Threats of Password Pattern Leakage Using

1 downloads 0 Views 10MB Size Report
Jun 30, 2017 - Passwords for digital door locks on front doors or those used for banking are ... displayed on the smartwatch screen explain the following states.
SS symmetry Article

Threats of Password Pattern Leakage Using Smartwatch Motion Recognition Sensors Jihun Kim and Jonghee M. Youn * Computer Engineering, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Korea; [email protected] * Correspondence: [email protected]; Tel.: +82-53-810-2552 Academic Editor: Laurence T. Yang Received: 3 March 2017; Accepted: 26 June 2017; Published: 30 June 2017

Abstract: Thanks to the development of Internet of Things (IoT) technologies, wearable markets have been growing rapidly. Smartwatches can be said to be the most representative product in wearable markets, and involve various hardware technologies in order to overcome the limitations of small hardware. Motion recognition sensors are a representative example of those hardware technologies. However, smartwatches and motion recognition sensors that can be worn by users may pose security threats of password pattern leakage. In the present paper, passwords are inferred through experiments to obtain password patterns inputted by users using motion recognition sensors, and verification of the results and the accuracy of the results is shown. Keywords: side-channel attack; smartwatch; motion sensor; keystroke

1. Introduction Before smartwatches were released onto the market, the watches were simply intended to identify time. However, thanks to the release of smartwatches embedded with a processor and an operating system, watches began to include instruments (smartwatches) that are used not only to identify time, but also to perform diverse functions simultaneously, and have been becoming more and more convenient to use [1]. One of representative functions of smartwatches is the fitness function, such as the measurement of step counts and calorie consumption [2]. The fitness function of smartwatches operates by calculating the rotation, direction, and movements of watches using gyroscopes that sense movements, measurement sensors such as acceleration sensors, gravity sensors, and terrestrial magnetism sensors that sense directions. Application developers utilize these measurement sensors as motion sensors to understand users’ motions, that is, as motion recognition sensors, which recognize users’ motions to perform certain functions, and are used as controllers, such as those that turn off the screen or maintain the screen dark as a default, and brighten the screen when the user has raised his/her hand [3]. The present paper noted the fact that most smartwatches support motion recognition sensors as described above, while being wearable devices that are worn on users’ wrists [4]. Since smartwatches are worn on users’ wrists, users’ wrist movements can be exposed to motion recognition sensors. The exposure of wrist movements can easily break down individuals’ privacy and important security elements [5]. This is closely related to modern trends where analog devices are replaced by digital devices. For instance, most private houses’ front doors are opened and locked using digital door locks by entering passwords instead of using mechanical keys, and banking is done through automatic teller machines (ATMs) instead of through bank clerks using paper bankbooks. In a digitalized society, attackers intending to make ill use of the convenience of digital systems are most interested in ‘passwords’ that are individuals’ unique character strings based on agreements made in advance for security. Passwords for digital door locks on front doors or those used for banking are four-digit

Symmetry 2017, 9, 101; doi:10.3390/sym9070101

www.mdpi.com/journal/symmetry

Symmetry 2017, 9, 101

2 of 21

Symmetry 2017, 9, x FOR PEER REVIEW    numbers without any character

2 of 21  string in most cases, and the positions of numbers on password input panels are invariable in most cases. Furthermore, security keys such as passwords or personal keys such as passwords or personal identification numbers (PINs) are input directly with the users’  identification numbers (PINs) are input directly with the users’ fingers. To input security keys, users fingers.  To  input downward, security  keys,  users and make  upward,  downward,  leftward,  and  rightward  wrist  make upward, leftward, rightward wrist movements, and the possibility of leakage movements, and the possibility of leakage of these movements through motion recognition sensors  of these movements through motion recognition sensors in smartwatches is a major subject in the in smartwatches is a major subject in the present paper.  present paper. To  Toconfirm  confirmthe  theissue  issueas assuch,  such,in inthe  thepresent  presentpaper,  paper,after  afterusers  userswearing  wearinga asmartwatch  smartwatchinput  input passwords into password input panels of machines such as automated teller machines, the patterns  passwords into password input panels of machines such as automated teller machines, the patterns of of the wrist movements was analyzed to estimate the passwords entered by the users.  the wrist movements was analyzed to estimate the passwords entered by the users. The  composed as as follows. follows. In  In  Section  2,  proposed the  proposed  method  devised  to  Thepresent  presentpaper  paper is  is composed Section 2, the method devised to achieve achieve the objective are explained and in Section 3, experiments conducted based on the method  the objective are explained and in Section 3, experiments conducted based on the method proposed in proposed in the present paper are explained and the results are shown. The results are verified in  the present paper are explained and the results are shown. The results are verified in Section 4 and Section 4 and in Section 5, motion recognition sensor related works are mentioned and conclusions  in Section 5, motion recognition sensor related works are mentioned and conclusions are drawn in are drawn in Section 6.  Section 6.

2. Proposed Methods  2. Proposed Methods Figure 1 is a diagram of the method proposed in the present paper. The method proposed in  Figure 1 is a diagram of the method proposed in the present paper. The method proposed in the the  present  paper  consisted  a  smartwatch,  a  smartphone  connected  to smartwatch, the  smartwatch,  a  present paper consisted of aof smartwatch, a smartphone connected to the and aand  server server for prediction of passwords. We identified the wrist movements relevant to password input  for prediction of passwords. We identified the wrist movements relevant to password input using using  the  measured  values  the  accelerometer  of  the  smartwatch  the  measured  the measured values from from  the accelerometer sensorsensor  of the smartwatch and theand  measured values of values of the gyroscope sensor. The smartwatch was used to simply transmit the relevant measured  the gyroscope sensor. The smartwatch was used to simply transmit the relevant measured values values  the  smartphone.  the  smartphone,  the  password  was  converted  an based image  to theto  smartphone. In theIn  smartphone, the password patternpattern  was converted into an into  image on based  on  the  measured  value  transmitted  from  the  smartwatch,  and  the  relevant  image  was  the measured value transmitted from the smartwatch, and the relevant image was transmitted to the transmitted  the  server.  The  server  predicted  based image on  the  by  server. Theto  server predicted the password basedthe  on password  the transmitted bytransmitted  applying theimage  algorithm applying the algorithm to the image.  to the image.

  Figure 1. Proposed method structure. Figure 1. Proposed method structure. 

2.1. Identifying User Behaviors 2.1. Identifying User Behaviors  When seen from the perspective of an attacker trying to steal the password of a user wearing When seen from the perspective of an attacker trying to steal the password of a user wearing a  a smartwatch, accurate password pattern cannot easily obtained if the movements the smartwatch,  the  the accurate  password  pattern  cannot  be  be easily  obtained  if  the  movements  of ofthe  smartwatch are continuously collected because the user wearing a smartwatch walks and conducts smartwatch are continuously collected because the user wearing a smartwatch walks and conducts  other activities of daily living, such as typing on a computer keyboard and eating meals. Therefore, we other activities of daily living, such as typing on a computer keyboard and eating meals. Therefore,  inferred certain behavior patterns of users when they pressed their password at an ATM, and assumed we inferred certain behavior patterns of users when they pressed their password at an ATM, and  the points of the start and end of transmission. assumed the points of the start and end of transmission.  Raise the arm 1. 1. Raise the arm  2. 2. Take the actions to input a password  Take the actions to input a password 3. 3. Lower the arm  Lower the arm

The sensor‐measured values for the movements of the smartwatch immediately following the  behavior set forth above were transmitted to the smartphone. 

Symmetry 2017, 9, 101

3 of 21

The sensor-measured values for the movements of the smartwatch immediately following the behavior set forth above were transmitted to the smartphone. Symmetry 2017, 9, x FOR PEER REVIEW    3 of 21  2.2. Start Transmission and Measurement Values 2.2. Start Transmission and Measurement Values  Figure 22 shows anan  example of the that indicates the start ofstart  sensor assumed Figure  shows  example  of  behavior the  behavior  that  indicates  the  of transmission sensor  transmission  in Section 2.1. The figures on the top show the process of raising the arm to enter the password, assumed  in  Section  2.1.  The  figures  on  the  top  show  the  process  of  raising  the  arm  to  enter and the  the smartwatch screens on the bottom show thebottom  related show  states the  of the smartwatch with to the password,  and  the  smartwatch  screens  on  the  related  states  of  the regard smartwatch  transmission values. Table 1 shows that The English displayed on English  the smartwatch with  regard  of to the the sensor transmission  of  the  sensor  values.  Table  words 1  shows  that  The  words  screen explain the following states. displayed on the smartwatch screen explain the following states. 

