Table of Common Distributions taken from Statistical Inference by Casella and
Berger. Discrete Distrbutions distribution pmf mean variance mgf/moment.
Table of Common Distributions taken from Statistical Inference by Casella and Berger
Discrete Distrbutions distribution
pmf
mean
variance
mgf/moment
Bernoulli(p)
px (1 − p)1−x ; x = 0, 1; p ∈ (0, 1)
p
p(1 − p)
(1 − p) + pet
Beta-binomial(n, α, β)
Γ(α+β) Γ(x+α)Γ(n−x+β) (nx ) Γ(α)Γ(β) Γ(α+β+n)
nα α+β
nαβ (α+β)2
Notes: If X|P is binomial (n, P ) and P is beta(α, β), then X is beta-binomial(n, α, β). Binomial(n, p)
( nx )px (1 − p)n−x ; x = 1, . . . , n
np
np(1 − p)
Discrete Uniform(N )
1 N;
N +1 2
(N +1)(N −1) 12
[(1 − p) + pet ]n PN it 1 i=1 e N
Geometric(p)
p(1 − p)x−1 ; p ∈ (0, 1)
1 p
1−p p2
pet 1−(1−p)et
x = 1, . . . , N
Note: Y = X − 1 is negative binomial(1, p). The distribution is memoryless: P (X > s|X > t) = P (X > s − t). Hypergeometric(N, M, K)
N −M (M x )( K−x ) ; N ( K)
x = 1, . . . , K
KM N
KM (N −M )(N −k) N N (N −1)
r(1−p) p
r(1−p) p2
λ
λ
M − (N − K) ≤ x ≤ M ; N, M, K > 0 Negative Binomial(r, p)
)pr (1 − p)x ; p ∈ (0, 1) (r+x−1 x
? ³
p 1−(1−p)et
r y−r ( y−1 ; Y =X +r r−1 )p (1 − p)
Poisson(λ)
e−λ λx x! ;
λ≥0
Notes: If Y is gamma(α, β), X is Poisson( βx ), and α is an integer, then P (X ≥ α) = P (Y ≤ y).
1
t
eλ(e
−1)
´r
Continuous Distributions distribution
pdf
Beta(α, β)
Γ(α+β) α−1 (1 Γ(α)Γ(β) x
Cauchy(θ, σ)
1 1 πσ 1+( x−θ )2 ; σ
− x)β−1 ; x ∈ (0, 1), α, β > 0
σ>0
mean
variance
α α+β
αβ (α+β)2 (α+β+1)
mgf/moment P∞ ³Qk−1 1 + k=1 r=0
does not exist
does not exist
does not exist
Notes: Special case of Students’s t with 1 degree of freedom. Also, if X, Y are iid N (0, 1), χ2p Notes: Gamma( p2 , 2). Double Exponential(µ, σ) Exponential(θ)
p
x 2 −1 e− 2 ; x > 0, p ∈ N
1 p 2 Γ( p 2 )2
x
1 − |x−µ| σ ; 2σ e 1 −x θ ; x ≥ θe
σ>0 0, θ > 0
q
1
p
2p
µ
2σ 2
θ
θ2
X Y
is Cauchy
³
1 1−2t
´ p2
eµt 1−(σt)2 1 1−θt , t
X Notes: Gamma(1, θ). Memoryless. Y = X γ is Weibull. Y = 2X β is Rayleigh. Y = α − γ log β is Gumbel. ³ ´ ν21 ν1 −2 ν +ν Γ( 1 2 2 ) ν1 ν2 +ν2 −2 x 2 2 ; x>0 2( ν2ν−2 )2 νν11 (ν , ν2 > 4 Fν1 ,ν2 ν1 ν2 ¡ ν1 ¢ ν1 +ν 2 ν2 −2 , ν2 > 2 Γ( 2 )Γ( 2 ) ν2 2 −4) 2
, t
0
x−µ β
1
Notes: The cdf is F (x|µ, β) =
−
1+e
x−µ β
³
αβ
1 X
π2 β 2 3
µ
1 1−βt
´α , t
0
βα β−1 ,
tν
Γ( ν+1 2 ) Γ( ν2 )
√1 νπ
0, ν > 1
ν ν−2 , ν
b+a 2
(b−a)2 12
ebt −eat (b−a)t
h i 2 β γ Γ(1 + γ2 ) − Γ2 (1 + γ1 )
EX n = β γ Γ(1 + nγ )
Notes: t2ν = F1,ν .
(x−µ)2 2σ 2
; x > 0, σ > 0
; σ>0
1 2 (1+ xν
ν+1 ) 2
1 Uniform(a, b) b−a , a ≤ x ≤ b Notes: If a = 0, b = 1, this is special case of beta (α = β = 1). xγ
γ γ−1 − β e ; x > 0, γ, β > 0 Weibull(γ, β) βx Notes: The mgf only exists for γ ≥ 1.
eµ+
2
e2(µ+σ ) − e2µ+σ
2
σ2
µ
1
β>1
β γ Γ(1 + γ1 )
2
EX n = enµ+ eµt+
βα2 (β−1)2 (β−2) ,
β>2
>2
σ 2 t2 2
does not exist EX n =
n n Γ( ν+1 2 )Γ(ν− 2 ) √ ν2, πΓ( ν2 )
n
n even
ν2 2