Proximity Functions. Application to Fuzzy Thresholding - EUSFLAT

0 downloads 0 Views 295KB Size Report
H. Bustince V. Mohedano E. Barrenechea M. Pagola. Departamento de Automática y Computación. Universidad Pública de Navarra. Campus de Arrosadía, s/n.
EUSFLAT - LFA 2005

                                                



                                                                                                       !     

  

               ,      (-% .+              / %        0    %                1 (2+

                        

    !    "      # $ !              $ !                          %        !  "              

             #         &                           %                '   ()*+           %       %         

                      !  ,

1219

   

       → [0, 1]    

  I :

      I1   x ≤ z   I(x, y) ≥ I(z, y)  y ∈ [0, 1] I2   y ≤ t   I(x, y) ≤ I(x, t)  x ∈ [0, 1] I3  I(0, x) = 1  x ∈ [0, 1] I4  I(x, 1) = 1  x ∈ [0, 1] I5  I(1, 0) = 0  [0, 1]2

1           I %       %   # I6 I(1, x) = x  I7 I(x, I(y, z)) = I(y, I(x, z))  I8 x ≤ y     I(x, y) = 1  I9 I(x, 0) = n(x)      I10 I(x, y) ≥ y  I11 I(x, x) = 1  I12 I(x, y) = I(n(y), n(x))       n I13 I   

EUSFLAT - LFA 2005

                   (*+

   

'     ,     ()% 3+                   "        ()3+

      %   

              n

    M : [0, 1] → [0, 1]  n ≥ 2                A1. M (x1 , · · · , xn ) = 0     xi = 0  i ∈ {1, · · · , n} A2. M (x1 , · · · , xn ) = 1     xi = 1  i ∈ {1, · · · , n} A3.    (x1 , · · · , xn )  (y1 , · · · , yn )    xi, yi ∈ [0, 1]  i ∈ {1, · · · , n}  xi ≤ yi  i ∈ {1, · · · , n}   M (x1 , · · · , xn ) ≤ M (y1 , · · · , yn ); M           

        A4. M               



M (x1 , · · · , xn ) = M (xp(1) , · · · , xp(n) )     p  {1, · · · , n}

       

 )22* / 4 ()5+           ())+       A, B ∈ F(X)     #

       +

SM : F(X) × F(X) → R     F(X)  SM  

       

 

 

(SM 1) SM (A, B) = SM (B, A)  A, B ∈ F(X) (SM 2) SM (A, Ac ) = 0      A (SM 3) SM (C, C) = MaxA,B,∈F (X) SM (A, B)   C ∈ F(X) (SM 4)   A, B, C, D ∈ F(X) 

A ≤ B ≤ C ≤ D

  SM (A, D) ≤ SM (B, C)

  Ac       A    Ac = {(x, µAc (x) = c(µA (x)))|x ∈ X}         (SM 4)  6   #   A, B, C ∈ F(X)%  A ≤ B ≤ C %  SM (A, B) ≥ SM (A, C)  SM (B, C) ≥ SM (A, C) !   %             / 4 ()5+     6     &  7  (8+%                          %      %               / 49   

   

  χ : [0, 1]2 → [0, 1]            

      1) χ(x, y) = χ(y, x)  x, y ∈ [0, 1] 2) χ(x, y) = 1     x = y  3) χ(x, y) = 0     x = 1  y = 0 x = 0  y = 1 4) χ(x, y) = χ(c(x), c(y))  x, y ∈ [0, 1] c         5)   x, y, z ∈ [0, 1]  x ≤ y ≤ z    χ(x, y) ≥ χ(x, z)  χ(y, z) ≥ χ(x, z)         8$  6  #   x, y, z, t ∈ [0, 1]%  x ≤ y ≤ z ≤ t,  χ(y, z) ≥ χ(x, t)

      ϕ1, ϕ2            

χ(x, y) = ϕ−1 1 (1 − |ϕ2 (x) − ϕ2 (y)|)

 c(x) = ϕ2 (1 − ϕ2 (x))       

            

 

 x ∈ [0, 1]     ϕ1 (x) = ϕ2 (x)  x ∈ [0, 1] χ(1, x) = x

1220

EUSFLAT - LFA 2005

      χ        ϕ         F1 = ϕ ◦ χ      

  

! "#

                   I : [0, 1]2 → [0, 1]%         I 1                  %       

$  "       χ : [0, 1]2 →

  χ(1, x) = x  x ∈ [0, 1]              I : [0, 1]2 → [0, 1]  I   I7  I13             ϕ      

[0, 1]

⎧ χ(x, y) = ϕ−1 {∧(1, ∧(1 − ϕ(x) + ϕ(y), ⎪ ⎪ ⎪ ⎪ 1 − ϕ(y) + ϕ(x)))} = ⎨ ϕ−1 (1 − |ϕ(x) − ϕ(y)|) ⎪ ⎪  ⎪ ⎪ ⎩ c(x) = ϕ−1 (1 − ϕ(x)).

n

i=1

%"  & ϕ(x) = x4 %    

 1 χ(x, y) = ∧ 1, ∧(1 − x4 + y 4 , 1 − y 4 + x4 ) 4 % 1  c(x) = (1 − x4 ) 4

     !  M : [0, 1]n → [0, 1]  

   

! 

         i) SM (A, B) = SM (B, A)  A, B ∈ F(X) ii) SM (A, Ac ) = 0     A     iii) SM (A, B) = 1     A = B  iv)  A ≤ B ≤ C    SM (A, B) ≥ SM (A, C)  SM (C, B) ≥ SM (C, A) v) SM (Ac , Bc ) = SM (A, B)

%   

1 1 1 4 χ(x, y) = ∧ 1, ∧(1 − x + y 4 , 1 − y 4 + x 4 ) % 1  c(x) = (1 − x 4 )4 &  )       χ   1 4

  

SM (A, B) = M χ(µA (xi ), µB (xi ))

χ(x, y) = ∧ 1, ∧(1−x+y, 1−y +x) %  c(x) = 1 − x

1 4

    SM : F(X) × F(X) → [0, 1],

%"  & ϕ(x) = x   %

%"  & ϕ(x) = x

&  )#   

M (x1 , · · · , xn ) = 0     x1 = · · · = xn = 0 M (x1 , · · · , xn ) = 1     x1 = · · · = xn = 1 M     χ : [0, 1]2 → [0, 1]      



1221



      

                (2% ):+   %                    "  %                          ;           "     1                                "

EUSFLAT - LFA 2005

                           "%        %         %     #       ,          " !            t             ,  

Suggest Documents