Scan Fab: The Application of Reality Computing Technology in Design

4 downloads 110253 Views 8MB Size Report
In order to illustrate a demonstrated application of Real-‐ ity Computing in design, I will use the Scan Fab Lamp project, completed by my 2nd ... application to beginning design. ..... available for OS and Android Smartphone operating systems.).
Scan  Fab:     The  Application  of     Reality  Computing  Technology  in  Design     Gabriel  Kaprielian,  California  Polytechnic  State  University,  San  Luis  Obispo  

Introduction   1:1  scale  evokes  a  sense  of  materiality  and  structure,   rooted  firmly  in  the  physical  world.  Yet,  the  design  pro-­‐ cess  to  realize  full-­‐scale  work  is  increasingly  completed   in  a  digital  workspace,  apart  from  the  laws  of  physics,   constraints  of  scale,  or  materiality.  In  the  architecture   studio,  students  are  spending  a  disproportionate   amount  of  time  developing  their  designs  on  the  com-­‐ puter.  Physical  models  are  more  often  being  fabricated   as  the  end  result  of  a  digital  design  process.  In  this  case,   the  hand  is  tasked  with  solely  assembling  pieces  togeth-­‐ er,  rather  than  developing  a  spatial  awareness  gained  in   the  mind  and  body  relationship  of  designing  though   physical  modeling.  Moreover,  students  are  designing   increasingly  complicated  forms  through  digital  model-­‐ ing,  but  are  restricted  within  the  form  generative  tools   of  the  software  rather  than  exploring  structure,  materi-­‐ al,  and  spatial  awareness.       There  has  been  a  fine  dance  in  contemporary  architec-­‐ tural  education  balancing  curriculum  between  digital   and  analog  approaches  to  design;  often  siding  more   heavily  on  the  analog  or  traditional  approach  in  begin-­‐ ning  design  education.  Many  programs  have  integrated   a  combination  of  digital  and  analog  design  methodolo-­‐ st nd gies  into  1  and  2  year  studios.  However,  these  two   modes  of  design  are  often  still  seen  as  separate,  repre-­‐ senting  a  duality  in  the  process  of  architectural  design.   This  points  to  a  chasm  that  divides  digital  and  physical   design  workflows  in  the  architecture  studio.  Digital  fab-­‐ rication,  both  additive  and  subtractive  production  pro-­‐ cesses,  has  been  the  common  answer  to  this  divide.  Yet   until  recently,  it  has  served  as  a  one-­‐way  bridge,  leading   only  from  digital  to  physical  production.      

With  recent  advancements  in  Reality  Computing  tech-­‐ nology,  the  boundaries  between  the  physical  and  the   digital  have  blurred,  creating  new  potential  workflow   methodologies.  Antoine  Picon  spoke  of  this  hybridiza-­‐ tion  between  ordinary  and  digital  space  being  made   possible  through  the  development  of  sophisticated  in-­‐ 1 terfaces.  The  application  of  Reality  Computing  technol-­‐ ogy  in  design  is  just  such  an  interface  that  serves  to   “capture  information  about  the  physical  world,  manipu-­‐ late  and  analyze  the  information  digitally,  and  actualize   the  result  back  into  the  physical  world,”  creating  a  work-­‐ flow  that  serves  to  bridge  between  the  real  and  the   2 virtual.        

                                         Fig.  1  Scan  Fab  Lamp  by  Adrian  Tsou    

Gabriel  Kaprielian  

Fig.  2  Scan  Fab  Lamp  Process  Boards:  3D  scan  of  clay  model  with  123D  Catch;  digital  m esh  manipulation  with  M eshmixer;  cut  file  preparation  with   123D  M ake.    

