Simulation of microring resonator filters based ion

2 downloads 0 Views 255KB Size Report
Oct 15, 2017 - waveguide cladding. Google .... with double-cladding Er/Yb-doped fiber using a Hi-Bi Sagnac .... terahertz fiber with honeycomb cladding.
10/15/2017

Simulation of microring resonator filters based ion-exchange buried waveguide using nano layer of graphene | SpringerLink

Simulation of microring resonator filters based ion-exchange buried waveguide using nano layer of graphene Journal of Optics pp 1–9 | Cite as Iraj S. Amiri (1) (2) Email author ([email protected])View author's OrcID profile (View OrcID profile) M. M. Ariannejad (3) M. Ghasemi (3) P. Naraei (4) V. Kouhdaragh (5) S. A. Seyedi (6) H. Ahmad (3) P. Yupapin (1) (7) 1. Department for Management of Science and Technology Development, Ton Duc Thang University, Ho Chi Minh City, Vietnam 2. Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Vietnam 3. Photonics Research Centre, University of Malaya, Kuala Lumpur, Malaysia 4. Department of Computer Science, Ryerson University, Toronto, Canada 5. Department of Information and Telecommunications Engineering, University of Bologna, Bologna, Italy 6. Dipartimento Di Matematica, Università Di Bologna, Bologna, Italy 7. Faculty of Electrical and Electronics Engineering, Ton Duc Thang University, Ho Chi Minh City, Vietnam Research Article First Online: 13 July 2017 Received: 30 August 2016 Accepted: 09 June 2017

Abstract Silver ion-exchange in the glass reveals to be a highly promising method if the low loss waveguide fabrication in the context of optical interconnects demanded. Silver ionexchange is a well-known method that Ag+-ions from the AgNO3 melt exchanged with mixed Na+-ions of the glass, even not high-temperature low solubility of the elementary silver can cause the ion-exchange in glass have silver as submicroscopic crystals. The distribution of electric fields in the form of contour plots from different perspectives namely, topside, the front side (input port) and backside (output port) and the evaluation

https://link.springer.com/article/10.1007/s12596-017-0415-0

1/16

10/15/2017

Simulation of microring resonator filters based ion-exchange buried waveguide using nano layer of graphene | SpringerLink

on the basis of confined power density in the Ag+ buried waveguide are presented. The microring resonators (MRRs) is proposed as an application for the ion-exchange buried waveguide. In this research, we use the time-domain traveling wave method to model and simulate the MRR utilizing the ion-exchange buried waveguides. Two MRRs are embedded to an MRR add/drop to perform tunable dual-wavelengths. Therefore, this system can be used to generate multiple dual-wavelengths with spacing in the range of GHz in the frequency domain. The generated dual-wavelengths have ranged between 43 and 314 GHz. These signals have many applications in optical sensing, radio frequency radiation, optical communication, optical switching, millimeter wave generators and biological research.

Keywords Ion-exchange buried waveguides Microring resonator (MRR) Time-domain traveling wave (TDTW) Add/drop filter MRR

References 1.

R. Adar, M. Serbin, V. Mizrahi, Less than 1 dB per meter propagation loss of silica waveguides measured using a ring resonator. J. Lightwave Technol. 12(8), 1369– 1372 (1994) ADS (http://adsabs.harvard.edu/cgi-bin/nph-data_query? link_type=ABSTRACT&bibcode=1994JLwT...12.1369A) CrossRef (https://doi.org/10.1109/50.317523) Google Scholar (http://scholar.google.com/scholar_lookup? title=Less%20than%201%C2%A0dB%20per%20meter%20propagation%20loss% 20of%20silica%20waveguides%20measured%20using%20a%20ring%20resonato r&author=R.%20Adar&author=M.%20Serbin&author=V.%20Mizrahi&journal=J. %20Lightwave%20Technol.&volume=12&issue=8&pages=13691372&publication_year=1994)

2.

G.P. Agrawal, Nonlinear Fiber Optics (Academic press, New York, 2007) MATH (http://www.emis.de/MATH-item?1024.78514) Google Scholar (http://scholar.google.com/scholar_lookup? title=Nonlinear%20Fiber%20Optics&author=GP.%20Agrawal&publication_year =2007)

3.

H. Ahmad, N. Saat, S. Harun, S-band erbium-doped fiber ring laser using a fiber Bragg grating. Laser Phys. Lett. 2(7), 369 (2005) ADS (http://adsabs.harvard.edu/cgi-bin/nph-data_query? link_type=ABSTRACT&bibcode=2005LaPhL...2..369A) CrossRef (https://doi.org/10.1002/lapl.200510009) Google Scholar (http://scholar.google.com/scholar_lookup?title=Sband%20erbiumdoped%20fiber%20ring%20laser%20using%20a%20fiber%20Bragg%20grating& author=H.%20Ahmad&author=N.%20Saat&author=S.%20Harun&journal=Laser %20Phys.%20Lett.&volume=2&issue=7&pages=369&publication_year=2005)

4.

H. Ahmad, M. Soltanian, C. Pua, M. Zulkifli, S. Harun, Narrow spacing dualwavelength fiber laser based on polarization dependent loss control. IEEE Photon.

https://link.springer.com/article/10.1007/s12596-017-0415-0

2/16

10/15/2017

Simulation of microring resonator filters based ion-exchange buried waveguide using nano layer of graphene | SpringerLink

J. 5(6), 1502706 (2013) CrossRef (https://doi.org/10.1109/JPHOT.2013.2293613) Google Scholar (http://scholar.google.com/scholar_lookup? title=Narrow%20spacing%20dualwavelength%20fiber%20laser%20based%20on%20polarization%20dependent%2 0loss%20control&author=H.%20Ahmad&author=M.%20Soltanian&author=C.%2 0Pua&author=M.%20Zulkifli&author=S.%20Harun&journal=IEEE%20Photon.% 20J.&volume=5&issue=6&pages=1502706&publication_year=2013) 5.

H. Ahmad, M.R.K. Soltanian, I.S. Amiri, S.E. Alavi, A.R. Othman, A.S.M. Supa’at, Carriers generated by mode-locked laser to increase serviceable channels in radio over free space optical systems. IEEE Photon. J. (2015). doi:10.1109/JPHOT.2015.2484285 (https://doi.org/10.1109/JPHOT.2015.2484285) Google Scholar (http://scholar.google.com/scholar_lookup? title=Carriers%20generated%20by%20modelocked%20laser%20to%20increase%20serviceable%20channels%20in%20radio% 20over%20free%20space%20optical%20systems&author=H.%20Ahmad&author =MRK.%20Soltanian&author=IS.%20Amiri&author=SE.%20Alavi&author=AR.% 20Othman&author=ASM.%20Supa%E2%80%99at&journal=IEEE%20Photon.%2 0J.&publication_year=2015&doi=10.1109%2FJPHOT.2015.2484285)

6.

