Solving a modified nonlinear epidemiological model

0 downloads 0 Views 1MB Size Report
Aug 29, 2018 - demiological model for computer viruses. Appl. Math. Model. 39(23–24), 7600–7610 (2015). 33. Piqueira, J.R.C., de Vasconcelos, A.A., Gabriel ...
Mathematical Sciences https://doi.org/10.1007/s40096-018-0261-5

(0123456789().,-volV)(0123456789().,-volV)

ORIGINAL PAPER

Solving a modified nonlinear epidemiological model of computer viruses by homotopy analysis method Samad Noeiaghdam1



Muhammad Suleman2,3 • Hu¨seyin Budak4

Received: 9 April 2018 / Accepted: 29 August 2018 Ó The Author(s) 2018

Abstract The susceptible–infected–recovered model of computer viruses is investigated as a nonlinear system of ordinary differential equations by using the homotopy analysis method (HAM). The HAM is a flexible method which contains the auxiliary parameters and functions. This method has an important tool to adjust and control the convergence region of obtained solution. The numerical solutions are presented for various iterations, and the residual error functions are applied to show the accuracy of presented method. Several h-curves are plotted to demonstrate the regions of convergence, and the residual errors are obtained for different values of theses regions. Keywords Susceptible–infected–recovered model  Modified epidemiological model  Computer virus  Homotopy analysis method   h-Curve

Introduction In recent decades, using the computer systems has led to great changes in many fields of life. These changes are many important and wonderful where we cannot leave applying the computer systems. Computer viruses are a malicious software program that can be written with different aims. These softwares help the user to enter the victim computer without permission. The virus should never be considered to be harmless and remain in the system. There are several types of viruses that can be categorized according to their source, technique, file type that infects, where they are hiding, the type of damage they enter, the type of operating system or the design on which they are attacking. Several computer viruses such as & Samad Noeiaghdam [email protected]; [email protected] 1

Department of Mathematics, Central Tehran Branch, Islamic Azad University, Tehran, Iran

2

Faculty of Science, Jiangsu University, Zhenjiang, China

3

Department of Mathematics, Comsats Institute of Information Technology, Islamabad, Pakistan

4

Department of Mathematics, Faculty of Science and Arts, Du¨zce University, Du¨zce, Turkey

ILOVEYOU, Melissa, My Doom, Code Red, Sasser have been recognized. Also, in recent years, the Stuxnet virus targeted the Siemens hardware and software industry. Claims and statements allege that the virus was part of spy campaign to hit Iran’s nuclear plant, Natanz. These viruses have been able to infect thousands of computers and have hurt billions dollar in computers around the world. Thus, scientists start to work on finding methods to analyze, track, model and protect against viruses. Computer viruses are similar to biological viruses, and we can study it in two case, microscopic and macroscopic models. Therefore, many studies have proposed solutions that help us to understand how computer viruses operate. In order to control the growth and reproduction of computer viruses, many dynamical model have been presented [7, 18, 19, 29, 33–35, 40, 42]. In this study, the following modified SIR model of computer viruses dSðtÞ ¼ f1  kSðtÞIðtÞ  dSðtÞ; dt dIðtÞ ¼ f2 þ kSðtÞIðtÞ  eIðtÞ  dRðtÞ; dt dRðtÞ ¼ f3 þ eIðtÞ  dRðtÞ: dt

ð1Þ

is illustrated where the initial conditions are in the following form

123

Mathematical Sciences

Sð0Þ ¼ S0 ðtÞ ¼ S0 ; Ið0Þ ¼ I0 ðtÞ ¼ I0 ;

ð2Þ

Rð0Þ ¼ R0 ðtÞ ¼ R0 : In recent years, many applicable methods have been applied to solve the linear and nonlinear problems [13–16, 27, 28, 31, 39, 41]. Also, many numerical and semi-analytical methods presented to solve the nonlinear epidemiological model (1) such as multi-step homotopy analysis method [17], collocation method with Chebyshev polynomials [32] and variational iteration method [29]. In this paper, the HAM [22–26] is applied to solve the nonlinear system of Eq. (1). This method has many applications to solve various problems arising in the mathematics, physics and engineering [1–6, 8–12, 14–16, 20, 21, 30, 31, 36–38]. The h-curves are demonstrated to find the region of convergence. It is one of important abilities of HAM that the other methods do not have this ability. In order to show the efficiency and accuracy of presented approach, the residual error functions for different values of h; m are estimated. Several graphs of error functions are demonstrated to show the capabilities of method. List of functions, variables and initial assumptions of system (1) are presented in Table 1. R

