The QCD transition temperature in a Polyakov-loop DSE model*

3 downloads 65598 Views 317KB Size Report
Oct 8, 2008 ... aTheoretical Physics Department, University of Zagreb, Croatia. bUniversity of Rostock ... Polyakov loop + DSE. ▻ Results. ▻ Summary and ...
The QCD transition temperature in a Polyakov-loop DSE model∗ D. Horvati´ ca , D. Blaschkeb,c,d , D. Klabuˇcara , A. E. Radzhabovc ∗ Karl-Franzens-Universit¨ at a Theoretical

Graz

Physics Department, University of Zagreb, Croatia b University of Rostock, Germany c JINR Dubna, Russia d University of Wroclaw, Poland

October 8, 2008

Outline



Dyson-Schwinger approach to quark-hadron physics



Separable model at T = 0 and T 6= 0



Difficulties and how to solve them



Polyakov loop + DSE



Results



Summary and outlook

Dyson-Schwinger approach to quark-hadron physics ◮

= the bound state approach which is nopertubative, covariant and chirally well behaved (e.g., GMOR relation: 2 e q = −h¯ q qi/fπ2 ) limm e q →0 Mq q¯/2m ◮ ◮

direct contact with QCD through ab initio calculations phenomenological modeling of hadrons as quark bound states (e.g., here)



coupled system of integral equations for Green functions of QCD



... but ... equation for n-point function calls (n+1)-point function ... → cannot solve in full the growing tower of DS equations



→ various degrees of truncations, approximations and modeling is unavoidable (more so in phenomenological modeling of hadrons, as here)

Dyson-Schwinger approach to quark-hadron physics ◮

Gap equation for propagator Sq of dressed quark q

+

=

λa µ γ 2



Γaν (l, p)

Sq (l)

Homogeneous Bethe-Salpeter (BS) equation for a M eson q q¯ bound state vertex Γqq¯

M Γqq¯

=

K

M Γqq¯ Sq

Gap and BS equations in RLA truncation

Sf (p)

−1

→ Sf (p) =

4 = iγ · p + m ef + 3

Z

d4 q 2 eff g Dµν (p − q)γµ Sf (q)γν (2π)4

−ip Af (p2 ) + Bf (p2 ) −ip  + mf (p2 ) 1 = 2 = 2 ip Af (p2 ) + Bf (p2 ) p Af (p2 )2 + Bf (p2 )2 p + mf (p2 )2

λ(P 2 )Γff¯′ (p, P ) = −

4 3

Z

d4 q Deff (p − q)γµ Sf (q + (2π)4 µν

P 2

)Γff¯′ (q, P )Sf (q −

P4



Euclidean space: {γµ ,γν} = 2δµν , 㵆 = γµ , a·b =



P is the total momentum



meson mass is identified from λ(P 2 = −M 2 ) = 1



eff (k) an “effective gluon propagator” - modeled ! Dµν

P )γν 2

i=1 ai bi

Separable model eff : ◮ To simplify calculations, take the separable form for Dµν

eff Dµν (p − q) → δµν D(p2 , q 2 , p · q)

D(p2 , q 2 , p · q) = D0 f0 (p2 )f0 (q 2 ) + D1 f1 (p2 )(p · q)f1 (q 2 ) ◮ two strength parameters D0 , D1 , and corresponding form factors fi (p2 ). In the separable model, gap equation yields



Bf (p2 )

=

 Af (p2 ) − 1 p2

=

m ef + 8 3

Z

16 3

Z

Bf (q 2 ) d4 q D(p2 , q 2 , p · q) 2 2 2 4 (2π) q Af (q ) + Bf2 (q 2 )

(p · q)Af (q 2 ) d4 q D(p2 , q 2 , p · q) 2 2 2 . (2π)4 q Af (q ) + Bf2 (q 2 )

◮ This gives Bf (p2 ) = m e f + bf f0 (p2 ) and Af (p2 ) = 1 + af f1 (p2 ), reducing to nonlinear equations for constants bf and af .

A simple choice for ‘interaction form factors’ of the separable model:



Interaction form factors: f0 (p2 ) = exp(−p2 /Λ20 ) f1 (p2 ) =





1 + exp(−p20 /Λ21 ) 1 + exp((p2 − p20 ))/Λ21

gives good description of pseudoscalar properties if the interaction is strong enough for realistic DChSB when mu,d (p2 ∼ small) ∼ the typical constituent quark mass scale ∼ mρ /2 ∼ mN /3.