H. Ahmad, M.A. Salim, S.R. Azzuhri, S.W. Harun, Highly stable and tunable narrow-spacing dual-wavelength ytterbium-doped fiber using a microfiber Mach– Zehnder interferometer. Opt. Eng. 55(2), 026114 (2016) ADS (http://adsabs.harvard.edu/cgi-bin/nph-data_query? link_type=ABSTRACT&bibcode=2016OptEn..55b6114A) CrossRef (https://doi.org/10.1117/1.OE.55.2.026114) Google Scholar (http://scholar.google.com/scholar_lookup? title=Highly%20stable%20and%20tunable%20narrow-spacing%20dualwavelength%20ytterbiumdoped%20fiber%20using%20a%20microfiber%20Mach%E2%80%93Zehnder%2 0interferometer&author=H.%20Ahmad&author=MA.%20Salim&author=SR.%20 Azzuhri&author=SW.%20Harun&journal=Opt.%20Eng.&volume=55&issue=2&p ages=026114&publication_year=2016)

7.

S.E. Alavi, I.S. Amiri, S. Idrus, A.S.M. Supa’at, J. Ali, P.P. Yupapin, All optical OFDM generation or IEEE802.11a based on soliton carriers using microring resonators. IEEE Photon. J. (2014). doi:10.1109/JPHOT.2014.2302791 (https://doi.org/10.1109/JPHOT.2014.2302791) Google Scholar (http://scholar.google.com/scholar_lookup? title=All%20optical%20OFDM%20generation%20or%20IEEE802.11a%20based %20on%20soliton%20carriers%20using%20microring%20resonators&author=S E.%20Alavi&author=IS.%20Amiri&author=S.%20Idrus&author=ASM.%20Supa %E2%80%99at&author=J.%20Ali&author=PP.%20Yupapin&journal=IEEE%20P hoton.%20J.&publication_year=2014&doi=10.1109%2FJPHOT.2014.2302791)

8.

S.E. Alavi, I.S. Amiri, H. Ahmad, N. Fisal, A.S.M. Supa’at, Optical amplification of tweezers and bright soliton using an interferometer ring resonator system. J. Comput. Theor. Nanosci. 12(4), 624–629 (2015) CrossRef (https://doi.org/10.1166/jctn.2015.3777)

https://link.springer.com/article/10.1007/s12596-017-0415-0

3/16

10/15/2017

Simulation of microring resonator filters based ion-exchange buried waveguide using nano layer of graphene | SpringerLink

Google Scholar (http://scholar.google.com/scholar_lookup? title=A.S.M.%20Supa%E2%80%99at%2C%20Optical%20amplification%20of%20 tweezers%20and%20bright%20soliton%20using%20an%20interferometer%20ri ng%20resonator%20system&author=SE.%20Alavi&author=IS.%20Amiri&author =H.%20Ahmad&author=N.%20Fisal&journal=J.%20Comput.%20Theor.%20Nan osci.&volume=12&issue=4&pages=624-629&publication_year=2015) 9.

S.E. Alavi, I.S. Amiri, M.R.K. Soltanian, R. Penny, A.S.M. Supa’at, H. Ahmad, Multiwavelength generation using an add-drop microring resonator integrated with InGaAsP/InP sampled grating distributed feedback (SG-DFB). Chin. Opt. Lett. 14(2), 021301 (2016) ADS (http://adsabs.harvard.edu/cgi-bin/nph-data_query? link_type=ABSTRACT&bibcode=2016ChOpL..14b1301S) CrossRef (https://doi.org/10.3788/COL201614.021301) Google Scholar (http://scholar.google.com/scholar_lookup? title=Multiwavelength%20generation%20using%20an%20adddrop%20microring%20resonator%20integrated%20with%20InGaAsP%2FInP%2 0sampled%20grating%20distributed%20feedback%20%28SGDFB%29&author=SE.%20Alavi&author=IS.%20Amiri&author=MRK.%20Soltani an&author=R.%20Penny&author=ASM.%20Supa%E2%80%99at&author=H.%20 Ahmad&journal=Chin.%20Opt.%20Lett.&volume=14&issue=2&pages=021301&p ublication_year=2016)

10.

S.E. Alavi, M.R.K. Soltanian, I.S. Amiri, M. Khalily, A.S.M. Supa’at, H. Ahmad, Towards 5G: a photonic based millimeter wave signal generation for applying in 5G access fronthaul. Sci. Rep. (2016). doi:10.1038/srep19891 (https://doi.org/10.1038/srep19891) Google Scholar (http://scholar.google.com/scholar_lookup? title=Towards%205G%3A%20a%20photonic%20based%20millimeter%20wave% 20signal%20generation%20for%20applying%20in%205G%20access%20fronthau l&author=SE.%20Alavi&author=MRK.%20Soltanian&author=IS.%20Amiri&auth or=M.%20Khalily&author=ASM.%20Supa%E2%80%99at&author=H.%20Ahmad &journal=Sci.%20Rep.&publication_year=2016&doi=10.1038%2Fsrep19891)

11.

R. Álvarez-Tamayo, M. Durán-Sánchez, O. Pottiez, E. Kuzin, B. Ibarra-Escamilla, A. Flores-Rosas, Theoretical and experimental analysis of tunable Sagnac highbirefringence loop filter for dual-wavelength laser application. Appl. Opt. 50(3), 253–260 (2011) ADS (http://adsabs.harvard.edu/cgi-bin/nph-data_query? link_type=ABSTRACT&bibcode=2011ApOpt..50..253A) CrossRef (https://doi.org/10.1364/AO.50.000253) Google Scholar (http://scholar.google.com/scholar_lookup? title=Theoretical%20and%20experimental%20analysis%20of%20tunable%20Sag nac%20high-birefringence%20loop%20filter%20for%20dualwavelength%20laser%20application&author=R.%20%C3%81lvarezTamayo&author=M.%20Dur%C3%A1nS%C3%A1nchez&author=O.%20Pottiez&author=E.%20Kuzin&author=B.%20Ibar ra-Escamilla&author=A.%20FloresRosas&journal=Appl.%20Opt.&volume=50&issue=3&pages=253260&publication_year=2011)

https://link.springer.com/article/10.1007/s12596-017-0415-0

4/16

10/15/2017

Simulation of microring resonator filters based ion-exchange buried waveguide using nano layer of graphene | SpringerLink

12.

R.I. Álvarez-Tamayo, J.G. Aguilar-Soto, M. Durán-Sánchez, J.E. Antonio-López, B. Ibarra-Escamilla, E.A. Kuzin, MMI filters configuration for dual-wavelength generation in a ring cavity erbium-doped fibre laser. J. Eur. Opt. Soc. Rapid Publ. 12(1), 20 (2016) CrossRef (https://doi.org/10.1186/s41476-016-0025-5) Google Scholar (http://scholar.google.com/scholar_lookup? title=MMI%20filters%20configuration%20for%20dualwavelength%20generation%20in%20a%20ring%20cavity%20erbiumdoped%20fibre%20laser&author=RI.%20%C3%81lvarezTamayo&author=JG.%20Aguilar-Soto&author=M.%20Dur%C3%A1nS%C3%A1nchez&author=JE.%20Antonio-L%C3%B3pez&author=B.%20IbarraEscamilla&author=EA.%20Kuzin&journal=J.%20Eur.%20Opt.%20Soc.%20Rapid %20Publ.&volume=12&issue=1&pages=20&publication_year=2016)

13.

