Diphenyl ether. R. NH. R'. 1. HCl 10%. 2. H. 2. NCN. R, R' = CH2CH3, H; ..... N. H. O. NN. Binding Data of. Oxymethylene-anilide- pyrazole-xanthine. Derivatives ...
X I Meeting Heterocyclic Struttures in Medicinal Chemistry Palermo, May 23-26, 2004
New Heterocyclic Ligands for the Adenosine Receptors P1 and for the ATP Receptors P2 P.G.Baraldi, F.Fruttarolo, M.Aghazadeh Tabrizi, Hussein ElKashef, R.Romagnoli, M.G.Pavani, A.Bovero, D. Preti, K.Varani, P.A.Borea
Ferrara University, Italy
RECEPTOR CLASSIFICATION
P1
Adenosine
P2
Nucleotides
Purinergic Receptors ATP, ADP, UTR,UDP
A1, A2A A2B, A3
High affinity receptors Low affinity receptoers
A1 A2A A2B A3 P2X P2Y
SIGNAL TRANSDUCTION A1
A3 A2A A2B
INHIBITION ADENYLYL CICLASE
AMPc
ACTIVATION ADENYLYL CICLASE
AMPc
Regulation of Adenylyl Cyclase by Adenosine Receptor Stimulation
Main effects of Adenosine to A1 receptors Through interaction with A1 receptors, adenosine is involved in: • • • • •
heart rate atrioventricular nodal conduction lipolysis synaptic activity in the CNS neutrophil chemotaxis
Main effects of Adenosine to A2A receptors Through interaction with A2A receptors, adenosine is involved in:
• dilating the coronary vessels of the heart • preventing ischemic arrythmias • tratment of CNS disorders (Parkinson’s disease) • antiinflammatory effects • inhibiting platelet aggregation (antithrombotic effect)
Main effects of Adenosine to A2B receptors Through interaction with A2B receptors, adenosine is involved in:
• Bronchoconstriction
Main effects of Adenosine to A3 receptors DISTRIBUTION
EFFECTS
AGONIST
ANTAGONIST
SNC
Cytoprotective or cytotoxic
Neuroprotective (nM) Apoptotic (M)
Neuroprotective
Heart
Cytoprotective or Cardioprotective (nM) cytotoxic Protective in ischaemic preconditioning Apoptotic (M) degranulation
Mast cells
Macrophages
TNF- release
Anti-inflammatory
Eosinophils
degranulation
Anti-inflammatory Anti-asthmatic
Lymphocytes
Immunosuppres.
Antiinflammatory Anti-asthmatic
Immunotherapy of cancer
To fully evaluate the great variety of therapeutic implications in the adenosine receptor area, subtype-selective agonists and antagonists with high affinity are required
Strategies to activate A1 adenosine receptors Agonists (CPA, CHA, CCPA) Inhibitors of adenosine uptake (dipiridamole) Kinases inhibitors Allosteric modulators (Enhancers)
What is an allosteric modulator (enhancer) An enhancer is a molecule which binds a receptor binding site different from the one of the endogenous ligand. It is able to amplify the activation of the receptor by an agonist, stabilizing the complex between the ligand and the high affinity receptor state. This effect is carried out by the retardation of the agonist receptor dissociation process.
Why use the enhancers? Adenosine release is a local process which happens in tissues
during hypoxic and ischemic injuries. Endogenous adenosine release exerts a protective action in a tissue affected by a degenerative process. Adenosine decreases the neuronal activity and the oxygen use ,which are mediated by A1 adenosine receptors. Allosteric modulators could be useful when is necessary a local increase of adenosine action on A1 adenosine receptors.
Identification of PD 81,723, as a model for the development of A1 adenosine allosteric enancers
CF3
O S NH2 PD 81,723
Bruns R. F. et al. J.. Mol. Pharmacol. 1990, 38, 950-958
General procedure for the synthesis of 2-amino3-aroyl thiophenes (GEWALD REACTION) O Ar
CN
+ R1
R2
O
S8, morpholine EtOH O R2 R1
Ar S
NH2 Ar= aryl or heteroaryl R1=R2=CH3 R1,R2=-(CH2)3-, -(CH2)4-
Structure-Activity-Relationship of 2-amino-3benzoyl-thiophenes
R
R
O
n=0, 1 e 2 n(H2C)
O N
S
NH2
S
NH2
Lipophylicity of the R substituent is preferred in para and meta positions
Baraldi et al. Exp. Op. on Therapeutic Patent 2004, 71-79
Effects of the substitution of he benzoyl at the 3 position with a naftoyl moiety
O
(CH2)n
O
(CH2)n
S
NH2
n=0, E=10 n=1, E=29 n=2, E=44
S
NH2
n=0, E=45 n=1, E=60 n=2, E=52
Baraldi et al. Exp. Op. on Therapeutic Patent 2004, 71-79
2-Amino-3-naftoyl thiophenes: effects of the substituents at the 4 and 5 positions
O
O S
NH2
S
NH2
E=60
E=45
O
O S
NH2
E=52
O
O N
S E=37
NH2
S E=21
NH2
S
NH2
attività antagonista a 10 M E=21 a 10 nM E=7 a 100 nM E=25 a 1 M
Conclusions a) In the examined series of 2-amino-3-aroyl-thiophenes, the derivatives substituted at the 3-position with a naphtoyl group resulted to be more active then the corresponding 3-benzoyl derivatives. b) The substitution of the naftoyl nucleous with an halogen determined an encrease of affinity.
c) The biological activity is affected by the hydrophobic effects of the examined substituents more then by the electronic aspects. d)The presence of lipophylic substituents at the positions 4 and 5 of the thiophene ring is essential for the biological activity.