Extension to T 6= 0 ◮



At T 6= 0, the quark 4-momentum p −→ pn = (ωn , p~), where ωn = (2n + 1)πT are the discrete ( n = 0, ±1, ±2, ±3, ... ) Matsubara frequencies, so that p2n = ωn2 + p~ 2 . Dressed quark propagator Sf (pn , T ) = [i~γ · p~ Af (p2n , T ) + iγ4 ωn Cf (p2n , T ) + Bf (p2n , T )]−1

= ◮

−i~γ · p~ Af (p2n , T ) − iγ4 ωn Cf (p2n , T ) + Bf (p2n , T ) . p~ 2 A2f (p2n , T ) + ωn2 Cf2 (p2n , T ) + Bf2 (p2n , T )

There are now three amplitudes due to the loss of O(4) symmetry, and at sufficiently high T ≥ Td denominator can vanish. −→ For T ≥ Td quarks can be deconfined!

Extension to T 6= 0 ◮



The solutions have the form Bf = m e f + bf (T )f0 (p2n ), 2 Af = 1 + af (T )f1 (pn ), and Cf = 1 + cf (T )f1 (p2n ) af (T )

=

cf (T )

=

bf (T )

=

Z 8D1 X T 9 n Z 8D1 X T 3 n Z 16D0 X T 3 n

d3 p 2 f1 (p2n ) p ~ 2 [1 + af (T )f1 (p2n )] d−1 f (pn , T ) (2π)3 d3 p 2 2 f1 (p2n ) ωn [1 + cf (T )f1 (p2n )] d−1 f (pn , T ) (2π)3 d3 p 2 e f + bf (T )f0 (p2n )] d−1 f0 (p2n ) [m f (pn , T ) (2π)3

where df (p2n , T ) is given by 2 2 2 df (p2n , T ) = p ~ 2 A2f (p2n , T ) + ωn Cf (pn , T ) + Bf2 (p2n , T )

Deconfinement and chiral restoration temperature



Chiral restoration critical temperature TCh is TCh = 128 MeV



(145 MeV in rank − 1)

Deconfinement temperature Td m e q [MeV]

Td [MeV]

0

97

5.5

107 (145 in rank-1)

115

194

Deconfinement and chiral restoration temperature



Chiral restoration critical temperature TCh in other models



results from A. Krassnigg and M. Joergler

Model MN1 Gaussian

1 2

I.S. 0.2809 0.76835 0.57625 0.461

[Munczek, Nemirovsky 1983] [Alkofer, Watson, Weigel 2002]

TCh [MeV] 169 1 83 95 97

ω 0.3 0.4 0.5

D 0.5618 1.5367 1.1525 2 0.922 2

Chiral symmetry restoration at T = TCh mq H0L@GeVD

0.6

TCh =128MeV

ms H0L

0.5 0.4 0.3

mu H0L m0 H0L

0.2 0.1 T@GeVD 0.05

0.1

0.15

0.2

0.25

0.3

DSE + Polyakov loop ◮

Consider DSE model for quark dynamics and generalize it by coupling to the Polyakov loop potential



Use rank-2 separable form of the effective gluon propagator with the same form factors fixed by phenomenology Central quantity for the analysis of the thermodynamical behavior is the thermodynamical potential



Ω(T )

¯ − = U(Φ, Φ)

  1 −1 α α α − T Trp~,n,α,f,D ln{Sf (pn , T )} − Σf (pn , T ) · Sf (pn , T ) 2

Sf−1 (pα n, T )

−1 α α = Sf,0 (pn , T ) − Σ−1 f (pn , T )

DSE + Polyakov loop



Polyakov loop in a case of a constant background field: Φ=

Rβ 1 1 a Trc Tτ ei 0 dτ λa A4 (~x,τ ) = Trc eiφ/T Nc Nc

φ = φ3 λ3 + φ8 λ8 ◮



Here φ is related to Euclidean background field and diagonal in color space ¯ to be real which sets φ8 = 0 We require Φ = Φ     φ φ 1  1 φ3 −i T3 i T3 ¯ Φ=Φ= +e = . 1+e 1 + 2 cos Nc Nc T

DSE + Polyakov loop ◮

Polyakov-loop potential i h ¯ 1 U(Φ, Φ) 3 ∗ 2 ∗ ∗3 + Φ ) − 3(Φ Φ) = − a(T )Φ Φ+b(T ) ln 1 − 6 + 4(Φ T4 2

with a(t) = a0 + a1



T0 T



+ a2



T0 T

2

,

b(T ) = b3



T0 T

3

.

Corresponding parameters are a0 = 3.51, ◮

a1 = −2.47,

a2 = 15.22,

b3 = −1.75.