I.S. Amiri, J. Ali, Data signal processing via a manchester coding-decoding method using chaotic signals generated by a PANDA ring resonator. Chin. Opt. Lett. 11(4), 041901–041904 (2013) ADS (http://adsabs.harvard.edu/cgi-bin/nph-data_query? link_type=ABSTRACT&bibcode=2013ChOpL..11d1901I) MathSciNet (http://www.ams.org/mathscinet-getitem?mr=3127337) CrossRef (https://doi.org/10.3788/COL201311.041901) Google Scholar (http://scholar.google.com/scholar_lookup? title=Data%20signal%20processing%20via%20a%20manchester%20codingdecoding%20method%20using%20chaotic%20signals%20generated%20by%20a %20PANDA%20ring%20resonator&author=IS.%20Amiri&author=J.%20Ali&jou rnal=Chin.%20Opt.%20Lett.&volume=11&issue=4&pages=041901041904&publication_year=2013)

14.

I.S. Amiri, J. Ali, Generating highly dark-bright solitons by Gaussian beam propagation in a PANDA ring resonator. J. Comput. Theor. Nanosci. 11(4), 1092– 1099 (2014). doi:10.1166/jctn.2014.3467 (https://doi.org/10.1166/jctn.2014.3467) CrossRef (https://doi.org/10.1166/jctn.2014.3467) Google Scholar (http://scholar.google.com/scholar_lookup? title=Generating%20highly%20darkbright%20solitons%20by%20Gaussian%20beam%20propagation%20in%20a%20 PANDA%20ring%20resonator&author=IS.%20Amiri&author=J.%20Ali&journal =J.%20Comput.%20Theor.%20Nanosci.&volume=11&issue=4&pages=10921099&publication_year=2014&doi=10.1166%2Fjctn.2014.3467)

15.

I.S. Amiri, S.E. Alavi, Sevia M. Idrus, A. Nikoukar, J. Ali, IEEE 802.15.3c WPAN standard using millimeter optical soliton pulse generated by a Panda ring resonator. IEEE Photon. J. 5(5), 7901912 (2013). doi:10.1109/JPHOT.2013.2280341 (https://doi.org/10.1109/JPHOT.2013.2280341) CrossRef (https://doi.org/10.1109/JPHOT.2013.2280341) Google Scholar (http://scholar.google.com/scholar_lookup? title=IEEE%20802.15.3c%20WPAN%20standard%20using%20millimeter%20op tical%20soliton%20pulse%20generated%20by%20a%20Panda%20ring%20reson ator&author=IS.%20Amiri&author=SE.%20Alavi&author=Sevia%20M.%20Idrus &author=A.%20Nikoukar&author=J.%20Ali&journal=IEEE%20Photon.%20J.&v

https://link.springer.com/article/10.1007/s12596-017-0415-0

5/16

10/15/2017

Simulation of microring resonator filters based ion-exchange buried waveguide using nano layer of graphene | SpringerLink

olume=5&issue=5&pages=7901912&publication_year=2013&doi=10.1109%2FJP HOT.2013.2280341) 16.

I.S. Amiri, S. Soltanmohammadi, A. Shahidinejad, J. Ali, Optical quantum transmitter with finesse of 30 at 800-nm central wavelength using microring resonators. Opt. Quantum Electron. 45(10), 1095–1105 (2013) CrossRef (https://doi.org/10.1007/s11082-013-9726-9) Google Scholar (http://scholar.google.com/scholar_lookup? title=Optical%20quantum%20transmitter%20with%20finesse%20of%2030%20a t%20800nm%20central%20wavelength%20using%20microring%20resonators&author=IS .%20Amiri&author=S.%20Soltanmohammadi&author=A.%20Shahidinejad&auth or=J.%20Ali&journal=Opt.%20Quantum%20Electron.&volume=45&issue=10&p ages=1095-1105&publication_year=2013)

17.

I.S. Amiri, S. Alavi, M. Soltanian, R. Penny, A. Supa’at, N. Fisal, H. Ahmad, 2 × 2 MIMO-OFDM-RoF generation and transmission of double V-band signals using microring resonator system. Opt. Quantum Electron. 48(5) (2015a). doi:10.1007/s11082-015-0280-5 (https://doi.org/10.1007/s11082-015-0280-5)

18.

I.S. Amiri, S.E. Alavi, M.R.K. Soltanian, N. Fisal, A.S.M. Supa’at, H. Ahmad, Increment of access points in integrated system of wavelength division multiplexed passive optical network radio over fiber. Sci. Rep. (2015). doi:10.1038/srep11897 (https://doi.org/10.1038/srep11897) Google Scholar (http://scholar.google.com/scholar_lookup? title=Increment%20of%20access%20points%20in%20integrated%20system%20o f%20wavelength%20division%20multiplexed%20passive%20optical%20network %20radio%20over%20fiber&author=IS.%20Amiri&author=SE.%20Alavi&author =MRK.%20Soltanian&author=N.%20Fisal&author=ASM.%20Supa%E2%80%99a t&author=H.%20Ahmad&journal=Sci.%20Rep.&publication_year=2015&doi=10. 1038%2Fsrep11897)

19.

I.S. Amiri, S.E. Alavi, M.R.K. Soltanian, H. Ahmad, N. Fisal, A.S.M. Supa’at, Experimental measurement of fiber-wireless (Fi-Wi) transmission via multi mode locked solitons from a ring laser EDF cavity. IEEE Photon. J. 7(2) (2015b). doi:10.1109/JPHOT.2015.2408438 (https://doi.org/10.1109/JPHOT.2015.2408438)

20.

B.A. Block, B.C. Barnett, P. Davids, Optical waveguide devices having adjustable waveguide cladding. Google Patents (2006) Google Scholar (https://scholar.google.com/scholar? q=B.A.%20Block%2C%20B.C.%20Barnett%2C%20P.%20Davids%2C%20Optical %20waveguide%20devices%20having%20adjustable%20waveguide%20cladding. %20Google%20Patents%20%282006%29)

21.

R. Boeck, L. Chrostowski, N.A. Jaeger, Sensitivity analysis of silicon-on-insulator quadruple Vernier racetrack resonators. Opt. Eng. 54(11), 117102 (2015) ADS (http://adsabs.harvard.edu/cgi-bin/nph-data_query? link_type=ABSTRACT&bibcode=2015OptEn..54k7102B) CrossRef (https://doi.org/10.1117/1.OE.54.11.117102) Google Scholar (http://scholar.google.com/scholar_lookup? title=Sensitivity%20analysis%20of%20silicon-oninsulator%20quadruple%20Vernier%20racetrack%20resonators&author=R.%20

https://link.springer.com/article/10.1007/s12596-017-0415-0

6/16

10/15/2017

Simulation of microring resonator filters based ion-exchange buried waveguide using nano layer of graphene | SpringerLink

Boeck&author=L.%20Chrostowski&author=NA.%20Jaeger&journal=Opt.%20En g.&volume=54&issue=11&pages=117102&publication_year=2015) 22.

