H. Bustince V. Mohedano E. Barrenechea M. Pagola. Departamento de Automática y Computación. Universidad Pública de Navarra. Campus de ArrosadÃa, s/n.
EUSFLAT - LFA 2005
!
, (-% .+ / % 0 % 1 (2+
! " # $ ! $ ! % ! "
# & % ' ()*+ % %
! ,
1219
→ [0, 1]
I :
I1 x ≤ z I(x, y) ≥ I(z, y) y ∈ [0, 1] I2 y ≤ t I(x, y) ≤ I(x, t) x ∈ [0, 1] I3 I(0, x) = 1 x ∈ [0, 1] I4 I(x, 1) = 1 x ∈ [0, 1] I5 I(1, 0) = 0 [0, 1]2
1 I % % # I6 I(1, x) = x I7 I(x, I(y, z)) = I(y, I(x, z)) I8 x ≤ y I(x, y) = 1 I9 I(x, 0) = n(x) I10 I(x, y) ≥ y I11 I(x, x) = 1 I12 I(x, y) = I(n(y), n(x)) n I13 I
EUSFLAT - LFA 2005
(*+
' , ()% 3+ " ()3+
%
n
M : [0, 1] → [0, 1] n ≥ 2 A1. M (x1 , · · · , xn ) = 0 xi = 0 i ∈ {1, · · · , n} A2. M (x1 , · · · , xn ) = 1 xi = 1 i ∈ {1, · · · , n} A3. (x1 , · · · , xn ) (y1 , · · · , yn ) xi, yi ∈ [0, 1] i ∈ {1, · · · , n} xi ≤ yi i ∈ {1, · · · , n} M (x1 , · · · , xn ) ≤ M (y1 , · · · , yn ); M
A4. M
M (x1 , · · · , xn ) = M (xp(1) , · · · , xp(n) ) p {1, · · · , n}
)22* / 4 ()5+ ())+ A, B ∈ F(X) #
+
SM : F(X) × F(X) → R F(X) SM
(SM 1) SM (A, B) = SM (B, A) A, B ∈ F(X) (SM 2) SM (A, Ac ) = 0 A (SM 3) SM (C, C) = MaxA,B,∈F (X) SM (A, B) C ∈ F(X) (SM 4) A, B, C, D ∈ F(X)
A ≤ B ≤ C ≤ D
SM (A, D) ≤ SM (B, C)
Ac A Ac = {(x, µAc (x) = c(µA (x)))|x ∈ X} (SM 4) 6 # A, B, C ∈ F(X)% A ≤ B ≤ C % SM (A, B) ≥ SM (A, C) SM (B, C) ≥ SM (A, C) ! % / 4 ()5+ 6 & 7 (8+% % % / 49
χ : [0, 1]2 → [0, 1]
1) χ(x, y) = χ(y, x) x, y ∈ [0, 1] 2) χ(x, y) = 1 x = y 3) χ(x, y) = 0 x = 1 y = 0 x = 0 y = 1 4) χ(x, y) = χ(c(x), c(y)) x, y ∈ [0, 1] c 5) x, y, z ∈ [0, 1] x ≤ y ≤ z χ(x, y) ≥ χ(x, z) χ(y, z) ≥ χ(x, z) 8$ 6 # x, y, z, t ∈ [0, 1]% x ≤ y ≤ z ≤ t, χ(y, z) ≥ χ(x, t)
ϕ1, ϕ2
χ(x, y) = ϕ−1 1 (1 − |ϕ2 (x) − ϕ2 (y)|)
c(x) = ϕ2 (1 − ϕ2 (x))
x ∈ [0, 1] ϕ1 (x) = ϕ2 (x) x ∈ [0, 1] χ(1, x) = x
1220
EUSFLAT - LFA 2005
χ ϕ F1 = ϕ ◦ χ
! "#
I : [0, 1]2 → [0, 1]% I 1 %
$ " χ : [0, 1]2 →
χ(1, x) = x x ∈ [0, 1] I : [0, 1]2 → [0, 1] I I7 I13 ϕ
[0, 1]
⎧ χ(x, y) = ϕ−1 {∧(1, ∧(1 − ϕ(x) + ϕ(y), ⎪ ⎪ ⎪ ⎪ 1 − ϕ(y) + ϕ(x)))} = ⎨ ϕ−1 (1 − |ϕ(x) − ϕ(y)|) ⎪ ⎪ ⎪ ⎪ ⎩ c(x) = ϕ−1 (1 − ϕ(x)).
n
i=1
%" & ϕ(x) = x4 %
1 χ(x, y) = ∧ 1, ∧(1 − x4 + y 4 , 1 − y 4 + x4 ) 4 % 1 c(x) = (1 − x4 ) 4
! M : [0, 1]n → [0, 1]
!
i) SM (A, B) = SM (B, A) A, B ∈ F(X) ii) SM (A, Ac ) = 0 A iii) SM (A, B) = 1 A = B iv) A ≤ B ≤ C SM (A, B) ≥ SM (A, C) SM (C, B) ≥ SM (C, A) v) SM (Ac , Bc ) = SM (A, B)
%
1 1 1 4 χ(x, y) = ∧ 1, ∧(1 − x + y 4 , 1 − y 4 + x 4 ) % 1 c(x) = (1 − x 4 )4 & ) χ 1 4
SM (A, B) = M χ(µA (xi ), µB (xi ))
χ(x, y) = ∧ 1, ∧(1−x+y, 1−y +x) % c(x) = 1 − x
1 4
SM : F(X) × F(X) → [0, 1],
%" & ϕ(x) = x %
%" & ϕ(x) = x
& )#
M (x1 , · · · , xn ) = 0 x1 = · · · = xn = 0 M (x1 , · · · , xn ) = 1 x1 = · · · = xn = 1 M χ : [0, 1]2 → [0, 1]
1221
(2% ):+ % " % ; " 1 "
EUSFLAT - LFA 2005
"% % % # , " ! t ,