In  order  to  illustrate  a  demonstrated  application  of  Real-­‐ ity  Computing  in  design,  I  will  use  the  Scan  Fab  Lamp   nd project,  completed  by  my  2  year  architecture  students   at  the  California  Polytechnic  State  University  in  San  Luis   Obispo.  In  this  project,  each  student  hand  modeled  a   unique  form,  which  was  digitized,  modified,  and  fabri-­‐ cated  to  create  a  functional  lamp.  I  will  describe  what   we  learned  from  the  Scan  Fab  process,  including  the   potential  uses  and  current  limitations,  specifically  in  its   application  to  beginning  design.       To  contextualize  the  implications  of  Reality  Computing   in  beginning  design  education,  I  will  attempt  to  elabo-­‐ rate  on  the  discourse  regarding  computer-­‐based  design   in  the  classroom  and  how  the  Scan  Fab  technique  can   assist  in  bridging  the  digital  and  physical  divide.  I  will   draw  from  the  phenomenological  arguments  for  a  more   haptic  centered  design  process  made  by  Juhani  Pallas-­‐ maa,  while  posing  a  counterargument  from  Antoine   Picon  that  advocates  for  an  evolution  of  architectural   design  and  production,  as  a  result  of  the  computer  and   digitization.    

 

 

The  Thinking  Hand   The  prominent  role  given  to  the  computer  in  the  design   process  has  found  a  number  of  critics,  including  archi-­‐ tect  and  theorist  Juhani  Pallasmaa,  who  has  written   extensively  on  the  bias  towards  vision  and  the  suppres-­‐ sion  of  other  senses  in  contemporary  architecture.  This   occularcentrism,  as  Pallasmaa  describes  it,  is  a  result  of   computer-­‐based  design  that  “flattens”  our  “multi-­‐ sensory”  perception  by  reducing  the  creative  process  to   3 “a  passive  visual  manipulation.”  A  digitally  produced   work  leaves  out  the  “thinking  hand,”  which  serves  the   role  of  connecting  the  mind  and  body  in  the  process  of   design.  This  connection  is  essential  in  beginning  design   as  students  formulate  a  bodily  awareness  in  spatial   terms.  Pallasmaa  continues  by  stating:     “The  computer  creates  a  distance  between  the   maker  and  the  object,  whereas  drawing  by   hand  as  well  as  model-­‐making  put  the  designer   4 into  a  haptic  contact  with  the  object  or  space.”     With  the  Scan  Fab  Lamp  project,  students  began  the   design  process  with  sculpting  form  out  of  clay.  By    

Scan  Fab  

Fig.  3  Selection  of  Scan  Fab  Lamps;  (top  left  and  clockwise)  Katherine  Moore,  Sophia  Liu,  Austin  Kahn,  Mark  Luzi,  Rachel  Recksiedler,  Juliet  Luty,   Jeffrey  Baucom,  Simone  M iller,  Tyler  Kirkpatrick,  Xian  Chris  Li.    

hand  sculpting  the  form,  students  were  able  to  use  their   intuitive  design  sense  without  the  limitations  of  form   generation  through  digital  modeling  software.  This  al-­‐ lowed  students  to  create  form  complexity  beyond  their   current  skill  levels.  Rather  than  spending  their  time  try-­‐ ing  to  master  the  software  functions  to  create  form,   they  were  able  to  focus  on  the  relationship  between  the   mass  of  the  clay  object  and  the  pressure  applied  with   their  hands  and  fingers  to  shape  it.         Pallasmaa  would  describe  this  process  of  making  as   bodily  identification,  which  incorporates  multi-­‐sensorial   qualities  in  the  design  workflow  relating  directly  to  the   way  that  we  perceive  the  world  around  us.  To  touch  and   feel  form  with  one’s  hands  relays  information  to  the   brain  in  a  different  way  than  digital  modeling  on  the   computer.  This  haptic  modeling  process  translates  a   sense  of  volume  displaced  by  the  shape  of  the  object   through  the  tendons,  muscles,  and  nerves  into  the   hand.     “The  hands  are  the  sculptor’s  eyes;  but  they  are   5 also  organs  for  thought…”  