STYRYL-XANTHINE A2A ANTAGONISTS O CH3 O
N
O
CH3 N
Cl
C3H7
N N CH3
O
CSC A1 28200 nM; A2A 54 nM A1/A2A 522
O
N
N N C3H7
OCH3 OCH3
KF 17837 A1 62 nM; A2A 1 nM A1/A2A 62 O
C3H7
N
CH3 N
CH3 N
N N C3H7
S
1,3-dipropyl-7-methyl-8-[2(3-thienyl)ethenyl] xanthine A1 561 nM; A2A 19 nM A1/A2A 30
Baraldi, P.G. et al. Curr. Med. Chem. 1995, 2, 707
Summary A2A adenosine receptor antagonists •SCH 58261 story
•FSPTP, the first A2A irreversible adenosine antagonist •[ 3H]-SCH 58261 •[11C]SCH442416 the first non-xanthine ligand for the in vivo imaging of A2A adenosine receptors using PET • Water-soluble A2A adenosine antagonists
A2A adenosine receptor antagonists: the starting point NH2 N
N
N
N
Cl
CGS15943
O
rA1 6.4 nM; rA2A1.2 nM A1/A2A 5.3
NH2 NH N
N
F
N
2
N N
N
N
N
O N
N
O
N F
N
8FB PTP rA1 3.3 nM; rA2A 1.2 nM A1/A2A 2.8
7FB PTP rA1 189 nM; rA2A 12 nM A1/A2A 15.8
Gatta et al. Eur.J. Med. Chem. 1993, 28, 569
New A 2A Adenosine Antagonists NH2
NH2 N
N N
N
N
N O
N N N
N
O
N
N
SCH 63390
SCH 58261
rA1 504 nM; rA2A 2.4 nM A1/A2A 210
rA1 121 nM; rA2A 2.3 nM A1/A2A 52.6 NH2 N
N
N N
N
O
N
rA1 2705 nM; rA2A 21 nM A1/A2A 129
Baraldi, P.G. et al. J. Med. Chem. 1996, 39, 1164
Synthesis of Pyrazolo[4,3-e] 1,2,4 Triazolo [1,5-c] Pyrimidine Derivatives CN
CN
K2CO3, RX N N
2
NH2
2
N
NH2
N
reflux
N N
OEt
N
1
R
1
R
H
CN
H(COEt)3
R= alkyl, aryl, aralkyl 1) 2-furoic hydrazide 2) Ph2O, 260 °C
N N N
8
R
N 7
N
N
NH2CN
N 2
pTsOH
N NH2
O
O
O
HCl, reflux
N 1
NH2
N 8
N H
N R
N N
N R
N 7
N
Baraldi, P.G. et al. Bioorg. Med. Chem. Lett. 1994, 4, 2539
Design of Tritiated SCH 58261
NH2
NH2 N
N
N
N
3
H
N
N
SCH 58261
O
3
H
3
H
N N
N N N
N
[3H]SCH 58261
O
Synthesis of [ 3H]-SCH 58261 CH2-CH2-NH-NH2
CH2-CH2-Cl
CH2-CH2-Cl
Br
Br
Br2, Fe
NH2-NH2
Br
Br
Br
Br
O
O N
N
N
N N
N
N
3
H2, C/Pd
N
N
N N
NH2
NH2
N 3
H
Br 3
Br
H 3
Br
H
Baraldi, P.G. et al. J. Label. Compd. and Radiopharm. 1996, 8 , 725
II Generation of A2A Antagonists NH2
NH2 N
N
N N
N
N O
SCH 63390 rA1 504 nM; A2A r2.4 nM A1/A2A 210 NH2
NH2
N
O
N
SCH 58261 rA1 121 nM; rA2A 2.3 nM A1/A2A 52.6
N
N N
N
N
HO
N
N
N N
N O
N
rA1 444 nM; rA2A 1.7 nM A1/A2A 261
N
N
N N
O
N HO
rA1 725 nM; rA2A 0.85 nM A1/A2A 853
Baraldi, P.G. et al. J. Med. Chem. 1998, 41, 2126
Comparison Between II Generation Derivatives and ZM 241385 NH2
NH2 HO
N
N
N N
N
N O
N
N N N
O
N
N
HO
rA1 444 nM; rA2A 1.7 nM A1/A2A 261
rA1 725 nM; rA2A 0.85 nM A1/A2A 853 NH2
HO N N H
N N
N N
O
ZM241385 rA1 810 nM; rA2A 1.5 nM A1/A2A 520
Structural Correlation Between II Generation Derivative and ZM 241385 NH2
NH2 HO
N N
N
HO N N
N O
N
N N
N N
O
N
ZM241385 A1 444 nM; A2A 1.7 nM A1/A2A 261
A1 810 nM; A2A 1.5 nM A1/A2A 520
Replacement of pyrazole ring with different heterocycles NH2
N
N
N
O
N
R1
N N
NH2
N
NH2 N
N
N N
S
N
O
N
N
O
N R1
Het NH2
N
R1
N
N
N
N N
O
FSPTP, the first A2A irreversible adenosine antagonist NH2
N
N
N
N
O
N N FO2S
FSPTP FSPTP, the fluorosulfonyl derivative of SCH 63390, showed an irreversible antagonism for A2A receptors and it has been useful to demonstrate the presence of a large receptor reserve (spare receptors) for the A2A subtype. This large receptor reserve can explain the greater coronary vasodilation in the guinea pig heart observed for fixed agonist concentrations
L.Belardinelli et al. Circulation, 1998, 98, 711
Biological and Physico-Chemical Characterization NH2 N R
N
N N
N
O
N
Binding studies hA1, hA2A, hA3
Thermodynamic studies
Rm values
Concluding remarks on A2A adenosine antagonist studies All
the new derivatives are endowed with good affinity and selectivity for A2A adenosine receptor subtype The best lenght of the chain at 7 position is three methylene groups The oxygenated moieties on the phenyl ring increase the affinity and selectivity The water solubility is slightly increased
Preparation of Key Intermediate 7H-compound NC NHNH2
CN
CN
+
N OEt
H(COEt)3
NH2
N
CN N
reflux
OEt
N
N 1
1) 2-fu roic hydrazide 2) Ph2O, 260°C
O
N N N
8
N N
7
H
N
HCO2 H
N N
8
N 7
N
N N
8
NH2CN NH2
N
HCl
N N
NH2
O
O
N N