 

Figure 2. States of the smartwatch according to user motions.  Figure 2. States of the smartwatch according to user motions. Table 1. States of smartwatches according to the time points of measurement recording.  Table 1. States of smartwatches according to the time points of measurement recording.

State  Stable  State Send  Stable Send

Explanation Explanation The measured values were not transmitted.  The measured values were not transmitted. The measured values were transmitted.  The measured values were transmitted.

2.3. Transmission of Sensor Measured Values  2.3. Transmission of Sensor Measured Values In the present paper, among motion recognition sensors, only accelerometer sensors were used  for  recording  of  measured  values  because  accelerometer  sensors  are  fusion  sensors  that  can used also  In the present paper, among motion recognition sensors, only accelerometer sensors were sense gravity and angular speed, and they can produce the results of many sensors without using  for recording of measured values because accelerometer sensors are fusion sensors that can also sense other sensors, through the inclusion of several calculation methods.  gravity and angular speed, and they can produce the results of many sensors without using other sensors, through the inclusion of several calculation methods. 2.3.1. Acceleration Sensor  2.3.1. Acceleration Sensor In general, the dictionary definition of ‘acceleration’ is the degree to which speed changes over  In general, the dictionary definition of ‘acceleration’ is the degree to which speed changes over time [6,7]. For instance, acceleration is related to the feeling of the body being pushed into the car  time [6,7]. For instance, acceleration is related to the feeling of the body being pushed into the car seat when the accelerator pedal has been pressed down. Therefore, it may be difficult to be certain  seat when the accelerator pedal has been pressed down. Therefore, it may be difficult to be certain of acceleration acting downwards on a mass even when it remains still due to the effects of gravity.  of acceleration acting downwards on a mass even when it remains still due to the effects of gravity. However, in the formula F = ma, acceleration a is associated with force F through the proportional  However,termed  in the formula F = ma, acceleration is associated with force F through the proportional constant  mass.  Therefore,  acceleration a proportional  to  force  exists  everywhere  that  force  constant termed mass. Therefore, acceleration proportional to force exists everywhere that force exists. exists. In addition to the above theory, there is a kind of acceleration that we always feel on earth,  In addition to the above theory, there is a kind of acceleration that we always feel on earth, termed termed gravitational acceleration [7 8].  gravitational acceleration [7,8]. Therefore, sensors embedded in devices also measure an acceleration of 9.8  m/s   when they  are  in  the  direction  of  gravity.  Given  the  foregoing,  it  can  be  seen  that  the  concepts  of  gravity  sensors and acceleration sensors are not apart from each other [9,10].  Because acceleration is physically composed of vector quantities that have sizes and directions,  in the present paper, the sizes and directions of movements of smartwatches are measured based on  the measured values of acceleration sensors along the x‐, y‐, and z‐axes. 

Symmetry 2017, 9, 101

4 of 21

Therefore, sensors embedded in devices also measure an acceleration of 9.8 m/s2 when they are in the direction of gravity. Given the foregoing, it can be seen that the concepts of gravity sensors and acceleration sensors are not apart from each other [9,10]. Because acceleration is physically composed of vector quantities that have sizes and directions, in the present paper, the sizes and directions of movements of smartwatches are measured based on the measured values of acceleration sensors along the x-, y-, and z-axes. Symmetry 2017, 9, x FOR PEER REVIEW    4 of 21 on device The measurements of coordinate systems and movements are also calculated based coordinate systems as shown in Figure 3. As shown in Figure 3, if the device is moved left, the x-axis The measurements of coordinate systems and movements are also calculated based on device  measured Symmetry 2017, 9, x FOR PEER REVIEW  value willsystems  decreases, andin  conversely, ifshown  the device is moved x-axisleft,  measured value   Figure  3.  As  4 of 21  coordinate  as  shown  in  Figure  3,  if  the right, device the is  moved  the  x‐axis  measured  decreases,  and  conversely,  if  the  device  is  moved  right, ±the  will increase (Figure 3a).value  Here,will  a general range of measurement is approximately 4. x‐axis  With regard to The measurements of coordinate systems and movements are also calculated based on device  measured value will increase (Figure3a). Here, a general range of measurement is approximately ±  up-down movements, that is, changes in location along the y-axis, if the device is moved upward, the coordinate  systems  as  shown  in  Figure  3.  As  shown  in  Figure  3,  if  the  device  is  moved  left,  the  4. With regard to up‐down movements, that is, changes in location along the y‐axis, if the device is  y-axis measured value will increase and if the is moved downward, theright,  y-axis value x‐axis  measured  value  will  decreases,  and device conversely,  if  the  device  is  moved  the measured x‐axis  moved upward, the y‐axis measured value will increase and if the device is moved downward, the  will decrease (Figure 3b). measured value will increase (Figure3a). Here, a general range of measurement is approximately ±  y‐axis measured value will decrease (Figure3b).  4. With regard to up‐down movements, that is, changes in location along the y‐axis, if the device is  moved upward, the y‐axis measured value will increase and if the device is moved downward, the  y‐axis measured value will decrease (Figure3b). 

(a) 

(b) 

Figure 3. Figure 3.  ChangesChanges  in acceleration sensor coordinate systems according to smartwatch movements. in  acceleration sensor  coordinate systems  according  to  smartwatch movements.  (a)  (b)    value. (a) Decrease in the x coordinate system value. (b) Increase in the y coordinate system value. (a) Decrease in the x coordinate system value. (b) Increase in the y coordinate system Figure 3.  Changes  in  acceleration sensor  coordinate systems  according  to  smartwatch movements.  2.3.2. Simple Movements of Smartwatches in the Process of Inputting Passwords 

2.3.2. Simple Movements of Smartwatches in the Process of Inputting Passwords  (a) Decrease in the x coordinate system value. (b) Increase in the y coordinate system value.

The  left  drawing  in  Figure  4  (Figure  4a)  is  a  view  of  movements  when  the  user  inputs  a 

four‐digit  password  5980, 4the  central 4a) drawing  is  the  of smartwatch  movement  for  the  user’s  The left drawing in Figure (Figure is a view movements whenpattern  the user inputs a four-digit 2.3.2. Simple Movements of Smartwatches in the Process of Inputting Passwords  resultant  changes  in  the  acceleration  sensor’s  measured  and  the  right  drawing  is  the  passwordmovements,  5980, the central drawing is the smartwatch movement pattern for the user’s movements, The  left  drawing  in  Figure  4  (Figure   in Figure 4b, user’s movements to input passwords and  4a)  is  a  view  of  movements  when  the  user  inputs  a  values. As can be seen from the drawings  and the right drawing is the5980,  resultant changes in the acceleration sensor’s pattern  measured values. As can be four‐digit  password  drawing  smartwatch  for other.  the  user’s  the  related  movements  of the  the central  smartphone  can is  be the  regarded  to  be movement  quite  similar  to  each  The  seen from movements,  the drawings in Figure 4b, user’s movements to input passwords and the related movements the  resultant  changes  in  the  acceleration  sensor’s  measured  and  the  right  drawing  is  related acceleration sensor’s measured values are recorded using the x‐ and y‐axes measured values  values. As can be seen from the drawings    in Figure 4b, user’s movements to input passwords and  because the movements are simple upward, downward, leftward, and rightward movements.  of the smartphone can be regarded to be quite similar to each other. The related acceleration sensor’s the  related  movements  of  the  smartphone  can  be  regarded  to  be  quite  similar  to  each  other.  The  measured values are recorded using the x- and y-axes measured values because the movements are related acceleration sensor’s measured values are recorded using the x‐ and y‐axes measured values  simple upward, downward, leftward, and rightward movements. because the movements are simple upward, downward, leftward, and rightward movements. 