Drawing  heavily  from  Richard  Sennet’s  writing  on  the   importance  of  a  hand  and  brain  connection  in  both   learning  and  making,  Pallasmaa  develops  a  thesis   around  the  “thinking  hand,”  which  he  describes  as  hav-­‐ 6 ing  its  “own  intentionality,  knowledge  and  skills.”  He   places  the  hand  as  central  to  the  role  in  the  evolution  of   human  skills,  intelligence,  and  architectural  production.   Richard  Sennett  goes  on  to  describe  scientific  studies   that  show  how  the  use  of  the  hand  affects  the  way  we   7 think  and  learn.  The  hand  and  mind  connection,  how-­‐ ever,  does  not  preclude  the  use  of  tools,  which  the   computer  can  certainly  be  described  as.       Tools  are  traditionally  thought  of  as  having  a  relation-­‐ ship  as  an  intermediary  between  the  body  and  the  phys-­‐ ical  object  that  is  being  shaped.  With  the  computer,  we   still  have  a  hand  and  mind  connection,  but  the  object   has  been  dematerialized  in  virtual  space.  It  is  precisely   the  goal  of  the  Scan  Fab  process  to  make  a  physical   connection  with  the  object  of  design  before  it  is  digit-­‐ ized  and  disembodied.  While  the  hand  continues  to   modify  the  digitized  facsimile  of  the  object,  it  can  still   recall  its  shape  and  gravity  through  tactile  memory  in   the  senses.    

Gabriel  Kaprielian  

Between  the  Real  and  the  Virtual   Architect  and  historian  Antoine  Picon  presents  a  coun-­‐ terargument  to  the  perceived  “threat”  of  digital  design   to  the  field  of  architecture.  Published  over  a  decade   ago,  Picon’s  essay,  “Architecture  and  the  Virtual:  To-­‐ wards  a  New  Materiality,”  has  a  certain  prophetic  tone.   While  describing  the  lack  of  concern  for  materiality   found  in  many  digital  works  of  architecture  at  the  time,   he  hints  to  the  evolving  nature  of  digital  design  in  “re-­‐ shaping,  rather  than  an  estrangement  from,  physical    8 experience  and  materiality.”  Picon  alludes  to  the  con-­‐ tinuing  development  of  digital  interfaces,  which  may   eventually  bridge  the  gap  between  physical  and  digital   modeling.     Picon  concedes  that  the  “computer  breaks  with  the   9 immediacy  of  the  human  gesture.”  He  describes  a   “thickness”  inherent  in  digital  design  software  that  is   not  found  in  an  analog  and  physical  method  of  design.   This  thickness  has  to  do,  in  part,  with  the  biases  of  soft-­‐ ware  towards  certain  operations.  I  would  add  that  in   beginning  design  this  thickness  could  be  associated  with   designs  conceived  primarily  on  the  computer  rather   than  in  physical  space.  The  hands,  in  this  case,  respond   only  to  orders  by  the  eyes  and  the  mind  and  are  not   allowed  to  think  on  their  own.  Therefore,  a  deeper  un-­‐ derstanding  of  the  spatial  and  tectonic  qualities  of  the   design  is  lost  as  this  resides  more  intuitively  within  the   purview  of  the  hands.     For  the  Scan  Fab  Lamp  project,  I  had  students  hand   model  forms  out  of  clay  for  the  quality  of  plasticity  often   attributed  with  advanced  surface  modeling  in  digital   design.  Picon  also  draws  a  parallel  between  clay  model-­‐ ing  and  the  power  of  digital  tools  in  the  computer  to   model  surface  deformations  and  flows.  He  refers  to   early  research  conducted  by  MIT’s  Media  Lab  that   sought  to  integrate  clay  modeling  with  digital  modeling,   likely  an  early  precursor  to  the  Reality  Computing  tools   available  today.  He  also  talks  about  the  Media  Lab’s   investigations  into  digital  gloves  and  tactile  screens  all   aimed  at  combining  physical  and  digital  modeling.     Technology  has  progressed  considerably  since  Picon’s   2004  essay  was  written  and  now  this  hybridization  of   the  virtual  and  real  through  Reality  Computing  is  readily   10 available  in  app  form  for  your  smart  phone.  Utilizing  

these  new  technologies,  the  Scan  Fab  Lamp  project   seeks  to  explore  the  territory  between  analog  and  digi-­‐ tal  design  workflow,  combining  haptic  hand  modeling   with  digital  manipulation  and  fabrication,  extending  the   realm  of  our  senses  through  software  interfaces.      