N 7
Direct Alkylation of 7H-key intermediate
O
O
N
N N N
8
N
RX
N
N N
N
7 H
N
NH2
NaH
N
R
N
+ N8 - isomer NH2
Chlorosulphonation of SCH 58261 NH2 N
NH2
N N
N N
SCH 58261
O
N
N
N N
Cl SO3H, O°C, 1h
Cl
S
O O
N N N
O
Sulphonamide derivatives of SCH 58261 NH2 N N
N
HO
S
N
N N
HCl 10%
O
glycine LiOH
O O
A1 Ki = 4300 nM A2A Ki = 140 nM
Cl
NH3 (g)
S
HO2C
O O
diethanol amine
S
O N
O
A1 Ki = 4200 nM A2A Ki = 1.31 nM
S
O O
N-methyl A1 Ki = 2500 nM piperazine A2A K i = 2.2 nM
A1 Ki = 523 nM A2AKi = 3.8 nM
HO H2N
NH
S
O
N
O
S
N HO
A1 Ki = 3400 nM A2A Ki = 0.8 nM
Baraldi, P.G. et al., J.Med.Chem, 2002, 45, 115 - 126
O O
New synthetic methodology to prepare the key 7H-tricyclic intermediate NH H2N
NH2
NH2
NH2
N
N
N
NH2
N
N
N
+
EtO
OEt O
HO
Cl
OH
Cl CHO
O
N
NH2
NH2 N
N
N N
HN N
Cl
HN
O
N HN N
N N H
O
H N O
Dimroth-Type Rearrangement NH2 N HN N
NH2
N N H
O
H N O
N
BSA HMDS DMF 230°C
N N N
HN N
This step is crucial for yield optimization, reagents ratio and product isolation
O
Direct alkylation of 7H – tricyclic intermediate NH2 N HN N
NH2
N N
O
N
R-Cl K2CO3, DMF 100°C, 12h
N 7N
R
N7 R
N N
O
N
N 8
N7 R
NO2
CN
NHCOCH3
COOEt
N(CH2CH2OH)2
OCH2COOEt
N(CH2CH2OH)2
Baraldi, P.G. et al., J.Med.Chem, 2002, 115
Synthetic elaborations of the cathecolic system NH2 N
N N
O
N
N N R
R = OH, R1 = OH R1
Br2C(CO2Et)2
R=R1 =
O CO2Et O CO2Et
, NaCl
KOH
NaBH4 O R=R1 O
CO2Et
R=R1
O CH2OH O CH2OH
R=R1
NaOH
10% NaOH O R=R1 O
CO2H
O CO2H O CO2H
R=R1
O CO2Na O CO2Na
New A2A water-soluble adenosine antagonists NH2 N
N
N
O
N
N N
O HO
O HO
hA1 = 432 nM hA2A = 0,19 nM hA2B >10000 hA3>10000 hA1/hA2A = 2273
New water-soluble A2A adenosine antagonists NH2 N
N
N
N
N N
Cl
H3N
hA1 = 2160 nM hA2A = 0,22 nM hA2B >10000 hA3>10000 hA1/hA2A = 9818
O
New A2A water-soluble adenosine antagonists NH2 N
N
N
O
N
N N
N HO
OH
hA1 = 123 nM hA2A = 0,12 nM hA2B >10000 hA3>10000 hA1/hA2A = 1025
Influence of phenyl substitutions on adenosine receptor affinity NH2
N
N
7
N
O
N
N N 8 R R = SO3H hA1 = 139 nM hA2A = 140 nM hA2B = > 10,000 nM hA3 = > 10,000 nM
R = CO2H hA1 = 4,965 nM hA2A = 4.4 nM hA2B = > 10,000 nM hA3 = > 10,000 nM
R =NH2 hA1 = 2,160 nM hA2A = 0.22 nM hA2B = > 10,000 nM hA3 = > 10,000 nM
Antagonists for A2B Adenosine Receptor NH2
N 7
N
N
N
R
N
O
N 8
SCH 58261 R = N7 - CH2CH2-Ph hA1 = 549 nM hA2A = 1.1 nM hA2B = > 10,000 nM hA3 = > 10,000 nM
R = N8 - CH2CH2-Ph hA1 = 1 nM hA2A = 0.31 nM hA2B = 5 nM hA3 = 2,030 nM
O
HN
N
R
N
N
N
7N N 8
8
O
R =CH2NH3+Cl-
R =CH2CH2NH3+Cl-
hA1 = 4.5 nM
hA1 = 2.5 nM
hA2A = 182 nM
hA2A = 50 nM
hA2B = 70 nM
hA2B = 37.6 nM
hA3 = 163 nM
hA3 = 80 nM
Baraldi, P.G. et al., DDR, 2001,53, 225
Summary • A3 adenosine receptor antagonists • MRE3008FE20 story • [3H] MRE 3008FE20
• Irreversible A3 adenosine antagonists • Modelling studies on A3 adenosine receptor antagonists •
Water-soluble A3 adenosine antagonists
A3 adenosine agonists: previous results R = 3-Cl, R1 = H A1 = 45 nM A2A = 420 nM A3 = 4.4 nM O R HN N
EtHN
N
O O OH
N N
N
H R1
R = 4-OMe, R1 = H A1 = 33 nM A2A = 3363 nM A3 = 6.6 nM R = 4-SO2NH2, R1 = H A1 = 453 nM A2A = 1180 nM A3 = 9.7 nM
OH
R = 4-OMe, R1 = Cl A1 = 22 nM A2A = 59 nM A3 = 17 nM
Baraldi, P.G. et al, J.Med.Chem.1996, 802 and 1998,3174
A2A Adenosine Antagonists: Previous Results NH2 N
N
N
NH2
NH2
5
5
N
N N
N
O
N
R
N
N N
N O
O
N A1= 121 nM
A1= 4,7 nM A1/A2A=3,4 A2A=1,4 nM
N N
N
7
N8
N
SCH 58261
A1/A2A=52,6 A2A=2,3 nM
Baraldi, P.G. et al, J.Med.Chem.1996, 39
A3 Adenosine Antagonists: Recent Results NH2 N N
N
N
N
O
O
R
N R
N H
A2A antagonist
NH N
R O HN N
EtHN
O O OH
N H
N
R = 3-Cl, 4-OMe OH
A3 Agonist
N N
N N
N
N
N
R
A3 antagonist
O
A3 adenosine antagonists: affinity and selectivity R = Et, R1 = 4-MeO A1 = 1026 nM A2A = 1045 nM A3 = 0.28 nM
R1
R = Et, R1 = 3-Cl A1 = 249 nM A2A = 185 nM A3 = 2.09 nM
O N H
NH
5 N
N N
N N R
N
8
O
R = Propyl, R1 = 4-MeO A1 = 1197 nM A2A = 141 nM A3 = 0.29 nM R = Phenethyl, R1 = 4-MeO A1 = 201nM A2A = 124 nM A3 = 1.47 nM R = Phenylpropyl, R1 = 4-MeO A1 = 251 nM A2A = 1015 nM A3 = 19.8 nM
