Slides 3 - Department of Information Technology

1 downloads 106 Views 822KB Size Report
Jan 24, 2014 ... System Identification, Lecture 3. Kristiaan Pelckmans (IT/UU, 2338). Course code : 1RT880, Report code: 61800 - Spring 2014. F, FRI Uppsala ...
System Identification, Lecture 3 Kristiaan Pelckmans (IT/UU, 2338) Course code: 1RT880, Report code: 61800 - Spring 2014 F, FRI Uppsala University, Information Technology 24 January 2014

SI-2014

K. Pelckmans

Jan.-March, 2014

Lecture 3

Models: • • • • •

A Taxonomy. Linear Time-Invariant Models. Polynomial Representations. Transforms. Identifiability.

Nonparametric Methods: • • • • •

Transient Analysis. Frequency Analysis. Correlation Analysis. Spectral Analysis. Other Input Signals.

SI-2014

K. Pelckmans

Jan.-March, 2014

1

Dynamic Models

SI-2014

K. Pelckmans

Jan.-March, 2014

2

A Taxonomy

• Dynamical Models • White-, Black and Grey Box

SI-2014

K. Pelckmans

Jan.-March, 2014

3

Linear Time-Invariant Models

• Linear Superposition principle. • Time-Invariant. • Causal. • Hence Impulse Response Representation for signals {u(t) : ∀t} and {y(t) : ∀t} as Z



h(τ )u(t − τ )dτ

y(t) = τ =0

• Discrete Impulse Response Model yt =

∞ X

hτ ut−τ

τ =0 SI-2014

K. Pelckmans

Jan.-March, 2014

4

• Conversion Continuous-Discrete y(t∆ + τ ) = yt then Z



h(τ )u(t∆−τ ) =

y(t∆) = τ =0

∞ Z X s=1

s∆

h(s)u(t∆−τ )ds

τ =(s−1)∆

and switching indices and application of Euler’s method gives

=

∞ X s=1

or hτ =

SI-2014

R τ 0∆

τ 0 =(τ −1)∆

Z

s∆

! h(s)ds ut−s

τ =(s−1)∆

h(τ )ds. Works if ut ≈ u(t∆ + τ ).

K. Pelckmans

Jan.-March, 2014

5

• Ex. 1: a first order model dy(t) T + y(t) = Ku(t − τ ), dt solving by Euler when {u(t) = 1(t ≥ 0)}:

K Step Response

t

SI-2014

time

T

K. Pelckmans

Jan.-March, 2014

6

• Ex. 2: A second order system d2y(t) dy(t) 2 2 + 2ξω + ω y(t) = Kω 0 0 0 u(t). 2 dt dt solving by Euler when {u(t) = δt}, then solving by Euler when {u(t) = δ(t)}, then (with τ = arccos ξ) −ξω0 t

y(t) = K

e 1−p

1−

ξ2



p sin ω0t 1 − ξ 2 + τ



! u(t)

1.8 j=0.1 1.6

j=0.2 j=0.5

1.4

j=0.7 j=0.99

step response

1.2 1 0.8 0.6 0.4 0.2 0 ï0.2

SI-2014

0

2

4

6

8

K. Pelckmans

10 time

12

14

16

18

20

Jan.-March, 2014

7

Transforms

Given the cos signal

ut = cos(ωt), ∀t = . . . , −1, 0, 1, . . . Then this can be written as

ut = < exp(iωt) when applied to a LTI H we have

yt =

∞ X

∞ X

hτ cos(ωt − τ ) =
0 −m m D(s) d−ms + · · · + dm s Then

where

B(s) B ∗(s−∗) φy (s) = A(s) A∗(s−∗) ( A(s) = a0 + a1s + · · · + amsm B(s) = b0 + b1s + · · · + bmsm

R(m):

SI-2014

K. Pelckmans

Jan.-March, 2014

23

Other Input Sequences

• ARMA. • PRBS. • Sum of Sinusoids.

SI-2014

K. Pelckmans

Jan.-March, 2014

24

Conclusions

• LTI Models • Polynomial Representations vs. Discrete z-transform • Initial Analysis by injecting certain input signals and recording output.

SI-2014

K. Pelckmans

Jan.-March, 2014

25

Suggest Documents