Porphyrin-Embedded Silicate Materials for Detection of ... - MDPI

2 downloads 0 Views 489KB Size Report
Jan 14, 2011 - Center for Bio/Molecular Science and Engineering, Naval Research .... d. V. /d log(D. ) (cm. 3. /g). 0. 1. 2. 3. 4. B. Pore Diameter Distributions ...
Sensors 2011, 11, 886-904; doi:10.3390/s110100886 OPEN ACCESS

sensors ISSN 1424-8220 www.mdpi.com/journal/sensors Supporting Information

Porphyrin-Embedded Silicate Materials for Detection of Hydrocarbon Solvents Brandy J. Johnson *, Nicole E. Anderson, Paul T. Charles, Anthony P. Malanoski, Brian J. Melde, Mansoor Nasir and Jeffrey R. Deschamps Center for Bio/Molecular Science and Engineering, Naval Research Laboratory, Washington, D.C. 20375, USA; E-Mails: [email protected] (N.E.A); [email protected] (P.T.C.); [email protected] (A.P.M.); [email protected] (B.J.M.); [email protected] (M.N.); [email protected] (J.R.D.) * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +1-202-404-6100; Fax: +1-202-767-9598. Received: 1 December 2010; in revised form: 5 January 2011 / Accepted: 13 January 2011 / Published: 14 January 2011

The supplementary data supplied here provides complete results of structural characterization and image analysis for exposure of the various materials to hexane, benzene, and toluene. A list of the metal salts used to generate metalloporphyrin variants is provided. Additional absorbance and fluorescence results and reflectance spectra are also included.

Table S1. Metal salts used in the preparation of metalloporphyrin variants. magnesium chloride yttrium (III) chloride titanium (II) chloride manganese (II) chloride iron (III) chloride cobalt (II) chloride nickle (II) chloride

copper (II) chloride zinc chloride silver chloride cadmium chloride tin (II) chloride platinum (IV) chloride gold (III) chloride

vanadium (III) bromide ruthenium (III) chloride praseodynium (III) chloride cerium (III) chloride europium (II) chloride osmium (III) chloride

Sensors 2011, 11

2

Table S2. Results of rapid screening for interaction of porphyrins with targets in solution. For C1TPP and C4TPP, results for the four selected candidates and the next four highest performers are provided. For C1S3TPP, results for the top six performers are provided. Porphyrin C1TPP

FeC1TPP

CuC1TPP

MnC1TPP

ZnC1TPP

CoC1TPP

MgC1TPP

NiC1TPP

C1S3TPP

FeC1S3TPP

NiC1S3TPP

Target Benzene Toluene Hexane Benzene Toluene Hexane Benzene Toluene Hexane Benzene Toluene Hexane Benzene Toluene Hexane Benzene Toluene Hexane Benzene Toluene Hexane Benzene Toluene Hexane Benzene Toluene Hexane Benzene Toluene Hexane Benzene Toluene Hexane

Δλ 8 9 -8 -8 10 12 -10 8 7 6 7 4 8 9 8 9 8 8 9 10 12 6 6 6 -------

ΔI 0.062 0.134 -0.502 -0.462 0.145 0.222 -0.139 0.199 0.030 0.083 0.053 0.016 0.097 0.033 0.016 0.098 0.084 0.023 0.093 0.049 0.056 0.015 0.032 0.01 0.018 0.011 -0.016 0.014 --

Porphyrin C4TPP

FeC4TPP

MnC4TPP

ZnC4TPP

CoC4TPP

CuC4TPP

MgC4TPP

NiC4TPP

MnC1S3TPP

CuC1S3TPP

ZnC1S3TPP

Target Benzene Toluene Hexane Benzene Toluene Hexane Benzene Toluene Hexane Benzene Toluene Hexane Benzene Toluene Hexane Benzene Toluene Hexane Benzene Toluene Hexane Benzene Toluene Hexane Benzene Toluene Hexane Benzene Toluene Hexane Benzene Toluene Hexane

