May 2, 2013 ... Ishihara, K.; Nakamura, S.; Yamamoto, H. J. Am. Chem. Soc. 1999, 121 ...
Surendra, K.; Corey, E.J. J. Am. Chem. Soc. 2012, 134, 11992-11994.
Non-Enzymatic Enantioselective Polyene Cyclizations Adam Hill Chem 535 May, 2nd 2013
Enantioselective Polyene Cyclization
(?) General Method to Rapidly Build Molecular Complexity
(+) Exquisite Stereo- and Regio- Control (-) Single Substrate
Methods for Polyene Cyclization Squalene Cyclase Mechanism:
Chiral Bronsted Acid Catalysis:
Transition Metal Catalysis:
Organocatalysis:
Squalene Cyclization
2,3-Oxidosqualene Cyclization Mechanism
Stork-Eschenmoser Hypothesis Stork Studies:
Eschenmoser Studies:
Cyclization occurs by stereospecific and concerted anti-addition Gamboni, G.; Schinz, H.; Eschenmoser, A. Helv. Chima. Acta 1954, 37, 964
Concerted A-Ring Formation
Relative Rates of Cyclization:
15
2.4
1
Epoxide protonation and A-ring closure occurs by a concerted anti-addition
Corey, E.J.; Cheng, H.; Baker, C.H.; Matsuda, S.P.T.; Li, D.; Song, X. J. Am. Chem. Soc. 1997, 119, 1277-1288
B- and C-Ring Cyclization
Cyclization of Truncated Oxidosqualene Analogs:
C-ring closure gives a 6-6-5 system which rearranges to the 6-6-6 system in lanosterol
Corey, E.J.; Virgil, S.C.; Cheng, H.; Baker, C.H.; Matsuda, S.P.T.; Singh, V.; Sarshar, S. J. Am. Chem. Soc. 1995, 117, 11819-11820
C-Ring Expansion and Elimination to Lanosterol
Corey, E.J.; Virgil, S.C.; Cheng, H.; Baker, C.H.; Matsuda, S.P.T.; Singh, V.; Sarshar, S. J. Am. Chem. Soc. 1995, 117, 11819-11820
Squalene Cyclization Mechanism
Corey, E.J.; Virgil, S.C.; Cheng, H.; Baker, C.H.; Matsuda, S.P.T.; Singh, V.; Sarshar, S. J. Am. Chem. Soc. 1995, 117, 11819-11820
Conformational Restriction of Squalene
2-azasqualene bound to oxidoqualene cyclase Reinert, D.J.; Balliano, G.; Schulz G.E. Chem. Biol. 2004, 11, 121-126
Cation-Stabilization by Squalene Cyclase Mutagenesis Studies
Hopene overlaid on SHC active site
E.J. Corey; Cheng, H.; Baker, H.; Matsuda, S.P.T.; Li, D.; Song, X. J. Am. Chem. Soc. 1997, 119, 1289 Wendt, K.U.; Schulz, G.E.; Corey, E.J.; Liu, D.R. Angew. Chem. Int. Ed. 2000, 39, 2812-2833
Cation-Stabilization by Squalene Cyclase Mutagenesis Studies
Hopene overlaid on SHC active site
E.J. Corey; Cheng, H.; Baker, H.; Matsuda, S.P.T.; Li, D.; Song, X. J. Am. Chem. Soc. 1997, 119, 1289 Wendt, K.U.; Schulz, G.E.; Corey, E.J.; Liu, D.R. Angew. Chem. Int. Ed. 2000, 39, 2812-2833
Cation-Stabilization by Squalene Cyclase Mutagenesis Studies
Hopene overlaid on SHC active site
E.J. Corey; Cheng, H.; Baker, H.; Matsuda, S.P.T.; Li, D.; Song, X. J. Am. Chem. Soc. 1997, 119, 1289 Wendt, K.U.; Schulz, G.E.; Corey, E.J.; Liu, D.R. Angew. Chem. Int. Ed. 2000, 39, 2812-2833
Methods for Polyene Cyclization Squalene Cyclase Mechanism:
Chiral Bronsted Acid Catalysis:
Transition Metal Catalysis:
Organocatalysis:
Three Roles of Cyclase: •
Enantioselective A ring formation
•
Stabilization of the developing positive charge
•
Conformation control of the linear precursor
Methods for Polyene Cyclization Squalene Cyclase Mechanism:
Chiral Bronsted Acid Catalysis:
Transition Metal Catalysis:
Organocatalysis:
Lewis Acid-Assisted Chiral Bronsted Acid (LBA) First example of an enantioselective biomimetic cyclization:
Ishihara, K.; Nakamura, S.; Yamamoto, H. J. Am. Chem. Soc. 1999, 121, 4906-4907