Baraldi, P.G. et al., J.Med.Chem, 1999, 4474
Synthetic scheme for the preparation of MRE3000FE20 series CN
CN
CN a
N
NH2
N
c
b
2 N
2 N
NH2
N1
N1
OEt
R
R
H
N
NH2 N
N
N
N
N
NH2 O
d
R
N N
N
N
HN
5
N
O
e
7
R
N
N
N
N
N
N R
8
a: NaH, RX; b: HC(OEt)3; c: furoic hydrazide, PhOPh; d: HCl 10%; e: NH2CN
O
Regiospecific synthesis of a key intermediate to prepare the basic structure MRE3000F20 CN EtO
CN
reflux
+
CN
N
Me
N
CN N Ph
NH Me
reflux, HCL
NC NH2
N Me
N
Preparation of the MRE3000 series R1 NH2 O N
N
N
N
7
N N
H
XPhN=C=O O
N
N
R
N R
NH2 N
N
N
N
N
7
8
N H
N
8
MRE3000F20 series
N XPhN=C=O
7
R
N
N
O
N 8
SCH like compounds
O
NO REACTION
Structural requirements to obtain potent and selective A3 adenosine receptor antagonists OCH3 O
HN
5 6N
N H
4
3
O
N
N
2 N
7
1
N N
8
H3C
9
MRE 3002F20
Baraldi, P.G. et al., Med.Res.Rew., 2000, 20, 103
Modelling studies on some A3 adenosine receptor antagonists
Concluding Remarks on SAR Studies • By utilizing the synthetic procedure here described, we have synthesized more than 100 compounds showing A3 adenosine receptor antagonistic properties • Some of these compounds belonging to the MRE3000F20 chemical series show to be potent (< 1nM) and selective (> 100) at A3 adenosine receptors
[3H] MRE 3008FE20: the first potent and selective radiolabeled A3 adenosine antagonist OCH3 O H
N
N
N 3
H
H
A1 = 1100 nM A2A = 140 nM A2B= 2100 nM A3 = 0.29 nM
N N
N
3
N H
N
O
A1/A3= 1294 A2A/A3= 165 A2B/A3= 2471
Inhibition curves of MRE 3008F20 to human cloned A3, A2A, A1 and A2B adenosine receptors, respectively 100
100
80
80
60
60
Specific binding (%) 40
40
20
20
0 1E-12
1E-11
1E-10
1E-9
1E-8
1E-7
[MRE 3008F20] inhibitor (M)
1E-6
1E-5
0 1E-4
Design of C9 substituted A3 adenosine antagonists R1
O N H
NH
5 N
N N
N N H3C
N
O
9 8
R
R = S - alkyl, NH – alkyl R1 = 4-OMe, 3-Cl
Synthetic Scheme CN
CN
R
CS2 RX K2CO3 DMF
H3CS
CN
H3CS
CN
R'
N
CN CN CH3NHNH2
H3CS
R' NH R
O
R R R'
N
CN
1. HC(OEt)3
R'
N
N
N H3C
N
2. Furoic acid H3C hydrazide 3. Diphenyl ether
NH2
N
N
N N
N
O R, R' = CH2CH3, H;
R R'
OCH3 , H;
N
N
N
1. HCl 10% 2. H2NCN
H3C
N
N N
N
NH2
N
N CH3
Concluding remarks on the C9 substitution • The substitution at C9 position with thioeters, primary, secondary and aromatic amines is detrimental both for affinity and selectivity
• The preparation of Mannich bases on the furane ring produces water-soluble compounds with concomitant loss of affinity Baraldi, P.G. et al., J.Med.Chem, 2003, 48, 1229-1241
Irreversible A3 Adenosine Antagonists FO2S
O HN
NH
5 N
N
N N
N N
8
O
To the concentration of 100 nM the irreversible ligand blocks the A3 human receptor of 79%
Baraldi, P.G. et al., J.Med.Chem, 2001, 44, 2735
Irreversible A3 adenosine antagonists : molecular modeling studies
Design of Water-Soluble A3 Adenosine Antagonists • The A3 adenosine antagonists we have developed showed high affinity ( less than 1 nM) and great selectivity ( more than 100) for the human A3 receptor subtype, but they were only slightly water-soluble compounds. • The next step of our investigation has been of designing new water-soluble A3 adenosine antagonists retaining the same potency and selectivity
Water-Soluble A3 Adenosine Antagonists O R NH
N H
5 N
N N
N N H3C
N
O
8
R = PhSO3H, PhCOOH, PhN(CH3)2, 2, 3, 4- PYRIDINE
The most potent and selective A3 adenosine antagonists water-soluble Cl
O
HN N
NH
H
5 N
N H3C
N
N
NH
H
5 N
N N
N
O
N
O
hA1 = 350 nM hA2A = 100 nM hA2B = 250 nM hA3 = 0.01 nM
H3C
N N
N N
8
N
8
hA1 = 250 nM hA2A = 60 nM hA2B = 200 nM hA3 = 0.04 nM
Baraldi, P.G. et al., J.Med.Chem, 2002, 45, 3579
O
Affinities, expressed as KD values, and selectivity of agonists and antagonists radioligands to human ARs A1 [3H]R-PIA [3H]DPCPX A2A [ H]CGS 21680 [3H]SCH 58261 [3H]ZM241385 3
KD (nM) 2.0 3.9
A2A/A1 429 33
A2B/A1 1915 8.0
A3/A1 37 308
27 0.6 0.8
A1/A2A 11 478 319
A2B/A2A 0.6 >16667 >40
A3/A2A 36 >16667 >12500
A1/A2B
A2A/A2B
A3/A2B
30 32 1.97
0.13 8 204
4.3 0.02 255
40 >312 289
0.8 0.8 2.3
