May 20, 2011 ... DSE model. D. Horvatica, D. Blaschkeb, D. Klabucara, O. Kaczmarekc.
aTheoretical Physics Department, University of Zagreb, Croatia.
Width of the QCD transition in a Polyakov-loop DSE model D. Horvati´ ca , D. Blaschkeb , D. Klabuˇcara , O. Kaczmarekc a Theoretical
Physics Department, University of Zagreb, Croatia for Theoretical Physics, University of Wroclaw, Poland c Department of Physics, Bielefeld University, Germany
b Institute
Three Days on Quarkyonic Island, Wroclaw, Poland May 20, 2011
Dyson-Schwinger approach to quark-hadron physics ◮
◮
the bound state approach which is nopertubative, covariant and chirally well behaved (e.g., GMOR Gell-Mann-Oakes-Renner relation: 2 e q = −h¯ q qi/fπ2 ) limm e q →0 Mq q¯/2m direct contact with QCD through ab initio calculations
◮
phenomenological modeling of hadrons as quark bound states
◮
coupled system of integral equations for Green functions of QCD
◮
... but ... equation for n-point function calls (n+1)-point function ... → cannot solve in full the growing tower of DS equations
◮
→ various degrees of truncations, approximations and modeling is unavoidable (more so in phenomenological modeling of hadrons, as here)
Dyson-Schwinger approach to quark-hadron physics ◮
Gap equation for propagator Sq of dressed quark q
◮
Homogeneous Bethe-Salpeter (BS) equation for a meson q q¯ bound state vertex Γqq¯
M Γqq¯
=
K
M Γqq¯ Sq
Gap and BS equations in RLA truncation
Sf (p)
−1
→ Sf (p) =
4 = iγ · p + m ef + 3
Z
d4 q 2 eff g Dµν (p − q)γµ Sf (q)γν (2π)4
−ip Af (p2 ) + Bf (p2 ) −ip + mf (p2 ) 1 = 2 = 2 ip Af (p2 ) + Bf (p2 ) p Af (p2 )2 + Bf (p2 )2 p + mf (p2 )2
λ(P 2 )Γff¯′ (p, P ) = −
4 3
Z
d4 q D eff (p − q)γµ Sf (q + (2π)4 µν
P 2
)Γff¯′ (q, P )Sf (q −
P4
◮
Euclidean space: {γµ ,γν} = 2δµν , 㵆 = γµ , a·b =
◮
P is the total momentum
◮
meson mass is identified from λ(P 2 = −M 2 ) = 1
◮
eff (k) an “effective gluon propagator” - modeled ! Dµν
P )γν 2
i=1 ai bi
Separable model eff : ◮ To simplify calculations, take the separable form for Dµν
eff Dµν (p − q) → δµν D(p2 , q 2 , p · q)
D(p2 , q 2 , p · q) = D0 f0 (p2 )f0 (q 2 ) + D1 f1 (p2 )(p · q)f1 (q 2 ) ◮ two strength parameters D0 , D1 , and corresponding form factors fi (p2 ). In the separable model, gap equation yields
Bf (p2 )
=
Af (p2 ) − 1 p2
=
m ef + 8 3
Z
16 3
Z
Bf (q 2 ) d4 q D(p2 , q 2 , p · q) 2 2 2 4 (2π) q Af (q ) + Bf2 (q 2 )
(p · q)Af (q 2 ) d4 q D(p2 , q 2 , p · q) 2 2 2 . (2π)4 q Af (q ) + Bf2 (q 2 )
◮ This gives Bf (p2 ) = m e f + bf f0 (p2 ) and Af (p2 ) = 1 + af f1 (p2 ), reducing to nonlinear equations for constants bf and af .