Scan  Fab  Lamp   nd

The  Scan  Fab  Lamp  project  was  completed  by  2  year   students  in  my  Architectural  Design  studio  course,  dur-­‐ ing  the  spring  quarter  of  2015.  This  project  was  con-­‐ ceived  of  as  a  warm-­‐up  exercise  that  would  both  inspire   the  students  and  illustrate  an  alternative  design  work-­‐ flow,  which  allowed  them  to  digitize  their  conceptual   handmade  physical  models.  This  is  a  similar  process  to   that  made  famous  by  Frank  Gehry’s  office,  where  the   computer  is  seen  not  as  a  “medium  of  conception,  but   as  a  medium  of  translation”  by  digitizing  physical  mod-­‐ 11 els.     Beginning  first  with  sculpting  clay  form  by  hand,  stu-­‐ dents  used  the  concepts  of  Reality  Computing  to  Cap-­‐ ture  (3D  scan  clay  models),  Compute  (manipulate   digital  models),  and  Create  (digitally  fabricate  models   as  a  lamp).  For  the  Scan  Fab  Lamp  project  we  used  Au-­‐ todesk’s  123D  software  for  the  Reality  Computing  work-­‐ flow.  While  there  is  other  software  available,  this  choice   was  made  based  on  its  ease  of  use,  consistent  results,   and  availability  as  a  free  download.      

                                                         Fig.  4  Scan  Fab  Lamp  by  Emre  Keskintepe    

Scan  Fab     The  project  steps  are  as  follows:   Sculpt   The  first  step  in  the  process  began  with  the  sculpting  of   a  clay  form  by  hand.  This  allowed  for  a  tactile  three-­‐ dimensional  modeling  experience  that  is  unencumbered   by  digital  modeling  software.  Beginning  students  were   able  to  intuitively  create  form  complexity  with  their   hands  that  is  beyond  their  current  digital  modeling  skill   level  for  any  given  software.  The  process  of  hand  sculpt-­‐ ing  clay  engages  the  “thinking  hand,”  or  as  Juhani  Pal-­‐ lasmaa  might  say,  tapping  into  knowledge  that  “resides   12 directly  in  the  senses  and  muscles.”       Capture     Using  Autodesk’s  123D  Catch  software,  which  utilizes   the  Reality  Capture  technology  of  photogrammetry,   students  created  3D  scans  of  their  clay  models.  This   process  involved  taking  a  series  of  photographs  with  a   camera  or  on  a  smartphone  application  of  the  software,   translating  the  physical  form  into  a  digital  mesh  facsimi-­‐ le.  The  capture  technology  is  key  to  what  Picon  referred   to  as  the  “interface”  to  hybridize  the  real  and  the  virtu-­‐ al.  In  this  case,  the  3D  scan  is  the  disembodied  clay   sculpture  and  represents  the  first  transformation  in  the   Reality  Computing  process.  Results  vary  depending  on        

         

  Fig.  5  Shadows  cast  by  a  student  lamp,  Benny  Lin.  

