The viscosity iterative algorithms for the implicit ... - Semantic Scholar

0 downloads 0 Views 2MB Size Report
Luo et al. Journal of Inequalities and Applications (2017) 2017:154 ... denoted by F(T) the set of fixed points of T. It is well known that the duality mapping.
Luo et al. Journal of Inequalities and Applications (2017) 2017:154 DOI 10.1186/s13660-017-1426-8

RESEARCH

Open Access

The viscosity iterative algorithms for the implicit midpoint rule of nonexpansive mappings in uniformly smooth Banach spaces Ping Luo1 , Gang Cai1* and Yekini Shehu2 *

Correspondence: [email protected] 1 School of Mathematics Science, Chongqing Normal University, Chongqing, 401331, China Full list of author information is available at the end of the article

Abstract The aim of this paper is to introduce a viscosity iterative algorithm for the implicit midpoint rule of nonexpansive mappings in uniformly smooth spaces. Under some appropriate conditions on the parameters, we prove some strong convergence theorems. As applications, we apply our main results to solving fixed point problems of strict pseudocontractive mappings, variational inequality problems in Banach spaces and equilibrium problems in Hilbert spaces. Finally, we give some numerical examples for supporting our main results. MSC: 49H09; 47H10; 47J20 Keywords: strong convergence; nonexpansive mapping; implicit midpoint rule; uniformly smooth Banach space

1 Introduction Throughout this paper, we assume that E and E∗ is a real Banach space and the dual space of E, respectively. Let T be a mapping from C into itself, where C is a subset of E. We denoted by F(T) the set of fixed points of T. It is well known that the duality mapping ∗ J : E → E is defined by       J(x) = x∗ ∈ E∗ : x, x∗ = x , x∗  = x ,

∀x ∈ E.

When J is single-valued, we denote it by j. We notice that if E is a Hilbert space, then J is the identity mapping and if E is smooth, then J is single-valued. Now we recall some basic concepts and facts appeared in []. A mapping f : C → C is said to be a contraction, if there exists a constant α ∈ [, ) satisfying   f (x) – f (y) ≤ αx – y,

∀x, y ∈ C.

We use C to denote the collection of all contractions from C into itself. A mapping T : C → C is said to be nonexpansive if Tx – Ty ≤ x – y,

∀x, y ∈ C.

(.)

© The Author(s) 2017. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Luo et al. Journal of Inequalities and Applications (2017) 2017:154

Page 2 of 12

Let ρE : [, ∞) → [, ∞) be defined by  ρE (t) = sup

 x + y + x – y –  : x ∈ S(E), y ≤ t , 

which is called the modulus of smoothness of E. We say that Banach space E is uniformly ρE (t) smooth if →  as t → . It is well known that typical example of uniformly smooth t Banach spaces is Lp , here p > . Moreover, we say that Banach space E is q-uniformly smooth, if there exists a fixed constant c >  such that ρE (t) ≤ ct q . Recently, viscosity iterative algorithms for finding a common element of the set of fixed points for nonlinear operators and the set of solutions of variational inequality problems have been investigated by many authors; see [–] and the references therein. For example, Xu [] introduced the explicit viscosity method for nonexpansive mappings: xn+ = αn f (xn ) + ( – αn )Txn ,

n ≥ ,

(.)

where {αn } is a sequence in (, ) and f ∈ C . Under some suitable conditions on {αn }, he proved that the sequence {xn } generated by (.) converges strongly to a fixed point q of T in Hilbert spaces or uniformly smooth Banach spaces, which also solves the variational inequality:   (I – f )q, x – q ≥ ,

x ∈ F(T).

(.)

On the other hand, the implicit midpoint rule is a powerful method for solving ordinary differential equations; see [–] and the references therein. Recently, Xu et al. [] applied the viscosity technique to the implicit midpoint rule for a nonexpansive mapping. Precisely, they considered the following viscosity implicit midpoint rule: xn+ = αn f (xn ) + ( – αn )T

xn + xn+ , 

n ≥ .