W. Bogaerts, R. Baets, P. Dumon, V. Wiaux, S. Beckx, D. Taillaert, B. Luyssaert, J. Van Campenhout, P. Bienstman, D. Van Thourhout, Nanophotonic waveguides in silicon-on-insulator fabricated with CMOS technology. J. Lightwave Technol. 23(1), 401–412 (2005) ADS (http://adsabs.harvard.edu/cgi-bin/nph-data_query? link_type=ABSTRACT&bibcode=2005JLwT...23..401B) CrossRef (https://doi.org/10.1109/JLT.2004.834471) Google Scholar (http://scholar.google.com/scholar_lookup? title=Nanophotonic%20waveguides%20in%20silicon-oninsulator%20fabricated%20with%20CMOS%20technology&author=W.%20Bogae rts&author=R.%20Baets&author=P.%20Dumon&author=V.%20Wiaux&author=S .%20Beckx&author=D.%20Taillaert&author=B.%20Luyssaert&author=J.%20Ca mpenhout&author=P.%20Bienstman&author=D.%20Thourhout&journal=J.%20 Lightwave%20Technol.&volume=23&issue=1&pages=401412&publication_year=2005)

23.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, R. Baets, Silicon microring resonators. Laser Photon. Rev. 6(1), 47–73 (2012) CrossRef (https://doi.org/10.1002/lpor.201100017) Google Scholar (http://scholar.google.com/scholar_lookup? title=Silicon%20microring%20resonators&author=W.%20Bogaerts&author=P.% 20Heyn&author=T.%20Vaerenbergh&author=K.%20Vos&author=S.%20Kumar% 20Selvaraja&author=T.%20Claes&author=P.%20Dumon&author=P.%20Bienstm an&author=D.%20Thourhout&author=R.%20Baets&journal=Laser%20Photon.% 20Rev.&volume=6&issue=1&pages=47-73&publication_year=2012)

24.

G. Carpintero, E. Rouvalis, K. Ławniczuk, M. Fice, C.C. Renaud, X.J. Leijtens, E.A. Bente, M. Chitoui, F. Van Dijk, A.J. Seeds, 95 GHz millimeter wave signal generation using an arrayed waveguide grating dual wavelength semiconductor laser. Opt. Lett. 37(17), 3657–3659 (2012) ADS (http://adsabs.harvard.edu/cgi-bin/nph-data_query? link_type=ABSTRACT&bibcode=2012OptL...37.3657C) CrossRef (https://doi.org/10.1364/OL.37.003657) Google Scholar (http://scholar.google.com/scholar_lookup? title=95%C2%A0GHz%20millimeter%20wave%20signal%20generation%20using %20an%20arrayed%20waveguide%20grating%20dual%20wavelength%20semico nductor%20laser&author=G.%20Carpintero&author=E.%20Rouvalis&author=K. %20%C5%81awniczuk&author=M.%20Fice&author=CC.%20Renaud&author=XJ. %20Leijtens&author=EA.%20Bente&author=M.%20Chitoui&author=F.%20Dijk &author=AJ.%20Seeds&journal=Opt.%20Lett.&volume=37&issue=17&pages=36 57-3659&publication_year=2012)

25.

J.T. Carriere, J.A. Frantz, B.R. Youmans, S. Honkanen, R.K. Kostuk, Measurement of waveguide birefringence using a ring resonator. IEEE Photon. Technol. Lett. 16(4), 1134–1136 (2004) ADS (http://adsabs.harvard.edu/cgi-bin/nph-data_query? link_type=ABSTRACT&bibcode=2004IPTL...16.1134C) CrossRef (https://doi.org/10.1109/LPT.2004.824929)

https://link.springer.com/article/10.1007/s12596-017-0415-0

7/16

10/15/2017

Simulation of microring resonator filters based ion-exchange buried waveguide using nano layer of graphene | SpringerLink

Google Scholar (http://scholar.google.com/scholar_lookup? title=Measurement%20of%20waveguide%20birefringence%20using%20a%20rin g%20resonator&author=JT.%20Carriere&author=JA.%20Frantz&author=BR.%2 0Youmans&author=S.%20Honkanen&author=RK.%20Kostuk&journal=IEEE%2 0Photon.%20Technol.%20Lett.&volume=16&issue=4&pages=11341136&publication_year=2004) 26.

F. Chen, Micro-and submicrometric waveguiding structures in optical crystals produced by ion beams for photonic applications. Laser Photon. Rev. 6(5), 622– 640 (2012) CrossRef (https://doi.org/10.1002/lpor.201100037) Google Scholar (http://scholar.google.com/scholar_lookup?title=Microand%20submicrometric%20waveguiding%20structures%20in%20optical%20crys tals%20produced%20by%20ion%20beams%20for%20photonic%20applications& author=F.%20Chen&journal=Laser%20Photon.%20Rev.&volume=6&issue=5&pa ges=622-640&publication_year=2012)

27.

F. Chen, X.-L. Wang, K.-M. Wang, Development of ion-implanted optical waveguides in optical materials: a review. Opt. Mater. 29(11), 1523–1542 (2007) ADS (http://adsabs.harvard.edu/cgi-bin/nph-data_query? link_type=ABSTRACT&bibcode=2007OptMa..29.1523C) CrossRef (https://doi.org/10.1016/j.optmat.2006.08.001) Google Scholar (http://scholar.google.com/scholar_lookup? title=Development%20of%20ionimplanted%20optical%20waveguides%20in%20optical%20materials%3A%20a% 20review&author=F.%20Chen&author=X-L.%20Wang&author=KM.%20Wang&journal=Opt.%20Mater.&volume=29&issue=11&pages=15231542&publication_year=2007)

28.

I.S. Amiri, M. Ariannejad, V. Kouhdaragh, S. Seyedi, and P. Yupapin, Microring Resonator Made by Ion-Exchange Technique for Detecting the CO2, H2O, and NaCl as Cladding Layer. J. King Saud Univ. Sci. (2017). doi:10.1016/j.jksus.2017.06.007 (https://doi.org/10.1016/j.jksus.2017.06.007)

29.

S.J. Choi, K. Djordjev, S.J. Choi, P.D. Dapkus, W. Lin, G. Griffel, R. Menna, J. Connolly, Microring resonators vertically coupled to buried heterostructure bus waveguides. IEEE Photon. Technol. Lett. 16(3), 828–830 (2004) ADS (http://adsabs.harvard.edu/cgi-bin/nph-data_query? link_type=ABSTRACT&bibcode=2004IPTL...16..828C) CrossRef (https://doi.org/10.1109/LPT.2004.823704) Google Scholar (http://scholar.google.com/scholar_lookup? title=Microring%20resonators%20vertically%20coupled%20to%20buried%20het erostructure%20bus%20waveguides&author=SJ.%20Choi&author=K.%20Djordj ev&author=SJ.%20Choi&author=PD.%20Dapkus&author=W.%20Lin&author=G. %20Griffel&author=R.%20Menna&author=J.%20Connolly&journal=IEEE%20Ph oton.%20Technol.%20Lett.&volume=16&issue=3&pages=828830&publication_year=2004)

30.