  Fig.  6  Clay  model;  digitized  model  (Meshmixer);  digital  fabrication   model  (123D  Make)  

  shape  of  the  sculpted  form  and  precision  of  the  scan-­‐ ning  process.  Artifacts  and  imperfections  are  unavoida-­‐ ble,  presenting  either  a  challenge  or  an  opportunity  for   further  alterations.         Compute     The  next  step  involved  the  manipulation  of  the  digital   mesh.  Using  Autodesk’s  Meshmixer  software,  students   cleaned  up  the  scanned  mesh  geometry  and  digitally   edited  the  form  with  a  variety  of  techniques  to  prepare   it  for  fabrication.  The  mesh  editing  software  allowed  for   a  virtual  sculpting  process  using  a  series  of  brushes  to   push  and  pull  the  mesh  surface.  Brush  parameters  can   vary  by  size,  strength,  and  type  to  refine  the  mesh  to   more  accurately  depict  the  hand-­‐sculpted  form  or  to   further  transform  its  shape.     Create     The  ultimate  goal  of  this  project  was  to  create  a  lamp;   therefore,  the  relationship  between  the  lamp  structure,   lighting  fixture,  and  bulb  was  paramount.  Using  Auto-­‐ desk’s  123D  Make  software,  students  chose  a  variety  of   methods  to  “slice”  their  digitized  clay  model  into  inter-­‐ locking  pieces  for  digital  fabrication.  Students  needed  to   consider  lamp  orientation  and  design  pendant  mounting   before  creating  cut  files.     Re-­‐materialization  through  digital  fabrication  represents   a  metamorphosis  from  the  virtual  environment  back   into  the  physical.  Different  means  of  digital  production   offer  the  potential  to  edit  the  virtual  object  in  order  to   create  a  radical  change  in  re-­‐embodied  physical  form.   We  chose  to  use  interlocking  surfaces  with  a  laser  cut   plywood  material  for  the  lamps  to  keep  costs  down.   Students  adjusted  the  slice  direction  and  count  with   consideration  of  desired  lamp  form  and  lighting  quality.  

Gabriel  Kaprielian  

Reflections   While  the  Scan  Fab  Lamp  project  represents  a  modest   exploration  of  Reality  Computing,  the  application  of  this   technique  to  architecture  has  the  potential  to  bridge   the  gap  between  analog  and  digital  design,  creating  a   feedback  loop  between  the  two  processes.  The  applica-­‐ tion  to  beginning  design  allows  students  to  start  with   physical  modeling  by  hand,  which  can  then  be  digitized   and  used  for  a  variety  of  applications  in  the  design  pro-­‐ cess.  Students  in  my  course  continued  to  use  the  Scan   Fab  technique  as  an  idea  and  form  generator  for  the   design  of  architecture  in  the  quarter-­‐long  studio  project.   However,  expectations  of  Reality  Computing  for  begin-­‐ ning  design  should  be  tempered  with  an  understanding   of  its  current  limitations.     It  was  our  experience  that  many  hand-­‐modeled  forms   are  not  well  suited  to  the  Reality  Capture  process  we   used.  Forms  with  holes  or  voids  presented  challenges  in   the  digital  capture  process.  These  hollow  spaces  were   often  filled  in  by  the  pre-­‐processing  software,  which   interpolated  the  visual  data  to  create  a  continuous  sur-­‐ face.  The  darkness  created  by  shadows  is  especially  dif-­‐ ficult  for  the  photogrammetry  process  to  translate  into   a  digital  mesh.  It  should  be  remembered  that  photo-­‐ grammetry  is  made  up  of  a  series  of  photographs,   therefore  the  quality  of  photos  and  uniform  lighting  are   essential  components  to  a  good  digital  capture.      