(.)

They proved that the sequence generated by (.) converges strongly to a fixed point of T, which also solves the variational inequality (.) in Hilbert space. The following problems arise: Question . Can we extend and improve the main results of Xu et al. [] from Hilbert space to general Banach space? For example we might consider a uniformly smooth Banach space. Question . We note that the proof of step  in Theorem . of [] is very complicated. Can we simplify it? In this paper, we give the affirmative answers to the above two questions. More precisely, we investigate the viscosity iterative algorithm (.) for the implicit midpoint rule of a nonexpansive mapping in a real uniformly smooth space. Under some suitable conditions on the parameters, we prove some strong convergence theorems. We also apply our main results to solve fixed point problems for strict pseudocontractive mappings, variational inequality problems in Banach spaces and equilibrium problems in Hilbert spaces.

Luo et al. Journal of Inequalities and Applications (2017) 2017:154

Page 3 of 12

2 Preliminaries The following lemmas are fundamental in the proof of our main results of this section. Lemma . ([]) Assume {an } is a sequence of nonnegative real numbers such that an+ ≤ ( – αn )an + δn ,

n ≥ ,

where {αn } is a sequence in (, ) and {δn } is a sequence in R such that

∞ (i) n= αn = ∞, and

(ii) either lim supn→∞ αδnn ≤  or ∞ n= |δn | < ∞. Then limn→∞ an = . Lemma . ([]) Let E be a uniformly smooth Banach space, C be a closed convex subset of E, T : C → C be a nonexpansive mapping with F(T) = ∅ and let f ∈ C . Then the sequence {xt } defined by xt = tf (xt ) + ( – t)Txt converges strongly to a point in F(T). If we define a mapping Q : C → F(T) by Q(f ) := limt→ xt , ∀f ∈ C . Then Q(f ) solves the following variational inequality:    (I – f )Q(f ), j Q(f ) – p ≤ ,

∀f ∈ C , p ∈ F(T).

Lemma . ([]) Let C be a nonempty closed convex subset of a real Banach space E which has uniformly Gâteaux differentiable norm, and T : C → C be a nonexpansive mapping with F(T) = ∅. Assume that {zt } strongly converges to a fixed point z of T as t → , where {zt } is defined by zt = tf (zt )+(–t)Tzt . Suppose {xn } ⊂ C is bounded and limn→∞ xn –Txn  = . Then   lim sup f (z) – z, j(xn+ – z) ≤ . n→∞

3 Main results Theorem . Let C be a closed convex subset of a uniformly smooth Banach space E. Let T : C → C be a nonexpansive mapping with F(T) = ∅, and f : C → C a contraction with coefficient α ∈ [, ). Let {xn } be a sequence generated by the following viscosity implicit midpoint rule: xn+ = αn f (xn ) + ( – αn )T

xn + xn+ , 

n ≥ ,

(.)

where {αn } is a sequence in (, ) such that: (i) limn→∞ αn = ,

∞ (ii) n= αn = ∞,

αn+ (iii) either ∞ n= |αn+ – αn | < ∞ or limn→∞ αn = . Then {xn } converges strongly to a fixed point q of T, which also solve the following variational inequality:   (I – f )q, j(x – q) ≥ ,

x ∈ F(T).

(.)

Luo et al. Journal of Inequalities and Applications (2017) 2017:154

Page 4 of 12

Proof Using similar argument used in the proof of Theorem . of [], we can find that the sequence {xn } is bounded and xn+ – xn  → ,

xn – Txn  → ,

as n → ∞.

(.)

We omit the details. Let {xt } be a sequence defined by xt = tf (xt ) + ( – t)Txt , then it follows from Lemma . that {xt } converges strongly to a fixed point q of T, which solves the variational inequality:   (I – f )q, j(x – q) ≥ ,

x ∈ F(T).

