Theories with a finite number of countable models and a small

0 downloads 0 Views 2MB Size Report
which gives M b eQ(c,b) ...... This corresponds to replacing I% vl by Tv b i n. 1 the definition ... A a c for. 1 j. i n f i n i t e l y many c . But then S is infinite since a and a. 1 o ..... R = C (a,B) C CxC : signed angle subtended by the arc @a lies in '. C.
r

of Canada

du Canada

NAME OF AUTHCWNOM DE L'AUTEUR

TITLE OF THESISITITRE DE LA T H ~ E

ON MICROFICHE

r

s-7 SUR MICROFICHE

WOODROW, Robert Edward

Theories w i t h a f i n i t e number of countable models and a

small language 77-

UNIVERSITY/UNIVERSIT~

SI-

FRASER U N I V E R S I ~ ~

DEGREE FOf( WHICH THESIS WAS PpESENTED/ E GRADE POUR LEWEL CETTE THESE FUT P R ~ S ~ N T ~PhYEAR THIS DEGREE C O N F E R R E D / A N N D'&TENTION ~E

DE CE GRADE

NAME OF SUPERVISOR/NOM DW DIRECTEUR DE T H ~ S E

A'

Lachlan

1

Permission is hereby granted to the NATIONAL LJBRARY OF

L'autorisation est, par la prdsente, accordde B la BIBLIOTH~-

CANADA to rnicrofi lrn this thesis and to lend or sell copies

QUE NATIONALE DU CANADA de microfilmer cette these et

of the film. The author reserves other pub1icati on rights, and neither the

. de prdter ou dwendre des exemplaires du film. LFauteur se rgserve o les sutres droits de publication?ni la -, ,

e

.

thesis n a extensive extracts from i t may be printed or other-

th8seni de longs extraits de ce/le-ci ne doivent Btre impriMs

wise reproduced without the author's written permission,

ou autrement reproduits sans l'sutofisatim &rite d i I'auteur.

* --

-

National Library of Canada

Bibliotheque nationale du Canada

Cataloguing Branch Canadian Theses Division

Direction du catalogage. Division des theses canadiennes

Ottawa, Canada KlAON4 L

L

-

.

~ 7


nEw

'

Some c o n j e c t u r e s regarding t h e complexity of t h e o r i g s s a t i s f y i n g .

r e s t r i c t i o n s on language and number of countable models a r e formulated

and discussed.

A theory- T

0

i s constructed which has n i n e countable

models and a nonprincipal 1-type containing i n f i n i t e l y many 2-types. A theory

T

1

i s c o n s t r u c t e d which has f o u r countable models and an

i n e s s e n t i a l extension

T

2

having i n f i n i t e-l y many countable models. 1

(iii)

ACKNOWLEDGMENTS

The author wishes f i r s t and foremost t o express h i s thanks f o r

* the guidance and encouragement given by h i s s e n i o r s u p e r v i s o r Professor A.H. have been made.

Lachlan, without which very l i t t l e p r o g r e s s would The National Research Council of Canada provided

f i n a n c i a l support f o r most o f t h e time t h e author was engaged i n t h i s , work. .Lp

Thanks a r e a l s o do t o t h e a u t h o r ' s o f f i c e mates over t h e y e a r s , k

Robert Lebeuf, J i m Dukarm and Ron Morrow. discussion of t h e d i f f i c u l t i e s of t h e day.

0

They endured many hours of P a r t i c u l a r thanks areLdue

t o Ron who s u f f e r e d through t h e w r i t i n g up and provided a w i l l i n g e a r

&

.t

-and f r i e n d l y support throughout t h a t time. S p e c i a l thanks g o t o Dolly Rosen who performed t h e n e a r ' m i r a c l e of transforming my handwritten manuscript i n t o something l e g i b l e .

*

TABLE OF CONTENTS

.

/ '

Page

Abstract Acknowledgments

C h a p t e r 1.

