Routes for Efficient Computational Homogenization of

0 downloads 0 Views 182KB Size Report
First online: 07 October 2010 ... Fiber-reinforced Epoxy Composite Cyclic Loading. Computational Homogenization Macro-scale Stress. Tangent Stiffness Tensor Dual Solution ... Chinesta F, Keunings R (2006) A new family of solvers for some classes of multidimensional partial differential ... Commun Math Sci 8(3):671–695.
Original Paper Archives of Computational Methods in Engineering December 2010, Volume 17, Issue 4, pp 373-391 First online: 07 October 2010

Routes for Efficient Computational Homogenization of Nonlinear Materials Using the Proper Generalized Decompositions H. Lamari , A. Ammar , P. Cartraud , G. Legrain , F. Chinesta , F. Jacquemin

Abstract Computational homogenization is nowadays one of the most active research topics in computational mechanics. Different strategies have been proposed, the main challenge being the computing cost induced by complex microstructures exhibiting nonlinear behaviors. Two quite tricky scenarios lie in (i) the necessity of applying the homogenization procedure for many microstructures (e.g. material microstructure evolving at the macroscopic level or stochastic microstructure); the second situation concerns the homogenization of nonlinear behaviors implying the necessity of solving microscopic problems for each macroscopic state (history independent nonlinear models) or for each macroscopic history (history dependant nonlinear models). In this paper we present some preliminary results concerning the application of Proper Generalized Decompositions—PGD—for addressing the efficient solution of homogenization problems. This numerical technique could allow to compute the homogenized properties for any microstructure or for any macroscopic loading history by solving a single but highly multidimensional model. The PGD allows circumventing the so called curse of dimensionality that mesh based representations suffer. Even if this work only describes the first steps in a very ambitious objective, many original ideas are launched that could be at the origin of impressive progresses.

Concepts found in this article

Related articles containing similar concepts

What is this?

Multiple spatio-temporal scale modeling of

Computational Homogenization

composites subjected to cyclic loading

Proper Generalize

Crouch, Robert · Oskay, Caglar · Clay, Stephen in Computational Mechanics (2012)

Decomposition Multidimensional Model Computational Mechanic

Computational Homogenization Fiber-reinforced Epoxy Composite Cyclic Loading

RVE computations with error control and

Homogenization Problem

Fiber-reinforced Epoxy of Epoxy Composite adaptivity: the power duality

Main Challenge

Larsson, Fredrik · Runesson, Kenneth in Computational Mechanics (2006)

Preliminary Result

Computational Homogenization Macro-scale Stress Tangent Stiffness Tensor Dual Solution

Explore content visually Open Relationship Map

A multi-scale approach to bridge microscale Adaptiveand Computation damage macroscale failure: a nested

computational homogenization-localization framework Coenen, E. C. W. · Kouznetsova, G. V. · Bosco, E., et al. in International Journal of Fracture (2012) Computational Homogenization Strain Localization Band Microscale Damage

Two-scale modeling of granular materials: a DEMComputational FEM approachHomogenization Scheme Cohesive Crack Nitka, Michał · Combe, Gaël · Dascalu, Cristian, et al. in Granular Matter (2011) Computational Homogenization Biaxial Test Granular Material Discrete Element Rigid Grain

On calibration and validation of eigendeformationbased multiscale models for failure analysis of heterogeneous systems Oskay, Caglar · Fish, Jacob in Computational Mechanics (2007) Computational Homogenization Multiscale Model Order Homogenization Model Calibration Map » View more suggestions in Relationship Validation Framework

Page

of 33

References 1. Alzina A, Toussaint E, Beakou A, Skoczen B (2006) Multiscale modelling of thermal conductivity in composite materials for cryogenic structures. Compos Struct 74(2):175–185 CrossRef (http://dx.doi.org/10.1016/j.compstruct.2005.04.002)