Lewis Acid-Assisted Chiral Bronsted Acid (LBA) Enantioselective Cyclization via Formal [1,3]-rearrangement:
Mechanism of the Formal [1,3]-rearrangement:
Ishihara, K.; Nakamura, S.; Yamamoto, H. J. Am. Chem. Soc. 1999, 121, 4906-4907
Mechanism of LBA catalysis
Entry
Bronsted Acid R1 = R2 =
Yield
ee
1
-
-
89%
racemic
2
R1 = OMe
R2 = Me
83%
racemic
3
R1 = OMe
R2 = OMe
65%
racemic
4
R1 = OH
R2 = Me
83%
46%
5
R1 = OH
R2 = Bz
98%
79%
SnCl4 Catalyzed Cyclization LBA Catalyzed Cyclization
Hydroxyl group is required for asymmetric cyclization
Nakamura, S.; Ishihara, K.; Yamamoto, H. J. Am. Chem. Soc. 2000, 122, 8131-8140
Mechanism of LBA catalysis
= 1 equiv LBA = 0.2 equiv LBA
Product inhibition lowers ee when R-BINOL-Bz is used catalytically Nakamura, S.; Ishihara, K.; Yamamoto, H. J. Am. Chem. Soc. 2000, 122, 8131-8140
Calculated Transition Structure for LBA with 2-methyl-2-butene
Major Enantiomer Nakamura, S.; Ishihara, K.; Yamamoto, H. J. Am. Chem. Soc. 2000, 122, 8131-8140
Minor Enantiomer
Natural Product Synthesis Using LBA Total Synthesis of (-)-Chromazonarol:
Total Synthesis of (-)-11’-Deoxytanodiol methyl ether:
Ishibashi, H.; Ishihara, K.; Yamamoto, H. J. Am. Chem. Soc. 2004, 126, 11122-11123
LBA Using Antimony Lewis Acids
4 examples 70% - 80% yield, 87% - 92% ee
4 examples 70% - 78% yield, 84% - 90% ee Surendra, K.; Corey, E.J. J. Am. Chem. Soc. 2012, 134, 11992-11994
pre-transition state assembly:
Methods for Polyene Cyclization Squalene Cyclase Mechanism:
Chiral Bronsted Acid Catalysis:
(+) Enantioselective cyclizationOrganocatalysis: of the first ring
Transition Metal Catalysis:
(-) No stabilization of developing cationic charge
(-) Requires low temperatures and long reaction times to control substrate conformation
Methods for Polyene Cyclization Squalene Cyclase Mechanism:
Chiral Bronsted Acid Catalysis:
Transition Metal Catalysis:
Organocatalysis:
Platinum Catalyzed Cyclization
Proposed Catalytic Cycle:
Single turnover observed without trityl cation
Catalyst resting state shows a single agostic complex
Mullen, C.A.; Gagne, M.R. J. Am. Chem. Soc. 2007, 129, 11880-11881
Pt Catalyzed Polyene Cyclization
Chiral Ligand Screen:
Large aryl groups in a non-BINAP derived bisphosphine ligands gave the highest enantioselectivity
Mullen, C.A.; Campbell, A.N.; Gagne, M.R. Angew. Chemie. Int. Ed. 2008, 47, 6011-6014
Scope
Mullen, C.A.; Campbell, A.N.; Gagne, M.R. Angew. Chemie. Int. Ed. 2008, 47, 6011-6014
C3-Functionalization Post Catalytic Cycle
Proposed Catalytic Cycle: Scope: 10 examples: 55% - 65% yield and 70%-80% ee
• Possible method to install fluorine into steroid-like frameworks • Other Pt-C bond functionalization may be possible
Cochrane, N.A.; Nguyen, H.; Gagne, M.R. J. Am. Chem. Soc. 2013, 135, 628-631
Alkyne Activation via Gold Catalysis
Chiral Ligand Screen:
Solvent Screen: Entry
Solvent
Yield
ee
1
CH2Cl2
71%
46%
2
benzene
76%
83%
3
toluene
77%
85%
4
m-xylene
76%
87%
*Using (R)-MeO-DTB-BIPHEP
Sethofer, S.G.; Mayer, T.; Toste, D.E. J. Am. Chem. Soc. 2010, 132, 8276-8277
Alkyne Activation via Gold Catalysis
Substrate Scope:
Sethofer, S.G.; Mayer, T.; Toste, D.E. J. Am. Chem. Soc. 2010, 132, 8276-8277
Ir-Catalyzed Activation of Allylic Alcohols
Reaction Optimization: Entry Promoter
Solvent
Yield
ee
1
P(O)(OBu)2OH
DCE
42%
89%
2
TfOH
DCE
12%
81%
3
Sc(OTf)3
DCE
91%
80%
4
Zn(OTf)2
DCE
90%
>99.5%
5
Zn(OTf)2
dioxane
8%
>99.5%
6
Zn(OTf)2
DMF
n.r.
