Trajectories and Decoherence in the Double-Slit Experiment According to Bohmian Mechanics Decoherence is defined as the emergence of classical behavior through interaction of a quantum system with the environment. It is the most widely accepted explanation of how quantum systems become classical. For other points of view, see, for example, [1, 2]. Interference of coherent superposition of quantum amplitudes R1, R2 in Young's double-slit experiment is a preeminent feature of quantum systems, but in the classical limit, the interference term vanishes. Classical behavior is exhibited in the trajectories of the particles when each particle goes through one slit and is not affected by the other slit. This kind of decoherence is caused by the vanishing of the quantum potential, in contrast to the general Bohmian view [3, 4] in which trajectories do not cross the axis of symmetry. For a state that has decohered, the acceleration term becomes independent of the quantum potential. This Demonstration shows what happens when only the interference term in the quantum potential vanishes. Fourteen possible trajectories are shown (white/blue) for given initial positions that are linearly distributed around the peaks of the wave.
Details The initial wavefunction in the eikonal form, , obeys the free-particle Schrödinger equation in the direction: , here with
. The initial wavefunction is a linear combination of two Gaussian
packets with initial spatial half-widths and group velocities . The measured intensity at any time is given by . According to the theory proposed in [1], the measured intensity
takes the form ,
1
with
and
, where is the coherence time, a measurement of how fast
the system becomes classical. For simplicity, is called the decoherence coupling factor. In this context, classical means that the probability density
becomes
. If
(the quantum limit), there is full coherence with
and there is no difference
between the general Bohm view and the quantum potential approach.. The trajectories run to the local maxima of the squared wavefunction and therefore correspond to the bright fringes of the diffraction pattern. The quantum particle passes through slit one or slit two and never crosses the axis of symmetry. For unit mass , the general equation of motion is given by the acceleration term that is the second derivative of the position
with respect to time :
, where
is integrated numerically for various initial positions and velocities. The
initial positions are linearly distributed around the peaks of the wave. The initial velocities are taken from the gradient of the phase function for
. The quantum
potential , from which the trajectories are calculated, is given by: , with . For
the coupling function
, the effect of the quantum potential vanishes,
and there is no dependence of the trajectories on the phase functions
and
. This
leads to the crossing of trajectories. The results become more accurate if you increase AccuracyGoal, PrecisionGoal and MaxSteps. For more detailed information about Bohmian mechanics, see [5, 6], and for an animated example describing a similar situation, see [7].
References [1] P. Ghose, "Continuous Quantum-Classical Transitions and Measurement: A Relook." arxiv.org/abs/1705.09149v1.
2
[2] P. Ghose and K. von Bloh, "Continuous Transitions between Quantum and Classical Motions." arxiv.org/abs/1608.07963. [3] A. S. Sanz and F. Borondo, "A Quantum Trajectory Description of Decoherence," The European Physical Journal D, 44(2), 2007 pp. 319–326. doi:10.1140/epjd/e200700191-8. [4] B.-G. Englert, M. O. Scully, G. Süssman and H. Walther, "Surrealistic Bohm Trajectories," Zeitschrift für Naturforschung, 47(12), 1992 pp. 1175–1186. doi:10.1515/zna-1992-1201. [5] "Bohmian-Mechanics.net." (Jun 29, 2017) www.bohmianmechanics.net/index.html. [6] S. Goldstein. "Bohmian Mechanics." The Stanford Encyclopedia of Philosophy. (Jun 29, 2017) plato.stanford.edu/entries/qm-bohm. [7] P. Ghose and K. von Bloh. Decoherence and Crossing Trajectories in the de Broglie–Bohm Approach [Video]. (Jul 3, 2017), www.youtube.com/watch?v=ONw5SHIRe-0. Related Links Double Slit Interference (ScienceWorld) Particle (ScienceWorld) Bohm, David Joseph (1917–1992) (ScienceWorld) Schrödinger Equation (Wolfram MathWorld) Continuous Transition between Classical and Bohm Quantum Pictures for Young's Interference Experiment (Wolfram Demonstrations Project) Causal Interpretation of the Double-Slit Experiment in Quantum Theory (Wolfram Demonstrations Project) A Wave Collapse in the Causal Interpretation of Quantum Theory (Wolfram Demonstrations Project) PERMANENT CITATION Partha Ghose and Klaus von Bloh "Trajectories and Decoherence in the Double-Slit Experiment According to Bohmian Mechanics" http://demonstrations.wolfram.com/TrajectoriesAndDecoherenceInTheDoubleSlitExp erimentAccording/ Wolfram Demonstrations Project Published: July 6, 2017
3
Figure 1 Trajectories full decoherence
Figure 2 Trajectories partial decoherence
4
time steps
50
decoherence coupling factor a
0
wave number u
10
slit distance X
2.2
Betreff: Your submission to the Wolfram Demonstrations Project Absender: Wolfram Demonstrations Project Empfänger:
[email protected] Datum: 18. Juli 2017 13:30
Dear Klaus von Bloh, We are happy to inform you that your submission Trajectories and Decoherence in the Double-Slit Experiment According to Bohmian Mechanics to the Wolfram Demonstrations Project has been accepted for publication. Your Demonstration will now be available to all visitors to the Wolfram Demonstrations Project site. The permanent URL for your Demonstration is: http://demonstrations.wolfram.com/TrajectoriesAndDecoherenceInTheDoubleSlitExp erimentAccording/ It will be available within the next 24 hours. We encourage you to cite this Demonstration in other publications, and to send a link to the Demonstration to anyone you feel is appropriate.
5
Please let us know if you have any questions. We look forward to receiving further Demonstrations from you in the future. Thank you for being a part of the Wolfram Demonstrations Project. Sincerely, Wolfram Demonstrations Team Wolfram Research
[email protected] http://demonstrations.wolfram.com
6