Due to the coupling to the Polyakov loop the fermionic Matsubara frequencies ωn are shifted (pαn )2 = (ωnα )2 + p~ 2 ,

ωnα = ωn + αφ3 ,

α = −1, 0, +1

DSE + Polyakov loop ◮

Thermodynamic potential with Polyakov loop Ω(T )

=



¯ + U (Φ, Φ)

au (T )2

4T

X

X

C1u Z

2T

X

X

Z

n α=0,±



n α=0,±



cu (T )2 C2u h

3

d p (2π)3

(2π)3

d3 p

2

+

bu (T )2 C3u

+

as (T )2 C1s

α 2

2

α 2

+

cs (T )2

2

C2s α 2

+

bs (T )2 C3s 2

α 2

ln p ~ Au ((pn ) , T ) + (ωn ) Cu ((pn ) , T ) + Bu ((pn ) , T )

u

s

C1 =

2D1 27 4D1 27

i

h i 2 2 α 2 α 2 2 α 2 2 α 2 ln p ~ As ((pn ) , T ) + (ωn ) Cs ((pn ) , T ) + Bs ((pn ) , T )

Where Cfi (f = u, d, s and i = 1, 2, 3) are: C1 =



+

u

,

C2 =

,

C2 =

s

2D1 9 4D1 9

u

,

C3 =

,

C3 =

s

4D0 9 8D0 9

Thermodynamic potential still suffers from the divergency due to the zero-point energy. We employ a substraction scheme.

DSE + Polyakov loop Ωreg (T ) = Ω(T ) − Ωfree (T ) + Ωreg free (T ) + Ω(0) ◮

where Ωfree (T ) = −4T

X X Z n α=0,±

−2T

X X Z n α=0,±



  2 d3 p 2 α 2 , ) + m e ln p ~ + (ω s n (2π)3

and Ωreg free (T ) = −4T

X

X

f =u,d,s α=0,± ◮

 2  d3 p α 2 2 ln p ~ + (ω ) + m e − n u (2π)3

with Eq =

q p~ 2 + m e 2q

   Ef − αφ3 d3 p ln 1 + exp − (2π)3 T

DSE + Polyakov loop





Obtain gap equations by minimizing the thermodynamic potential with respect to Aq , Bq , Cq and φ3 ¯ one obtains simple solution for by minimizing only U(Φ, Φ) gluon sector p ¯ a(T ) + 2 a(T )2 + 9b(T )a(T ) dU(Φ, Φ) =0 ⇒ Φ= dφ3 3a(T )



and from that deconfinement temperature of 270 MeV



For Nf flavors we have 3Nf + 1 coupled gap equations



Now results for quark and gluon sectors coupled

Results



The critical temperatures for chiral symmetry restoration (TCh ) and deconfinement (Td ) which differ by a factor of two when the quark and gluon sectors are considered separately get synchronized and become coincident when the coupling is switched on Tc = TCh = Td .



The critical temperatures Tc = 194.8 MeV for Nf = 2 + 1 and Tc = 198.2 MeV for Nf = 2 are in agreement with recent lattice QCD simulations.



Varying the current quark mass of the model results in a dependence of Tc on the light pseudoscalar meson mass: d in fair agreement with lattice QCD. Plus ... Tc = a + b Mps

Results

susceptibilities

40

dΦ(Τ)/dT dmu,d(T)/dT

Nf=2+1

Nf=2

dms(T)/dT

30 20 10 0.18

0.19

0.20

temperature T[GeV]

0.19

0.2

temperature T[GeV]

Results

w Polyakov loop

w/o Polyakov loop

40

dΦ(Τ)/dT dmu,d(T)/dT

susceptibilities

Nf=2+1

dms(T)/dT

30 20

Nf=2+1

10 0.18

0.19

0.20

temperature T[GeV]

0.1

0.15

0.2

temperature T[GeV]

Results Data taken form P. Petreczky, [arXiv:0705.2175]

Results 215

Tc [MeV]

210

205

200 Nf=2+1 Nf=2 fit 1 fit 2

195

190

0

100

200

300

Mps [MeV]

400

500

600

Results from BSE w/o PL MP @GeVD Td,u TCh

1.2

Td,s

1 0.8 Ms s 0.6



0.4

MK

0.2

MΠ T@GeVD 0.05

0.1

0.15

0.2

Results from BSE with PL 0.8

Tc ,Td =195 MeV

Ms s

MP @GeVD

0.6



MK

0.4

0.2



0 0.18

0.185

0.19

0.195 T@GeVD

0.2

0.205

0.21

Summary and outlook



Sketched Dyson-Schwinger approach to quark-hadron physics & a convenient concrete model



Coupled quark and gluon sector via Polyakov loop potential



Few remarkable results



Calculate full thermodynamics (mesonic contribution to thermodynamic potential ...)



How to apply it to other DSE models ...

Suggest Documents