Separable model
◮
◮
for separable interaction allowed form of the solution for the pseudoscalar BS amplitude is P P S (P 2 ) f0 (q 2 ) ΓP S (q; P ) = γ5 iEP S (P 2 ) +F
this becomes a 2 × 2 matrix eigenvalue problem K(P 2 )f = λ(P 2 )f where the eigenvector is f = (EP S , FP S ), and the kernel is Z d4 q 2 2 ˆ 4D0 tr f0 (q ) ti Sf (q+ ) tj Sf ′ (q− ) Kij (P 2 ) = − 4 3 (2π) t = (iγ5 , γ5 Pˆ ), tˆ = (iγ5 , −γ5 Pˆ /2P 2 ), q± = q ± P/2
Extension to T 6= 0
◮
◮
At T 6= 0, the quark 4-momentum p −→ pn = (ωn , p~), where ωn = (2n + 1)πT are the discrete ( n = 0, ±1, ±2, ±3, ... ) Matsubara frequencies, so that p2n = ωn2 + p~ 2 . Dressed quark propagator Sf (pn , T ) = [i~γ · p~ Af (p2n , T ) + iγ4 ωn Cf (p2n , T ) + Bf (p2n , T )]−1
=
−i~γ · p~ Af (p2n , T ) − iγ4 ωn Cf (p2n , T ) + Bf (p2n , T ) . p~ 2 A2f (p2n , T ) + ωn2 Cf2 (p2n , T ) + Bf2 (p2n , T )
Extension to T 6= 0 ◮
◮
The solutions have the form Bf = m e f + bf (T )f0 (p2n ), 2 Af = 1 + af (T )f1 (pn ), and Cf = 1 + cf (T )f1 (p2n ) af (T )
=
cf (T )
=
bf (T )
=
Z d3 p 8D1 X 2 T f1 (p2n ) p ~ 2 [1 + af (T )f1 (p2n )] d−1 f (pn , T ) 9 (2π)3 n Z d3 p 8D1 X 2 2 T f (p2 ) ωn [1 + cf (T )f1 (p2n )] d−1 f (pn , T ) 3 1 n 3 (2π) n Z 16D0 X d3 p 2 e f + bf (T )f0 (p2n )] d−1 T f (p2 ) [m f (pn , T ) 3 0 n 3 (2π) n
where df (p2n , T ) is given by 2 2 2 df (p2n , T ) = p ~ 2 A2f (p2n , T ) + ωn Cf (pn , T ) + Bf2 (p2n , T )
Chiral restoration temperature ◮
Chiral restoration critical temperature TCh is TCh = 128 MeV
◮
M. Blank and A. Krassnigg, Phys. Rev. D 82, 034006 (2010) ω [GeV] Model Tc Model Tc Model Tc Model Tc
◮
(145 MeV in rank − 1)
N/A MN 169
0.3
0.4
0.5
AWW1 82 MT1 82 MR1 120
AWW2 94 MT2 94 MR2 133
AWW3 101 MT3 96 MR3 144
C. S. Fischer, J. Luecker, J. A. Mueller, [arXiv: 1104.1564], backreaction of the quarks onto the Yang-Mills sector
Chiral symmetry restoration at T = TCh mq H0L@GeVD
0.6
TCh =128MeV
ms H0L
0.5 0.4 0.3
mu H0L m0 H0L
0.2 0.1 T@GeVD 0.05
0.1
0.15
0.2
0.25
0.3
DSE + Polyakov loop ◮
Consider DSE model for quark dynamics and generalize it by coupling to the Polyakov loop potential
◮
Use rank-2 separable form of the effective gluon propagator with the same form factors fixed by phenomenology Central quantity for the analysis of the thermodynamical behavior is the thermodynamical potential
◮
Ω(T )
= −
¯ − U (Φ, Φ) T Trp~,n,α,f,D
Sf−1 (pα n, T )
=
ln{Sf−1 (pα n , T )}
1 α − Σf (pα n , T ) · Sf (pn , T ) 2
−1 α α Sf,0 (pn , T ) − Σ−1 f (pn , T )
DSE + Polyakov loop
◮
Polyakov loop in a case of a constant background field: Φ=
Rβ 1 1 a Trc Tτ ei 0 dτ λa A4 (~x,τ ) = Trc eiφ/T Nc Nc
φ = φ 3 λ3 + φ 8 λ8 ◮
◮
Here φ is related to Euclidean background field and diagonal in color space ¯ to be real which sets φ8 = 0 We require Φ = Φ φ φ 1 1 φ3 −i T3 i T3 ¯ Φ=Φ= +e = . 1+e 1 + 2 cos Nc Nc T
DSE + Polyakov loop ◮
Polyakov-loop potential h i ¯ U (Φ, Φ) 1 = − a(T )Φ∗ Φ+b(T ) ln 1 − 6 + 4(Φ∗ 3 + Φ3 ) − 3(Φ∗ Φ)2 4 T 2
with a(t) = a0 + a1
T0 T
+ a2
T0 T
2
,
b(T ) = b3
T0 T
3
.
Corresponding parameters are a0 = 3.51,
a1 = −2.47,
a2 = 15.22,
b3 = −1.75.