The  use  of  photogrammetry  as  a  Reality  Capture  in  its   current  state  is  biased  toward  continuous  surface  condi-­‐ tions.  For  this  reason,  I  choose  clay  for  sculpting  the   form  to  be  captured.  It  is  also  worth  noting  that  process   of  Reality  Capture  involves  moving  the  camera’s  posi-­‐ tion  to  take  a  series  of  photographs  around  all  sides  of   the  object  to  be  digitized.  This  means  that  the  object   does  not  move  and  since  it  is  likely  placed  on  a  surface,   this  part  of  the  object  will  not  be  digitized  accurately.       While  I  had  my  students  use  123D  Make  to  create  digi-­‐ tally  fabricated  parts  for  their  lamps,  there  are  a  num-­‐ ber  of  alternative  methods  for  preparing  the  virtual   form  for  re-­‐materialization.  This  is  dependent  on   whether  you  choose  a  subtractive  or  additive  fabrica-­‐ tion  method.  The  interlocking  slices  of  123D  Make  are   ideally  suited  for  ease  of  cut  file  output  and  assembly,   but  are  limited  in  options,  restricting  the  final  form.  For   this  reason,  I  had  my  students  make  two  lamps,  the   second  one  adding  a  hand  constructed  “skin”  or  shell  on   top  of  the  inside  structure,  which  created  a  new  quality   of  lighting.  This  allowed  the  students  to  come  full-­‐circle   and  finish  the  lamp  design  by  hand,  with  a  digitally  fab-­‐ ricated  hybrid  form  of  their  initial  hand  sculpted  clay   model.         Overall,  the  Scan  Fab  Lamp  project  was  well  received  by   the  students  who  enjoyed  learning  new  software  that   was  relatively  easy  to  use  and  which  allowed  them  to   integrate  physical  modeling  with  a  digital  fabrication   workflow.  We  spent  the  first  two  weeks  on  this  project,   but  I  have  done  a  workshop  that  produced  similar  re-­‐ sults  in  one  day.  The  quick  learning  curve  and  produc-­‐ tion  turn  around  of  the  Scan  Fab  process  are  certainly   beneficial  to  its  success  and  usefulness.  I  believe  that   there  is  an  opportunity  for  further  investigation  of  its   use  in  the  Architectural  Design  studio.      

Conclusion  

  Fig.  7  Students  assembling  Scan  Fab  Lamps.  

The  field  of  architecture  is  continually  evolving,  as  are   the  technology  and  software  that  it  employs.  While  ar-­‐ chitecture  has  embraced  digital  technologies,  it  still  re-­‐ mains  deeply  rooted  in  tectonics,  materiality,  and   sensorial  experience.  These  are  aspects  of  design  best   explored  physically  through  the  act  of  making.  For  this   reason,  there  will  always  be  a  place  for  physical  model-­‐ ing  and  hand  drawing  in  both  architectural  practice  and  

Scan  Fab   education.  With  the  advances  in  Reality  Computing   technology  there  appears  to  be  greater  opportunity  to   integrate  a  physical  and  digital  design  workflow,  begin-­‐ ning  first  with  a  haptic-­‐based  design  approach  that  con-­‐ tinues  directly  into  digital  modeling.  The  Scan  Fab  Lamp   project  illustrates  one  approach  for  the  use  of  Reality   Computing  in  beginning  design.  As  this  technology  con-­‐ tinues  to  advance,  there  will  likely  be  many  possibly   applications  in  both  architectural  practice  and  design   education.    

Notes                                                                                                                            

 Picon,  Antoine.  “Architecture  and  the  Virtual:  Towards   A  New  Materiality”  in  PRAXIS  6:  New  Technolo-­‐ gies://New  Architectures,  2004.  p  114-­‐21.   2  Autodesk,  https://recap.autodesk.com/reality-­‐ 3  Pallasmaa,  Juhani.  “The  Eyes  of  the  Skin,”  Wiley-­‐ Academy,  Great  Britain,  2005.  p  12.   4  Ibid.  p  12.   5  Ibid.  p  56.   6  Pallasmaa,  Juhani.  “The  Thinking  Hand,”  John  Wiley   and  Sons  Ltd.  Great  Britain,  2009.  p  12.   7  Sennett,  Richard.  “The  Craftsman,”  Yale  University   Press,  New  Haven,  2008,  p  149.   8  Picon,  p  271-­‐272.   9  Ibid.  p  274.   10  (123D  Catch  software  application  of  Reality  Capture   available  for  OS  and  Android  Smartphone  operating   systems.)     11  Kolarevic,  Branko.  “Digital  Production”  in  Architecture   in  the  Digital  Age:  Design  and  Manufacturing,  Spon   Press,  New  York,  2003.  p  47.   12  Pallasmaa,  “The  Thinking  Hand,”  p  12.   1

Suggest Documents