Oct 8, 2008 ... aTheoretical Physics Department, University of Zagreb, Croatia. bUniversity of
Rostock ... Polyakov loop + DSE. ▻ Results. ▻ Summary and ...
The QCD transition temperature in a Polyakov-loop DSE model∗ D. Horvati´ ca , D. Blaschkeb,c,d , D. Klabuˇcara , A. E. Radzhabovc ∗ Karl-Franzens-Universit¨ at a Theoretical
Graz
Physics Department, University of Zagreb, Croatia b University of Rostock, Germany c JINR Dubna, Russia d University of Wroclaw, Poland
October 8, 2008
Outline
◮
Dyson-Schwinger approach to quark-hadron physics
◮
Separable model at T = 0 and T 6= 0
◮
Difficulties and how to solve them
◮
Polyakov loop + DSE
◮
Results
◮
Summary and outlook
Dyson-Schwinger approach to quark-hadron physics ◮
= the bound state approach which is nopertubative, covariant and chirally well behaved (e.g., GMOR relation: 2 e q = −h¯ q qi/fπ2 ) limm e q →0 Mq q¯/2m ◮ ◮
direct contact with QCD through ab initio calculations phenomenological modeling of hadrons as quark bound states (e.g., here)
◮
coupled system of integral equations for Green functions of QCD
◮
... but ... equation for n-point function calls (n+1)-point function ... → cannot solve in full the growing tower of DS equations
◮
→ various degrees of truncations, approximations and modeling is unavoidable (more so in phenomenological modeling of hadrons, as here)
Dyson-Schwinger approach to quark-hadron physics ◮
Gap equation for propagator Sq of dressed quark q
+
=
λa µ γ 2
◮
Γaν (l, p)
Sq (l)
Homogeneous Bethe-Salpeter (BS) equation for a M eson q q¯ bound state vertex Γqq¯
M Γqq¯
=
K
M Γqq¯ Sq
Gap and BS equations in RLA truncation
Sf (p)
−1
→ Sf (p) =
4 = iγ · p + m ef + 3
Z
d4 q 2 eff g Dµν (p − q)γµ Sf (q)γν (2π)4
−ip Af (p2 ) + Bf (p2 ) −ip + mf (p2 ) 1 = 2 = 2 ip Af (p2 ) + Bf (p2 ) p Af (p2 )2 + Bf (p2 )2 p + mf (p2 )2
λ(P 2 )Γff¯′ (p, P ) = −
4 3
Z
d4 q Deff (p − q)γµ Sf (q + (2π)4 µν
P 2
)Γff¯′ (q, P )Sf (q −
P4
◮
Euclidean space: {γµ ,γν} = 2δµν , 㵆 = γµ , a·b =
◮
P is the total momentum
◮
meson mass is identified from λ(P 2 = −M 2 ) = 1
◮
eff (k) an “effective gluon propagator” - modeled ! Dµν
P )γν 2
i=1 ai bi
Separable model eff : ◮ To simplify calculations, take the separable form for Dµν
eff Dµν (p − q) → δµν D(p2 , q 2 , p · q)
D(p2 , q 2 , p · q) = D0 f0 (p2 )f0 (q 2 ) + D1 f1 (p2 )(p · q)f1 (q 2 ) ◮ two strength parameters D0 , D1 , and corresponding form factors fi (p2 ). In the separable model, gap equation yields
Bf (p2 )
=
Af (p2 ) − 1 p2
=
m ef + 8 3
Z
16 3
Z
Bf (q 2 ) d4 q D(p2 , q 2 , p · q) 2 2 2 4 (2π) q Af (q ) + Bf2 (q 2 )
(p · q)Af (q 2 ) d4 q D(p2 , q 2 , p · q) 2 2 2 . (2π)4 q Af (q ) + Bf2 (q 2 )
◮ This gives Bf (p2 ) = m e f + bf f0 (p2 ) and Af (p2 ) = 1 + af f1 (p2 ), reducing to nonlinear equations for constants bf and af .
A simple choice for ‘interaction form factors’ of the separable model:
◮
Interaction form factors: f0 (p2 ) = exp(−p2 /Λ20 ) f1 (p2 ) =
◮
◮
1 + exp(−p20 /Λ21 ) 1 + exp((p2 − p20 ))/Λ21
gives good description of pseudoscalar properties if the interaction is strong enough for realistic DChSB when mu,d (p2 ∼ small) ∼ the typical constituent quark mass scale ∼ mρ /2 ∼ mN /3.