Main idea Let LS ; LI and LR are the linear operators which are defined in the following form LS ¼

dS dI dR ; LI ¼ ; LR ¼ dt dt dt

ð3Þ

and for constant values c1 ; c2 and c3 we obtain LS ðc1 Þ ¼ 0; LI ðc2 Þ ¼ 0; LR ðc3 Þ ¼ 0:

ð4Þ

Now, the following homotopy maps can be defined as Fig. 1  h-curves of S(t), I(t) and R(t) for m ¼ 5; t ¼ 1

Table 1 List of parameters and functions

123

Parameters and functions

Meaning

Values

S(t) I(t)

Susceptible computers at time t Infected computers at time t

Sð0Þ ¼ 20 Ið0Þ ¼ 15

R(t)

Recovered computers at time t

Rð0Þ ¼ 10

f 1 ; f2 ; f3

Rate of external computers connected to the network

f1 ¼ f2 ¼ f3 ¼ 0

k

Rate of infecting for susceptible computer

k ¼ 0:001

e

Rate of recovery for infected computers

e ¼ 0:1

d

Rate of removing from the network

d ¼ 0:1

Mathematical Sciences

R

R

9

Fig. 2  h-curves of S(t), I(t) and R(t) for m ¼ 10; t ¼ 1

Fig. 3  h-curves of S(t), I(t) and R(t) for m ¼ 15; t ¼ 1



   ~ qÞ; Iðt; ~ qÞ  S0 ðtÞ ~ qÞ; Rðt; ~ qÞ ¼ ð1  qÞLS Sðt; HS Sðt;   ~ qÞ; Iðt; ~ qÞ; Rðt; ~ qÞ ;  qhHS ðtÞNS Sðt;     ~ qÞ; Iðt; ~ qÞ  I0 ðtÞ ~ qÞ; Rðt; ~ qÞ ¼ ð1  qÞLI Iðt; HI Sðt;   ~ qÞ; Iðt; ~ qÞ; Rðt; ~ qÞ ;  qhHI ðtÞNI Sðt;     ~ qÞ; Iðt; ~ qÞ  R0 ðtÞ ~ qÞ; Rðt; ~ qÞ ¼ ð1  qÞLR Rðt; HR Sðt;   ~ qÞ; Iðt; ~ qÞ; Rðt; ~ qÞ ;  qhHR ðtÞNR Sðt;

operators, and finally NS ; NI and NR are the nonlinear operators which are defined as follows

ð5Þ where q 2 ½0; 1 is an embedding parameter, h 6¼ 0 is a convergence control parameter, HS ðtÞ; HI ðtÞ and HR ðtÞ are the auxiliary functions, LS ; LI and LR are the linear

123

Mathematical Sciences Table 2 Regions of convergence and the optimal values of  h for m ¼ 5; 10; 15 and t ¼ 1 m

hS 

hS

hI

I h

hR 

hR

5

 1:1   hS   0:8

 0:99994

 1:2   hI   0:8

 1:00204

 1:1   hR   0:9

 0:99058

10

 1:2   hS   0:7

 1:0036

 1:2   hI   0:7

 1:0038

 1:2   hR   0:7

1

15

 1:3   hS   0:5

1

 1:3   hI   0:6

1

 1:3   hR   0:6

1

According to [22–24] the zero-order deformation, equations can be defined as

~ ~ qÞ; Iðt; ~ qÞ; Rðt; ~ qÞ ¼ oSðt; qÞ NS ½Sðt; dt ~ ~ ~  f1 þ kSðt; qÞIðt; qÞ þ dSðt; qÞ; ~ qÞ oIðt;  f2 dt ~ qÞIðt; ~ qÞ þ eIðt; ~ qÞ þ dRðt; ~ qÞ;  kSðt;

~ qÞ; Iðt; ~ qÞ; Rðt; ~ qÞ ¼ NI ½Sðt;

~ qÞ; Iðt; ~ qÞ; Rðt; ~ qÞ ¼ NR ½Sðt;