A1/A3 11 1294 190
A2A/A3 589 165 >900
A2B/A3 1100 2471 >900
A2B [3H]DPCPX [3H]ZM241385 [3H]MRS - 1754 A3 [ I]ABMECA [3H]MRE3008F20 [3H]PSB - 11 125
SAR Profile of Pyrazolo-Triazolo-Pyrimidines Free is essential for A2A affinity Arylcarbamoyl moieties give high hA3 affinity Its role for A2B and A1 affinities is not still clear Cyclopentyl and cyclohexyl substituents increase affinity and selectivity versus A1 adenosine subtype Aralkyl chains confer good affinity and selectivity for A2A subtype. Any substitutions resulted to be uneffective in terms of affinity for all the other receptor subtypes
Indispensable for affinity at all four adenosine receptor subtypes NH2
N 7
N
N
O
N N N 8
Both pyrazole nitrogens are strongly involved in selectivity
Branched or aralkyl chains confer A1 and A2B affinity but low selectivity vs A2A, while small substituents (H, Me, Et) confer good affinity and selectivity for hA3 adenosine subtype
Baraldi, P.G., Borea, P.A., Trends in Pharmacol.Sc, 2000, 21, 456
XANTHINES AND PYRAZOLO[4,3-e] 1,2,4 TRIAZOLO [1,5-c]PYRIMIDINES O R1
R5
R7 N
N
N
N
N
R8 O
N R3
N
N
N
R8/R7
N
COMMON TEMPLATES FOR ALL ADENOSINE RECEPTORS: A1, A2A, A2B, A3
O
8-Heterocyclic Xanthine Derivatives: Synthesis and Biological Evaluation of New Potent A2B Selective Adenosine Receptor Antagonists.
selection of several classes of non-xanthine and xanthine adenosine antagonists that have been found to be potent and slightly selective versus A2B receptor. O N O
N
H N
NH2
O O
NH2
N H
N
NN N
N
Cl
CGS15943
XAC NH2 HO N H
O
N
N
O
N
ALLOXAZINE
N
N
ENPROFYLLINE O
N N H
H N
N
N
O N
O N
O
ZM241385 H
H
O
N O
N
H N
O O
N MRS1754
N H
CN
GENERAL STRUCTURE OF THE NEW A2B ADENOSINE RECEPTOR ANTAGONISTS O R
N
H N
H N
Y
N N R R = methyl, n-propyl O
X
R1
O
R2 R3
Y = N1-methylpyrazolo, N2-methylpyrazolo, phenyl X = CH2, NH
O R O
N N R
H N
Y
R1
O
N
O
R = n-propyl, iso-butyl, allyl. Y = N1-methylpyrazolo, N2-methylpyrazolo, isoxazole, pyridine, pyridazine. R1 = substituted aniline, aminopyridine, piperazine rings
O R1 O
H
N
N
N N
N
N
R2
H
N
Binding Data of 8-phenylacetamidopyrazole-xanthine Derivatives
R3 O R4
CH3
R1
Ki(nM) hA1a
Compd
R1
R2
R3
R4
15
n-C3H7
H
H
H 900 (811-996)
16
n-C3H7
OCH3
H
H
> 10000
17
n-C3H7
H
CH2CH(CH3)2 H
> 10000
18
n-C3H7
H
NO2
H
> 10000
19
n-C3H7
H
OCH2C6H5
H
> 10000
20
n-C3H7
H
OH
H
> 10000
21
n-C3H7
H
F
H
200
24
n-C3H7
F
H
H
3227
hA2Ab
hA2Bc
hA3d
> 10000
35 (27-45)
> 10000
> 10000
96 (80-114)
> 10000
> 10000
> 10000
> 10000
> 10000
78 (63-96)
> 10000
> 10000
56 (42-77)
> 10000
> 10000
103 (79-136)
> 10000
> 10000
88 (84-92)
> 10000
> 10000
50 (41-60)
> 10000
O R1 O
H
N
N
N N
N
R2
H
N
N
R3 O R4
CH3
R1
Binding Data of phenylacetamido-pyrazolexanthine Derivatives Ki(nM)
Compd
R1
R2
R3
R4
hA1a
hA2Ab
hA2Bc
hA3d
25
n-C3H7
H
N(CH3)2
H
> 10000
> 10000
1628 (1374-1930)
> 10000
26
n-C3H7
H
Cl
H
520 (484-558)
> 10000
28 (23-33)
> 10000
27
n-C3H7
OCH3
OCH3
H
> 10000
> 10000
38 (33-43)
> 10000
28
n-C3H7
H
OCH2-o-CF3-C6H5
H
56 (47-67)
> 10000
13 (11-16)
> 10000
34
n-C3H7
H
566 (516-621)
1249 (856-1822)
18 (12-27)
> 10000
35
n-C3H7
OCH3
OH
H
> 10000
175 (1343-2292)
342 (274-426)
> 10000
36
CH3
H
H
H
> 10000
> 10000
569 (506-640)
> 10000
OCH2O
O N
N O
H N
H
N
N
N
N
R1
H N
R2
O
H 3C
Binding Data of Phenylureidic-pyrazolexanthine Derivatives
Ki(nM)
Compd.
R1
R2
hA1a
hA2Ab
hA2Bc
hA3d
40
H
N(CH3)2
2410 (1760-3301)
> 10000
59 (44-81)
> 10000
41
Cl
H
448 (365-550)
> 10000
39 (33-46)
> 10000
42
OCH3
H
1993 (1658-2397)
> 10000
90 (73-110)
> 10000
43
H
OCH3
1440 (1250-2211)
> 10000
81 (70-110)
> 10000
SYNTHESIS H N HOOC a
O
O N N CH3
2
O RN O
NH2 N R
a
n-C3H7
N
O
H N HOOC
O
NH2 N N
N N n-C3H7
CH3
6
O O
NN
H N
O 3
CH3
R
N
O
NH2
N R
H N N
NH2 N N H3C 7a, b
1a, b a: R = CH3 b: R = n-C3H7 HOOC a
H N
O
O O
4
n-C3H7
N
a
O n-C3H7 O
NHR2
N n-C3H7 8 : R1 = CH3, R2 = H 9 : R1 = H, R2 = H
HOOC COOC2H5 N CH3 5
R1
N
O
N
N
N
H N
N N n-C3H7
COOH N N
CH3
10 a : i) methanol, DCI, 4-5 hrs; ii) methanol, NaOH 2.5 N, 70 °C, 12 hrs.