Extension to T 6= 0 ◮
◮
At T 6= 0, the quark 4-momentum p −→ pn = (ωn , p~), where ωn = (2n + 1)πT are the discrete ( n = 0, ±1, ±2, ±3, ... ) Matsubara frequencies, so that p2n = ωn2 + p~ 2 . Dressed quark propagator Sf (pn , T ) = [i~γ · p~ Af (p2n , T ) + iγ4 ωn Cf (p2n , T ) + Bf (p2n , T )]−1
= ◮
−i~γ · p~ Af (p2n , T ) − iγ4 ωn Cf (p2n , T ) + Bf (p2n , T ) . p~ 2 A2f (p2n , T ) + ωn2 Cf2 (p2n , T ) + Bf2 (p2n , T )
There are now three amplitudes due to the loss of O(4) symmetry, and at sufficiently high T ≥ Td denominator can vanish. −→ For T ≥ Td quarks can be deconfined!
Extension to T 6= 0 ◮
◮
The solutions have the form Bf = m e f + bf (T )f0 (p2n ), 2 Af = 1 + af (T )f1 (pn ), and Cf = 1 + cf (T )f1 (p2n ) af (T )
=
cf (T )
=
bf (T )
=
Z 8D1 X T 9 n Z 8D1 X T 3 n Z 16D0 X T 3 n
d3 p 2 f1 (p2n ) p ~ 2 [1 + af (T )f1 (p2n )] d−1 f (pn , T ) (2π)3 d3 p 2 2 f1 (p2n ) ωn [1 + cf (T )f1 (p2n )] d−1 f (pn , T ) (2π)3 d3 p 2 e f + bf (T )f0 (p2n )] d−1 f0 (p2n ) [m f (pn , T ) (2π)3
where df (p2n , T ) is given by 2 2 2 df (p2n , T ) = p ~ 2 A2f (p2n , T ) + ωn Cf (pn , T ) + Bf2 (p2n , T )
Deconfinement and chiral restoration temperature
◮
Chiral restoration critical temperature TCh is TCh = 128 MeV
◮
(145 MeV in rank − 1)
Deconfinement temperature Td m e q [MeV]
Td [MeV]
0
97
5.5
107 (145 in rank-1)
115
194
Deconfinement and chiral restoration temperature
◮
Chiral restoration critical temperature TCh in other models
◮
results from A. Krassnigg and M. Joergler
Model MN1 Gaussian
1 2
I.S. 0.2809 0.76835 0.57625 0.461
[Munczek, Nemirovsky 1983] [Alkofer, Watson, Weigel 2002]
TCh [MeV] 169 1 83 95 97
ω 0.3 0.4 0.5
D 0.5618 1.5367 1.1525 2 0.922 2
Chiral symmetry restoration at T = TCh mq H0L@GeVD
0.6
TCh =128MeV
ms H0L
0.5 0.4 0.3
mu H0L m0 H0L
0.2 0.1 T@GeVD 0.05
0.1
0.15
0.2
0.25
0.3
DSE + Polyakov loop ◮
Consider DSE model for quark dynamics and generalize it by coupling to the Polyakov loop potential
◮
Use rank-2 separable form of the effective gluon propagator with the same form factors fixed by phenomenology Central quantity for the analysis of the thermodynamical behavior is the thermodynamical potential
◮
Ω(T )
¯ − = U(Φ, Φ)
1 −1 α α α − T Trp~,n,α,f,D ln{Sf (pn , T )} − Σf (pn , T ) · Sf (pn , T ) 2
Sf−1 (pα n, T )
−1 α α = Sf,0 (pn , T ) − Σ−1 f (pn , T )
DSE + Polyakov loop
◮
Polyakov loop in a case of a constant background field: Φ=
Rβ 1 1 a Trc Tτ ei 0 dτ λa A4 (~x,τ ) = Trc eiφ/T Nc Nc
φ = φ3 λ3 + φ8 λ8 ◮
◮
Here φ is related to Euclidean background field and diagonal in color space ¯ to be real which sets φ8 = 0 We require Φ = Φ φ φ 1 1 φ3 −i T3 i T3 ¯ Φ=Φ= +e = . 1+e 1 + 2 cos Nc Nc T
DSE + Polyakov loop ◮
Polyakov-loop potential i h ¯ 1 U(Φ, Φ) 3 ∗ 2 ∗ ∗3 + Φ ) − 3(Φ Φ) = − a(T )Φ Φ+b(T ) ln 1 − 6 + 4(Φ T4 2
with a(t) = a0 + a1
T0 T
+ a2
T0 T
2
,
b(T ) = b3
T0 T
3
.
Corresponding parameters are a0 = 3.51, ◮
a1 = −2.47,
a2 = 15.22,
b3 = −1.75.