I. Chremmos, N. Uzunoglu, Reflective properties of double-ring resonator system coupled to a waveguide. IEEE Photon. Technol. Lett. 17(10), 2110–2112 (2005) ADS (http://adsabs.harvard.edu/cgi-bin/nph-data_query? link_type=ABSTRACT&bibcode=2005IPTL...17.2110C) CrossRef (https://doi.org/10.1109/LPT.2005.854346)

https://link.springer.com/article/10.1007/s12596-017-0415-0

8/16

10/15/2017

Simulation of microring resonator filters based ion-exchange buried waveguide using nano layer of graphene | SpringerLink

Google Scholar (http://scholar.google.com/scholar_lookup? title=Reflective%20properties%20of%20doublering%20resonator%20system%20coupled%20to%20a%20waveguide&author=I.% 20Chremmos&author=N.%20Uzunoglu&journal=IEEE%20Photon.%20Technol. %20Lett.&volume=17&issue=10&pages=2110-2112&publication_year=2005) 31.

M. Durán-Sánchez, R.Á. Tamayo, O. Pottiez, B. Ibarra-Escamilla, J. HernándezGarcía, G. Beltran-Perez, E. Kuzin, Actively Q-switched dual-wavelength laser with double-cladding Er/Yb-doped fiber using a Hi-Bi Sagnac interferometer. Laser Phys. Lett. 12(2), 025102 (2015) ADS (http://adsabs.harvard.edu/cgi-bin/nph-data_query? link_type=ABSTRACT&bibcode=2015LaPhL..12b5102D) CrossRef (https://doi.org/10.1088/1612-2011/12/2/025102) Google Scholar (http://scholar.google.com/scholar_lookup?title=Actively%20Qswitched%20dual-wavelength%20laser%20with%20doublecladding%20Er%2FYb-doped%20fiber%20using%20a%20HiBi%20Sagnac%20interferometer&author=M.%20Dur%C3%A1nS%C3%A1nchez&author=R%C3%81.%20Tamayo&author=O.%20Pottiez&author= B.%20Ibarra-Escamilla&author=J.%20Hern%C3%A1ndezGarc%C3%ADa&author=G.%20BeltranPerez&author=E.%20Kuzin&journal=Laser%20Phys.%20Lett.&volume=12&issue =2&pages=025102&publication_year=2015)

32.

S. Feng, O. Xu, S. Lu, S. Jian, Switchable single-longitudinal-mode dualwavelength erbium-doped fiber laser based on one polarization-maintaining fiber Bragg grating in linear cavity. Opt. Eng. 48(10), 104201–104205 (2009) ADS (http://adsabs.harvard.edu/cgi-bin/nph-data_query? link_type=ABSTRACT&bibcode=2009OptEn..48j4201F) CrossRef (https://doi.org/10.1117/1.3231602) Google Scholar (http://scholar.google.com/scholar_lookup? title=Switchable%20single-longitudinal-mode%20dual-wavelength%20erbiumdoped%20fiber%20laser%20based%20on%20one%20polarizationmaintaining%20fiber%20Bragg%20grating%20in%20linear%20cavity&author=S. %20Feng&author=O.%20Xu&author=S.%20Lu&author=S.%20Jian&journal=Opt .%20Eng.&volume=48&issue=10&pages=104201104205&publication_year=2009)

33.

M.A. Foster, K.D. Moll, A.L. Gaeta, Optimal waveguide dimensions for nonlinear interactions. Opt. Express 12(13), 2880–2887 (2004) ADS (http://adsabs.harvard.edu/cgi-bin/nph-data_query? link_type=ABSTRACT&bibcode=2004OExpr..12.2880F) CrossRef (https://doi.org/10.1364/OPEX.12.002880) Google Scholar (http://scholar.google.com/scholar_lookup? title=Optimal%20waveguide%20dimensions%20for%20nonlinear%20interaction s&author=MA.%20Foster&author=KD.%20Moll&author=AL.%20Gaeta&journal =Opt.%20Express&volume=12&issue=13&pages=28802887&publication_year=2004)

34.

R. Grover, V. Van, T. Ibrahim, P. Absil, L. Calhoun, F. Johnson, J. Hryniewicz, P.T. Ho, Parallel-cascaded semiconductor microring resonators for high-order and wide-FSR filters. J. Lightwave Technol. 20(5), 900–905 (2002)

https://link.springer.com/article/10.1007/s12596-017-0415-0

9/16

10/15/2017

Simulation of microring resonator filters based ion-exchange buried waveguide using nano layer of graphene | SpringerLink

ADS (http://adsabs.harvard.edu/cgi-bin/nph-data_query? link_type=ABSTRACT&bibcode=2002JLwT...20..900G) CrossRef (https://doi.org/10.1109/JLT.2002.1007947) Google Scholar (http://scholar.google.com/scholar_lookup?title=Parallelcascaded%20semiconductor%20microring%20resonators%20for%20highorder%20and%20wideFSR%20filters&author=R.%20Grover&author=V.%20Van&author=T.%20Ibrahi m&author=P.%20Absil&author=L.%20Calhoun&author=F.%20Johnson&author =J.%20Hryniewicz&author=PT.%20Ho&journal=J.%20Lightwave%20Technol.&volume=20&issue=5&pages=9 00-905&publication_year=2002) 35.

J. Haavisto, G. Pajer, Resonance effects in low-loss ring waveguides. Opt. Lett. 5(12), 510–512 (1980) ADS (http://adsabs.harvard.edu/cgi-bin/nph-data_query? link_type=ABSTRACT&bibcode=1980OptL....5..510H) CrossRef (https://doi.org/10.1364/OL.5.000510) Google Scholar (http://scholar.google.com/scholar_lookup? title=Resonance%20effects%20in%20lowloss%20ring%20waveguides&author=J.%20Haavisto&author=G.%20Pajer&journ al=Opt.%20Lett.&volume=5&issue=12&pages=510-512&publication_year=1980)

36.

Y.G. Han, J.H. Lee, Switchable dual wavelength erbium-doped fiber laser at room temperature. Microw. Opt. Technol. Lett. 49(6), 1433–1435 (2007) CrossRef (https://doi.org/10.1002/mop.22421) Google Scholar (http://scholar.google.com/scholar_lookup? title=Switchable%20dual%20wavelength%20erbiumdoped%20fiber%20laser%20at%20room%20temperature&author=YG.%20Han& author=JH.%20Lee&journal=Microw.%20Opt.%20Technol.%20Lett.&volume=4 9&issue=6&pages=1433-1435&publication_year=2007)

37.

X. Han, F. Pang, H. Cai, R. Qu, Z. Fang, Integrated optical racetrack resonator fabricated by silver ion exchange in glass. In: Asia-Pacific Optical Communications, 2005. International Society for Optics and Photonics, pp 60190B–60197B Google Scholar (https://scholar.google.com/scholar? q=X.%20Han%2C%20F.%20Pang%2C%20H.%20Cai%2C%20R.%20Qu%2C%20 Z.%20Fang%2C%20Integrated%20optical%20racetrack%20resonator%20fabrica ted%20by%20silver%20ion%20exchange%20in%20glass.%20In%3A%20AsiaPacific%20Optical%20Communications%2C%202005.%20International%20Soci ety%20for%20Optics%20and%20Photonics%2C%20pp%2060190B%E2%80%93 60197B)

38.

