32

MAX873/75/76 toc31

0

0

IOUT

40µs/div

IOUT

-2mA

-2mA

VOUT AC-COUPLED 200mV/div

VOUT AC-COUPLED 20mV/div

200µs/div

_______________________________________________________________________________________

7

MAX873/MAX875/MAX876

Low-Power, Low-Drift, +2.5V/+5V/+10V Precision Voltage References Typical Operating Characteristics (continued) (VIN = +5V for VOUT = +2.5V, VIN = +15V for VOUT = +10V, IOUT = 0, TA = +25°C, unless otherwise noted.) LOAD TRANSIENT (VOUT = 10V, COUT = 1µF, 0 TO -2mA)

LOAD TRANSIENT (VOUT = 2.5V, COUT = 1µF, 0 TO -2mA)

MAX873/75/76 toc34

MAX873/75/76 toc33

0

0

IOUT

IOUT

-2mA

-2mA

VOUT AC-COUPLED 20mV/div

VOUT AC-COUPLED 5mV/div

400µs/div

400µs/div

LINE TRANSIENT (VOUT = 10V)

LINE TRANSIENT (VOUT = 2.5V) MAX873/75/76 toc35

MAX873/75/76 toc36

5.5V

4.5V

15.5V VIN 1V/div 14.5V

VOUT AC-COUPLED 200mV/div

VOUT AC-COUPLED 200mV/div

VIN

COUT = 0 2µs/div

10µs/div

TURN-ON TRANSIENT (VOUT = 2.5V, COUT = 0)

TURN-ON TRANSIENT (VOUT = 2.5V, COUT = 1µF) MAX873/75/76 toc38

MAX873/75/76 toc37

VIN 2V/div VIN 2V/div

GND

GND VOUT 1V/div VOUT 1V/div

GND COUT = 0 10µs/div

8

GND 40µs/div

_______________________________________________________________________________________

Low-Power, Low-Drift, +2.5V/+5V/+10V Precision Voltage References (VIN = +5V for VOUT = +2.5V, VIN = +15V for VOUT = +10V, IOUT = 0, TA = +25°C, unless otherwise noted.) TURN-ON TRANSIENT (VOUT = 10V, COUT = 0)

TURN-ON TRANSIENT (VOUT = 10V, COUT = 1µF)

MAX873/75/76 toc39

MAX873/75/76 toc40

VIN 5V/div

VIN 5V/div GND

GND

VOUT 5V/div

VOUT 5V/div

GND

GND

100µs/div

200µs/div

Pin Description PIN

NAME

FUNCTION

1, 8

I.C.

Internally Connected. Do not connect externally.

2

IN

Positive Power-Supply Input

3

TEMP

Temperature Proportional Output Voltage. TEMP generates an output voltage proportional to the die temperature.

4

GND

Ground

5

TRIM

Output Voltage Trim. Connect TRIM to the center of a voltage-divider between OUT and GND for trimming. Leave unconnected to use the preset output voltage.

6

OUT

Output Voltage

7

N.C.

No Connection. Not internally connected.

Detailed Description The MAX873/MAX875/MAX876 precision voltage references provide accurate preset +2.5V, +5.0V, and +10V reference voltages from up to +40V input voltages. These devices feature a proprietary temperature-coefficient curvature-correction circuit and laser-trimmed thin-film resistors that result in a very low 3ppm/°C temperature coefficient and excellent 0.05% initial accuracy. The MAX873/MAX875/MAX876 draw 340µA of supply current and source 30mA or sink 2mA of load current.

Trimming the Output Voltage Trim the factory-preset output voltage on the MAX873/MAX875/MAX876 by placing a resistive divider network between OUT, TRIM, and GND.

Use the following formula to calculate the change in output voltage from its preset value: ∆VOUT = 2 x (VTRIM - VTRIM (open)) x k where: VTRIM = 0V to VOUT VTRIM (open) = VOUT (nominal) / 2 (typ) k = ±6% (typ) For example, use a 50kΩ potentiometer (such as the MAX5436) between OUT, TRIM, and GND with the potentiometer wiper connected to TRIM (see Figure 2). As the TRIM voltage changes from VOUT to GND, the output voltage changes accordingly. Set R2 to 1MΩ or less. Currents through resistors R1 and R2 add to the quiescent supply current.

_______________________________________________________________________________________

9

MAX873/MAX875/MAX876

Typical Operating Characteristics (continued)

MAX873/MAX875/MAX876

Low-Power, Low-Drift, +2.5V/+5V/+10V Precision Voltage References Temp Output The MAX873/MAX875/MAX876 provide a temperature output proportional to die temperature. TEMP can be calculated from the following formula: TEMP (V) = TJ (°K) x n where TJ = the die temperature, n = the temperature multiplier, n =

VTEMP (at TJ = T0 ) ≅ 1.9mV / °K T0

TA = the ambient temperature. Self-heating affects the die temperature and conversely, the TEMP output. The TEMP equation assumes the output is not loaded. If device power dissipation is negligible, then TJ ≈ TA.