Δλ 9 11 8 --10 ---9 8 -9 8 10 9 7 7 8 8 -10 9 -9 6 8 --6 8 6 --

ΔI 0.078 0.215 0.039 0.038 0.094 0.096 0.188 0.127 0.083 0.073 0.054 0.095 0.042 0.043 0.018 0.076 0.062 0.014 0.058 0.039 0.043 0.047 0.084 0.026 0.012 0.009 0.033 0.023 0.024 0.02 0.029 0.008 0.004

Sensors 2011, 11

3

Table S3. Interaction of candidate porphyrins with targets in solution. Rapid Screening Porphyrin

C1TPP

FeC1TPP

CuC1TPP

MnC1TPP

C4TPP

FeC4TPP

MnC4TPP

ZnC4TPP

Target

Δλ

ΔI

Benzene Toluene Hexane Benzene Toluene Hexane Benzene Toluene Hexane Benzene Toluene Hexane Benzene Toluene Hexane Benzene Toluene Hexane Benzene Toluene Hexane Benzene Toluene Hexane

8 9 -8 -8 10 12 -10 8 7 9 11 8 --10 ---9 8 --

0.062 0.134 -0.502 -0.462 0.145 0.222 -0.139 0.199 0.030 0.078 0.215 0.039 0.038 0.094 0.096 0.188 0.127 0.083 0.073 0.054 0.095

K11 (1/M) 2.1 6.3 -1.0 -2.5 150 9.8 -10 5.1 120 2.0 0.9 1.7 17 26 13 1.0 7.1 7.3 0.7 5.5 8.0

Binding Isotherm Δ11 Peak Δ11 Trough (A/M) (A/M) 1,250 2,580 522 586 --3,500 2,540 --5,240 1,340 20,860 398 594 1,440 --19,030 18,680 178,000 12,180 3,210 2,650 65,910 42,770 76,130 43,500 107,600 32,550 -53,420 -25,380 -30,450 -132,400 -38,060 -22,720 60,900 43,500 27,680 12,690 -19,030

Sensors 2011, 11

4

4 dV/dlog(D) (cm /g)

A. N2 Sorption Isotherms 3

200

3

N2 Adsorbed (cm /g STP)

Figure S1. Structural characterization. Panel A, nitrogen sorption isotherms (DEB shifted by +240 and TM1 shifted by +250). Panel B, pore size distributions. Panel C, XRD spectra. (DEB–blue, TM1–red, Ph1–black, PhE1–green).

0.0

0.2 0.4 0.6 0.8 Relative Pressure (P/P 0 )

3 2 1 0

1.0

B. Pore Diameter Distributions

0

50

100 150 200 Pore Diameter ( )

250

300

Figure S2. BTEX binding capacity. Shown here is the amount of each BTEX component bound by the sorbents (200 mg). BTEX (209 mg—equal volumes benzene, toluene, ethylbenzene, and xylene) binding was evaluated in vapor phase.

Target Bound (mg)

30 DEB BP2 B100

0

30

60

BTEX Bound (mg)

90

20

10

0

zene

Ben

ene Tolu

ene Xyl

e

nzen ylbe h t E

Sensors 2011, 11

5

Figure S3. Dependence on concentration of the interaction between metalloporphyrins and targets in solution (benzene–red, toluene–green, hexane–blue).

 Absorbance

 Absorbance

C1TPP

0.08

0.04

FeC1TPP

0.08

0.04

0.00

0.00 0.00

0.04

0.08

0.12

0.16

0.00

0.04

0.08

0.16

0.12

0.16

0.12

0.16

0.08

0.04

0.04

0.00

0.00 0.00

0.04

0.08

0.12

0.16

0.00

0.04

0.08 [Target] (M)

[Target] (M)

 Absorbance

C4TPP

 Absorbance

0.12

CuC1TPP

MnC1TPP

 Absorbance

 Absorbance

0.12

0.08 [Target] (M)

[Target] (M)

0.08

0.04

0.12

FeC4TPP

0.08 0.04

0.00 0.00

0.00

0.04

0.08 [Target] (M)

0.12

0.16

0.00

0.04

0.08 [Target] (M)

Sensors 2011, 11

6

2E4

0E0

-2E4

Fluorescence Intensity

FeC 1TPP + Hexane

6E4

FeC 1TPP + Benzene

4E4 2E4 0E0 -2E4

-4E4 350

450

650 750 Wavelength (nm)

Component Value

150

RGB Values

100

50

0

0.0

0.5

1.0

1.5

Toluene (g/g sorbent)

2.0

-4E4 350

850

2.5

450

650 750 Wavelength (nm)

150

Component Value

Fluorescence Intensity

Figure S4. Interaction of FeC1TPP-embedded B100 with targets. Shown here are the changes in fluorescence characteristics and the dependence of RGB image color values on target concentration for the interaction of targets with FeC1TPP-embedded B100. Changes in fluorescence intensity versus concentration are based on peak/trough differences generated by peak fitting the excitation difference spectra.