  Figure  4.  User’s  password  input  and  related  movements  of  the  smartwatch.  (a)  Smartwatch  movement. (b) Changes in measured values of the acceleration sensor.    Figure  4.  User’s  password  input  and  related  movements  the  smartwatch.  Smartwatch movement. Figure2.3.3. Smartwatch Movements when Password Pressing Actions are Taken  4. User’s password input and related movements of theof smartwatch. (a) (a)  Smartwatch movement. (b) Changes in measured values of the acceleration sensor.  (b) Changes in measured values of the acceleration sensor. If  the  user  presses  a  pattern  that  is  drawn  only  in  the  horizontal  direction,  such  as  1333,  the 

movements  of  the  smartwatch  and  the  acceleration  sensor’s  measured  values  will  be  recorded  as  2.3.3. Smartwatch Movements when Password Pressing Actions are Taken  shown in Figure 5. In this case, although the pattern of the password can be deduced, the password  2.3.3. Smartwatch Pressing Actions are direction,  Taken such  as  1333,  the  If  the Movements user  presses  a  when pattern Password that  is  drawn  only  in  the  horizontal  cannot be easily estimated.  movements  of  the  smartwatch  and  the  acceleration  sensor’s  measured  values  will  be  recorded  as  If the user presses a pattern that is drawn only in the horizontal direction, such as 1333, the shown in Figure 5. In this case, although the pattern of the password can be deduced, the password  movements of the smartwatch and the acceleration sensor’s measured values will be recorded as cannot be easily estimated. 

Symmetry 2017, 9, 101

5 of 21

Symmetry 2017, 9, x FOR PEER REVIEW   

5 of 21 

shown in Figure 5. In this case, although the pattern of the password can be deduced, the password Symmetry 2017, 9, x FOR PEER REVIEW    5 of 21  cannot be easily estimated.

Symmetry 2017, 9, x FOR PEER REVIEW   

5 of 21 

    Figure 5. Movement of the smartwatch when there are overlapping numbers. (a) Movement of the  Figure 5. Movement of the smartwatch when there are overlapping numbers. (a) Movement of the smartwatch. (b) Changes in measured values of the acceleration sensor.  Figure 5. Movement of the smartwatch when there are overlapping numbers. (a) Movement of the  smartwatch. (b) Changes in measured values of the acceleration sensor. smartwatch. (b) Changes in measured values of the acceleration sensor. 

To solve such exceptions, motions made when passwords are pressed were identified. To this   were end, To decreases  in  the  z‐axis  values  of  the  acceleration  sensor  were  utilized.  That  is,  as  shown  in  solve such exceptions, motions made when passwords are pressed identified. To this To solve such exceptions, motions made when passwords are pressed were identified. To this  Figure 6, pressing actions were recorded when the measured value of the z‐axis had decreased and  Figure 5. Movement of the smartwatch when there are overlapping numbers. (a) Movement of the  end, decreases in the z-axis values of the acceleration sensor were utilized. That is, as shown end,  decreases  in  the  z‐axis  values  of  the  acceleration  sensor  were  utilized.  That  is,  as  shown in in  smartwatch. (b) Changes in measured values of the acceleration sensor.  increased thereafter.  Figure 6, pressing actions were recorded when the measured value of the z-axis had decreased and Figure 6, pressing actions were recorded when the measured value of the z‐axis had decreased and  increased thereafter. To solve such exceptions, motions made when passwords are pressed were identified. To this  increased thereafter.  end,  decreases  in  the  z‐axis  values  of  the  acceleration  sensor  were  utilized.  That  is,  as  shown  in  Figure 6, pressing actions were recorded when the measured value of the z‐axis had decreased and  increased thereafter. 

  Figure 6. Pattern acquisition utilizing the z-axis of the acceleration sensor. (a) Movement of the Figure  6.  Pattern  acquisition  utilizing  the  z‐axis  of  the  acceleration   sensor.  (a)  Movement  of  the  smartwatch. (b) Changes in measured values of the acceleration sensor.   smartwatch. (b) Changes in measured values of the acceleration sensor.  Figure  6.  Pattern  acquisition  utilizing  the  z‐axis  of  the  acceleration  sensor.  (a)  Movement  of  the  Figure  6.  Pattern  acquisition  utilizing  the  z‐axis  of  the  acceleration  sensor.  (a)  Movement  of  the  2.4. Terminate Transmission a Measurement Values smartwatch. (b) Changes in measured values of the acceleration sensor.  smartwatch. (b) Changes in measured values of the acceleration sensor. 

2.4. Terminate Transmission a Measurement Values  In the2.4. Terminate Transmission a Measurement Values  present paper, the transmission of the measured values was terminated at the motion of the 2.4. Terminate Transmission a Measurement Values  In the present paper, the transmission of the measured values was terminated at the motion of  user to ‘lower the arm’ after taking the motion to enter the password. In the present paper, the transmission of the measured values was terminated at the motion of  the user to ‘lower the arm’ after taking the motion to enter the password.  In the present paper, the transmission of the measured values was terminated at the motion of  Figure 7 shows the time point of termination, that is, the user’s motion to lower the arm and the user to ‘lower the arm’ after taking the motion to enter the password.  Figure 7 shows the time point of termination, that is, the user’s motion to lower the arm and  the user to ‘lower the arm’ after taking the motion to enter the password.  resultant statesFigure 7 shows the time point of termination, that is, the user’s motion to lower the arm and  of the smartwatch. While the user was inputting the password, the measured values of resultant states of the smartwatch. While the user was inputting the password, the measured values  resultant states of the smartwatch. While the user was inputting the password, the measured values  Figure 7 shows the time point of termination, that is, the user’s motion to lower the arm and  the smartwatch were recorded and transmitted as a ‘Send’ state. However, at the time point where of  the  smartwatch  were  recorded  and  transmitted  as a a ‘Send’  ‘Send’  state.  However,  at  the  time  point  of  the  smartwatch  were  recorded  and  transmitted  as  state.  However,  at  the  time  point  resultant states of the smartwatch. While the user was inputting the password, the measured values  the arm was completely lowered, the smartwatch was put into a stable state and the recording of arm  was  completely  lowered, the  the  smartwatch  smartwatch  was  put put  into  a  stable  and  the  and  the  where  the where  arm the  was  completely  lowered,  was  into  a  state  stable  state  of  the  smartwatch  were  recorded  and  transmitted  as  a  ‘Send’  state.  However,  at  the  time  point  measured values was terminated. recording of measured values was terminated.  recording of measured values was terminated.  where  the  arm  was  completely  lowered,  the  smartwatch  was  put  into  a  stable  state  and  the  recording of measured values was terminated. 

 

 

 

 

 

   

 

Figure 7. States of the smartwatch according to the motion of the user (termination). 

Figure 7. States of the smartwatch according to the motion of the user (termination). 2.5. Password Estimation 

 

Figure 7. States of the smartwatch according to the motion of the user (termination).    Figure 7. States of the smartwatch according to the motion of the user (termination). 

2.5. Password Estimation 

2.5. Password Estimation 

   

Symmetry 2017, 9, 101

6 of 21

Symmetry 2017, 9, x FOR PEER REVIEW   

6 of 21 

2.5. Password Estimation In  the  present  paper,  password  patterns  were  acquired  through  the  movements  of  users  In the paper,when  password were acquired throughdownward,  the movements of users wearing wearing  a  present smartwatch  they  patterns pressed  passwords.  Upward,  leftward,  rightward,  aand  smartwatch when they pressed passwords. Upward, downward, leftward, rightward, and diagonal diagonal  movements  were  recorded  as  the  movements  of  the  acceleration  sensor  along  the  movements werey‐axis,  recorded asthe  the actions  movements of thepasswords  accelerationwere  sensor along thewith  x-axischanges  and the y-axis, x‐axis  and  the  and  to  press  measured  in  the  and the actions to press passwords were measured with changes in the acceleration sensor’s positions acceleration  sensor’s  positions  along  the  z‐axis.  However,  there  were  difficulties  in  estimating  along the z-axis. However, there were difficulties in estimating actual numbers pressed by users when actual numbers pressed by users when based on only these movement patterns.  basedTo  onsolve  only these movement this  problem,  in patterns. the  present  paper,  acquired  patterns  were  used  as  information  to  To solve this problem, in the present paper, acquired patterns were used as information to estimate estimate the numbers actually pressed by users.  the numbers actually pressed by users. Figure 8 shows the method proposed in the present paper that was used to estimate pressed  Figure 8 shows the method proposed in the present paper that was used to estimate pressed passwords based on acquired patterns. Let us assume that a pattern of a four‐digit password was  passwords onin  acquired Let us assume thaton  a pattern of a indicate  four-digitactions  password was acquired  as based shown  the  left patterns. figure.  Here,  the  numbers  the  pattern  taken  to  acquired as shown in the left figure. Here, the numbers on the pattern indicate actions taken to press press the panel, that is, the sections in which the z‐axis measured values decreased and increased  the panel, that is, the sectionsdo  in which the z-axis values decreased pressed  and increased thereafter thereafter and  the  numbers  not indicate  the measured numbers in  the password  by  the user  but  and the numbers do not indicate the numbers in the password pressed by the user but the order of the order of pressing. That is, the user took actions to pressed the password input panel in order of  pressing. That is, the user took actions to pressed the password input panel in order of the numbers 1, the numbers 1, 2, 3, and 4.  2, 3, and 4.