N o t a t i o n and P r e l i m i n a r i e s jr

C h a p t e r 2.

Ehrenfeucht-like

theories

'$1 D e f i n i t i o n s

C h a p t e r 3.

$2

The (Theorem

$3

P r o o f o f Lemma 2.2

$4

P r o o f .of Lemma 2.3

$5

summary

2-generic

structures

D

C h a p t e r 4.

Q u a n t i f i e r eliminable graphs .

rT

$1 Examples $2

,

Definable equivalence r e l a t i o n s

'$3 Tournaments $4

Undirected graphs

$5

~ i n k ultrahomogeneous e graphs

C h a p t e r 5.

The Theory

c h a p t e r 6.

C 1 , C4 and t h e Theory

To

$1 C1 a n d C4 $2 Conclusion

The Theory

T

1

T

1

>

This work i s concerned

with

those countable complete t h e o r i e s -

which have a f i n i t e number of countable models.

An e l e g a n t c h a r a c t e r -

i z a t i o n of those t h e o r i e s which have one countable model i s b t h e theorem of Engeler [ 3 ] , Ry11-Nardzewski

191 and Svenonius [ll]:

a theory i ~ o , - c a t e g o r i c a l j u s t i n case f o r each 0

a f i n i t e number of n2types,

n

there are

The work of Vaught [12, p. 3201 shows t h a t

no countab3e complete theory -have

e x a c t l y two comt&e

models.

*>

Work of Baldwin and Lachlan [ 2 ] and Lachlan [61 shows t h a t a count*

e

complet'e theory with a f i n i t e number of countable models b u t more than

n

e

annot be s u p e r s t a b l e .

I n a l e t t e r t o Professor Lachlan, Shelah f

u n j e c t u r e d t h a t no such theory could be s t a b l e . conjecture remains open.

To our knowledge t h e

F u r t h e r progress on t h e general problem

appears t o be very d i f f i c u l t .

We s h a l l r e s t r i c t o u r s e l v e s t o t h e o r i e s

which a r e simple i n complexity of language.

The main emphasis w i l l be

on t h e o r i e s with more than one countable model, b u t we a l s o p r e s e n t some r e s u l t s which a r e s t r i c t l y concerned with

o -categorical theories. 0

We s h a l l f i r s t give a b r i e f account of t h e h i s t o r y of t h e o r i e s with more than one model. For f o u r t e e n y e a r s t h e only widely known examples of t h e o r i e s with a f i n i t e number of countable models b u t more than one were those due t o Ehrenfeucht [12, •˜61 .

The archetype of t h e example i s the rational

where numbers under t h e usual o r d e r , and t h e of

Q

6 o s e union i s

Q

.

( ~ ~+ 13 )countable m d e l s ,

D

m

a r e d i s j o i n t dense s u b s e t s

The theory o f t h i s s t r u c t u r e w i l l have I n a l i k e manner c e r t a i n o t h e r countable

r

a model of dense

o r d e r t y p e s can be d i s t i n g u i s h e d by c o n s t a n t s i n

--

l i n e a r o r d e r t o give a s t r u c t u r e whose theory w i l l have f i n i t e l y many -

countable mode 1s. C e r t a i n tkchniques can then be applied t o known examples t o yield others.

For example t h e c o n s t a n t s i n Ehrenfeucht's example may rn

'be replaced by unary p r e d i c a t e s which determine i n i t i a l segments of A t t h e expense of e l j m i n a t i o n of q u a n t i f i e r s

the order.

takes an equivalence r e l a t i o n respect t o a binary r e l a t i o n .are densely ordered by c l a s s with

(n+l)

, and

R

members.

,

which i s a congruence r e l a t i o n wit

E R

.

.

T h e equivalence c l a s s e s under

f o r each

For

n< m

( n + l )-members .precedes t h a t with R

an example

For t h i s example one

with a f i n i t e language can be given [12, $61.

n

E

t h e r e is e x a c t l y one

t h e equivalence c l a s s with

(m+l)

i n t h e o r d e r i n g induced by

Another way of forming a new theory i s t o c o n s t r u c t a d i s j o i n t

union.