850

RGB Values

100

50

0

0.0

0.5

1.0

1.5

Hexanes (g/g sorbent)

2.0

2.5

Sensors 2011, 11

7

6E4

1E5

Fluorescence Intensity

C1TPP + Benzene

4E4 2E4 0E0 -2E4 -4E4 -6E4 650 750 Wavelength (nm)

C1TPP + Toluene

0E0

-1E5

-2E5 350

450

650 750 Wavelength (nm)

0E0 -5E4 -1E5 350

850

Fluorescence Intensity

450

1E5

850

3E5

450

650 750 Wavelength (nm)

850

C1TPP

2E5 2E5 1E5

Benzene Hexane Toluene

5E4 0E0

0

2

4

6 8 Target (mg)

Component Value

150

10

12

14

RGB Values

100

50

0

0.0

0.5

1.0

1.5

2.0

2.5

Benzene (g/g sorbent) 150

Component Value

Fluorescence Intensity

-8E4 350

C1TPP + Hexane

5E4

RGB Values

100

50

150

Component Value

Fluorescence Intensity

Figure S5. Interaction of C1TPP-embedded B100 with targets. Shown here are the changes in fluorescence characteristics, simulated images generated based on average RGB values, and the dependence of RGB image color values on target concentration for the interaction of targets with C1TPP-embedded B100. Changes in fluorescence intensity versus concentration are based on peak/trough differences generated by peak fitting the excitation difference spectra.

100

50 RGB Values

0

0.0

0.5

1.0

1.5

Toluene (g/g sorbent)

2.0

2.5

0

0.0

0.5

1.0

1.5

Hexanes (g/g sorbent)

2.0

2.5

Sensors 2011, 11

8

MnC 1TPP + Hexane

1E4 0E0 -1E4 -2E4

MnC 1TPP + Toluene

0E0 -5E3 -1E4

-3E4 -4E4 350

450

650 750 Wavelength (nm)

-2E4 350

850

MnC 1TPP + Benzene

2E4 0E0 -2E4

450

650 750 Wavelength (nm)

4E4

2E4

0E0

350

450

650 750 Wavelength (nm)

850

MnC1TPP

6E4

Benzene Hexane

-4E4 850

0

2

4

6 8 Target (mg)

Component Value

150

10

12

14

RGB Values

100

50

0

0.0

0.5

1.0

1.5

2.0

2.5

Benzene (g/g sorbent) RGB Values

100

50

0

0.0

0.5

1.0

1.5

Toluene (g/g sorbent)

2.0

2.5

150

Component Value

150

Component Value

Fluorescence Intensity

5E3

Fluorescence Intensity

Fluorescence Intensity

2E4

Fluorescence Intensity

Figure S6. Interaction of MnC1TPP-embedded B100 with targets. Shown here are the changes in fluorescence characteristics, simulated images generated based on average RGB values, and the dependence of RGB image color values on target concentration for the interaction of targets with MnC1TPP-embedded B100. Changes in fluorescence intensity versus concentration are based on peak/trough differences generated by peak fitting the excitation difference spectra.

RGB Values

100

50

0

0.0

0.5

1.0

1.5

Hexanes (g/g sorbent)

2.0

2.5

Sensors 2011, 11

9

C4TPP + Toluene

6E4 4E4 2E4 0E0

Fluorescence Intensity

8E4

-2E4 -4E4 350

450

650 750 Wavelength (nm)

2E4 2E4 2E4 1E4

Toluene

8E3 4E3

850

C4TPP

0

4

8 Target (mg)

Component Value

150

12

RGB Values

100

50

0

0.0

0.5

1.0

1.5

2.0

2.5

Benzene (g/g sorbent) RGB Values

100

50

0

0.0

0.5

1.0

1.5

Toluene (g/g sorbent)

2.0

2.5

150

Component Value

150

Component Value

Fluorescence Intensity

Figure S7. Interaction of C4TPP-embedded B100 with targets. Shown here are the changes in fluorescence characteristics, simulated images generated based on average RGB values, and the dependence of RGB image color values on target concentration for the interaction of targets with C4TPP-embedded B100. Changes in fluorescence intensity versus concentration are based on peak/trough differences generated based on the emission difference spectra.