2. Ammar A, Mokdad B, Chinesta F, Keunings R (2006) A new family of solvers for some classes of multidimensional partial differential equations encountered in kinetic theory modeling of complex fluids. J Non-Newton Fluid Mech 139:153–176 MATH (http://www.emis.de/MATH-item?$1195.76337) CrossRef (http://dx.doi.org/10.1016/j.jnnfm.2006.07.007) 3. Ammar A, Mokdad B, Chinesta F, Keunings R (2007) A new family of solvers for some classes of multidimensional partial differential equations encountered in kinetic theory modeling of complex fluids. Part II: transient simulation using space-time separated representations. J Non-Newton Fluid Mech 144:98–121 MATH (http://www.emis.de/MATH-item?$1196.76047) CrossRef (http://dx.doi.org/10.1016/j.jnnfm.2007.03.009) 4. Ammar A, Normandin M, Daim F, Gonzalez D, Cueto E, Chinesta F (2010) Non-incremental strategies based on separated representations: Applications in computational rheology. Commun Math Sci 8(3):671–695 5. Arbenz P, van Lenthe GH, Mennel U, Műller R, Sala M (2008) A scalable multi-level preconditioner for matrix-free µ-finite element analysis of human bone structures. Int J Numer Methods Eng 73(7):927–947 MATH (http://www.emis.de/MATH-item?$05544305) CrossRef (http://dx.doi.org/10.1002/nme.2101) 6. Bőhm HJ (2009) A short introduction to basic aspects of continuum micromechanics. ISLB Report 208, TU Wien, Vienna, http://​www.​ ilsb.​tuwien.​ac.​at/​links/​downloads/​ilsbrep206.​pdf (http://www.ilsb.tuwien.ac.at/links/downloads/ilsbrep206.pdf) 7. Chinesta F, Chaidron G (2001) On the steady solution of linear advection problems in steady recirculating flows. J Non-Newton Fluid Mech 98:65–80 MATH (http://www.emis.de/MATH-item?$0973.76004) CrossRef (http://dx.doi.org/10.1016/S0377-0257(00)00224-X) 8. Chaidron G, Chinesta F (2002) On the steady solution of non-linear advection problems in steady recirculating flows. Comput Methods Appl Mech Eng 191:1159–1172 MATH (http://www.emis.de/MATH-item?$0997.76008) CrossRef (http://dx.doi.org/10.1016/S0045-7825(01)00319-X) 9. Chinesta F, Torres R, Ramón A, Rodrigo MC, Rodrigo M (2002) Homogenized thermal model in foods containing particulates. Int J Thermal Sci 41:1141–1150 CrossRef (http://dx.doi.org/10.1016/S1290-0729(02)01400-X) 10. Chinesta F, Chaidron G, Poitou A (2003) On the solution of the Fokker-Planck equations in steady recirculating flows involving short fiber suspensions. J Non-Newton Fluid Mech 113(2–3):97–125 MATH (http://www.emis.de/MATH-item?$1065.76189) CrossRef (http://dx.doi.org/10.1016/S0377-0257(03)00100-9) 11. Chinesta F, Ammar A, Lemarchand F, Beauchene P, Boust F (2008) Alleviating mesh constraints: model reduction, parallel time integration and high resolution homogenization. Comput Methods Appl Mech Eng 197(5):400–413 MATH (http://www.emis.de/MATH-item?$1169.74530) CrossRef (http://dx.doi.org/10.1016/j.cma.2007.07.022) MathSciNet (http://www.ams.org/mathscinet-getitem?mr=2362381) 12. Chinesta F, Ammar A, Joyot P (2008) The nanometric and micrometric scales of the structure and mechanics of materials revisited: an introduction to the challenges of fully deterministic numerical descriptions. Int J Multiscale Comput Eng 6(3):191–213 CrossRef (http://dx.doi.org/10.1615/IntJMultCompEng.v6.i3.20) 13. Chinesta F, Ammar A, Cueto E (2010) Recent advances in the use of the Proper Generalized Decomposition for solving multidimensional models. Arch Comput Methods Eng. doi:10.​1007/​S11831-010-9049-Y (http://dx.doi.org/10.1007/S11831-010-9049-Y) 14. Chinesta F, Ammar A, Cueto E (2010) Proper Generalized Decomposition of multiscale models. Int J Numer Methods Eng 83(8– 9):1114–1132 MATH (http://www.emis.de/MATH-item?$1197.76093) CrossRef (http://dx.doi.org/10.1002/nme.2794) MathSciNet (http://www.ams.org/mathscinet-getitem?mr=2640987) 15. de Borst R (2008) Challenges in computational materials science: multiple scales, multi-physics and evolving discontinuities. Comput Mater Sci 43(1):1–15 CrossRef (http://dx.doi.org/10.1016/j.commatsci.2007.07.022) 16. Feyel F (1999) Multiscale FE2 elastoviscoplastic analysis of composite structures. Comput Mater Sci 16(1–4):344–354 CrossRef (http://dx.doi.org/10.1016/S0927-0256(99)00077-4) 17. Fish J, Yuan Z (2005) Multiscale enrichment based on partition of unity. Int J Numer Methods Eng 62(10):1341–1359 MATH (http://www.emis.de/MATH-item?$1078.74637) CrossRef (http://dx.doi.org/10.1002/nme.1230) 18. Fish J (2006) Bridging the scales in nano engineering and science. J Nanopart Res 8(5):577–594 CrossRef (http://dx.doi.org/10.1007/s11051-006-9090-9) 19. Geers MGD, Kouznetsova VG, Brekelmans WAM (2009) Multi-scale computational homogenization: trends and challenges. J Comput Appl Math. doi:10.​1016/​j.​cam.​2009.​08.​077 (http://dx.doi.org/10.1016/j.cam.2009.08.077) 20. Hughes TJR (1995) Multiscale phenomena: Green’s functions, the Dirichlet-to-Neumann formulation, subgrid scale models, bubbles and the origins of stabilized methods. Comput Methods Appl Mech Eng 127(1–4):387–401 MATH (http://www.emis.de/MATH-item?$0866.76044) CrossRef (http://dx.doi.org/10.1016/0045-7825(95)00844-9) 21. Jiang M, Jasiuk I, Ostoja-Starzewski M (2002) Apparent thermal conductivity of periodic two-dimensional composites. Comput Mater Sci 25(3):329–338 CrossRef (http://dx.doi.org/10.1016/S0927-0256(02)00234-3)