By (.) and Lemma ., we have   lim sup f (q) – q, j(xn+ – q) ≤ .

(.)

n→∞

Finally, we prove that xn → q as n → ∞. In fact, we observe xn+ – q      xn + xn+  – q + αn f (xn ) – q  = ( – αn ) T       xn + xn+ – q, j(xn+ – q) + αn f (xn ) – q, j(xn+ – q) = ( – αn ) T   – αn  xn – q + xn+ – q xn+ – q + αn αxn – qxn+ – q ≤    + αn f (q) – q, j(xn+ – q) =

   – αn + αn α  – αn xn – qxn+ – q + xn+ – q + αn f (q) – q, j(xn+ – q) ,  

which implies    – αn + αn α   + αn xn+ – q ≤ xn – q + xn+ – q + αn f (q) – q, j(xn+ – q) .   Thus we obtain    – αn + αn α  + αn – αn α xn+ – q ≤ xn – q + αn f (q) – q, j(xn+ – q) .   This implies xn+ – q    – αn + αn α αn xn – q + f (q) – q, j(xn+ – q)  + αn – αn α  + αn – αn α   αn ( – α) xn – q = –  + αn + αn ( – α) ≤

+

f (q) – q, j(xn+ – q) αn ( – α) .  + αn + αn ( – α) –α

(.)

Luo et al. Journal of Inequalities and Applications (2017) 2017:154

Page 5 of 12

We note ( – α) αn ( – α) > αn .  + αn + αn ( – α)  – α Apply Lemma . to (.), we have xn → q as n → ∞. This finishes the proof.



It is well known that Hilbert space is uniformly smooth, then we obtain the main results of []. Corollary . Let C be a closed convex subset of a Hilbert space H, T : C → C a nonexpansive mapping with F(T) = ∅, and f : C → C a contraction with coefficient α ∈ [, ). Let {xn } be generated by the following viscosity implicit midpoint rule: xn+ = αn f (xn ) + ( – αn )T

xn + xn+ , 

n ≥ ,

where {αn } is a sequence in (, ) satisfying: (i) limn→∞ αn = ,

∞ (ii) n= αn = ∞,

αn+ (iii) either ∞ n= |αn+ – αn | < ∞ or limn→∞ αn = . Then {xn } converges strongly to a fixed point q of T, which is also the unique solution of the following variational inequality:   (I – f )q, x – q ≥ ,

x ∈ F(T).

4 Applications (I) Application to fixed point problems for strict pseudocontractive mappings. We say that a mapping T : C → C is λ-strict pseudocontractive if there exists a fixed constant λ ∈ (, ) such that     Tx – Ty, j(x – y) ≤ x – y – λ(I – T)x – (I – T)y ,

(.)

for some j(x – y) ∈ J(x – y) and for every x, y ∈ C. A simple computation shows that (.) is equivalent to the following inequality:     (I – T)x – (I – T)y, j(x – y) ≥ λ(I – T)x – (I – T)y

(.)

for some j(x – y) ∈ J(x – y) and for every x, y ∈ C. Now we give a relationship between strict pseudocontractive mapping and nonexpansive mapping. Lemma . ([]) Let C be a nonempty closed convex subset of a real -uniformly smooth Banach space E and T : C → C be a λ-strict pseudocontractive mapping. For α ∈ (, ), we define Tα x := ( – α)x + αTx. Then, as α ∈ (, Kλ ], where K is the -uniformly smooth constant. Then Tα : C → C is nonexpansive such that F(Tα ) = F(T). Using Theorem . and Lemma ., we obtain the following results.