Given two t h e o r i e s

models, r e s p e c t i v e l y

uo '

u1

which have

p r e d i c a t e symbols and and

of

W

{p0

, P1 ,

c

Let

P

0

a new c o n s t a n t symbol.

i s t h e u n i o n o f t h e languages of

c}.

2)

The nonlogical axioms of

RV

0'

. .v n

-t

A

j%

P .v

for

l j

p r e d i c a t e symbol of

.

U

i

,i

U

0

W

R

and

m W

, Pl

having .

= 0,l

that

Then t h e language U

1

with

a r e t h e following:

an

nem

be new .unary

We may ass*

have no nonlogical symbols in common.

U1

,

we can form t h e d i s j o i n t union

countable models i n the following manner.

Uo

n

(n+l)-ary

li

\-

L

\

-

A

3)

\

--

--

-

-1~ v . - i f ~ ~ , . . . ~=v c 1 j n

f u n c t i o n symbol o f

-

for and

Ui

'-.

p p

an

f

--

--

(n+l)-ary

j 5 n\.;i

= 0,.1

C

6

4)

The r e l a t i v i z a t i o n t o axiom o f

U ,

P

of each n o n l o g i c a l

i

-

for

i

h

With " l i n k i n g " of t h e .copi,es i n t h e d i s j o i n t union some f u r t h e r c o n t r o l A l i n k between an

on t h e number of c o u n t a b l e models may be e x e r t e d . m- t y p e

p

and an n- t y p e

and for every formula

q

i s an

r

(m+n)- t y p e

>p

r

such t h a t

cp

Linking t h e n r e f e r s t@t h e a d d i t i o n of s u i t a b l e l i n k s .

,

Yet a n o t h e r

4

way t o proceed i s t o form t h e p r o d u c t

of two t h e o r i e s

Uo'ul

Up ,U1

-

\

which have a f i n i t e number o f c o u n t a b l e y o d e l s , s a y E s s e n t i a l l y i t s models are o b t a i n e d from'pode'ls

Formally we assume t h a t A new con'stant

,

c

of

respectively. and

U

0 by a copy o f =N

P

r e s p e c t i v e l y by r e p l a c i n g each member of

M,N

m,n

M

U

1

.

have no n o n l o g i c a l symbols i n common.

UO,U1

two unary p r e d i c a t e s

P

of-P 1

and two unary funcs I

t i o n symbols

p ,p 0

1

a r e added.

The n o n l o g i c a l &ions of

1) The r e l a t i v i z a t i o n t o

axiomsof

U

for

i

P

0

1

are:

of t h e n o n l o g i c a l

i

i = 0 , 1 z

2)

U *U

,>

,

Axioms a s s u r i n g t h a t o b t s i d e

P

the nonlogical

'

i

OQ

. .

symbols o f a)

RvO,.

U

i

.: ,Vri

symbol of

have t r i v i a l i n t e r p r e t a t i o n . -+

Ui

A

j5n

P .u ~j

and

for

i = 0,l-

R

an n-ary r e l a t i o n

u,

=-


., X n- 11 .

d

we w r i t e

I t i s assumed

t h a t no c l a s h o f q u a n t i f i e r s r e s u l t s , and u n l e s s t h e c o n t e x t i m p l i e s IS

otherwise t h a t t h e f r e e variables of

~ ( x )occur among

x0

,...,xn-1

.

-

~f

A

,

x

&----

A

y , a r e two f i n i t e s e q u e n c e s t h e n

L

is

q(x,y)

2 n d

n

i s t h e operation of concatenation of f i n i t e sequences.

x

for

L

.

cx>

If

---

WFwrite

x'.

i s a f i r s t o r d e r l a n g u a g e and

L

new

then

s e t o f formulae whose f r e e v a r i a b l e s o c c u r among

is t h e

L

n

v ~ r . g . f n-1 v

*

is

.

b

L

0

is t h u s the set of sentences f o r

.