RGB Values

100

50

0

0.0

0.5

1.0

1.5

Hexanes (g/g sorbent)

2.0

2.5

Sensors 2011, 11

10

Fluorescence Intensity

Figure S8. Interaction of FeC4TPP-embedded B100 with targets. Shown here are the changes in fluorescence characteristics, simulated images generated based on average RGB values, and the dependence of RGB image color values on target concentration for the interaction of targets with FeC4TPP-embedded B100. Changes in fluorescence intensity versus concentration are based on peak/trough differences from emission difference spectra.

4E4 2E4 0E0

450

650 750 Wavelength (nm)

2E4

0E0

FeC 4TPP + Benzene

2E4 1E4 0E0 -1E4 350

450

650

750

350

850

Fluorescence Intensity

350

650 750 Wavelength (nm)

Benzene Hexane Toluene

4E4

2E4

0

2

4

6 8 Target (mg)

Component Value

150

RGB Values

100

50

0

0.0

0.5

1.0

1.5

Toluene (g/g sorbent)

2.0

2.5

10

12

RGB Values

100

50

0 150

850

FeC 4TPP

6E4

0E0

850

450

Wavelength (nm)

Component Value

Fluorescence Intensity

FeC 4TPP + Toluene

-2E4

-2E4

0.0

0.5

1.0

1.5

2.0

2.5

Benzene (g/g sorbent) RGB Values

150

Component Value

Fluorescence Intensity

FeC 4TPP + Hexane

100

50

0

0.0

0.5

1.0

1.5

Hexanes (g/g sorbent)

2.0

2.5

14

Sensors 2011, 11

11

Figure S9. Interaction of MnC4TPP-embedded B100 with targets. Shown here are simulated images generated based on average RGB values for FeC1TPP-embedded B100 following exposure to varying target concentrations and the dependence of RGB image color values on target concentration for the interaction of the targets with MnC4TPP-embedded B100. No changes in fluorescence were observed upon exposure of MnC4TPP-embedded B100 to the targets.

Component Value

150

RGB Values

100

50

0

0.0

0.5

1.0

1.5

2.0

2.5

Benzene (g/g sorbent) RGB Values

100

50

0

0.0

0.5

1.0

1.5

Toluene (g/g sorbent)

2.0

2.5

150

Component Value

Component Value

150

RGB Values

100

50

0

0.0

0.5

1.0

1.5

Hexanes (g/g sorbent)

2.0

2.5

Sensors 2011, 11

12

Figure S10. Reflectance spectra. Spectra for the seven different colors used for conversion from RGB to reflectance values. For the reason of solution convergence, the algorithm ignores scaling issues when converting from spectra to RGB leading to some reflectance values greater than 1. A penalty factor is added to the cost function whenever any value of the spectrum exceeds 1. 1.5

1.0

0.5

0.0 400

500

600

700

800

700

800

Wavelength (nm) 1.5

1.0

0.5

0.0 400

500

600

Wavelength (nm)

Magenta White Cyan Yellow Red Green Blue

Sensors 2011, 11

13

Figure S11. Simulated spectra for interaction of C1TPP-embedded B100 (5 mg) with the targets. Shown here are reflectance spectra generated based on RGB values (Figure S5) using the color spectra from Figure S10. 200

200

C1TPP + Benzene

150

150 100

100

0 mg 1.3 mg 2.6 mg 3.9 mg 5.3 mg 10.5 mg

50 0

C1TPP + Toluene

400

50

500 600 Wavelength (nm)

200

0 mg 1.3 mg 2.6 mg c1 5.2 mg 10.4 mg

700

800

0

400

500 600 Wavelength (nm)