    ~ qÞ  S0 ðtÞ  qhHS ðtÞNS Sðt; ~ qÞ; Iðt; ~ qÞ; Rðt; ~ qÞ ¼ 0; ð1  qÞLS Sðt;     ~ qÞ; Iðt; ~ qÞ  I0 ðtÞ  qhHI ðtÞNI Sðt; ~ qÞ; Rðt; ~ qÞ ¼ 0; ð1  qÞLI Iðt;     ~ qÞ; Iðt; ~ qÞ  R0 ðtÞ  qhHR ðtÞNR Sðt; ~ qÞ; Rðt; ~ qÞ ¼ 0: ð1  qÞLR Rðt;

ð6Þ

ð7Þ ~ qÞ; Iðt; ~ qÞ and Now, we can write the Taylor series for Sðt; ~ Rðt; qÞ with respect to q in the following form

~ qÞ oRðt;  f3 dt

~ qÞ þ dRðt; ~ qÞ:  eIðt;

Table 3 Residual errors of S5 ðtÞ; I5 ðtÞ and R5 ðtÞ for different values of  h t

h ¼  1:2 

h ¼  1:1

h ¼  1

hopt ¼  0:99994 

h ¼  0:9 

0.0

0.000736

0.000023

2:66454  1015

2:66454  1015

0.000023

0.2

0.00144214

0.0000696185

1:98321  1011

3:81375  1011

2:27788  10

6

0.000388735

0.4

0.00240313

0.00014723

4:38416  1010

7:35197  1010

7:10003  106

0.000128218

8:84562  106

0.0000577341

0.6

0.00366188

0.000265063

0.8

0.00526424

0.000433423

9

1:87637  10

9

1:93464  10

8

3:38906  10

9

6:74028  10

9

9:02851  10

11

1.0

0.00725902

0.000663706

1:1876  10

kEk

0.00725902

0.000663706

1:1876  108

t

h ¼  1:2 

h ¼  1:1

hopt ¼  1:00204

h ¼ 1 

0.0

0.000704

0.000022

8:43769  1014

2:66454  1015

6:74028  109

9

10

h ¼  0:8  0.000736

6

0.000180563

6:1317  10

1:58842  10

6

0.000250966

0.000023

0.000736

h ¼  0:9 

h ¼  0:8 

0.000022

0.000704 6

0.2

0.00079364

0.0000221048

1:19964  10

2:0886  10

9:04759  10

0.000553202

0.4

0.000675079

5:11674  106

1:10223  108

6:48732  109

9:76643  106

0.000345977

0.6

0.000291417

0.0000717513

8

4:78103  10

8

0.0000295926

0.0000980449

8

7

3:28701  10

0.8

0.000417872

0.000191176

4:72582  10

1:955  10

0.000046278

0.00017579

1.0

0.00151692

0.000378046

3:75195  109

5:78838  107

0.0000563829

0.000461654

kEk

0.00151692

0.000378046

4:72582  108

5:78838  107

0.0000563829

0.000704

t

h ¼  1:2 

h ¼  1:1

h ¼  1

hopt ¼  0:99058 

h ¼  0:9 

h ¼  0:8 

0.0

0.00016

5:  106

0

3:70868  1011

5:  106

0.00016

10

9

0.2

0.000761715

0.0000434312

5:69638  10

1:31142  10

0.000013481

0.000148655

0.4

0.00152906

0.0000988607

1:82284  108

1:09745  108

0.0000206331

0.000383918

0.6

0.00245803

0.000169652

1:38422  107

6:07365  108

0.0000172599

0.000546984

7

7

6

0.8

0.00354105

0.000252826

5:83309  10

1:10979  10

1.0

0.00476692

0.000343953

1:78012  106

1:40369  109

0.0000157769

0.000664199

kEk

0.00476692

0.000343953

1:78012  106

1:10979  107

0.0000206331

0.000664199

123

4:58752  10

0.000639632

Mathematical Sciences Table 4 Residual errors of S10 ðtÞ; I10 ðtÞ and R10 ðtÞ for different values of  h t