Z

L (A) n

denotes

and

1

5

p,

0,

or

among mappings.

n

t o range @,

a formula

@

1

.

@

denotes

(L(A))

X I @, $J, 0 ,

We s h a l l u s e lower c a s e Greek l e t t e r s among formulae and

where

-

i s the l e n g t h of

lh(G)

y)

cp (x

A

Let

I

b e a complete t h e o r y w i t h language

T

sequence o f

new c o n s t a n t symbols.

n

r

A set

. ,

i s a n n-type i n

L

j u s t i n case

consistent extension o f , T

. r

be a

of formulae i n -.

T

x

ahd l e t

~ [ r =] T u {cp(x) : qCr)

L

n

is a

i s a complete n - t y p e j u s t i n c a s e

i_

T[T] ,

i s complete.

1-type i n

T

.

We r e s e r v e t h e l e t t e r

A , T, @

Upper c a s e Greek

p

t o d e n o t e a complete

w i l l n o r p a l l y d e n o t e complete

4

n-types.

that

Unless o t h e r w i s e s p e c i f i e d n-type w i l l mean complete n-type.

is a s t r u c t u r e f o r

If

M

.*

is valid i n

M

.

If

L

r

and

c L

q€L(M) then

M

then

I=

l?

M

I=

means

cp M

means

I=

"

cp

. M T h a s the u s u a l meaning. I f -a i s a n n - t u p l e q ( a ) } , tp(a is a n n-type i n T ~ ( M ) . i n M t h e n tp(a) = { c p C ~:~ M , - -17tp(a,b) = t p ( a b). We say t h a t a realizes q i f qctp(a) . I

7

for all

cpCT

I(T,K) -

,. .

-::..

*'

models o f

T

cardinality.

i s t h e c a r d i n a l i t y o f t h e s e t o f isomorphism t y p e s o f of

power

K

.

If

S

is a s e t ,

IS[

Countable means i n f i n i t e and c o u n t a b l e .

denotes its

P

,

is an inessential extension o f t h e complete theory

T'

i s complete and an extension of

T'

from

by f i n i t e l y

L

c o n s t a n t symbols.

A

A c A

j u s t i n case

and

-L

9 E A

t h e r e i s some

such t h a t whenever

,

\

A

realizes

9 i s s a i d t o generate

In t h i s case

-

.a

,

E M

then

m,n

z-

.

s*

.

t@(a) and

is

let

@

generate

Then

w i l l g e n e r a t e t h e type of

??

If

r

then

i s a 2-type,

i s s a i d t o be i n

A formula 8 -categorical 0

r

of m-types

$

-

b

I1

p,q

-c

tp(g)

over

1-types with

pxq

p

C

r

and

q

C

Tlt1

(

r

1

.

with one f r e e v a r i a b l e

-just i n ease k r each which- c o n t a i n

.

v

0

i s s a i d t o be,

there a r e a f i n i t e number

1C, ( v1. )

for

i < m

.

A graph is a s t r u c t u r e f o r t h e language with one b i n a r y r e l a t i o n

symbol

R

.

If

G

is a graph

i s t h e vertek-s e t of

IGI

members a r e c a l l e d v e r t i c e s while

R

G

G

,

and

i s t h e edge s e t and members a r e t

c a l l e d edges.

Chapter 2 Ehrenfeucht-like t h e o r i e s *

cs

-I

.

-

-

L

~hfhitions

1.

-4-

In t h i s c h a p t e r we g i v e some r e s u l t s which i n d i c a t e a d i s t i n c t i o n I

L

between two t y p e s of t h e o r i e s i n a small language

-

those with only

e

r e l a t i o n symbols and c o n s t a n t symbols and t h o s e which a l l o w f u n c t i o n

The main theorem u s e s s e v e r e r e s t p i c t i o n s on t h e rider o f c o u n i m e models and t h e language.