  Figure Assumption of  of patterns.  patterns. (a)  (a) Acquired  Acquired password  password pattern;  pattern; (b)  (b) Password  Password input  input panel;  panel; (c)  (c) Figure  8. 8.  Assumption  Password pattern on a grid plate. Password pattern on a grid plate. 

In the the present present paper, paper,  the  user’s  password  input  panel  assumed  as  shown  the  central  In the user’s password input panel waswas  assumed as shown in thein  central figure figure in  Figure 8.  The  password input  panel as  such  was simply  regarded as a  grid  plate. In  the  in Figure 8. The password input panel as such was simply regarded as a grid plate. In the present present paper, the pattern was shown on a grid plate, as shown in the right figure in Figure 8.  paper, the pattern was shown on a grid plate, as shown in the right figure in Figure 8. Before estimating Before numbers, estimating  the  sizes  of range coordinates,  that  is,  the  range  used for in  actual the actual  sizes ofnumbers,  coordinates, that is, the to be used in calculations, wasto setbe  simply calculations, was set simply for the accuracy of estimated numbers.  the accuracy of estimated numbers. Figure 9 shows the method of setting the range of estimation. First, 1 is located at the left end  Figure 9 shows the method of setting the range of estimation. First, 1 is located at the left end and 2 is located at the right end. The horizontal range of estimation is set based on 1 and 2, that is,  and 2 is located at the right end. The horizontal range of estimation is set based on 1 and 2, that is, the the left end and the right end. In addition, 1 is located not only at the left and but also at the top and  left end and the right end. In addition, 1 is located not only at the left and but also at the top and 4 is 4  is  located  the  bottom.  The  vertical  range  of  estimation  is  set  on that 1  and  4,  that  is,  the  located at theat  bottom. The vertical range of estimation is set based onbased  1 and 4, is, the uppermost uppermost and the lowermost coordinates.  and the lowermost coordinates.

Symmetry 2017, 9, 101 Symmetry 2017, 9, x FOR PEER REVIEW   

7 of 21 7 of 21 

  Figure  9.  Setting  of  ranges  of  estimation.  (a)  Leftmost  coordinate;  (b)  Rightmost  coordinate;  (c)  Range of estimation (horizontal direction); (d) Uppermost coordinate; (e) Lowermost coordinate; (f)  Range of estimation (vertical direction). 

The final range of estimation can be indicated as shown by the left drawing of Figure 10 which  shows  the  common  segment  of  the  horizontal  range  of  estimation  and  the  vertical  range  of  estimation.  Next,  the  estimations  of  actually  pressed  numbers  are  calculated.  In  the  present  paper,  the  estimations  were  calculated  based  on  the  coordinates  where  pressing  actions  were  taken.  In    particular,  the  leftmost,  rightmost,  uppermost,  and  lowermost  coordinates  are  used  as  important  Figure 9. Setting of ranges of estimation. (a) Leftmost coordinate; (b) Rightmost coordinate; (c) Range information  for  estimation.  For  let (a)  us Leftmost  estimate coordinate;  the  actual (b)  numbers  pressed  by  the  Figure  9.  Setting  of  ranges  of instance,  estimation.  Rightmost  coordinate;  (c) user  of estimation (horizontal direction); (d) Uppermost coordinate; (e) Lowermost coordinate; (f) Range of from Range of estimation (horizontal direction); (d) Uppermost coordinate; (e) Lowermost coordinate; (f)  the  first  number  to  the  last  one,  based  on  the  acquired  pattern  shown  in  Figure  10.  First,  estimation (vertical direction). Range of estimation (vertical direction).  calculations as such can be easily understood by assuming that the pattern is drawn on the central  figure in Figure 8 that is, the password input panel. Let us think about the location where the first  The final range estimation can belocation  indicatedwhere  as shown by output  the left and  drawing of Figurewhere  10 which The final range of estimation can be indicated as shown by the left drawing of Figure 10 which  pressing  action  was oftaken,  that  is,  the  1  was  the  location  the  shows the common segment of the horizontal range of estimation and the vertical range of estimation. shows  the  common  segment  of  the  horizontal  range  of  estimation  and  the  vertical  range  of  second pressing action was taken, that is, the location where 2 was output.  estimation.  Next,  the  estimations  of  actually  pressed  numbers  are  calculated.  In  the  present  paper,  the  estimations  were  calculated  based  on  the  coordinates  where  pressing  actions  were  taken.  In  particular,  the  leftmost,  rightmost,  uppermost,  and  lowermost  coordinates  are  used  as  important  information  for  estimation.  For  instance,  let  us  estimate  the  actual  numbers  pressed  by  the  user  from  the  first  number  to  the  last  one,  based  on  the  acquired  pattern  shown  in  Figure  10.  First,  calculations as such can be easily understood by assuming that the pattern is drawn on the central  figure in Figure 8 that is, the password input panel. Let us think about the location where the first  pressing  action  was  taken,  that  is,  the  location  where  1  was  output  and  the  location  where  the  second pressing action was taken, that is, the location where 2 was output. 

  Figure 10. Final range of estimation.  Figure 10. Final range of estimation.

Since  the  location  where  the  last  pressing  action  was  taken,  that is,  the  location  where 4  was  Next, the estimations of actually pressed numbers are calculated. In the present paper, the output, is located between locations 1 and 2, the password input numbers 1 and 3, 4 and 6, and 7  estimations were calculated based on the coordinates where pressing actions were taken. In particular, and 9 are expected for the locations 1 and 2. Next, the location where the third pressing action was  the leftmost, rightmost, uppermost, and lowermost coordinates are used as important information for taken, that is, the location where 3 was output, is located below the location where 2 was output,  estimation. For 9  instance, us estimate thepanel  actualare  numbers pressed bysame  the user from the first number and  3,  6,  and  in  the  let password  input  located  on  the  vertical  row.  Therefore,  to the last one, based on the acquired pattern shown in Figure 10. First, calculations as such can be easily understood by assuming that the pattern is drawn on the central figure in Figure 8 that is, the password input panel. Let us think about the location where the first pressing   action was taken, that is, the location where 1 was output and the location where the second pressing action was taken, that is, Figure 10. Final range of estimation.  the location where 2 was output. Since is, the 4 was Since the the location location where where the the last last pressing pressing action action was was taken, taken, that that is,  the location location where where 4  was  output, is located between locations 1 and 2, the password input numbers 1 and 3, 4 and 6, and 7 and 9 output, is located between locations 1 and 2, the password input numbers 1 and 3, 4 and 6, and 7  are expected for the locations 1 and 2. Next, the location where the third pressing action was taken, and 9 are expected for the locations 1 and 2. Next, the location where the third pressing action was  taken, that is, the location where 3 was output, is located below the location where 2 was output,  and  3,  6,  and  9  in  the  password  input  panel  are  located  on  the  same  vertical  row.  Therefore, 

Symmetry 2017, 9, 101

8 of 21

that is, the location where 3 was output, is located below the location where 2 was output, and 3, 6, and 9 in the password input panel are located on the same vertical row. Therefore, regardless of whether the estimated number pressed by the second pressing action is 3 or 6, the estimated number pressed by the third pressing action becomes 6 or 9. In the same manner, since 1, 2, or 3 is located at the location where the last pressing action was taken, that is, the location where 4 was output, 1 was output on the left and 2 and 3 were output on the right, the password input numbers 8 or 0 can be expected. The estimated numbers explained as above are set forth in Table 2. According to the acquired pattern shown in Figure 8, the finally expected passwords are 1368, 1360, 1390, and 4690. Table 2. Estimation of passwords according to the locations where pressing actions were taken. Estimated Number First and second Third Fourth Finally estimated number