Synthesis O n-C3H7
N
O
N N
O
N
N R
N N H3C
O
N
N
N
O
R NH2 O
R1
HO O
N R
O
R1
N N n-C3H7
(i):
i
R
R2 , SOCl2, TEA, CH2Cl2 R3
N N R
H N
H N
N N n-C3H7
O
CH3
NH2
O n-C3H7
N
O
H N
N
n-C3H7
NH2
N 6N n-C3H7
O R
O
H N
N N
H N N
R1
H N
H N N
O CH3
N N H3C
R2 O
H N
R3
R1 O
R2 R3
Binding and Functional Data of Selected A2B Adenosine Compounds. [3H]-DPCPX binding in HEK 293
cAMP assay in CHO cells
membranes expressing human A2B
expressing human A2B adenosine
adenosine receptors Ki (nM)
receptors IC50 (nM)
15
35 (27-45)
103 (92-115)
19
56 (42-77)
185 (154-198)
24
50 (41-60)
160 (146-188)
26
28 (23-33)
128 (114-144)
27
38 (33-43)
120 (103-140)
28
13 (11-16)
93 (84-102)
34
18 (12-27)
95 (90-101)
39
34 (26-46)
152 (136-170)
Compd
Conclusions of our preliminary studies: 1) introduction of a N1 or N2 methyl-pyrazol-3-yl ring in place of a phenyl ring, gave compounds showing a moderate A2B adenosine receptor affinity. 2) Amine function (positive charge) on pyrazole ring has importance rather than a negatively charged group. Trying to enhance this interaction by acylation permits to decrease affinity for both A1 and A2B and decreasing selectivity for A2B receptors 3) substitution (o-CF3, m-CF3, p-NO2) of the 4-benzyloxy group at para position of phenyl ring produced increasa of affinity and selettivity vs A2B adenosine receptor. 4) Introduction of bulky groups at 3, 4 position in the phenylacetic acid chain, such as 3,4-dimethoxy (compound 27) led to potent and selective A2B AR antagonist, whereas 3,4,5-trimethoxy (compound 33) showed no affinity.
OUR PROJECTS IN THE SECOND PART The purpose of our investigation was to synthesize a new series of 8-substituted xanthine derivatives in which the xanthine nucleus was linked to a differently substituted oxyacetamide chain by an heterocylic spacer (pyrazole, isoxazole, pyridine, pyridazine), and to determinate the effects of such substitutions on the affinity and selectivity of compounds obtained as A2B adenosine receptor antagonist. Baraldi, P.G. et al., J.Med.Chem, 2004, 47, 1434-1437
O R1 O
N N R1
Binding Data of Oxymethylene-anilidepyrazole-xanthine Derivatives
O H N N
O N
N
N H
R2
Ki nM Compd
R1
R2
hA1a
hA2Ab
hA2Bc
hA3d
11
n-C3H7
4-F-phenyl
65 (48-86)
> 10000
12 (7-21)
> 10000
12
n-C3H7
4-Br-phenyl
150 (132-170)
> 10000
20 (16-25)
> 10000
13
iso-C4H9
4-F-phenyl
467 (400-546)
> 10000
303 (260-352)
> 10000
14
iso-C4H9
4-Br-phenyl
2427 (2067-2850) > 10000
132 (98-178)
> 10000
15
n-C3H7
3,4-methylendioxy-phenyl
200 (180-226)
> 10000
5.5 (4.6-6.5)
> 10000
19
n-C3H7
4-methyl-phenyl
79 (72-86)
> 10000
19 (12-29)
> 10000
20
n-C3H7
4-N-morpholin-phenyl
> 10000
> 10000
86 (78-93)
> 10000
O R1
N
O
N R1
H N N
Adenosine Receptor Affinities of N2-methylpyrazole-Xanthine Derivatives
O O N N
N H
R2
Ki(nM) Compd
R1
R2
hA1a
hA2Ab
hA2Bc
hA3d
21
n-C3H7 4-ethoxy-carbonyl-phenyl
> 10000
> 10000
32 (22-45)
> 10000
22
n-C3H7
4-carboxy-phenyl
> 10000
> 10000
36 (27-47)
> 10000
23
n-C3H7
3,4-dimethyl-phenyl
700 (650-760)
> 10000
10 (8-13)
> 10000
24
n-C3H7
3,4-dichloro-phenyl
300 (240-380)
> 10000
16 (12-20)
> 10000
25
n-C3H7
3,4-dimethoxy-phenyl
> 10000
> 10000
12 (8-17)
> 10000
26
n-C3H7
pyridin-4-yl
955 (896-1017) > 10000
41 (35-48)
> 10000
O R1
N
O
O
H N N
N R1
O N N
N H
R2
Adenosine Receptor Affinities of N1-methyl-pyrazoleXanthine Derivatives
Ki(nM) Compd
R1
R2
hA1a
hA2Ab
hA2Bc
hA3d
27
n-C3H7
4-Br-phenyl
168 (140-201)
>10000
93 (82-105)
>10000
28
n-C3H7
4-F-phenyl
181 (127-258)
> 10000
185 (163-210)
> 10000
29
iso-C4H9
4-Br-phenyl
49 (34-72)
> 10000
66 (38-116)
> 10000
30
iso-C4H9
4-F-phenyl
72 (45-114)
> 10000
207 (162-265)
> 10000
O
O
H N
R1 N O
OH N
N
R1 N
ii
O
O
NH2
iii
O R1 N O
N R1
O
i:
HO N
OC2H5
, DCI, CH3OH, r.t;
N
3
O
ii: Amine derivative, DCI, HOBt, DMF, rt, 2-6 h O O
iii: HO N O
N
4
N
NH2
R1 = n-propyl: 2a, isobutyl: 2b, allyl: 2c
O
R'
11-26, 31-34, 37
R1 = n-propyl: 44a isobutyl: 44b allyl: 44c
i
N R1
N
R1
O N
O
N
N
R1
R1
H N
O
N
N
O
O
OC2H5
, DCI,CH3OH, r.t;
O H N N
O N
O OH
N
R1 = n-propyl: 45a isobutyl: 45b
ii
R1 N O
N R1
O H N N
O N
N
27-30
R'
O
O R1
N
O
O
H N
N N
N R1
N
N
N
Compd
R1
R
31
n-C3H7
32
R
Adenosine A2B Receptor Affinities of Piperazinyl Xanthine Derivatives Ki(nM)