Luo et al. Journal of Inequalities and Applications (2017) 2017:154

Page 6 of 12

Theorem . Let C be a closed convex subset of a uniformly smooth Banach space E. Let T : C → C a λ-pseudocontractive mapping with F(T) = ∅, and f : C → C a contraction with coefficient α ∈ [, ). Let {xn } be a sequence generated by the viscosity implicit midpoint rule: xn + xn+ xn+ = αn f (xn ) + ( – αn )Tδ , n ≥ , (.)  where Tδ is a mapping from C into itself defined by Tδ x := ( – δ)x + δTx, x ∈ C, δ ∈ (, Kλ ]. Assume that {αn } is a sequence in (, ) such that: (i) limn→∞ αn = ,

∞ (ii) n= αn = ∞,

αn+ (iii) either ∞ n= |αn+ – αn | < ∞ or limn→∞ αn = . Then {xn } converges strongly to a fixed point q of T, which also solve the variational inequality:   (I – f )q, j(x – q) ≥ ,

x ∈ F(T).

(II) Application to variational inequality problems in Banach spaces. Let C be a nonempty closed convex subset of a Hilbert space H and let A : C → H be a nonlinear mapping. It is well known that the classical variational inequality is to find x∗ such that   ∗ Ax , x – x∗ ≥ ,

∀x ∈ C.

(.)

We denoted by VI(A, C) the set of solutions of (.). Recently, Ceng et al. [] considered the problem of finding (x∗ , y∗ ) ∈ C × C satisfying ⎧ ⎨ λAy∗ + x∗ – y∗ , x – x∗  ≥ ,

∀x ∈ C, ⎩ μBx∗ + y∗ – x∗ , x – y∗  ≥ , ∀x ∈ C,

(.)

which is called a general system of variational inequalities, where A, B : C → H are two nonlinear mappings, λ >  and μ >  are two constants. Precisely, they introduced a relaxed extragradient method for finding a common element of the set of fixed points of a nonexpansive mapping and the set of solutions of variational inequality problem (.) in a real Hilbert space. Now we consider the problem of finding (x∗ , y∗ ) ∈ C × C satisfying ⎧ ⎨ λAy∗ + x∗ – y∗ , j(x – x∗ ) ≥ ,

∀x ∈ C, ⎩ μBx∗ + y∗ – x∗ , j(x – y∗ ) ≥ , ∀x ∈ C.

(.)

Problem (.) is called the system of general variational inequalities in a real Banach spaces. In particular, if E is a Hilbert space, then problem (.) becomes problem (.). So our problem (.) contains (.) as a special case. Recall that a mapping A : C → E is called accretive if there exists some j(x – y) ∈ J(x – y) such that   Ax – Ay, j(x – y) ≥ ,

∀x, y ∈ C.

(.)

Luo et al. Journal of Inequalities and Applications (2017) 2017:154

Page 7 of 12

A mapping A : C → E is said to be α-inverse-strongly accretive if there exist some j(x – y) ∈ J(x – y) and a fixed constant α >  such that   Ax – Ay, j(x – y) ≥ αAx – Ay ,

∀x, y ∈ C.

(.)

The following lemmas are very important for proving our main results. Lemma . ([]) Let C be a nonempty closed convex subset of a real -uniformly smooth Banach space E. Let QC be the sunny nonexpansive retraction from E onto C. Let the mappings A, B : C → E be α-inverse-strongly accretive and β-inverse-strongly accretive, respectively. Let G : C → C be a mapping defined by   G(x) = QC QC (x – μBx) – λAQC (x – μBx) , If  < λ ≤

α K

and  < μ ≤

β , K

∀x ∈ C.

then G : C → C is nonexpansive.