Before i n t r o d u c i n g t h e s e however we s h a l l

p r e s e n t some more g e n e r a l r e s u l t s , and t h e n o t i o n of b e i n g " l i k e "

an Ehrenfeucht s t r u c t u r e . Vaught's argument of 112; p.3201 t h a t no c o u n t a b l e complete t h e o r y h a s e x a c t l y two isomorphism t y p e s o f c o u n t a b l e models may b e -modified u s i n g h i s Theorem 3.5

[12; p. 3111 on t h e e x i s t e n c e o f prime models t o

give t h e following observatign, I(T,w) = 3

If

then

has countablemodels

T

M

M

0'

1'

andM

C

where n-type

M

0

A

i s prime, -

M1

i s s a t u r a t e d , and f o r each n o n p r i n c i p a l

-a

t h e r e i s a sequence

-

M

i s prime over a.

a b l e models. a b l e model realizes

prime.

A

Thus i f

of

T

.

and

1; C N

B u t then

= A

N

0 T

and

must b e isomorphic t o

N

T

and

and 'any

have prime and s a t u r a t e d count-

such t h a t

N

A

t h e r e i s a couqt-

i d prime

over

and

cannot b e s a t u r a t g d and i%cannot be

is a prime m d e l o f

M

s a t u r a t e d model of M

T

Thus given a n o n p r i n c i p a l n-type

N

tp(a

such t h a t

€ M

The m o d i f i c a t i o n i s t o n o t e t h a t

complete i n e s s e n t i a l e x t e n s i o n of

b

/

These d i f f e k e n c e s a r e r e l a t e d t o c o n j e c t u r e s C 1 , C 2 , &d C3,

symbols.

T

, M1*

is a countable

M

i s the t h i r d c o u n t a b l e model of

T

.

We c a l l

T

M

the middle m o d e l of

.

- -

[m

h o t h e r r e s u l t W c X WE a i s c o v e r e d in7Ependently by - ~ e n d a ,

'-

-

and t h e author- i s : Let

U

be a c o u n t a b l e complete t h e o r y w i t h

Then i f

A

i s any n o n p r i n k i p a l m.-type t h e r e i s a 2m-type

Lemma 2 . 1 I(U,w)

= 3.

while

T

mtm

is not.

)

Proof.

Let

A

i n f i n i t e l y many m-gypes s i n c e

-

a

many m-types o v e r

-

a

b e prime o v e r

M

,

i.e.

realizing

.

There a r e

i s n o n p r i n c i p a l and hence i n f i n i t e l y

-

in

A

Thus t h e r e i s a 2n-type

Th ( M , a ) .

.

' 2 A which is n o t p r i n c i p a l o k e r A -, n -

- 1

~hbose a

realizing

il

~

such t h a t , a

and - I

a

fl

g

since

.

' M

b

for otherwise

1e s t a b l i s h e s

I"

- n

I-

Consider t h e t y p e

-

i s prime o v e r

r1

realizes

a

= tp(a

7m,m

but

and -I

2

%&$

ep

is p r i n c i p a l over

A

cannot b e p r i n c i p a l over

A

,

3

would be p r i n c i p a l o v e r

t h e lemma.

r

a ).

(r) -

i s prime o v e r

M

A

by Lemma 1.1

.

This

@

=3

T b e a c o u n t a b l e complete t h e o r y which h a s a b i n a r y r e l a t i o n

Let *

=

symbol

R

.

%

For

cp C L

define

1

lcpq = ((Rxy A Ry XI

We say t h a t property

i

d

( 7

E

Rxy A 1 Ryx)) A cp(x)

holds o f

cp

l9 (ii)

1

A

. i

-

i s an e q u i v a l e n c e r e l a t i o n on

kT

cp(y)

i f the f o l l o w i n g s e v e S

conditions a r e s a t i s f i e d :

i .e .