phenyl
hA1a 250 (181-348)
hA2Ab > 10000
hA2Bc 15 (10-21)
hA3d > 10000
n-C3H7
4-F-phenyl
> 10000
> 10000
55 (46-65)
> 10000
33
n-C3H7
CH3
> 10000
> 10000
122 (108-136)
> 10000
34
n-C3H7
benzyl
810 (763-859)
> 10000
85 (66-95)
> 10000
35
n-C3H7
phenyl
260 (232-287)
> 10000
12 (7-19)
> 10000
36
n-C3H7
CH3
> 10000
> 10000
76 (67-86)
> 10000
37
CH2CH=CH2
phenyl
> 10000
> 10000
24 (18-32)
> 10000
Hydrochloride Derivatives: Compoundes 35 and 36
R1 O N O
N
R2
O H N
O
N H
O N
N
Binding Data of Isoxazole-xanthine Derivatives at Adenosine Receptors Ki(nM)
Compd 38
R1
R2
OCH2O
hA1a
hA2Ab
hA2Bc
hA3d
> 10000
> 10000
47 (43-52)
> 10000
39
OCH3
OCH3
> 10000
> 10000
51 (44-58)
> 10000
40
H
F
> 10000
> 10000
70 (61-80)
> 10000
41
H
OCH3
> 10000
> 10000
53 (40-69)
> 10000
Synthesis of Isoxazole Xanthine Derivatives O
O NH2
N O
N
i
N O
NH2
N
O
H N
O O
N
OH
N
46 ii R1 O N O
N
N
O O
N
38-41 O O
i : HO O
N
OC2H5
, DCI, CH3OH, r.t.
5
O R1
ii: H2N
R2
O
H N
R2 , DCI, HOBt, DMF, r.t.
N H
O
H N
N O
H N
O N
N
X N
O
I
Binding Data of Pyridine/Pyridazinexanthine Derivatives
Ki(nM) Compd
X hA1a
hA2Ab
hA2Bc
42
CH
> 10000
> 10000
108 (75-155)
hA3d > 10000
43
N
> 10000
> 10000
> 10000
> 10000
Preparation of radiolabeled A2B adenosine antagonist O O N O
N
H N
O N N
N
hA1 200 hA2A >10000 hA2B 5 nM hA3 > 10000
O
O N H
MRE2029F20
O O
O N O
N
N
O
O
H N
O N N
N H
hA1 200 hA2A >10000 hA2B 9 nM hA3 > 10000
H3
H3
O N
O
N
N
O
O
H N
O N N
N H
H3 H3
[3H] MRE2029F20
Baraldi et al. Bioorg. Med. Chem. Lett. In press.
Conclusions: 1) The presence of pyrazole ring at 8 position of xanthine moiety confirmed to be an important structural requirement for A2B adenosine receptor binding. . Among them, derivatives bearing the N1-methyl-pyrazole isomer, exhibited lower affinity than the corresponding N2-methyl analogues for A2B receptor. In addition, it was observed that N1-methyl derivatives demonstrated a global increase of affinity toward A1 receptor with consequent loss of selectivity. 2) Compounds bearing the isoxazole nucleus at 8 position showed lower affinity at A2B receptor than 8-pyrazole derivatives, anyway replacing the pyrazole ring with the isoxazole one, enhanced selectivity versus A1 adenosine receptor
3) Another result that supported the fundamental importance of the pyrazole is the complete loss of affinity produced by the substitution of pyrazole with pyridine or pyridazine rings. Although pyridine and pyridazine showed to be detrimental in terms of affinity, the pyridine derivative seemed to interact with A2B better than the pyridazine derivative, this suggested that the electronic and lipophilic characters play a fundamental role to influence A2B binding parameters, in addition to steric factors. 4) Further important information was furnished by the introduction of different moiety on the side chain of the heterocyclic spacer differed for electronic, steric and lipophilic features. Small hydrophobic residue in 3 and/or 4 position of the phenyl ring seemed to increase affinity toward A2B receptor. In particular the presence of electron donating groups, such as -OCH3 or 3,4-methylendioxy, increased affinity .
5) Introduction of substituents containing a carbonylic function (17, 21, 22), determined a light loss of affinity but an improvement of selectivity versus other adenosine receptors subtypes, in particular versus A1 adenosine receptors. The most interesting compound in terms of affinity was 15 (hA2B = 5.5 nM) presenting 3,4-methylendioxy function on the phenyl ring, while the 3,4dimethoxy derivative 25 (hA2B = 12 nM) exhibited a good retention of affinity with improved selectivity for A2B 6) In order to obtain water-soluble compounds, we replaced the phenyl ring in the side chain with a 4-substituted-piperazine, introducing different kind of substituents in N4 position of piperazine. The choice of 4-F-phenyl ring appeared to be the most interesting modulation in terms of both affinity and selectivity. 1,3di-n-propyl-8-{5-[2-oxo-2-(4-phenyl-piperazin-1-yl)-ethoxy]-2methyl-2H-pyrazole-3-yl}-xanthine (31) and its hydrochloride salt (35) showed high affinity and good selectivity at A2B receptor (respectively hA2B = 15 nM; hA2B = 12 nM).