S. Harun, F. Abd Rahman, K. Dimyati, H. Ahmad, An efficient gain-flattened Cband Erbium-doped fiber amplifier. Laser Phys. Lett. 3(11), 536–538 (2006) ADS (http://adsabs.harvard.edu/cgi-bin/nph-data_query? link_type=ABSTRACT&bibcode=2006LaPhL...3..536H) CrossRef (https://doi.org/10.1002/lapl.200610048) Google Scholar (http://scholar.google.com/scholar_lookup? title=An%20efficient%20gain-flattened%20C-band%20Erbiumdoped%20fiber%20amplifier&author=S.%20Harun&author=F.%20Abd%20Rah

https://link.springer.com/article/10.1007/s12596-017-0415-0

10/16

10/15/2017

Simulation of microring resonator filters based ion-exchange buried waveguide using nano layer of graphene | SpringerLink

man&author=K.%20Dimyati&author=H.%20Ahmad&journal=Laser%20Phys.%2 0Lett.&volume=3&issue=11&pages=536-538&publication_year=2006) 39.

Y. Hou, F. Fan, Z.-W. Jiang, X.-H. Wang, S.-J. Chang, Highly birefringent polymer terahertz fiber with honeycomb cladding. Opt. Int. J. Light Electron Opt. 124(17), 3095–3098 (2013) CrossRef (https://doi.org/10.1016/j.ijleo.2012.09.040) Google Scholar (http://scholar.google.com/scholar_lookup? title=Highly%20birefringent%20polymer%20terahertz%20fiber%20with%20hon eycomb%20cladding&author=Y.%20Hou&author=F.%20Fan&author=ZW.%20Jiang&author=X-H.%20Wang&author=SJ.%20Chang&journal=Opt.%20Int.%20J.%20Light%20Electron%20Opt.&volum e=124&issue=17&pages=3095-3098&publication_year=2013)

40.

S. Jahani, Z. Jacob, Photonic skin-depth engineering. JOSA B 32(7), 1346–1353 (2015) ADS (http://adsabs.harvard.edu/cgi-bin/nph-data_query? link_type=ABSTRACT&bibcode=2015JOSAB..32.1346J) CrossRef (https://doi.org/10.1364/JOSAB.32.001346) Google Scholar (http://scholar.google.com/scholar_lookup? title=Photonic%20skindepth%20engineering&author=S.%20Jahani&author=Z.%20Jacob&journal=JOS A%20B&volume=32&issue=7&pages=1346-1353&publication_year=2015)

41.

U. Keller, A.C. Tropper, Passively modelocked surface-emitting semiconductor lasers. Phys. Rep. 429(2), 67–120 (2006) ADS (http://adsabs.harvard.edu/cgi-bin/nph-data_query? link_type=ABSTRACT&bibcode=2006PhR...429...67K) CrossRef (https://doi.org/10.1016/j.physrep.2006.03.004) Google Scholar (http://scholar.google.com/scholar_lookup? title=Passively%20modelocked%20surfaceemitting%20semiconductor%20lasers&author=U.%20Keller&author=AC.%20Tro pper&journal=Phys.%20Rep.&volume=429&issue=2&pages=67120&publication_year=2006)

42.

S. Kostritskii, O. Sevostyanov, P. Moretti, Optimization of photorefractive LiNbO3 waveguides fabricated by combined techniques of ion exchange and implantation. Opt. Mater. 18(1), 77–80 (2001) ADS (http://adsabs.harvard.edu/cgi-bin/nph-data_query? link_type=ABSTRACT&bibcode=2001OptMa..18...77K) CrossRef (https://doi.org/10.1016/S0925-3467(01)00136-7) Google Scholar (http://scholar.google.com/scholar_lookup? title=Optimization%20of%20photorefractive%20LiNbO3%20waveguides%20fabr icated%20by%20combined%20techniques%20of%20ion%20exchange%20and%2 0implantation&author=S.%20Kostritskii&author=O.%20Sevostyanov&author=P. %20Moretti&journal=Opt.%20Mater.&volume=18&issue=1&pages=7780&publication_year=2001)

43.

T. Kuhler, E. Griese, Modeling the ion-exchange process to support the manufacturing of optical multimode graded-index waveguides in thin glass sheets. In: Signal Propagation on Interconnects (SPI), 2010 IEEE 14th Workshop on, 2010. IEEE, pp. 87–89

https://link.springer.com/article/10.1007/s12596-017-0415-0

11/16

10/15/2017

Simulation of microring resonator filters based ion-exchange buried waveguide using nano layer of graphene | SpringerLink

Google Scholar (https://scholar.google.com/scholar? q=T.%20Kuhler%2C%20E.%20Griese%2C%20Modeling%20the%20ionexchange%20process%20to%20support%20the%20manufacturing%20of%20opti cal%20multimode%20gradedindex%20waveguides%20in%20thin%20glass%20sheets.%20In%3A%20Signal% 20Propagation%20on%20Interconnects%20%28SPI%29%2C%202010%20IEEE %2014th%20Workshop%20on%2C%202010.%20IEEE%2C%20pp.%2087%E2%8 0%9389) 44.

B. Liu, A. Shakouri, J.E. Bowers, Wide tunable double ring resonator coupled lasers. IEEE Photon. Technol. Lett. 14(5), 600–602 (2002) ADS (http://adsabs.harvard.edu/cgi-bin/nph-data_query? link_type=ABSTRACT&bibcode=2002IPTL...14..600L) CrossRef (https://doi.org/10.1109/68.998697) Google Scholar (http://scholar.google.com/scholar_lookup? title=Wide%20tunable%20double%20ring%20resonator%20coupled%20lasers&a uthor=B.%20Liu&author=A.%20Shakouri&author=JE.%20Bowers&journal=IEE E%20Photon.%20Technol.%20Lett.&volume=14&issue=5&pages=600602&publication_year=2002)

45.

Z. Liu, DuJ Liu Y-g, S. Yuan, X. Dong, Switchable triple-wavelength erbium-doped fiber laser using a single fiber Bragg grating in polarization-maintaining fiber. Opt. Commun. 279(1), 168–172 (2007) ADS (http://adsabs.harvard.edu/cgi-bin/nph-data_query? link_type=ABSTRACT&bibcode=2007OptCo.279..168L) CrossRef (https://doi.org/10.1016/j.optcom.2007.07.027) Google Scholar (http://scholar.google.com/scholar_lookup? title=Switchable%20triple-wavelength%20erbiumdoped%20fiber%20laser%20using%20a%20single%20fiber%20Bragg%20grating %20in%20polarizationmaintaining%20fiber&author=Z.%20Liu&author=DuJ.%20Liu%20Yg&author=S.%20Yuan&author=X.%20Dong&journal=Opt.%20Commun.&volum e=279&issue=1&pages=168-172&publication_year=2007)

46.