700

800

C1TPP + Hexanes

150 100

0 mg 1.0 mg 2.0 mg c1 3.9 mg 7.9 mg

50 0

400

500 600 Wavelength (nm)

700

800

Figure S12. Simulated spectra for interaction of FeC1TPP-embedded B100 (5 mg) with the targets. Shown here are reflectance spectra generated based on RGB values (Figure S4) using the color spectra from Figure S10. 200

FeC1TPP + Hexanes

150

0 mg 1.3 mg 2.6 mg fec1 5.2 mg 10.4 mg

150

100

FeC1TPP + Toluene

100 0 mg 1.0 mg 2.0 mg fec1 3.9 mg 7.9 mg

50 0

200

400

500 600 Wavelength (nm)

50

700

800

0

400

500 600 Wavelength (nm)

700

800

Sensors 2011, 11

14

Figure S13. Simulated spectra for interaction of MnC1TPP-embedded B100 (5 mg) with the targets. Shown here are reflectance spectra generated based on RGB values (Figure S6) using the color spectra from Figure S10. 200 150 100

0 mg 1.3 mg 2.6 mg 3.9 mg 5.3 mg 10.5 mg

MnC 1TPP + Benzene

MnC 1TPP + Toluene

100 50

400

500 600 Wavelength (nm)

200

700

800

MnC 1TPP + Hexanes 0 mg 1.0 mg 2.0 mg 2.9 mg 3.9 mg 7.9 mg

150 100 50 0

0 mg 1.3 mg 2.6 mg mnc1 5.2 mg 10.4 mg

150

50 0

200

400

500 600 Wavelength (nm)

700

800

0

400

500 600 Wavelength (nm)

700

800

Sensors 2011, 11

15

Figure S14. Simulated spectra for interaction of C4TPP-embedded B100 (5 mg) with the targets. Shown here are reflectance spectra generated based on RGB values (Figure S7) using the color spectra from Figure S10. 200

0 mg 1.3 mg 2.6 mg 3.9 mg 5.3 mg 10.5 mg

150

200

C4TPP + Benzene

150

100

100

50

50

0

400

200

500 600 Wavelength (nm)

700

800

C4TPP + Hexanes

150 100

0 mg 1.0 mg 2.0 mg c4 3.9 mg 7.9 mg

50 0

400

0 mg 1.3 mg 2.6 mg c4 5.2 mg 10.4 mg

500 600 Wavelength (nm)

700

800

0

400

C4TPP + Toluene

500 600 Wavelength (nm)

700

800

Sensors 2011, 11

16

Figure S15. Simulated spectra for interaction of FeC4TPP-embedded B100 (5 mg) with the targets. Shown here are reflectance spectra generated based on RGB values (Figure S8) using the color spectra from Figure S10. 200 150 100

FeC4TPP + Benzene

0 mg 1.3 mg 2.6 mg 3.9 mg 5.3 mg 10.5 mg

FeC4TPP + Toluene

100 50

400

500

600

700

800

Wavelength (nm)

200 0 mg 1.0 mg 2.0 mg fec4 3.9 mg 7.9 mg

150

FeC4TPP + Hexanes

100 50 0

0 mg 1.3 mg 2.6 mg fec4 5.2 mg 10.4 mg

150

50 0

200

400

500 600 Wavelength (nm)

700

800

0

400

500 600 Wavelength (nm)

700

800

Sensors 2011, 11

17

Figure S16. Simulated spectra for interaction of MnC4TPP-embedded B100 (5 mg) with the targets. Shown here are reflectance spectra generated based on RGB values (Figure S9) using the color spectra from Figure S10. 200 150 100

0 mg 1.3 mg 2.6 mg 3.9 mg 5.3 mg 10.5 mg

MnC 4TPP + Benzene

MnC 4TPP + Toluene

100 50

400

500 600 Wavelength (nm)

200

700

800

MnC 4TPP + Hexanes 0 mg 1.0 mg 2.0 mg 2.9 mg 3.9 mg 7.9 mg

150 100 50 0

0 mg 1.3 mg 2.6 mg mnc4 5.2 mg 10.4 mg

150

50 0

200

400

500 600 Wavelength (nm)

700

800

0

400

500 600 Wavelength (nm)

700

800