-
Schafroth, M.A.; Sarlah, D.; Krautwald, S.; Carreira, E.M. J. Am. Chem. Soc. 2012, 134, 20276-20278
Scope of Ir-Catalyzed Cyclization
Heteroaryl Terminating Groups:
Successful heteroaryl termination of cation-olefin cyclization
Schafroth, M.A.; Sarlah, D.; Krautwald, S.; Carreira, E.M. J. Am. Chem. Soc. 2012, 134, 20276-20278
Ir-Catalyzed Tricyclization
Schafroth, M.A.; Sarlah, D.; Krautwald, S.; Carreira, E.M. J. Am. Chem. Soc. 2012, 134, 20276-20278
Methods for Polyene Cyclization Squalene Cyclase Mechanism:
Chiral Bronsted Acid Catalysis:
Transition Metal Catalysis:
Organocatalysis:
(+) Increased enantioselectivities over chiral Bronsted acid catalysis (-) No mechanism by which to prevent early termination
Methods for Polyene Cyclization Squalene Cyclase Mechanism:
Chiral Bronsted Acid Catalysis:
Transition Metal Catalysis:
Organocatalysis:
Phosphoramidite Catalyzed Halocyclization
Racemic Cyclization:
Sakakura, A.; Ukai, A.; Ishihara, K. Nature, 2007, 445, 900-903
Entry
Nucleophile
Yield (%)
1
-
3
2
DMAP
0
3
PPh3
67
4
PBu3
99
Phosphoramidite Catalyzed Halocyclization
Chiral Phosphoramidite Screen:
Scope: 4 examples: 50%-60% yield, 90 -95% ee Sakakura, A.; Ukai, A.; Ishihara, K. Nature, 2007, 445, 900-903
Organo-SOMO Catalysis
Rendler, S.; MacMillan, D.W.C. J. Am. Chem. Soc. 2010, 132, 5027-5029
Organo-SOMO Catalysis
Entry
Catalyst
Additive
Solvent
Yield (%)
ee (%)
1
Ar = Ph
-
MeCN
11
34
2
Ar = Ph
TFA
MeCN
16
35
3*
Ar = Ph
TFA
MeCN
42
42
4*
Ar = 1-Np
TFA
MeCN
56
74
5*
Ar = 1-Np
TFA
i-PrCN/DME
54
87
*with slow addition of Cu(OTf)2
Rendler, S.; MacMillan, D.W.C. J. Am. Chem. Soc. 2010, 132, 5027-5029
Scope
Rendler, S.; MacMillan, D.W.C. J. Am. Chem. Soc. 2010, 132, 5027-5029
Thiourea Catalysis
Catalyst Optimization:
Knowles, R.R.; Lin, S.; Jacobsen, E.N. J. Am. Chem. Soc. 2010, 132, 5030-5032
Thiourea Catalysis
Reaction Scope:
Knowles, R.R.; Lin, S.; Jacobsen, E.N. J. Am. Chem. Soc. 2010, 132, 5030-5032
Eyring Analysis
Catalyst Structures:
Knowles, R.R.; Lin, S.; Jacobsen, E.N. J. Am. Chem. Soc. 2010, 132, 5030-5032
Methods for Polyene Cyclization Squalene Cyclase Mechanism:
Chiral Bronsted Acid Catalysis:
Transition Metal Catalysis:
Organocatalysis:
(+) Aryl groups may provide a mechanism to prevent early termination (-) Requires contrived substrates or exotic activating groups
Methods for Polyene Cyclization Squalene Cyclase Mechanism:
Chiral Bronsted Acid Catalysis:
Transition Metal Catalysis:
Organocatalysis:
Future Directions Chiral Anion Catalysis:
Cavitand Based Catalysts:
Chiral Anion Catalysis: Hamilton, G.L.; Kang, E.J.; Toste, F.D. Science, 2007, 317, 496 Cavitands in epoxide opening cascades: Pinacho Crisostomo, F.R.; Lledo, A.; Shenoy, S.R.; Iwasawa, T.; Rebek, J. J. Am. Chem. Soc. 2009, 131, 7402-7410
Acknowledgements CHEM 535 Class Professor Zimmerman Burke Group Professor Burke