A

cp

.

lqyyl A ~ x y A 1~ y + x RX y A l 11

i s a congruence r e l a t i o n w i t h r e s p e c t t o

~ xy 11

pi

i.e .

X~

Rv ir A 1 Rv v 0 1 1 0

(Rzy A 7 Ryz)) i.e.

(R;

where

z

i s dense on

v A 1 Rv v ) 0 1 1 0

rp/xip

.

*

(ftxz h 7 Rzx) )

where

z

i s a new

(cp(z) /\ (Rzx A 7 Rxz) )

where

z

i s a new

32 ( c p f z )

32

-

i s a new v a r i a b l e

A

variable. i.e.

0

Rv v A 1 Rv v 1 0 0 1

i s "without e n d p o i n t s " on

cp/kip

.

and :

( v i i - ) Either f o r each p r i n c i p a l 1-type a r e a t most f i n i t e l y many .l-types

$

A

t h a t t h e r e i s a 2-ty&

((Rv V A T R v v ) V 1 0 0 1

i n pxq X'Py

o r f o r each p r i n c . i p q l 1-type

containing

p q

there

cp

containing

such

cp

containing

%

v ) 0 1 p

there

a r e a t most f i n i t e l y many 1-types

q

conta

ng

cp

such

1 A

t h a t t h e r e is a 2-type

in

pxq

containing

1 4

Roughly speaking p r o p e r t y of

T

E

h o l d s of

t h e s t r u c t u r e o b t a i n e d by r e s t r i c t i o n t o

Ehrenfeucht example:

R

N

i f i n each model

cp

N

resembles t h e

i s a dense o r d e r i n g o f e q u i v a l e n c e c l a s s e s ,

and p r i n c i p a l t v p e s are almost a r r a n s e d i n a seauence.

~~~~~

A model

of t h e complete t h e o r y

M

-

-

whose language i n c l u g e s

T

t J'

t h e b i n a r y r e l a t i o n symbol

f i n i t e number o f formulae

E

(i) property

is s a i d t o be

R

q0;.

...$I t n

holds of

I n t h i s case w e a l s o say t h a t

q

T

i

L

for

is

1

E-like

i f there are a

such t h a t :

i 5 n

E-like.

-

The Theorem

2.

For t h e remainder of t h i s c h a p t e r we assume t h h t t h e o r y i n t h e lahguage w i t h one b i n a r y r e l a t i o n symbol symbols

.

{a : i C } i

We a l s o assume t h a t

T

i s a complete

T R

and c o n s t a n t

admits e l i m i n a t i o n

*

of q u a n t i f i e r s And t h a t it h a s t h r e e countable models.

Our main r e s u l t i s t h e f o l l o w i n g : There i s

Theorem 2 . 1 such t h a t

1V

iTn

.

h o l d s of . q . i

.

cp

i

nCw

and t h e r e a r e formulae

i s w - c a t e g o r i c a l and f o r each 0

i5n

CPOt-.

.

property

Ll

E

The proof of t h i s theorem r e s t s on t h e f o l l o w i n g two lemmas whose p r o o f s a r e d e f e r r e d t o $ 3 and $ 4 . Lemma 2 . 2

Let

'

Then t h e r e i s a formula

holds of

3

E L

1

qCp

b e c o n t a i n e d i n a nonprdncipal l - t y p e such that

kT cp

-+ Q'

land p r o p e r t y

p

.

E

.

Lemma 2 . 3

There are o n l y f i n i t e l y many n o n p r i n c i p a l l - t y p e s i n .2-

The f o l l o w i n g i s immediate:

T

.

- -

Lemma 2.4'1'1f

tp(b)

i s an n-tuple

i n a model

N

A

7-

. (A)

i s t h e unique n-type

such t h a t Y

v

i

= v

j

~ A i f f b= b i j w

i

v

then

T

,

tp(b.1 I

2

~ b1 . 3b : f o r

By Lemma 2.4 and

Proof of t h e theorem from t h e lemmas, Ryll-Nandzewski's

n-j,~

F A if; N

j

of

theorem t h e r e must b e a n o n p r i n c i p a l 1-type i n

T

.


For

n

where

i s an isomorp&sm

K n

n E o

and f o r

n

n Co

C o n s t r u c t by r e c u r s i o n l

P (0) = 0 n

is

A

.

r e a l l y needed i n Lemma 3 . 4 Example 3 . 1

C

.

where

n = (m : m=n)

isomorphic

L

P (m) = m-1 n

and

The C-generic model i s t h e n

to,Pw> =

The f o l l o w i n g lemma p r o v i d e s a p a r t i a l c o n v e r s e t o Lemma 3.4 and s t r e n g t h e n s t h e c o n n e c t i o n between classes o f - s t r u c t u r e s w i t h AP and t h e o r i e s which admit e l i m i n a t i o n o f q u a n t i f i e r s .

\ Lemma 3.5

be a denumerable s t r u c t u r e s u c h t h a t Th (M)

M

Let

a d m i t s e l i m i n a t i o n o f q u a n t i f i e r s , and s u c h t h a t e v e r y f i n i t e s u b s e t of

i s contained i n a f i n i t e substructure o f

M

c l a s s o f f i n i t e s t r u c t u r e s which c a n b e embedded i n h a s t h e amalgamation p r o p e r t y , and

for

Proof.

Let

i = 0,l

.

A, Bo' in

A

0'

B

I

E C

Since

0

Let M

.

C

be t h e

Then

C

i s 2-generic.

andlet

f

,i

: A - t B

i

b e embeddings

There i s n o l o s s o f " . g e n e r a l i t y i n assuming t h a t

are substructures of

B1 B

A, B

M

,

.

M

A

and

B 1

M

and t h a t

f

0 I are f i n i t e and L

is t h e inclusion o f

i s f i n i t e t h e r e are

open formulas which f i x t h e i r isomorphism t y p e s a s s u b s t r u c t u r e s of But

A,

f

(A)

1

s a t i s f y the same open formula and s o

•’1

e l e m e n t a r y s i n c e Th (M) admits e l i m i n a t i o n o f q u a n t i f i e r s f

-1 1

can b e e x t e n d e d t o a n isomorphismeof

B

1

M.

is i n f a c t

.

But t h e n

and an e x t e n s i o n

B'

1

of

'

A

.

Now

shdws t h a t

(B

0

M

U B ') 1

C

generates a m e m b e r o f

.

his argument a l s o

s a t i s f i e s t h e condtions of Lemma 3 . 1 and i s 4