Applications Information Bypassing/Output Capacitance For the best line-transient performance, decouple the input with a 0.1µF ceramic capacitor as shown in the Typical Operating Circuit. Place the capacitor as close to IN as possible. When transient performance is less important, no capacitor is necessary. The MAX873/MAX875/MAX876 do not require an output capacitor for stability and are stable with capacitive loads up to 100µF. In applications where the load or the

supply can experience step changes, a larger output capacitor reduces the amount of overshoot (undershoot) and improves the circuit’s transient response. Place output capacitors as close to the devices as possible for best performance.

Supply Current The MAX873/MAX875/MAX876 consume 320µA (typ) of quiescent supply current. This improved efficiency reduces power dissipation and extends battery life.

Thermal Hysteresis Thermal hysteresis is the change in the output voltage at TA = +25°C before and after the device is cycled over its entire operating temperature range. Hysteresis is caused by differential package stress appearing across the bandgap core transistors. The typical thermal hysteresis value is 120ppm.

Turn-On Time The MAX873/MAX875/MAX876 typically turn on and settle to within 0.1% of the preset output voltage in 150µs (2.5V output). The turn-on time can increase up to 150µs with the device operating with a 1µF load.

Short-Circuited Outputs The MAX873/MAX875/MAX876 feature a short-circuit-protected output. Internal circuitry limits the output current to 60mA when short circuiting the output to ground. The output current is limited to 3mA when short circuiting the output to the input.

10,000 1000 100 TEMPERATURE COEFFICIENT (ppm/°C)

8-BIT 10

10-BIT 12-BIT

1

14-BIT 16-BIT

0.1

18-BIT 0.01 1

10 OPERATING TEMPERATURE RANGE (TMAX - TMIN) (°C)

20-BIT 100

Figure 1. Temperature Coefficient vs. Operating Temperature Range for a 1 LSB Maximum Error

10

______________________________________________________________________________________

Low-Power, Low-Drift, +2.5V/+5V/+10V Precision Voltage References

In a data converter application, the reference voltage of the converter must stay within a certain limit to keep the error in the data converter smaller than the resolution limit through the operating temperature range. Figure 1 shows the maximum allowable reference-voltage temperature coefficient to keep the conversion error to less than 1 LSB, as a function of the operating temperature range (TMAX - TMIN) with the converter resolution as a parameter. The graph assumes the reference-voltage temperature coefficient as the only parameter affecting accuracy. In reality, the absolute static accuracy of a data converter is dependent on the combination of many parameters such as integral nonlinearity, differential nonlinearity, offset error, gain error, as well as voltagereference changes.

( VOUT + 2V) TO 40V INPUT

IN

OUT

*

MAX873 MAX875 MAX876 TEMP

TRIM

REFERENCE OUTPUT

MAX5436 50kΩ POTENTIOMETER

GND

*OPTIONAL.

Figure 2. Applications Circuit Using the MAX5436 Potentiometer

Pin Configuration

Chip Information TRANSISTOR COUNT: 429 PROCESS: BiCMOS

TOP VIEW I.C.*

1

IN

2

TEMP

3

MAX873 MAX875 MAX876

GND 4

8

I.C.*

7

N.C.

6

OUT

5

TRIM

SO *INTERNALLY CONNECTED. DO NOT CONNECT.

______________________________________________________________________________________

11

MAX873/MAX875/MAX876

Temperature Coefficient vs. Operating Temperature Range for a 1 LSB Maximum Error

Package Information (The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to www.maxim-ic.com/packages.)

DIM A A1 B C e E H L

N

E

H

INCHES

MILLIMETERS

MAX MIN 0.069 0.053 0.010 0.004 0.014 0.019 0.007 0.010 0.050 BSC 0.150 0.157 0.228 0.244 0.016 0.050

MAX MIN 1.35 1.75 0.10 0.25 0.35 0.49 0.19 0.25 1.27 BSC 3.80 4.00 5.80 6.20 0.40

SOICN .EPS

MAX873/MAX875/MAX876

Low-Power, Low-Drift, +2.5V/+5V/+10V Precision Voltage References

1.27

VARIATIONS: 1

INCHES

TOP VIEW

DIM D D D

MIN 0.189 0.337 0.386

MAX 0.197 0.344 0.394

MILLIMETERS MIN 4.80 8.55 9.80

MAX 5.00 8.75 10.00

N MS012 8 AA 14 AB 16 AC

D A B

e

C

0∞-8∞

A1 L

FRONT VIEW

SIDE VIEW

PROPRIETARY INFORMATION TITLE:

PACKAGE OUTLINE, .150" SOIC APPROVAL

DOCUMENT CONTROL NO.

21-0041

REV.

B

1 1

Revision History Pages changed at Rev 3: 1–12

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

12 ____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 © 2007 Maxim Integrated Products

is a registered trademark of Maxim Integrated Products, Inc.