(1, 3) 6 8 1368

(1, 3) 6 0 1360

(1, 3) 9 0 1390

(4, 6) 9 0 4690

(7, 9) ← none none

2.6. Computational Complexity Prediction of passwords in the present paper was calculated based on the obtained pattern images. Coordinate values were judged to have been pressed on the grid plate, and the areas above, below, left, right to the stored nodes were explored to predict the password. If the password was pressed on one coordinate value only, as with 3333, the computational complexity was shown as O(1) because there was no need to explore the areas above, below, left, or right of the coordinate value, and even in the worst case where all the areas above, below, left, right to the coordinate value were explored, the  computational complexity was shown as O n2 . 2.7. Filter and Inertia Pure measured values of sensors involved errors such as noises, drifts, and zero offset. Various filters were necessary to improve the accuracy and precision of the sensors’ measured values. 2.7.1. Low-Pass Filter Low-pass filters are used in acceleration sensors to remove gravity acceleration [11]. Since the measured values used in the present paper required pure acceleration removed of gravitational acceleration, gravitational acceleration was removed from measured values of acceleration. Low-pass filters as such were used during data equalization to minimize noise. A general method of applying low-pass filters for data equalization is used by obtaining the newest value through weighting of the previous average value. The equalization parameter a is used as follows Formula (1):

(6= w value) = ( previous value) + xi × a − ( previous value) × a

(1)

where x (the value collected the most recently) weighted by a is added to the value calculated previously, and the previous value weighed by a is deducted to obtain the difference. If a is close to a value of 1, the new value will be x, and if a is close to zero, the new value in the calculation formula will not be different from the previous value. Here, x can have the desired level of effects on the new value. 2.7.2. Kalman Filter Purely measured sensor values cannot be easily utilized accurately, due to interference and noises. To solve this problem, an optimum mathematical calculation process was introduced that enabled the prediction of locations after a certain time, by analyzing existing measured values mixed with noises through the least-squares method. This calculation process is called the Kalman Filter [12]. To mention

Symmetry 2017, 9, 101

9 of 21

Symmetry 2017, 9, x FOR PEER REVIEW    Symmetry 2017, 9, x FOR PEER REVIEW   

9 of 21  9 of 21 

with expansion, the Kalman Filter is based on measurement progression over time. More accurate results can be expected from the Kalman Filter than from using the results of measurements conducted measurements conducted only at relevant moments. The Kalman Filter recursively processes input  measurements conducted only at relevant moments. The Kalman Filter recursively processes input  only at relevant moments. The Kalman Filter recursively processes input data states.  including noise, and data  including  noise,  enables  optimum  statistical  deduction  of  the  current  states.  entire  data  including  noise,  and and  enables  optimum  statistical  deduction  of  the  current  The The  entire  enables optimum statistical deduction of the current states. The entire algorithm can be divided into algorithm  can  be  divided  into  two  parts;  prediction  and  update.  The  prediction  refers  to  algorithm  can  be  divided  into  two  parts;  prediction  and  update.  The  prediction  refers  to  the the  two parts; prediction and update. The prediction refers to the prediction of the current states and the prediction of the current states and the update refers to the enabling of more accurate prediction by  prediction of the current states and the update refers to the enabling of more accurate prediction by  update the  refers to the enabling of morein  accurate prediction by including the observed in including  the  measurements  observed  in  the  current  state.  As  shown  in measurements Figure  measured  including  measurements  observed  the  current  state.  As  shown  in  Figure  11, 11,  the the  measured  the current state. As shown in Figure 11, the measured values of the smartwatch accelerometer sensor values of the smartwatch accelerometer sensor before applying the Kalman Filter pose difficulties in  values of the smartwatch accelerometer sensor before applying the Kalman Filter pose difficulties in  before applying the Kalman Filter pose difficulties in accurate measurement due to noise. This poses accurate measurement due to noise. This poses difficulties in acquiring the smartwatch’s movement  accurate measurement due to noise. This poses difficulties in acquiring the smartwatch’s movement  difficulties in acquiring the smartwatch’s movement patterns, and the application of the Kalman Filter patterns, and the application of the Kalman Filter reduces noise in measured values to assist in the  patterns, and the application of the Kalman Filter reduces noise in measured values to assist in the  reduces noise in measured values to assist in the acquisition of accurate patterns. acquisition of accurate patterns.  acquisition of accurate patterns. 

(a)  (a) 

(b)  (b) 

Figure 11. Application of the Kalman Filter to the measured values of the accelerometer sensor. (a)  Figure 11. Application of the Kalman Filter to the measured values of the accelerometer sensor. (a)  Figure 11. Application of the Kalman Filter to the measured values of the accelerometer sensor. Before applying the Kalman Filter. (b) After applying the Kalman Filter.  Before applying the Kalman Filter. (b) After applying the Kalman Filter.  (a) Before applying the Kalman Filter. (b) After applying the Kalman Filter.

2.7.3. Inertia  2.7.3. Inertia  2.7.3. Inertia Inertia refers to the tendency to maintain the state of movements, and the resistance of objects  Inertia refers to the tendency to maintain the state of movements, and the resistance of objects  Inertia refers to the tendency to maintain the state of movements, and the resistance of objects when the state of movements is changed. All movements on the earth follow this law of inertia and  when the state of movements is changed. All movements on the earth follow this law of inertia and  when the state of movements is changed. All movements on the earth follow this law of inertia and the movements of sensors are not exceptional.  the movements of sensors are not exceptional.  the movements of sensors are not exceptional. After moving a smartwatch laid onto a plane, the values as shown in Figure 12 were measured  After moving a smartwatch laid onto a plane, the values as shown in Figure 12 were measured  After moving a smartwatch laid onto a plane, the values as shown in Figure 12 were measured in in real life.  in real life.  real life.

[x, y, z]  [x, y, z]  [0.2, 0, 0]  [0.2, 0, 0]  [0.5, 0, 0]  [0.5, 0, 0]  [2.3, 0, 0]  [2.3, 0, 0]  [5.0, 0, 0]  [5.0, 0, 0]  [2.2, 0, 0]  [2.2, 0, 0]  [−0.2, 0, 0]  [−0.2, 0, 0]  [−5.1, 0, 0]  [−5.1, 0, 0]  (a)  (a) 

   

(b)  (b) 

Figure  12.  Movement  of  smartwatch  and  measured  values  of  acceleration  sensor  in  relation  Figure  12. 12. Movement  of of smartwatch  and  measured  values  of acceleration acceleration  sensor  relation  to  to  Figure Movement smartwatch and measured values of sensor in in  relation to inertia. inertia. (a) Changes in the measured values of the acceleration sensor; (b) Record of movement.  inertia. (a) Changes in the measured values of the acceleration sensor; (b) Record of movement.  (a) Changes in the measured values of the acceleration sensor; (b) Record of movement.

As shown in the right‐hand figure in Figure 12, the smartwatch’s movement, which should be  As shown in the right‐hand figure in Figure 12, the smartwatch’s movement, which should be  As shown in the right-hand figure in Figure 12, the smartwatch’s movement, which should be recorded with one line, was actually recorded by two lines.  recorded with one line, was actually recorded by two lines.  recorded with one line, was actually recorded by two lines. Changes in the acceleration sensor’s measured values, and the portion actually relevant to the  Changes in the acceleration sensor’s measured values, and the portion actually relevant to the  Changes in the acceleration sensor’s measured values, and the portion actually relevant to the present paper, are shown in Figure 13.  present paper, are shown in Figure 13.  present paper, are shown in Figure 13.

Symmetry 2017, 9, 101 Symmetry 2017, 9, x FOR PEER REVIEW    Symmetry 2017, 9, x FOR PEER REVIEW   

10 of 21 10 of 21  10 of 21 

   Figure 13. Changes in measured values of acceleration along the x‐axis in relation to inertia.  Figure 13. Changes in measured values of acceleration along the x‐axis in relation to inertia.  Figure 13. Changes in measured values of acceleration along the x-axis in relation to inertia.