C-homogeneous,

Therefore

.Z

h a s AP and

M

i s C-generic.

Chapter. 4 Q u a n t i f i e r e l i m i n a b l e graphs 1.

Examples I n t h i s c h a p t e r we apply t h e r e s u l t s of Chapter 3 t o graphs whose

t h e o r i e s admit e l i m i n a t i o n of q u a n t i f i e r .

T h e o r i e s a r e assumed t o be

complete t h e o r i e s w i t h one b i n a r y r e l a t i o n symbol e l i m i n a t i o n of q u a n t i f i e r s . i r r e f l e x i v e , i.e.

model

vv

R

,

and t o admit

We a l s o s t i p u l a t e t h a t each model b e 0

.

1Rv v

0 0

This e n s u r e s t h a t t h e r e i s

o n l y 1-type. I n t h i s s e c t i o n w e s h a l l p r e s e n t s e v e r a l simple examples and some basic definitions. W e f i r s t i n t r o d u c e a b b r e v i a t i o n s f o r some b a s i c formulas.

abbreviations a r e

I,

r,

AO,

Al,

A2'

U

These

d e f i n e d as f o l l o w s :

A xy = df (Rxy A Ryx) V x = y 0 A xy = df (1 Rxy A 1

1 Ryx) V

x = y

S e v e r a l well-known. examples a r e t h e f o l l o w i n g : DO

-

The t h e o r y o f - < Q , o

t h e r a t i o n a l s under t h e u s u a l

ordering. n Ek

-

The t h e o r y of an e q u i v a l e n c e r e l a t i o n w i t h c l a s s e s o f power

GA

-

The

Z(A)

k

, where'

15 n

embedded f o r

n € A c w

.

(n+3)

equivalence

,k5

generic structure for the class

f i n i t e graphs i n which t h e

n

Z(A)

cycle cannot be

of

-

-

DOn

The t h e o r y of t h e d i r e c t produet of a &el a n d ' t h e complete graph on

Given 2.

G

.

of: T

-

"G

U

?

((9.9)

:

.

g f G))

of

DO

.

p o i n t s where

from t h e denumerable model

i s t h e graph with u n i v e r s e

R- = ( G x G ) \ ( R G G

Clearly

n

?'

we may form i t s d u a l

T

*

--

T

and r e l a t i o n

G

-

is t h e t h e o r y of

a l s d admits e l i m i n a t i o n of q u a n t i f i e r s .

DO

G

.

is self dual,

w h i l e t h e d u a l s of t h e o t h e r t h e o r i e s a r e n o t i n c l u d e d i n t h e l i s t . The f o l l o w i n g p r o p o s i t i o n g i v e s a way o f c o n s t r u c t i n g new

-

examples from known ones. Let

Proposition 4 . 1 b e such t h a t

To'T1 Let

(AivOvl

be

b e denumerable models o f

structure (ao = a

((a ,a

1

)

1

C A

~ c I= IA~x~B(

by

0,1,2

A.v v 1 0 1

V

To

A,B

0

i,j,k

T ,T

1

0

and

.

Then

and

(\vovl) T1

respectively.

Define t h e

RC = { ( ( a , b ) ( a l , b l ) ) 0 o f

( b , b ) F RB) V ( ( a o , a l ) 6 R A ) ] 0 1

C R~ A bo = b l ) ) , ]

i n some o r d e r and l e t

Th(C)

.

Define

and

';he

Th(D)

:

structure

D

admit

e l i m i n a t i o n of q u a n t i f i e r s . . 1

Proof:

We p r e s e n t t h e proof t h a t

fiers.

The proof f o r

w e can r e t r i e v e

A

is s i m i l a r .

D

and

Th(C)

B

admits e l i m i n a t i o n o f q u a n t i -

The main i d e a i s t h a t from

i n o r d e r t o c o n s t r u c t enough automorphisms I t s u f f i c e s t o show

i n t h e Wreath p r o d u c t of t h e automorphism groups. A

that i f

a

c,d

C

a r e two sequences o f n-elements o f

C

such t h a t

-

&

1 r

c

and i

;i_

R

for

, mc n

r

cRcm*

and

p

i < n ( Z ' z ~ + ~6 ) ( c B i thesequence

c

1

.

U {cA})

- Z , and

.

I t i s n o t d i f f i c u l t t o extend

I c ~ \(UC



B

0' 1

We prove by i n d u c t i o n that

may be extended t o

B

U UB

= UB

be as above.

B

0' 1

0' 1

construGt t h e r e q u i r e d

A,B

and

z

n+l

('0

€ B

so t h e sequence

,z



nL1

.

z

n

F B

\ A

1-i

Now

can b e s h o r t e n e d .

-

'

- -

Thus i n each case. t h e s h d r t e s t sequence h a s Ll e n g t h 2 i f Y

That

can be extended t o a l i n e a r o r d e r i s c l e a r .

a

I UC I

We now show by i n d u c t i o n on "Cf '

IC

such t h a t denote

Ic~

on

A

extending

uC ,

0

t h e r e i s t h e 3-type

r

3

j

{v

Suggest Documents