Lemma . ([]) Let C be a nonempty closed convex subset of a real -uniformly smooth Banach space E. Let QC be the sunny nonexpansive retraction from E onto C. Let A, B : C → E be two nonlinear mappings. For given x∗ , y∗ ∈ C, (x∗ , y∗ ) is a solution of problem (.) if and only if x∗ = QC (y∗ – λAy∗ ) where y∗ = QC (x∗ – μBx∗ ), that is, x∗ = Gx∗ , where G is defined by Lemma .. Theorem . Let C be a closed convex subset of a real -uniformly smooth Banach space E, let the mappings A, B : C → E be α-inverse-strongly accretive and β-inverse-strongly accretive with F(G) = ∅, where G : C → C is a mapping defined by Lemma .. Let f : C → C be a contraction with coefficient α ∈ [, ). Let {xn } be a sequence generated by the viscosity implicit midpoint rule: ⎧ ⎪ xn+ = αn f (xn ) + ( – αn )yn , ⎪ ⎪ ⎪ ⎪ ⎨y = Q (u – λAu ), n

C

n

n

⎪ ⎪ un = QC (zn – μBzn ), ⎪ ⎪ ⎪ ⎩ zn = xn +x n+ ,

(.)

where  < λ ≤ Kα ,  < μ ≤ Kβ . Suppose that {αn } is a sequence in (, ) satisfying: (i) limn→∞ αn = ,

∞ (ii) n= αn = ∞,

αn+ (iii) either ∞ n= |αn+ – αn | < ∞ or limn→∞ αn = . Then {xn } converges strongly to a fixed point q of G, which is also the unique solution of the following variational inequality:   (I – f )q, j(x – q) ≥ ,

x ∈ F(G).

Proof By Lemma ., we see that G is nonexpansive. So we obtain the desired results by Theorem . immediately.  (III) Application to equilibrium problems in Hilbert spaces.

Luo et al. Journal of Inequalities and Applications (2017) 2017:154

Page 8 of 12

Let φ : C × C → R be a bifunction, where R is the set of real numbers. The equilibrium problem for the function φ is to find a point x ∈ C satisfying φ(x, y) ≥  for all y ∈ C.

(.)

We denoted by EP(φ) the set of solutions of (.). This equilibrium problem contains variational inequality problem, optimization problem and the fixed point problem as its special cases (see Blum and Oettli [] for more information). For solving the equilibrium problem, we need to assume that the bifunction φ satisfies the following four conditions (see []): (A) φ(x, x) =  for all x ∈ C; (A) φ is monotone, that is, φ(x, y) + φ(y, x) ≤  for all x, y ∈ C; (A) φ is upper-hemicontinuous, i.e., for any x, y, z ∈ C  lim sup φ tz + ( – t)x, y ≤ φ(x, y); t→+

(A) φ(x, ·) is convex and weakly lower semicontinuous for each x ∈ C. In order to prove our main results, we need the following lemmas. Lemma . ([]) Let C be a nonempty closed convex subset of H and let φ be a bifunction of C × C into R satisfying (A)-(A). Let r >  and x ∈ H. Then there exists z ∈ C such that  φ(z, y) + y – z, z – x ≥  for all y ∈ C. r Lemma . ([]) Assume that φ : C × C → R satisfies (A)-(A). For r >  and x ∈ H, define a mapping Tr : H → C as follows:

  Tr (x) = z ∈ C : φ(z, y) + y – z, z – x ≥  ∀y ∈ C r for all z ∈ H. Then the following hold: () Tr is single-valued. () Tr is firmly nonexpansive, i.e., for any x, y ∈ H, Tr x – Tr y ≤ Tr x – Tr y, x – y. This implies that Tr x – Tr y ≤ x – y, ∀x, y ∈ H, i.e., Tr is a nonexpansive mapping. () F(Tr ) = EP(φ), ∀r > . () EP(φ) is a closed and convex set. We say that a mapping T is attracting nonexpansive if it is nonexpansive and satisfies Tx – p < x – p

for all x ∈/ F(T) and p ∈ F(T).

The following lemma gives a relationship between a nonexpansive mapping and an attracting nonexpansive mapping. Lemma . ([]) Suppose that E is strictly convex, T an attracting nonexpansive and T a nonexpansive mapping which have a common fixed point. Then we have F(T T ) = F(T T ) = F(T ) ∩ F(T ).