22. Kanit T, Forest S, Galliet I, Mounoury V, Jeulin D (2003) Determination of the size of the representative volume element for random composites: statistical and numerical approach. Int J Solids Struct 40(13–14):3647–3679 MATH (http://www.emis.de/MATH-item?$1038.74605) CrossRef (http://dx.doi.org/10.1016/S0020-7683(03)00143-4) 23. Kanit T, N’Guyen F, Forest S, Jeulin D, Reed M, Singleton S (2006) Apparent and effective physical properties of heterogeneous materials: representativity of samples of two materials from food industry. Comput Methods Appl Mech Eng 195(33–36):3960–3982 MATH (http://www.emis.de/MATH-item?$05194208) CrossRef (http://dx.doi.org/10.1016/j.cma.2005.07.022) 24. Kanouté P, Boso DP, Chaboche JL, Schrefler BA (2009) Multiscale methods for composites: a review. Arch Comput Methods Eng 16(1):31–75 MATH (http://www.emis.de/MATH-item?$1170.74304) CrossRef (http://dx.doi.org/10.1007/s11831-008-9028-8) 25. Kolda TG, Bader BW (2007) Tensor decompositions and applications. Technical Report SAND2007- 6702, SANDIA National Laboratories 26. Ladeveze P (1999) Nonlinear computational structural mechanics. Springer, New York MATH (http://www.emis.de/MATH-item?$0912.73003) 27. Ladeveze P, Passieux JCh, Neron D (2009) The LATIN multiscale computational method and the proper orthogonal decomposition. Comput Methods Appl Mech Eng. doi:10.​1016/​j.​cma.​2009.​06.​023 (http://dx.doi.org/10.1016/j.cma.2009.06.023) 28. Laschet G (2002) Homogenization of the thermal properties of transpiration cooled multi-layer plates. Comput Methods Appl Mech Eng 191(41–42):4535–4554 MATH (http://www.emis.de/MATH-item?$1034.74043) CrossRef (http://dx.doi.org/10.1016/S0045-7825(02)00319-5) 29. McVeigh C, Liu WK (2008) Linking microstructure and properties through a predictive multiresolution continuum. Comput Methods Appl Mech Eng 197(41–42):3268–3290 MATH (http://www.emis.de/MATH-item?$1159.74311) CrossRef (http://dx.doi.org/10.1016/j.cma.2007.12.020) MathSciNet (http://www.ams.org/mathscinet-getitem?mr=2449172) 30. Michel JC, Suquet P (2004) Computational analysis of nonlinear composite structures using the nonuniform transformation field analysis. Comput Methods Appl Mech Eng 193(48–51):5477–5502 MATH (http://www.emis.de/MATH-item?$1112.74471) CrossRef (http://dx.doi.org/10.1016/j.cma.2003.12.071) MathSciNet (http://www.ams.org/mathscinet-getitem?mr=2103055) 31. Mobasher-Amini A, Dureisseix D, Cartraud P (2009) Multi-scale domain decomposition method for large-scale structural analysis with a zooming technique: application to plate assembly. Int J Numer Methods Eng 79(4):417–443 CrossRef (http://dx.doi.org/10.1002/nme.2565) 32. Mokdad B, Pruliere E, Ammar A, Chinesta F (2007) On the simulation of kinetic theory models of complex fluids using the FokkerPlanck approach. Appl Rheol 17(2):1–14 33. Nouy A, Ladeveze P (2004) Multiscale computational strategy with time and space homogenization: a radial-type approximation technique for solving microproblems. Int J Multiscale Comput Eng 170(2):557–574 CrossRef (http://dx.doi.org/10.1615/IntJMultCompEng.v2.i4.40) 34. Nouy A (2009) Recent developments in spectral stochastic methods for the solution of stochastic partial differential equations. Arch Comput Methods Eng 16(3):251–285 CrossRef (http://dx.doi.org/10.1007/s11831-009-9034-5) MathSciNet (http://www.ams.org/mathscinet-getitem?mr=2533492) 35. Ostoja-Starzewski M (2006) Material spatial randomness: from statistical to representative volume element. Probab Eng Mech 21(2):112–132 CrossRef (http://dx.doi.org/10.1016/j.probengmech.2005.07.007) 36. Őzdemir I, Brekelmans WAM, Geers MGD (2008) Computational homogenization for heat conduction in heterogeneous solids. Int J Numer Methods Eng 73(2):185–204 CrossRef (http://dx.doi.org/10.1002/nme.2068) 37. Sab K (1992) On the homogenization and the simulation of random materials. Eur J Mech A Solids 11(5):585–607 MATH (http://www.emis.de/MATH-item?$0766.73008) MathSciNet (http://www.ams.org/mathscinet-getitem?mr=1184222) 38. Strouboulis T, Zhang L, Babuška I (2004) p-version of the generalized FEM using mesh-based handbooks with applications to multiscale problems. Int J Numer Methods Eng 60(10):1639–1672 MATH (http://www.emis.de/MATH-item?$1059.65106) CrossRef (http://dx.doi.org/10.1002/nme.1017) 39. Telega JJ, Tokarzewski S, Galka A (2000) Effective conductivity of nonlinear two-phase media: homogenization and two-point Pade approximants. Acta Appl Math 61(1):295–315 CrossRef (http://dx.doi.org/10.1023/A%3A1006487103815) MathSciNet (http://www.ams.org/mathscinet-getitem?mr=1783295) 40. Temizer I, Wriggers P (2007) An adaptive method for homogenization in orthotropic nonlinear elasticity. Comput Methods Appl Mech Eng 196(35–36):3409–3423 MATH (http://www.emis.de/MATH-item?$1173.74378) CrossRef (http://dx.doi.org/10.1016/j.cma.2007.03.017) MathSciNet (http://www.ams.org/mathscinet-getitem?mr=2335274) 41.