7) In our SAR study we have also investigated the importance of the alkyl substitution at 1,3-positions of xanthine structure. Introduction of isobutyl chains produced a marked decrease of affinity toward A2B adenosine receptors. Another interesting finding was the substitution of 1,3-dipropyl pattern with 1,3-diallyl one, which produced an increase of selectivity.
Synthesis and Biological Activity of P2X7 (P2Z) Receptor Antagonists Structurally Related to KN62
A1 A2A P1
A2B A3
Purinergic receptors
P2Y1 P2Y2 P2Y3
P2
P2Y
P2Y4 P2Y5
P2X
P2Y6 P2Y7
P2X1 P2X2 P2X3 P2X4 P2X5 P2X6
P2X7 o P2Z
P2X7 Receptor: -P2X7 is a ligand-activated ion channels (ionotropic receptor), permeable to hydrophilic molecules with molecular weight up to 900 Da. -This receptor is mainly, if not exclusively, expressed in cells of hematopoietic origin (mast cells, macrophages, lymphocytes), where it mediates cytotoxic responses, cytochine release and cell fusion - Activation of the P2X7 receptor in macrophages and microglial cells causes a large a rapid release of mature interleukin-1b (IL-1b). IL-1b is of prime importance in the induction of the immune responses, including facilitating responses to antigens, synthesis of prostaglandins, proliferation of fibroblasts, blood neutrophils, and inducing the synthesis of other cytokines.
…P2X7 Receptor:
-P2X7 receptor is considered a promising new target for antiinflammatory drug development. - Due to its likely involvement in immunomodulation, it would be of the most importance to develop selective P2X7 antagonists. - Actually there is only one specific antagonist of the P2X7 receptor active in the nanomolar range.
Structure of selected P2Z antagonists NaO3S
N NH2
SO3Na
N
N
O
N N H
N
N
PPPO CHOCHO
Brilliant Blue G (noncompetitive) IC50=400 nM
oxidized-ATP (irreversible)
N
N
O S O O
O S O O N
N
H N N
N
S O O
KN04 (noncompetitive) IC50=85 nM
N
N
CH3 N S O O O
KN62 (noncompetitive) IC50=51 nM (measured by ATP-stimulated calcium influx into human macrophages)
Conformationally constrained analogues of KN62 N O S O O N N O S O O
N N
CH3
N
N S O O O
Conformationally constrained analogue of KN62 completely inactive
N
N
N
S O O O
N
KN62 IC50=51 nM
O S O O
N
N
N S O O O
IC50=316 nM 6-fold less active than KN62
Which modifications could improve the activity of the reference compound? N O S O O
O
N
N
CH3 N S O O N O KN62
B
S O O B
W N n(H2C) A
N
Z
X Y
Y X Z
S O O O
R1 X,Y,Z=CH or N W=H or CH3 A=N or CH B=H or halogen n= from 0 to 4 R1 =electron-releasing or electron-withdrawing groups
Synthetic metodology OH
OH
A=CH or N n=0,1,2 R=NO2, CH3, halogen, ,CN, acetyl, methoxy X,Y=N when R=H
a O CO2H Boc
N
N
Boc
N
A (CH2)n X
Y R
b
Reaction. a: substituted aryl or heteroaryl piperazine, HOBt (1.1 equiv.), EDCI (1.1 equiv.), DMF, r.t., 24 hours; b: TFA, DCM; c: TEA, isoquinoline sulphonyle chloride, DMF.
N
O O S O
OH c O
O
N
N N O S O
A (CH2)n X N
Y R
HN
A (CH2)n R
X
Y
Modification of the phenyl moiety: effect of the introduction of a substituent on the para position Substituent (X)
Activity (IC50)
H (KN62)
51
F
1.33
Cl
105
I
176
CH3
13.5
OCH3
132
NO2
5.76
NH2
101
CN
98
CH3CO
71
N O S O O N
X
N
N
CH3 N S O O O
Baraldi, P.G. et al., J.Med.Chem., 2003, 46, 1318-1329
Modification of the linker between phenyl and piperazine N O S O O N
N
N
CH3 N S OO O
KN62 IC50 = 51 nM N
N O S O O
O S O O
N
N
N
N
CH3 N S OO O
Benzyl derivative IC50 = 21 nM
N
N
CH3 N S OO O
Phenylethyl derivative IC50 = 600 nM
Modification on the phenyl ring linked to the piperazine moiety N O S O O N
N
N
CH3 N S OO O
KN62 IC50 = 51 nM
N
N O S O O
O S O O
N
N
N N
N
CH3 N S OO O
Pyridine derivative IC50 = 170 nM
N N
N
CH3 N S OO O
N Pyrimidine derivative IC50 = 80 nM
Modification of the isoquinoline moiety: effect of the substitution with a pyridine N
N
N
O S O O
O S O O
O S O O
N
N
N
N
CH3 N S OO O
N
KN62 IC50=51 nM
N
CH3 N S OO O
N
N
IC50=955 nM
N
IC50 = 15 nM
N
N
N
O S O O
O
O
S O O
S O O
CH3 N S OO O
N
N
N
CH3 N S OO O
IC50 = 9120 nM
N F
N
N
CH3 N S OO O
IC50 = 1.33 nM
F
N
N
CH3 N S OO O
IC50 = 1148 nM
N
Structure-activity relationship (SAR) in the series of synthesized compounds:
-the 5-isoquinoline moieties are essential for the activity - the heteroaryl piperazine derivatives do not improve the activity - the unsubtituted benzyl piperazine is more active than the phenyl piperazine counterpart - about the effect on the biological activity of substituents on the phenyl ring linked to the piperazine, for the same substituent the ortho and meta was favorited than the para position. - the N-methyl seems not basic for the biological activity
Acknowledgements • • • • • • • • • • •
Dott.Romeo Romagnoli Dott.ssa Mojgan Tabrizi Prof.Hussein El-Kashef Dott.ssa Francesca Fruttarolo Dott.ssa Delia Preti Dott.Andrea Bovero Prof.Pier Andrea Borea Dott.ssa Katia Varani Dott.Ennio Ongini (Schering-Plough) Dott.Eddie Leung (Medco/Kings) Dott.Allan Moorman (Medco/Kings)