Due to the coupling to the Polyakov loop the fermionic Matsubara frequencies ωn are shifted (pαn )2 = (ωnα )2 + p~ 2 ,
ωnα = ωn + αφ3 ,
α = −1, 0, +1
DSE + Polyakov loop ◮
Thermodynamic potential with Polyakov loop Ω(T )
=
−
¯ + U (Φ, Φ)
au (T )2
4T
X
X
C1u Z
2T
X
X
Z
n α=0,±
−
n α=0,±
◮
cu (T )2 C2u h
3
d p (2π)3
(2π)3
d3 p
2
+
bu (T )2 C3u
+
as (T )2 C1s
α 2
2
α 2
+
cs (T )2
2
C2s α 2
+
bs (T )2 C3s 2
α 2
ln p ~ Au ((pn ) , T ) + (ωn ) Cu ((pn ) , T ) + Bu ((pn ) , T )
u
s
C1 =
2D1 27 4D1 27
i
h i 2 2 α 2 α 2 2 α 2 2 α 2 ln p ~ As ((pn ) , T ) + (ωn ) Cs ((pn ) , T ) + Bs ((pn ) , T )
Where Cfi (f = u, d, s and i = 1, 2, 3) are: C1 =
◮
+
u
,
C2 =
,
C2 =
s
2D1 9 4D1 9
u
,
C3 =
,
C3 =
s
4D0 9 8D0 9
Thermodynamic potential still suffers from the divergency due to the zero-point energy. We employ a substraction scheme.
DSE + Polyakov loop Ωreg (T ) = Ω(T ) − Ωfree (T ) + Ωreg free (T ) + Ω(0) ◮
where Ωfree (T ) = −4T
X X Z n α=0,±
−2T
X X Z n α=0,±
◮
2 d3 p 2 α 2 , ) + m e ln p ~ + (ω s n (2π)3
and Ωreg free (T ) = −4T
X
X
f =u,d,s α=0,± ◮
2 d3 p α 2 2 ln p ~ + (ω ) + m e − n u (2π)3
with Eq =
q p~ 2 + m e 2q
Ef − αφ3 d3 p ln 1 + exp − (2π)3 T
DSE + Polyakov loop
◮
◮
Obtain gap equations by minimizing the thermodynamic potential with respect to Aq , Bq , Cq and φ3 ¯ one obtains simple solution for by minimizing only U(Φ, Φ) gluon sector p ¯ a(T ) + 2 a(T )2 + 9b(T )a(T ) dU(Φ, Φ) =0 ⇒ Φ= dφ3 3a(T )
◮
and from that deconfinement temperature of 270 MeV
◮
For Nf flavors we have 3Nf + 1 coupled gap equations
◮
Now results for quark and gluon sectors coupled
Results
◮
The critical temperatures for chiral symmetry restoration (TCh ) and deconfinement (Td ) which differ by a factor of two when the quark and gluon sectors are considered separately get synchronized and become coincident when the coupling is switched on Tc = TCh = Td .
◮
The critical temperatures Tc = 194.8 MeV for Nf = 2 + 1 and Tc = 198.2 MeV for Nf = 2 are in agreement with recent lattice QCD simulations.
◮
Varying the current quark mass of the model results in a dependence of Tc on the light pseudoscalar meson mass: d in fair agreement with lattice QCD. Plus ... Tc = a + b Mps
Results
susceptibilities
40
dΦ(Τ)/dT dmu,d(T)/dT
Nf=2+1
Nf=2
dms(T)/dT
30 20 10 0.18
0.19
0.20
temperature T[GeV]
0.19
0.2
temperature T[GeV]
Results
w Polyakov loop
w/o Polyakov loop
40
dΦ(Τ)/dT dmu,d(T)/dT
susceptibilities
Nf=2+1
dms(T)/dT
30 20
Nf=2+1
10 0.18
0.19
0.20
temperature T[GeV]
0.1
0.15
0.2
temperature T[GeV]
Results Data taken form P. Petreczky, [arXiv:0705.2175]
Results 215
Tc [MeV]
210
205
200 Nf=2+1 Nf=2 fit 1 fit 2
195
190
0
100
200
300
Mps [MeV]
400
500
600
Results from BSE w/o PL MP @GeVD Td,u TCh
1.2
Td,s
1 0.8 Ms s 0.6
MΣ
0.4
MK
0.2
MΠ T@GeVD 0.05
0.1
0.15
0.2
Results from BSE with PL 0.8
Tc ,Td =195 MeV
Ms s
MP @GeVD
0.6
MΣ
MK
0.4
0.2
MΠ
0 0.18
0.185
0.19
0.195 T@GeVD
0.2
0.205
0.21
Summary and outlook
◮
Sketched Dyson-Schwinger approach to quark-hadron physics & a convenient concrete model
◮
Coupled quark and gluon sector via Polyakov loop potential
◮
Few remarkable results
◮
Calculate full thermodynamics (mesonic contribution to thermodynamic potential ...)
◮
How to apply it to other DSE models ...