Since the smartwatch was moved to the right, the values of movement along the x‐axis should  Since the smartwatch was moved to the right, the values of movement along the x‐axis should  Since the smartwatch was moved to the right, the values of movement along the x-axis should be  positive  numbers.  moved  to  the  right,  among  the  measured  positive  numbers,  only  the  be  positive  numbers.  When  When  the  right, right,  among among  the the measured measured positive positive numbers, numbers, only only the the  be positive numbers. When moved  moved to  to the maximum value was recorded, and other values were omitted.  maximum value was recorded, and other values were omitted.  maximum value was recorded, and other values were omitted. 3. Experiment  3. Experiment  3. Experiment In this section, the objective of the present paper is presented and methods that were planned  In this section, the objective of the present paper is presented and methods that were planned  In this section, the objective of the present paper is presented and methods that were planned and and implemented in the present paper were proposed.  and implemented in the present paper were proposed.  implemented in the present paper were proposed. 3.1. Experimental Environment  3.1. Experimental Environment 3.1. Experimental Environment  First,  we  used  the  LG  Urbane  smartwatch  (LG  Electronics,  Seoul,  South  Korea)  [13],  and  the  First, First, we we used used the the LG LG Urbane Urbane smartwatch smartwatch (LG (LG Electronics, Electronics, Seoul, Seoul, South South Korea) Korea) [13], [13], and and the the  Samsung Galaxy 6 (Samsung Electronics, Suwon, South Korea) [14] as a smartphone connected to  Samsung Galaxy 6 (Samsung Electronics, Suwon, South Korea) [14] as a smartphone connected to Samsung Galaxy 6 (Samsung Electronics, Suwon, South Korea) [14] as a smartphone connected to  the smartwatch. In addition, we made an effort to perform the experiment in an environment very  the smartwatch. In addition, we made an effort to perform the experiment in an environment very the smartwatch. In addition, we made an effort to perform the experiment in an environment very  similar to the actual environment where passwords are entered into an actual ATM. To this end, we  similar to the actual environment where passwords are entered into an actual ATM. To this end, we similar to the actual environment where passwords are entered into an actual ATM. To this end, we  first checked the exterior specifications of ATMs. The ATM selected for the study was the ATM of  first checked the exterior specifications of ATMs. The ATM selected for the study was the ATM of the first checked the exterior specifications of ATMs. The ATM selected for the study was the ATM of  the bank used the most frequently in the area where we were located, and we selected one of the  bank used the most frequently in the area where we were located, and we selected one of the most the bank used the most frequently in the area where we were located, and we selected one of the  most crowded places containing ATM users.  crowded places containing ATM users. most crowded places containing ATM users.  Figure  shows  an  environment  assumed  to  an  Figure shows an experimental environment assumed to configure an environment maximally Figure 1414  14  shows  an  experimental  experimental  environment  assumed  to  configure  configure  an  environment  environment  maximally close to a real ATM. In the place where the actual user was standing, the height of the  close to a real ATM. In the place where the actual user was standing, the height of the screen was maximally close to a real ATM. In the place where the actual user was standing, the height of the  screen  was  approximately  85  cm.  Therefore,  a  test  password  input  device  tablet  was  placed  on  approximately 85 cm. Therefore, a test password device tablet was placed on a was  table,placed  which on  wasa  screen  was  approximately  85  cm.  Therefore,  a  input test  password  input  device  tablet  a  table, which was approximately 85 cm high to replicate the same height for the test. In addition, the  approximately 85 cm high to replicate the same height for the test. In addition, the screen used to enter table, which was approximately 85 cm high to replicate the same height for the test. In addition, the  screen  used  passwords  7  cm  and  long,  the  experimental  actual was 7actual  cm wide and 10 cmwas  long, the experimental tablet used screen passwords used  to  to  enter  enter  actual  passwords  was  7  and cm  wide  wide  and  10  10  cm  cm application long,  and  and for the the experimental  application  for  the  tablet  used  in  the  test  was  also  made  in  the  same  size.  The  password  input  in the test was the same size. password input device of actual ATMs was tilted by application  for also the made tablet inused  in  the  test The was  also  made  in  the  same  size.  The  password  input  ◦ device of actual ATMs was tilted by approximately 5°. Since this is almost the same as a flat surface,  approximately 5 . Since this is almost the same as a flat surface, the experimental tablet was set to be device of actual ATMs was tilted by approximately 5°. Since this is almost the same as a flat surface,  the experimental tablet was set to be placed on a flat surface.  placed on a flat surface. the experimental tablet was set to be placed on a flat surface. 

   Figure 14. View of the experimental environment. Figure 14. View of the experimental environment.  Figure 14. View of the experimental environment. 

Symmetry 2017, 9, 101

11 of 21

In the experiment, we wore a smartwatch on the right wrist because most people enter their password with their right hand. Most people wear the watch on the left wrist regardless of whether they are left-handed or right-handed [15,16]. However, in general, right-handed women tend to wear a smartwatch on their right wrist, and some forums argue that they generally wear a smartwatch on their right wrist [17,18]. Furthermore, according to a study conducted by [19], approximately 30% of all people are ambidextrous, and their hands where they wear accessories vary with certain working environments. In addition, manufacturers of smartwatches such as Samsung and Apple have announced that left-handed people wear smartwatches on their right wrist [20,21] and they separately support left-handed people’s mode for such users [22,23]. Moreover, among smartwatch applications, fitness applications such as those that measure the trajectory of the wrist to help the correction of exercise postures have been released. Unlike general watches, these applications should be worn on the right wrist because they are loaded on smartwatches. The smartwatch market will continue to develop, and these fitness applications are a reason for why many people wear the smartwatch on their right wrist. 3.2. Scenario In the present paper, users wearing a smartwatch input passwords as four-digit numbers into the password input panel on a plane like an ATM, the password patterns were acquired, and the passwords were estimated based on the patterns. 3.3. Test Case In the present paper, a total of 10 test cases were fabricated. Table 3 shows 10 patterns and the characteristics of the patterns. Table 3. Password test cases. Test Case

Password

Characteristics of the Patterns

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1234 2580 1333 2000 1399 1357 1733 7597 9054 8642 75920 39547 13333 10000 79831 976154 391736 798105 800000 139712

horizontal vertical horizontal, overlapping vertical, overlapping ¬-shaped, overlapping horizontal, diagonal vertical, diagonal triangle random random 5-digits 5-digits 5-digits 5-digits 5-digits 6-digits 6-digits 6-digits 6-digits 6-digits

The passwords consisted of four-digit numbers, and for the 10 test cases, seven passwords had characteristic shapes such as horizontal, vertical, triangle, and diagonal, and in addition to the characteristic shapes, passwords that contained overlapping numbers were also included. In addition, two test cases were randomly input to conduct experiments on password pattern acquisition.

Symmetry 2017, 9, x FOR PEER REVIEW  Symmetry 2017, 9, x FOR PEER REVIEW  Symmetry 2017, 9, x FOR PEER REVIEW        Symmetry 2017, 9, x FOR PEER REVIEW  Symmetry 2017, 9, x FOR PEER REVIEW  Symmetry 2017, 9, x FOR PEER REVIEW  Symmetry 2017, 9, x FOR PEER REVIEW        Symmetry 2017, 9, x FOR PEER REVIEW 