F. Lu, M.-Q. Meng, K.-M. Wang, X.-D. Liu, H.-C. Chen, D.-Y. Shen, Planar optical waveguide in Cu-doped potassium sodium strontium barium niobate crystal formed by mega-electron-volt He-ion implantation. Opt. Lett. 22(3), 163–165 (1997) ADS (http://adsabs.harvard.edu/cgi-bin/nph-data_query? link_type=ABSTRACT&bibcode=1997OptL...22..163L) CrossRef (https://doi.org/10.1364/OL.22.000163) Google Scholar (http://scholar.google.com/scholar_lookup? title=Planar%20optical%20waveguide%20in%20Cudoped%20potassium%20sodium%20strontium%20barium%20niobate%20crysta l%20formed%20by%20mega-electron-volt%20Heion%20implantation&author=F.%20Lu&author=M-Q.%20Meng&author=KM.%20Wang&author=X-D.%20Liu&author=H-C.%20Chen&author=DY.%20Shen&journal=Opt.%20Lett.&volume=22&issue=3&pages=163165&publication_year=1997)

47.

M. Mahdi, F.M. Adikan, P. Poopalan, S. Selvakennedy, W. Chan, H. Ahmad, Longwavelength EDFA gain enhancement through 1550 nm band signal injection. Opt.

https://link.springer.com/article/10.1007/s12596-017-0415-0

12/16

10/15/2017

Simulation of microring resonator filters based ion-exchange buried waveguide using nano layer of graphene | SpringerLink

Commun. 176(1), 125–129 (2000) ADS (http://adsabs.harvard.edu/cgi-bin/nph-data_query? link_type=ABSTRACT&bibcode=2000OptCo.176..125M) CrossRef (https://doi.org/10.1016/S0030-4018(00)00537-X) Google Scholar (http://scholar.google.com/scholar_lookup?title=Longwavelength%20EDFA%20gain%20enhancement%20through%201550%C2%A0n m%20band%20signal%20injection&author=M.%20Mahdi&author=FM.%20Adik an&author=P.%20Poopalan&author=S.%20Selvakennedy&author=W.%20Chan& author=H.%20Ahmad&journal=Opt.%20Commun.&volume=176&issue=1&pages =125-129&publication_year=2000) 48.

Y. Meng, S. Zhang, X. Wang, J. Du, H. Li, Y. Hao, X. Li, Tunable double-clad ytterbium-doped fiber laser based on a double-pass Mach–Zehnder interferometer. Opt. Lasers Eng. 50(3), 303–307 (2012) CrossRef (https://doi.org/10.1016/j.optlaseng.2011.11.011) Google Scholar (http://scholar.google.com/scholar_lookup? title=Tunable%20double-clad%20ytterbiumdoped%20fiber%20laser%20based%20on%20a%20doublepass%20Mach%E2%80%93Zehnder%20interferometer&author=Y.%20Meng&au thor=S.%20Zhang&author=X.%20Wang&author=J.%20Du&author=H.%20Li&a uthor=Y.%20Hao&author=X.%20Li&journal=Opt.%20Lasers%20Eng.&volume= 50&issue=3&pages=303-307&publication_year=2012)

49.

C. Phillips, C. Langrock, J. Pelc, M. Fejer, J. Jiang, M.E. Fermann, I. Hartl, Supercontinuum generation in quasi-phase-matched LiNbO3 waveguide pumped by a Tm-doped fiber laser system. Opt. Lett. 36(19), 3912–3914 (2011) ADS (http://adsabs.harvard.edu/cgi-bin/nph-data_query? link_type=ABSTRACT&bibcode=2011OptL...36.3912P) CrossRef (https://doi.org/10.1364/OL.36.003912) Google Scholar (http://scholar.google.com/scholar_lookup? title=Supercontinuum%20generation%20in%20quasi-phasematched%20LiNbO3%20waveguide%20pumped%20by%20a%20Tmdoped%20fiber%20laser%20system&author=C.%20Phillips&author=C.%20Langr ock&author=J.%20Pelc&author=M.%20Fejer&author=J.%20Jiang&author=ME. %20Fermann&author=I.%20Hartl&journal=Opt.%20Lett.&volume=36&issue=19 &pages=3912-3914&publication_year=2011)

50.

PICWave, Photon Design Inc. http://www.photond.com/products/picwave/picwave_applications_00.htm (http://www.photond.com/products/picwave/picwave_applications_00.htm)

51.

J.K. Poon, J. Scheuer, A. Yariv, Wavelength-selective reflector based on a circular array of coupled microring resonators. IEEE Photon. Technol. Lett. 16(5), 1331– 1333 (2004) ADS (http://adsabs.harvard.edu/cgi-bin/nph-data_query? link_type=ABSTRACT&bibcode=2004IPTL...16.1331P) CrossRef (https://doi.org/10.1109/LPT.2004.826152) Google Scholar (http://scholar.google.com/scholar_lookup?title=Wavelengthselective%20reflector%20based%20on%20a%20circular%20array%20of%20coup led%20microring%20resonators&author=JK.%20Poon&author=J.%20Scheuer&a uthor=A.%20Yariv&journal=IEEE%20Photon.%20Technol.%20Lett.&volume=16 &issue=5&pages=1331-1333&publication_year=2004)

https://link.springer.com/article/10.1007/s12596-017-0415-0

13/16

10/15/2017

Simulation of microring resonator filters based ion-exchange buried waveguide using nano layer of graphene | SpringerLink

52.

E. Rafiee, F. Emami, N. Nozhat, Coupling coefficient increment and free spectral range decrement by proper design of microring resonator parameters. Opt. Eng. 53(12), 123108 (2014) ADS (http://adsabs.harvard.edu/cgi-bin/nph-data_query? link_type=ABSTRACT&bibcode=2014OptEn..53l3108R) CrossRef (https://doi.org/10.1117/1.OE.53.12.123108) Google Scholar (http://scholar.google.com/scholar_lookup? title=Coupling%20coefficient%20increment%20and%20free%20spectral%20rang e%20decrement%20by%20proper%20design%20of%20microring%20resonator% 20parameters&author=E.%20Rafiee&author=F.%20Emami&author=N.%20Nozh at&journal=Opt.%20Eng.&volume=53&issue=12&pages=123108&publication_ye ar=2014)

53.

L. Sansoni, F. Sciarrino, G. Vallone, P. Mataloni, A. Crespi, R. Ramponi, R. Osellame, Polarization entangled state measurement on a chip. Phys. Rev. Lett. 105(20), 200503 (2010) ADS (http://adsabs.harvard.edu/cgi-bin/nph-data_query? link_type=ABSTRACT&bibcode=2010PhRvL.105t0503S) CrossRef (https://doi.org/10.1103/PhysRevLett.105.200503) Google Scholar (http://scholar.google.com/scholar_lookup? title=Polarization%20entangled%20state%20measurement%20on%20a%20chip &author=L.%20Sansoni&author=F.%20Sciarrino&author=G.%20Vallone&author =P.%20Mataloni&author=A.%20Crespi&author=R.%20Ramponi&author=R.%20 Osellame&journal=Phys.%20Rev.%20Lett.&volume=105&issue=20&pages=2005 03&publication_year=2010)

54.