h ¼  1:2 

h ¼ 1:1

hopt ¼  1:0036

h ¼ 1 

h ¼  0:9 

h ¼  0:8 

0.0

2:3552  107

2:30233  1010

1:02141  1013

9:14824  1014

2:30053  1010

2:3552  107

13

1:07914  10

13

11

13

7

0.2

9

7:98087  10

1:59804  10

9

6

1:03917  10

14

6:38727  106

5:71028  10

8

4:56784  10

1:45981  106

7:45872  108

1:67784  106

5:69842  10

11

1:85035  10

5:17876  10

9:81437  10

1:23901  10

0.6

3:60403  106

1:24299  108

1:38556  1013

1:22125  1013

7:26663  1012

0.8

6

8

14

1:66533  10

13

12

3:46834  10

13

2:47376  10

8

5:59552  10

13

8

2:30053  1010

2:3552  107

hopt ¼  1:0038

h ¼ 1 

h ¼  0:9 

h ¼  0:8 

h ¼  0:7 

2:19797  1010

1:23457  1013

9:14824  1014

2:19932  1010

10

13

9:81437  10

14

11

13

kEk

0.0000101995

4:26312  108

1:38556  1013

t

h ¼  1:2 

h ¼  1:1

0.0

2:2528  107

0.2

7

1:79984  10

9

1:28342  10

13

0.4

3:0554  10

0.6 0.8

3:77689  10

2:17536  10

1:03695  10

1:51879  10

1.0

7:35477  106

3:95442  108

3:39728  1014

6

8

13

2:84757  10

1:32783  10

1:01252  10

1:52798  106

9:54972  109

1:32561  1013

1:11244  1013

6

8

13

13

0.0000119013

hopt ¼  1 

0.0

2:95245  106

5:11999  108

0.0000446347

1:16719  10

2:45188  10

0.6

0.0000746483

1:96985  106

3:30358  109

6

9

7:358  107

7

7

h ¼  1:1

0.4

2:18038  107

11

4:17349  107

h ¼  1:2

9

3:5494  1010

10

h ¼  1:3 

1:01934  10

4:78379  106

7:11569  1010

t

6

5:43913  10

13

4:14557  10

5:01628  10

3:81631  10

4:14557  1013

1:32783  10

9

9:5656  106

8

1:08779  10

6:45201  106

3:95442  10

5:00062  1011

10

7:11569  10

4:17349  10

0.0000129908

h ¼  0:9 

h ¼  0:8 

h ¼  0:7 

5:00069  1011

0 15

8:71525  10

14

10

1:82436  10

12

5:12  108

2:95245  106

1:17196  10

7

7

1:8454  10

3:94129  1014

3:91076  1010

1:62374  107

0.0000101862

8

0.0000107469

14

10

0.000108286

2:76035  10

1:49223  10

0.000142277

3:30389  106

6:33091  109

1:97065  1014

8:26158  1010

8:0793  108

0.000142277

6

9

14

10

7

1 X

~ qÞ ¼ S0 ðtÞ þ Sðt;

1:9984  10

3:94129  10

S~m ðtÞ ¼

m

Sm ðtÞq ;

m¼1

~ qÞ ¼ I0 ðtÞ þ Iðt;

1 X

m

Im ðtÞq ;

ð8Þ

I~m ðtÞ ¼

m¼1

~ qÞ ¼ R0 ðtÞ þ Rðt;

1 X

R~m ðtÞ ¼

Rm ðtÞqm ;

m¼1

where Sm ¼

  m~ ~ qÞ   1 om Sðt;  ; Im ¼ 1 o Iðt; qÞ  ;   m m m! oq m! oq q¼0 q¼0  ~ qÞ  1 om Rðt;  : Rm ¼ m! oqm  q¼0

7:79626  106

1:45817  10

1.0

6:33091  10

3:44612  106

1:15463  10

0.8

3:30389  10

0.0000129908

7

3:47132  10

7:35477  10

7

9:37903  10

2:2528  107

4:57945  10

kEk

kEk

3:44326  106

3:46834  1013

1:3145  10

0.0000203615

6:8329  10

4:19639  106 0.0000135813

4:26312  10

0.2

11

8

4:69374  10

0.0000101995

7

1:12355  10

4:58415  10

3:20961  10

1.0

1:8875  10

0.0000135813

8

0.4

6:30105  10

h ¼  0:7 

7:393  10

8:26158  10

6:72562  10 1:8454  10



 S0 ðtÞ; S1 ðtÞ; . . .; Sm ðtÞ ;



 I0 ðtÞ; I1 ðtÞ; . . .; Im ðtÞ ;



9:64522  106 0.0000107469

 R0 ðtÞ; R1 ðtÞ; . . .; Rm ðtÞ :

Differentiating Eq. (7) m-times with respect to q, dividing by m! and putting q ¼ 0 the mth-order deformation equations can be obtained as follows LS ½Sm ðtÞ  vm Sm1 ðtÞ ¼  hHS ðtÞ

Suggest Documents