12 of 21  12 of 21  12 of 21  12 of 21  12 of 21  12 of 21  12 of 21  12 of 21 

The passwords consisted of four‐digit numbers, and for the 10 test cases, seven passwords had  The passwords consisted of four‐digit numbers, and for the 10 test cases, seven passwords had  The passwords consisted of four‐digit numbers, and for the 10 test cases, seven passwords had  The passwords consisted of four‐digit numbers, and for the 10 test cases, seven passwords had  The passwords consisted of four‐digit numbers, and for the 10 test cases, seven passwords had  The passwords consisted of four‐digit numbers, and for the 10 test cases, seven passwords had  The passwords consisted of four‐digit numbers, and for the 10 test cases, seven passwords had  characteristic  shapes  such  as  horizontal,  vertical,  triangle,  and  diagonal,  and  in  addition  to  the  characteristic  shapes  such  as  as  horizontal,  vertical,  triangle,  and  diagonal,  and  in  in  addition  to  to  the the  characteristic  shapes  such  as  horizontal,  vertical,  triangle,  and  diagonal,  and  in  addition  to  the  characteristic  shapes  such  horizontal,  vertical,  triangle,  and  diagonal,  and  addition  characteristic  shapes,  passwords  that  contained  overlapping  numbers  were  also  included.  In  characteristic  shapes,  passwords  that  contained  overlapping  numbers  were  also  included.  In  characteristic  shapes,  passwords  that  contained  overlapping  numbers  were  also  included.  In  characteristic  shapes,  passwords  that  contained  overlapping  numbers  were  also  included.  In  characteristic  shapes,  passwords  that  contained  overlapping  numbers  were  also  included.  In  characteristic  shapes,  passwords  that  contained  overlapping  numbers  were  also  included.  In  In  characteristic  shapes,  passwords  that  contained  overlapping  numbers  were  also  included.  addition,  two  test  cases  were  randomly  input  to  conduct  experiments  on  password  pattern  addition,  two  test  cases  were  randomly  input  to  to  conduct  experiments  on on  password  pattern  addition,  two  test  cases  were  randomly  input  conduct  experiments  password  pattern  addition,  two  test  cases  were  randomly  input  to  conduct  experiments  on  password  pattern  addition,  two  test  cases  were  randomly  input  to  conduct  experiments  on  password  pattern  addition,  two  test  cases  were  randomly  input  to  conduct  experiments  on  password  pattern  addition,  two  test  cases  were  randomly  input  to  conduct  experiments  on  password  pattern  3.4. Pattern Acquisition acquisition.  acquisition.  acquisition.  acquisition.  acquisition.  acquisition.  acquisition. 

Symmetry 2017, 9, 101 shapes  12the  of 21 characteristic  shapes  such  as  horizontal,  vertical,  triangle,  and  diagonal,  and  in  addition  to  the  characteristic  shapes  such  as  as  horizontal,  vertical,  triangle,  and  diagonal,  and  in  in  addition  to  to  the  characteristic  shapes  such  horizontal,  vertical,  triangle,  and  diagonal,  and  addition  characteristic  such  as  horizontal,  vertical,  triangle,  and  diagonal,  and  in  addition  to  the 

Table 4 shows the passwords in the test cases, the characteristics of the passwords, and the 3.4. Pattern Acquisition  3.4. Pattern Acquisition  3.4. Pattern Acquisition  3.4. Pattern Acquisition  3.4. Pattern Acquisition  3.4. Pattern Acquisition  3.4. Pattern Acquisition  password patterns acquired in the experiments. of  the  the  passwords,  and  the  the  passwords,  and  the the  Table  4  shows  the  passwords  in  the  test  cases,  the  characteristics  Table  4  shows  the  passwords  in  the  test  cases,  the  characteristics  of  of  passwords,  and  the  passwords,  and  the  Table  4  shows  shows  the the  passwords  in  the  the  test  cases,  the the  characteristics  of  the  Table  4  shows  shows  the  passwords  in  the  the  test  cases,  the  characteristics  of  the  the  passwords,  and  the  Table  4  the  passwords  in  test  cases,  the  characteristics  of  passwords,  and  the  Table  4  passwords  in  test  cases,  characteristics  of  passwords,  and  the  password patterns acquired in the experiments.  password patterns acquired in the experiments.  password patterns acquired in the experiments.  Table 4. Acquired patterns by test case. password patterns acquired in the experiments.  password patterns acquired in the experiments.  password patterns acquired in the experiments.  password patterns acquired in the experiments.  Table 4. Acquired patterns by test case.  Table 4. Acquired patterns by test case.  Table 4. Acquired patterns by test case.  Table 4. Acquired patterns by test case.  Characteristics Characteristics Table 4. Acquired patterns by test case.  Table 4. Acquired patterns by test case.  Table 4. Acquired patterns by test case.  Acquired Test Case Password of the Test Case Password of the Characteristics of the  Characteristics of the  Acquired  Test Test  Test Test  Characteristics of the  Characteristics of the  Patterns Acquired  Test  Test  Characteristics of the  Characteristics of the  Acquired  Test  Test  Characteristics of the  Characteristics of the  Acquired  Characteristics of the  Characteristics of the  Acquired  Test  Test  Characteristics of the  Characteristics of the  Acquired  Test  Test  Password Password  Characteristics of the  Characteristics of the  Acquired  Test  Test  Password Characteristics of the  Password Characteristics of the  Characteristics of the  Characteristics of the  Acquired  Test  Test  Password Password  Acquired  Test  Test  Characteristics of the  Characteristics of the  Acquired  Test  Test  Patterns Patterns Password Password  Password Password  Password Password  Patterns  Patterns  Patterns  Case  Case  Patterns  Patterns  Patterns  Case  Case  Password Password  Password Password  Patterns  Patterns  Patterns  Case  Case  Patterns  Patterns  Patterns  Case  Case  Password Password  Case  Case  Password  Case  Password  Case  Case  Case  Case 

1  1 1  1  1  1 

1  1  1  1 

1234  1234  1234 1234  1234  1234  1234  1234  1234  1234 

Patterns  Patterns  Patterns  Patterns  Patterns  Patterns  Patterns 

Patterns  Patterns  Patterns  Patterns  Patterns  Patterns  Patterns 

Case  Case  Password Case  Password Case  Case  Case  Case 

horizontal  horizontal  horizontal horizontal  horizontal  horizontal  horizontal  horizontal  horizontal  horizontal 

11  11  11 11  11  11  11  11  11  11 

2  2  2  2  2 

2580  2580  2580  2580  2580 2580  2580  2580  2580  2580  2580 

4  4  4  4  4 

2000 2000  2000  2000  2000  2000 2000  2000  2000  2000  2000 

5  5  5 5  5 

5  5  5  5 



6  6  6  6  6 

1357  1357 1357  1357  1357  1357  1357  1357 1357  1357  1357 

7  7  7  7  7 

1733 1733  1733  1733  1733  1733  1733  1733  1733 1733  1733 

8  8  8  8  8 

7597  7597 7597  7597  7597  7597  7597  7597  7597  7597 7597 

9  9 

9  9  9  9  9 

9054  9054 9054  9054  9054  9054  9054  9054  9054  9054

10  10  10  10  10  10  10  10 

8642 8642  8642  8642  8642  8642  8642  8642  8642  8642  8642

6‐digits  6‐digits  6‐digits  6‐digits  6‐digits  6‐digits  6‐digits  6‐digits  6‐digits  6-digits    

6‐digits  6‐digits  6‐digits  6‐digits  6‐digits  6‐digits  6‐digits  6‐digits  6‐digits  6‐digits  6-digits

 

   

   

 

   

     

   

 

   

 

   

 

   

 

 

     

   

   

     

 

       

 

   

139712  139712  139712  139712  139712  139712  139712  139712  139712  139712  139712

   

 

 

20  20  20  20  20  20  20  20  20  20 20   

   

 

 

   

 

   

 

     

random  random  random  random  random  random  random  random  random  random  random

 

 

     

   

   

 

   

 

     

     

800000  800000  800000  800000  800000  800000  800000  800000  800000  800000

   

   

19  19  19  19  19  19  19  19  19 19   

   

 

 

   

 

   

 

   

random  random  random  random  random  random  random  random  random  random

 

 

   

   

 

10  1010 

6‐digits  6‐digits  6‐digits  6‐digits  6‐digits  6‐digits  6‐digits  6‐digits  6‐digits  6-digits 6‐digits 

   

   

   

 

     

     

 

798105  798105  798105  798105  798105  798105  798105  798105  798105  798105 798105 

   

   

   

18  18  18  18  18  18  18  18  18  18 18   

   

 

   

   

 

   

 

 

triangle  triangle  triangle  triangle  triangle  triangle  triangle  triangle  triangle  triangle triangle 

 

 

   

   

 

9  9  9 9 

6‐digits  6‐digits  6‐digits  6‐digits  6‐digits  6‐digits  6‐digits  6‐digits  6-digits 6‐digits  6‐digits 

   

   

8  8 

391736  391736  391736  391736  391736  391736  391736  391736  391736 391736  391736 

 

     

         

   

17  17  17  17  17  17  17  17  17 17  17 

   

     

diagonal

 

   

 

 

 

 

   

 

   

vertical, diagonal  vertical, vertical, diagonal  vertical, diagonal  vertical, diagonal  vertical, diagonal  vertical, diagonal  vertical, diagonal  vertical, diagonal  vertical, diagonal  vertical, diagonal 