M.R.K. Soltanian, I.S. Amiri, W.Y. Chong, S.E. Alavi, H. Ahmad, Stable dualwavelength coherent source with tunable wavelength spacing generated by spectral slicing a mode-locked laser using microring resonator. IEEE Photon. J. 7(6), 1–11 (2015) CrossRef (https://doi.org/10.1109/JPHOT.2015.2504243) Google Scholar (http://scholar.google.com/scholar_lookup? title=Stable%20dualwavelength%20coherent%20source%20with%20tunable%20wavelength%20spaci ng%20generated%20by%20spectral%20slicing%20a%20modelocked%20laser%20using%20microring%20resonator&author=MRK.%20Soltani an&author=IS.%20Amiri&author=WY.%20Chong&author=SE.%20Alavi&author =H.%20Ahmad&journal=IEEE%20Photon.%20J.&volume=7&issue=6&pages=111&publication_year=2015)

55.

M.C. Souza, L.A. Barea, F. Vallini, G.F. Rezende, G.S. Wiederhecker, N.C. Frateschi, Embedded coupled microrings with high-finesse and close-spaced resonances for optical signal processing. Opt. Express 22(9), 10430–10438 (2014) ADS (http://adsabs.harvard.edu/cgi-bin/nph-data_query? link_type=ABSTRACT&bibcode=2014OExpr..2210430S) CrossRef (https://doi.org/10.1364/OE.22.010430) Google Scholar (http://scholar.google.com/scholar_lookup? title=Embedded%20coupled%20microrings%20with%20highfinesse%20and%20closespaced%20resonances%20for%20optical%20signal%20processing&author=MC. %20Souza&author=LA.%20Barea&author=F.%20Vallini&author=GF.%20Rezend

https://link.springer.com/article/10.1007/s12596-017-0415-0

14/16

10/15/2017

Simulation of microring resonator filters based ion-exchange buried waveguide using nano layer of graphene | SpringerLink

e&author=GS.%20Wiederhecker&author=NC.%20Frateschi&journal=Opt.%20Ex press&volume=22&issue=9&pages=10430-10438&publication_year=2014) 56.

A. Tervonen, B.R. West, S. Honkanen, Ion-exchanged glass waveguide technology: a review. Opt. Eng. 50(7), 071107–071115 (2011) ADS (http://adsabs.harvard.edu/cgi-bin/nph-data_query? link_type=ABSTRACT&bibcode=2011OptEn..50g1107T) CrossRef (https://doi.org/10.1117/1.3559213) Google Scholar (http://scholar.google.com/scholar_lookup?title=Ionexchanged%20glass%20waveguide%20technology%3A%20a%20review&author= A.%20Tervonen&author=BR.%20West&author=S.%20Honkanen&journal=Opt.% 20Eng.&volume=50&issue=7&pages=071107-071115&publication_year=2011)

57.

S. Wackerow, A. Abdolvand, Optical analyses of the formation of a silver nanoparticle-containing layer in glass. Opt. Express 20(21), 23227–23234 (2012) ADS (http://adsabs.harvard.edu/cgi-bin/nph-data_query? link_type=ABSTRACT&bibcode=2012OExpr..2023227W) CrossRef (https://doi.org/10.1364/OE.20.023227) Google Scholar (http://scholar.google.com/scholar_lookup? title=Optical%20analyses%20of%20the%20formation%20of%20a%20silver%20n anoparticlecontaining%20layer%20in%20glass&author=S.%20Wackerow&author=A.%20Ab dolvand&journal=Opt.%20Express&volume=20&issue=21&pages=2322723234&publication_year=2012)

58.

L.-L. Wang, K.-M. Wang, F. Lu, B.-R. Shi, X.-L. Wang, L. Wang, Q.-M. Lu, Monomode low loss optical waveguide in KTiOPO4 formed by combining ion implantation with ion exchange. J. Appl. Phys. 104, 063115 (2008). doi:10.1063/1.2981196 (https://doi.org/10.1063/1.2981196)

59.

L. Wu, J.-J. He, D. Gallagher, Modeling of widely tunable V-cavity semiconductor laser using time-domain traveling-wave method. JOSA B 32(2), 309–317 (2015) ADS (http://adsabs.harvard.edu/cgi-bin/nph-data_query? link_type=ABSTRACT&bibcode=2015JOSAB..32..309W) CrossRef (https://doi.org/10.1364/JOSAB.32.000309) Google Scholar (http://scholar.google.com/scholar_lookup? title=Modeling%20of%20widely%20tunable%20Vcavity%20semiconductor%20laser%20using%20time-domain%20travelingwave%20method&author=L.%20Wu&author=JJ.%20He&author=D.%20Gallagher&journal=JOSA%20B&volume=32&issue=2& pages=309-317&publication_year=2015)

60.

H. Zhu, C. Tu, T. Lei, Y. Li, F. Lu, X. Dong, D. Wei, Dual-wavelength narrowlinewidth light source with ultranarrow wavelength spacing based on the pumpinduced thermal effects in an Er–Yb-codoped distributed-Bragg-reflector fiber laser. Opt. Eng. 47(9), 094301–094304 (2008) ADS (http://adsabs.harvard.edu/cgi-bin/nph-data_query? link_type=ABSTRACT&bibcode=2008OptEn..47i4301Z) CrossRef (https://doi.org/10.1117/1.2976431) Google Scholar (http://scholar.google.com/scholar_lookup?title=Dualwavelength%20narrowlinewidth%20light%20source%20with%20ultranarrow%20wavelength%20spacin g%20based%20on%20the%20pump-

https://link.springer.com/article/10.1007/s12596-017-0415-0

15/16

10/15/2017

Simulation of microring resonator filters based ion-exchange buried waveguide using nano layer of graphene | SpringerLink

induced%20thermal%20effects%20in%20an%20Er%E2%80%93Ybcodoped%20distributed-Braggreflector%20fiber%20laser&author=H.%20Zhu&author=C.%20Tu&author=T.%2 0Lei&author=Y.%20Li&author=F.%20Lu&author=X.%20Dong&author=D.%20W ei&journal=Opt.%20Eng.&volume=47&issue=9&pages=094301094304&publication_year=2008)

Copyright information © The Optical Society of India 2017

About this article Cite this article as: Amiri, I.S., Ariannejad, M.M., Ghasemi, M. et al. J Opt (2017). https://doi.org/10.1007/s12596-017-0415-0 DOI (Digital Object Identifier) https://doi.org/10.1007/s12596-017-0415-0 Publisher Name Springer India Print ISSN 0972-8821 Online ISSN 0974-6900 About this journal Reprints and Permissions

Personalised recommendations

© 2017 Springer International Publishing AG. Part of Springer Nature. Not logged in Not affiliated 183.171.84.216

https://link.springer.com/article/10.1007/s12596-017-0415-0

16/16

Suggest Documents