T0 = 270 MeV ◮
Due to the coupling to the Polyakov loop the fermionic Matsubara frequencies ωn are shifted (pαn )2 = (ωnα )2 + p~ 2 ,
ωnα = ωn + αφ3 ,
α = −1, 0, +1
Polyakov loop parametrization
◮
we can also consider polynomial ansatz for the Polyakov-loop potential b2 (T ) ¯ b3 U ¯ 3 + b4 ΦΦ ¯ 2 Φ3 + Φ =− ΦΦ − 4 T 2 6 4 3 2 T0 T0 T0 b2 (T ) = a0 + a1 + a3 . + a2 T T T a0 = 6.75 , a1 = −1.95 , a2 = 2.625 , a3 = −7.44 b3 = 0.75 ,
b4 = 7.5
DSE + Polyakov loop ◮
Thermodynamic potential with Polyakov loop Ω(T )
=
−
¯ + U (Φ, Φ)
au (T )2
4T
X
+ C1u Z 3 X d p
2T
X
X
(2π)3
n α=0,±
−
n α=0,±
◮
Z
d3 p (2π)3
C2u h
2
+
bu (T )2 C3u
+
as (T )2 C1s
α 2
2
α 2
+
cs (T )2
2
C2s α 2
+
bs (T )2 C3s 2
α 2
ln p ~ Au ((pn ) , T ) + (ωn ) Cu ((pn ) , T ) + Bu ((pn ) , T )
u
s
C1 =
2D1 27 4D1 27
i
h i 2 2 α 2 α 2 2 α 2 2 α 2 ln p ~ As ((pn ) , T ) + (ωn ) Cs ((pn ) , T ) + Bs ((pn ) , T )
Where Cfi (f = u, d, s and i = 1, 2, 3) are: C1 =
◮
cu (T )2
u
,
C2 =
,
C2 =
s
2D1 9 4D1 9
u
,
C3 =
,
C3 =
s
4D0 9 8D0 9
Thermodynamic potential still suffers from the divergency due to the zero-point energy. We employ a substraction scheme.
DSE + Polyakov loop Ωreg (T ) = Ω(T ) − Ωfree (T ) + Ωreg free (T ) + Ω(0) ◮
where Ωfree (T ) = −4T
X X Z n α=0,±
−2T
X X Z n α=0,±
◮
2 d3 p 2 α 2 , ) + m e ln p ~ + (ω s n (2π)3
and Ωreg free (T ) = −4T
X
X
f =u,d,s α=0,± ◮
2 d3 p α 2 2 ln p ~ + (ω ) + m e − n u (2π)3
with Eq =
q p~ 2 + m e 2q
Ef − αφ3 d3 p ln 1 + exp − (2π)3 T
DSE + Polyakov loop
◮
Obtain gap equations by minimizing the thermodynamic potential with respect to Aq , Bq , Cq and φ3
◮
For Nf flavors we have 3Nf + 1 coupled gap equations
◮
Bernd-Jochen Schaefer, Jan M. Pawlowski, Jochen Wambach, Phys.Rev.D76:074023,(2007) Nf T0 [MeV]
0 270
1 240
2 208
2+1 187
3 178
Results
◮
The critical temperatures for chiral symmetry restoration (TCh ) and deconfinement (Td ) which differ by a factor of two when the quark and gluon sectors are considered separately get synchronized and become coincident when the coupling is switched on Tc = TCh = Td .
◮
For T0 = 270 MeV, the critical temperatures are Tc = 195 MeV for Nf = 2 + 1 and Tc = 198 MeV for Nf = 2
◮
For T0 = 187 MeV → Tc = 164 MeV for Nf = 2 + 1, but ...
Results
w Polyakov loop
w/o Polyakov loop
40
dΦ(Τ)/dT dmu,d(T)/dT
susceptibilities
Nf=2+1
dms(T)/dT
30
20
Nf=2+1
10
0.8 0.9
1 1.1 1.2 1.3 0.8 0.9 T/Tc
1 1.1 1.2 1.3 T/Tc
Results 200
Tc [MeV]
190 180 170 st
1 order transition crossover crossover
160 150 180
200
220 240 T0 [MeV]
260
280
Results
m(T)/m(0) , Φ(T)
1 0.8 0.6
T0=187 MeV T0=210 MeV T0=270 MeV
0.4 0.2 0 0.1
0.15 T [GeV]
0.2
Results qs
M [GeV]
1 0.8 0.6 0.4 0.2
2q
σ K 2π π
0
M [GeV]
1 0.8
σ
0.6
K
0.4
π
0.2 0 0
qs
2π
0.2
2q 0.4
0.6 0.8 T / Tc
1
1.2
Outlook
◮
Investigate effects of PL potential parametrization
◮
Investigate effects of changing form factors
◮
Include hadronic fluctuations beyond the mean field
◮
A.E. Radzhabov, D. Blaschke, M. Buballa, M.K. Volkov, [arXiv:1012.0664]