Luo et al. Journal of Inequalities and Applications (2017) 2017:154

Page 9 of 12

Theorem . Let C be a nonempty closed convex subset of a real Hilbert space H, φ : C × C → R be a bifunction satisfying the conditions (A)-(A). Let T : C → C be a nonexpansive mapping with F = F(T) ∩ EP(φ) = ∅, and f : C → C a contraction with coefficient α ∈ [, ). Let {xn } be a sequence generated by the viscosity implicit midpoint rule ⎧ ⎪ ⎪ ⎨xn+ = αn f (xn ) + ( – αn )Tun , un ∈ C such that φ(un , y) + r y – un , un – zn  ≥ , ∀y ∈ C, r > , ⎪ ⎪ ⎩ zn = xn +x n+ , n ≥ ,

(.)

where {αn } is a sequence in (, ) such that: (i) limn→∞ αn = ,

∞ (ii) n= αn = ∞,

αn+ (iii) either ∞ n= |αn+ – αn | < ∞ or limn→∞ αn = . Then {xn } converges strongly to a fixed point q of F, which also solves the following variational inequality:   (I – f )q, j(x – q) ≥ ,

x ∈ F.

Proof We can rewrite (.) as xn+ = αn f (xn ) + ( – αn )TTr

xn + xn+ . 

(.)

By Lemma ., we know that Tr is firmly nonexpansive. Furthermore, we can prove that Tr is attracting nonexpansive. Indeed, for any x ∈/ F(Tr ) and y ∈ F(Tr ), we have Tr x – Tr y ≤ Tr x – Tr y, x – y =

  Tr x – Tr y + x – y – Tr x – x , 

which implies that Tr x – Tr y ≤ x – y – Tr x – x < x – y . Therefore Tr is attracting nonexpansive. By Lemma ., we find that F(TTr ) = F(T) ∩  F(Tr ) = F(T) ∩ EP(φ) = F. So we easily get the desired results by Theorem ..

5 Numerical examples In the last section, we give two numerical examples where our main results may be applied. Example . Assume that R is a real line with the Euclidean norm. Let f , T : R → R be defined by f (x) =  x and Tx =  x for any x ∈ R, respectively. It is easy to see that F(T) = {}. Let αn = n for each n ∈ N. Let {xn } be a sequence generated by (.) and {yn } be a sequence

Luo et al. Journal of Inequalities and Applications (2017) 2017:154

Page 10 of 12

Figure 1 Comparison.

generated by (.), respectively. Then by Theorem . and Theorem . of [], we find that {xn } and {yn } converge strongly to . We can rewrite (.) and (.) as follows: n –  xn , n n yn+ = xn . n +  xn+ =

(.) (.)

Choose x =  and y =  in (.) and (.), we get the following numerical results in Figure . Remark . By Figure , we know that {yn } converges to  more quickly than {xn }. So the rate of convergence of viscosity implicit midpoint rule (.) is better than viscosity iterative algorithm (.). Example . Let ·, · : R × R → R be the inner product defined by

x, y = x · y = x · y + x · y + x · y  and let  ·  : R → R be the usual norm defined by x = x + y + z for any x = (x , x , x ), y = (y , y , y ) ∈ R . For all x ∈ R, let T, f : R → R be defined by Tx =  x, and f (x) =  x, respectively. Let αn = n for each n ∈ N. Assume that {xn } is a sequence generated by (.). We can see easily that F(T) = {}. Then {xn } converges strongly to . Moreover, we can rewrite (.) as follows: xn+ =

n +  xn . n + 

(.)

Choose x = (, , ) in (.), we obtain the numerical results shown in Figure  and Figure .

Luo et al. Journal of Inequalities and Applications (2017) 2017:154

Page 11 of 12

Figure 2 Two dimension.