Temizer I, Zohdi T (2007) A numerical method for homogenization in non-linear elasticity. Comput Mech 40(2):281–298

MATH (http://www.emis.de/MATH-item?$1163.74041) CrossRef (http://dx.doi.org/10.1007/s00466-006-0097-y) 42. Tokarzewski S, Andrianov I (2001) Effective coefficients for real non-linear and fictitious linear temperature-dependent periodic composites. Int J Non-Linear Mech 36(1):187–195 MATH (http://www.emis.de/MATH-item?$05137911) CrossRef (http://dx.doi.org/10.1016/S0020-7462(00)00012-3) MathSciNet (http://www.ams.org/mathscinet-getitem?mr=1783661) 43. Yvonnet J, Gonzalez D, He Q-C (2009) Numerically explicit potentials for the homogenization of nonlinear elastic heterogeneous materials. Comput Methods Appl Mech Eng 198(33–36):2723–2737 CrossRef (http://dx.doi.org/10.1016/j.cma.2009.03.017) 44. Zohdi T, Wriggers P (2005) An introduction to computational micromechanics. Springer, Berlin CrossRef (http://dx.doi.org/10.1007/978-3-540-32360-0)

About this Article Title Routes for Efficient Computational Homogenization of Nonlinear Materials Using the Proper Generalized Decompositions Journal Archives of Computational Methods in Engineering Volume 17, Issue 4 , pp 373-391 Cover Date 2010-12 DOI 10.1007/s11831-010-9051-4 Print ISSN 1134-3060 Online ISSN 1886-1784 Publisher Springer Netherlands Additional Links Register for Journal Updates Editorial Board About This Journal Manuscript Submission Topics Appl.Mathematics/Computational Methods of Engineering Industry Sectors Aerospace Automotive Engineering Authors H. Lamari (1) A. Ammar (2) P. Cartraud (1)

G. Legrain (1) F. Chinesta (3) F. Jacquemin (4) Author Affiliations 1. GeM, UMR CNRS-Centrale de Nantes-Université de Nantes, 1 rue de la Noe, BP 92101, 44321, Nantes cedex 3, France 2. Arts et Métiers ParisTech, 2 boulevard du Ronceray, BP 93525, 49035, Angers cedex 01, France 3. EADS Corporate Foundation International Chair, GeM, UMR CNRS-Centrale de Nantes-Université de Nantes, 1 rue de la Noe, BP 92101, 44321, Nantes cedex 3, France 4. GeM, UMR CNRS-Centrale de Nantes-Université de Nantes, 58, rue Michel Ange, BP 420, 44606, Saint Nazaire cedex, France

Suggest Documents