SD675 – Pattern Recognition References

12 downloads 105063 Views 8KB Size Report
SD675 – Pattern Recognition References. Topic. References. Background. 372 Notes — Ch. 2. Duda, Hart, Stork — Appen. A. Introduction. 372 Notes — Ch. 1.
SD675 – Pattern Recognition References Topic

References

Background

372 Notes — Ch. 2 Duda, Hart, Stork — Appen. A

Introduction

372 Notes — Ch. 1 Duda, Hart, Stork — Ch. 1

Basic Classification Statistical Classification

372 Notes — Ch. 4 Duda, Hart, Stork — Ch. 2 Schalkoff — Ch. 2

Parametric Classification

372 Notes — Ch. 3

Nonparametric Classification

372 Notes — Ch. 3.2 Duda, Hart, Stork — Ch. 4.5

Linear Discriminants

372 Notes — Ch. 6 Duda, Hart, Stork — Ch. 5

Classifier Assessment No Free Lunch, Occam Validation, m-Valid Leave-one-out

Duda, Hart, Stork — Ch. 9.2 Duda, Hart, Stork — Ch. 9.6

Classification Error

372 Notes — Ch. 4.3 Duda, Hart, Stork — Ch. 2.7

Error Bounds

Duda, Hart, Stork — Ch. 2.8 Shanmugan & Breipohl — Ch. 2.7

Hypothesis Testing Overview

Neyman Pearson

372 Notes — Ch. 4 Duda, Hart, Stork — Ch. 2.8, 2.9 Schalkoff — Ch. 2 Duda, Hart, Stork — Ch. 2.3

Generalized Hypoth. Testing

Shanmugan & Breipohl — Ch. 6, 8.8 Papoulis — Ch. 9.3

Statistics (Chi, PCP) Classifier Generalization:

Papoulis — Ch. 9.3 (Page 273) Shanmugan & Breipohl — Ch. 5.4

Boosting, Bagging

Duda, Hart, Stork — Ch. 9.5

Voting Schemes

Duda, Hart, Stork — Ch. 9.7

SVMs

Duda, Hart, Stork — Ch. 5.11

Neural

Duda, Hart, Stork — Ch. 5.5, 6 Haykin Schalkoff — Ch. 11,12

Parameter Estimation Bayesian Estimation

372 Notes — Ch. 5.1 Duda, Hart, Stork — Ch. 3.3-3.5 Papoulis — Ch. 9.2 Schalkoff — Ch. 3 (Pages 58–65) Shanmugan & Breipohl — Ch. 8.4, 8.5

Maximum Likelihood

372 Notes — Ch. 5.1 Duda, Hart, Stork — Ch. 3.2

Cramer Rao Bound

Papoulis — Ch. 9.2 (Page 263) Wetherill, Sect. 3.5, QA276.W455

EM

Duda, Hart, Stork — Ch. 3.9

NonParametric Estimation Histogram

372 Notes — Ch. 5.2

Parzen

Duda, Hart, Stork — Ch. 4.3 Schalkoff — Ch. 3 (Pages 66–75) Shanmugan & Breipohl — Ch. 8.3

kNN

Duda, Hart, Stork — Ch. 4.4

Estimator Validation

Jackknife Delete-d Jack Bootstrapping

Duda, Hart, Stork — Ch. 9.4, 9.6

Feature Extraction Principle Comp.

Duda, Hart, Stork — Ch. 10.13

Fisher’s Lin. Disc.

372 Notes — Ch. 8 Duda, Hart, Stork — Ch. 3.8

Feature Extraction Feature Selection

372 Notes — Ch. 8 Meisel — Ch. 9

Other Topics Information Theory

372 Notes — Ch. 8 Duda, Hart, Stork — Appen. A Gallager

Unlabeled Clustering

372 Notes — Ch. 7 Duda, Hart, Stork — Ch. 10 Schalkoff — Ch. 5

Syntax, Grammars

Duda, Hart, Stork — Ch. 8.5, 8.6, 8.7 Schalkoff — Ch. 6

Finite-State Automata

Nadler & Smith — Ch. 9

#

#

#

Duda, Hart, Stork

Q327.D83

Fukunaga Gallager Haykin Meisel

Q327.F85 Q360.G3 QA76.87.H39 Q327.M44

Pattern classification and scene analysis

Introduction to Statistical Pattern Recognition Information theory and reliable communication Neural networks : a comprehensive foundation Computer-Oriented Approaches to Pattern Recognition Nadler & Smith TK7882.P3N3 Pattern recognition engineering Papoulis QA273.P2 Probability, random variables, and stochastic processes Schalkoff Q327.S27 Pattern recognition : statistical, structural, and neural approaches Shanmugan & Breipohl TK5102.5.S447 Random signals : detection, estimation, and data analysis

# - Material held on reserve in the Davis Centre library (under SYDE 372)