Figure 3 Three dimension.

Acknowledgements This work was supported by the Training Programs of Famous Teachers in Chongqing Normal University (NO.02030307-00047) and the Key Project of Teaching Reforms for Postgraduates in Chongqing (NO.yjg20162006). Competing interests The authors declare that there is no conflict of interests regarding this manuscript. Authors’ contributions All authors contributed equally to the writing of this paper. All authors read and approved the final manuscript. Author details 1 School of Mathematics Science, Chongqing Normal University, Chongqing, 401331, China. 2 Department of Mathematics, University of Nigeria, Nsukka, Nigeria.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations. Received: 10 October 2016 Accepted: 22 May 2017 References 1. Xu, HK: Viscosity approximation methods for nonexpansive mappings. J. Math. Anal. Appl. 298, 279-291 (2004) 2. Moudafi, A: Viscosity approximation methods for fixed points problems. J. Math. Anal. Appl. 241, 46-55 (2000) 3. Song, Y, Chen, R, Zhou, H: Viscosity approximation methods for nonexpansive mapping sequences in Banach spaces. Nonlinear Anal. 66, 1016-1024 (2007) 4. Jung, JS: Iterative approaches to common fixed points of nonexpansive mappings in Banach spaces. J. Math. Anal. Appl. 302, 509-520 (2005)

Luo et al. Journal of Inequalities and Applications (2017) 2017:154

Page 12 of 12

5. Ceng, LC, Xu, HK, Yao, JC: The viscosity approximation method for asymptotically nonexpansive mappings in Banach spaces. Nonlinear Anal. 69, 1402-1412 (2008) 6. Zegeye, H, Shahzad, N: Viscosity methods of approximation for a common fixed point of a family of quasi-nonexpansive mappings. Nonlinear Anal. 68, 2005-2012 (2008) 7. Sunthrayuth, P, Kumam, P: Viscosity approximation methods base on generalized contraction mappings for a countable family of strict pseudo-contractions, a general system of variational inequalities and a generalized mixed equilibrium problem in Banach spaces. Math. Comput. Model. 58, 1814-1828 (2013) 8. Bader, G, Deuflhard, P: A semi-implicit mid-point rule for stiff systems of ordinary differential equations. Numer. Math. 41, 373-398 (1983) 9. Deuflhard, P: Recent progress in extrapolation methods for ordinary differential equations. SIAM Rev. 27(4), 505-535 (1985) 10. Somalia, S: Implicit midpoint rule to the nonlinear degenerate boundary value problems. Int. J. Comput. Math. 79(3), 327-332 (2002) 11. Xu, HK, Aoghamdi, MA, Shahzad, N: The viscosity technique for the implicit midpoint rule of nonexpansive mappings in Hilbert spaces. Fixed Point Theory Appl. 2015, 41 (2015) 12. Zhou, H: Convergence theorems for λ-strict pseudo-contractions in 2-uniformly smooth Banach spaces. Nonlinear Anal. 69, 3160-3173 (2008) 13. Ceng, LC, Wang, C, Yao, JC: Strong convergence theorems by a relaxed extragradient method for a general system of variational inequalities. Math. Methods Oper. Res. 67, 375-390 (2008) 14. Cai, G, Bu, S: Convergence analysis for variational inequality problems and fixed point problems in 2-uniformly smooth and uniformly convex Banach spaces. Math. Comput. Model. 55, 538-546 (2012) 15. Blum, E, Oettli, W: From optimization and variational inequalities to equilibrium problems. Math. Stud. 63, 123-145 (1994) 16. Combettes, PL, Hirstoaga, SA: Equilibrium programming in Hilbert space. J. Nonlinear Convex Anal. 6, 117-136 (2005) 17. Chancelier, J-P: Iterative schemes for computing fixed points of nonexpansive mappings in Banach spaces. J. Math. Anal. Appl. 353, 141-153 (2009)