 

 

   

   

   

8  8  8 8 

6‐digits  6‐digits  6‐digits  6‐digits  6‐digits  6‐digits  6‐digits  6-digits 6‐digits  6‐digits  6‐digits 

   

   



976154  976154  976154  976154  976154  976154  976154  976154 976154  976154  976154 

 

   

 

         

   

16  16  16  16  16  16  16  16 16  16  16 

   

     

diagonal

 

   

 

 

 

 

   

 

 

horizontal, horizontal, diagonal  horizontal, diagonal  horizontal, diagonal  horizontal, diagonal  horizontal, diagonal  horizontal, diagonal  horizontal, diagonal  horizontal, diagonal  horizontal, diagonal  horizontal, diagonal 

 

 

   

     

   

7  7  7  7 7 

5‐digits  5‐digits  5‐digits  5‐digits  5-digits 5‐digits  5‐digits  5‐digits  5‐digits 

   

   

   

 

   

 

     

     

79831  79831  79831  79831  79831 79831  79831  79831  79831 

   

   

15  15  15  15  15 15  15  15  15   

   

 

 

   

 

   

 

   

¬-shaped, ㄱ‐shaped, overlapping  ㄱ‐shaped, overlapping  1399  ㄱ‐shaped, overlapping  1399  ㄱ‐shaped, overlapping  1399  ㄱ‐shaped, overlapping  1399  1399 1399  1399  ㄱ‐shaped, overlapping  ㄱ‐shaped, overlapping  1399  ㄱ‐shaped, overlapping  1399  ㄱ‐shaped, overlapping  overlapping

 

 

   

   

 

6  6  6  6 6 

5‐digits  5‐digits  5‐digits  5‐digits  5‐digits  5-digits 5‐digits  5‐digits  5‐digits  5‐digits  5‐digits 

   

   

   

 

     

     

 

10000  10000  10000  10000  10000  10000 10000  10000  10000  10000  10000 

   

   

   

14  14  14  14  14  14  14 14  14  14  14   

   

 

   

   

 

   

 

 

vertical, vertical, overlapping  vertical, overlapping  vertical, overlapping  vertical, overlapping  vertical, overlapping  vertical, overlapping  vertical, overlapping  vertical, overlapping  vertical, overlapping  vertical, overlapping  overlapping

 

 

   

   

 

         

5‐digits  5‐digits  5‐digits  5‐digits  5-digits 5‐digits  5‐digits  5‐digits  5‐digits  5‐digits  5‐digits 

   

   

4  4  4  4 4  4 

13333  13333  13333  13333  13333 13333  13333  13333  13333  13333  13333 

   

   

 

       

   

   

   

13  13  13  13  13 13  13  13  13  13  13   

 

   

     

horizontal, 1333  horizontal, overlapping  1333  horizontal, overlapping  horizontal, overlapping  1333  1333  horizontal, overlapping  1333 1333  horizontal, overlapping  1333  horizontal, overlapping  1333  horizontal, overlapping  1333  horizontal, overlapping  1333  horizontal, overlapping  1333  horizontal, overlapping  overlapping

 

 

   

   

   

   

5‐digits  5‐digits  5‐digits  5‐digits  5-digits 5‐digits  5‐digits  5‐digits  5‐digits  5‐digits  5‐digits 

     

3  3  3  3  3 

39547  39547  39547  39547  39547 39547  39547  39547  39547  39547  39547 

   

 

3  3  3 3  3  3 

   

     

 

     

 

   

12  12  12  12 12  12  12  12  12  12  12 

   

 

 

 

   

 

 

   

 

   

 

     

vertical  vertical  vertical  vertical  vertical vertical  vertical  vertical  vertical  vertical  vertical 

 

 

     

       



5‐digits  5‐digits  5-digits 5‐digits  5‐digits  5‐digits  5‐digits  5‐digits  5‐digits  5‐digits 

 

         

2  2  2 2  2 

75920  75920  75920 75920  75920  75920  75920  75920  75920  75920 

Patterns  Patterns  Patterns  Patterns  Patterns  Patterns  Patterns 

Acquired Acquired  Acquired  Acquired  Patterns Acquired  Acquired  Acquired  Acquired  Acquired  Acquired  Acquired  Patterns  Patterns  Patterns  Patterns  Patterns  Patterns  Patterns  Patterns  Patterns  Patterns 

     

3.5. Pattern Acquisition by Angle Change We tried to prepare an environment very similar to the actual ATMs. Also, the password input device of actual ATMs was tilted by approximately 5◦ , which is almost the same as a flat surface, and the experimental tablet was placed on a flat surface. Since the acceleration sensors mounted on the smartwatch are fusion sensors that can also sense gravity and angular speed, the acquired password

Symmetry 2017, 9, x FOR PEER REVIEW  Symmetry 2017, 9, x FOR PEER REVIEW  Symmetry 2017, 9, x FOR PEER REVIEW       

13 of 21  13 of 21  13 of 21 

3.5. Pattern Acquisition by Angle Change  3.5. Pattern Acquisition by Angle Change  3.5. Pattern Acquisition by Angle Change  Symmetry 2017, 9, 101

13 of 21

We tried to prepare an environment very similar to the actual ATMs. Also, the password input  We tried to prepare an environment very similar to the actual ATMs. Also, the password input  We tried to prepare an environment very similar to the actual ATMs. Also, the password input  device of actual ATMs was tilted by approximately 5°, which is almost the same as a flat surface, and  device of actual ATMs was tilted by approximately 5°, which is almost the same as a flat surface, and  device of actual ATMs was tilted by approximately 5°, which is almost the same as a flat surface, and  pattern can be different depending on the angle of the ATM’s keypad. For this reason, we discussed the experimental tablet was placed on a flat surface. Since the acceleration sensors mounted on the  the experimental tablet was placed on a flat surface. Since the acceleration sensors mounted on the  the experimental tablet was placed on a flat surface. Since the acceleration sensors mounted on the  smartwatch are fusion sensors that can also sense gravity and angular speed, the acquired password  how the password patterns were acquired as the keypad angle increased by 10◦ . Table 5 shows smartwatch are fusion sensors that can also sense gravity and angular speed, the acquired password  smartwatch are fusion sensors that can also sense gravity and angular speed, the acquired password  pattern can be different depending on the angle of the ATM’s keypad. For this reason, we discussed  pattern can be different depending on the angle of the ATM’s keypad. For this reason, we discussed  pattern can be different depending on the angle of the ATM’s keypad. For this reason, we discussed  acquired password patterns as the angle increases by 10◦ , using the same password (9054) within the how  the  password  patterns  were  acquired  the  keypad  angle  increased  10°.  Table  5 acquired shows  how  the  password  patterns  were  acquired  as  the  keypad  angle  increased  by  10°.  5  shows  how  the  password  acquired  as  as  the  keypad  angle  increased  by by  10°.  Table  5  shows  experiment to compare.patterns  As thewere  angle changed, there was no significant difference inTable  the acquired password patterns as the angle increases by 10°, using the same password (9054) within the  acquired password patterns as the angle increases by 10°, using the same password (9054) within the  acquired password patterns as the angle increases by 10°, using the same password (9054) within the  password pattern, but when compared to the flat surface (0◦ ), additional lines were drawn. This was experiment to compare. As the angle changed, there was no significant difference in the acquired  experiment to compare. As the angle changed, there was no significant difference in the acquired  experiment to compare. As the angle changed, there was no significant difference in the acquired  indicated by a hatched rectangle, and it confirmed that the greater the angle increased, the longer the password pattern, but when compared to the flat surface (0°), additional lines were drawn. This was  password pattern, but when compared to the flat surface (0°), additional lines were drawn. This was  password pattern, but when compared to the flat surface (0°), additional lines were drawn. This was  lengthindicated by a hatched rectangle, and it confirmed that the greater the angle increased, the longer the  increased. However, in this paper, we estimate the action to press passwords as changes in the indicated by a hatched rectangle, and it confirmed that the greater the angle increased, the longer the  indicated by a hatched rectangle, and it confirmed that the greater the angle increased, the longer the  z-axis,length increased. However, in this paper, we estimate the action to press passwords as changes in  so even if such lines are added, there was still no difficulty in estimating the password. length increased. However, in this paper, we estimate the action to press passwords as changes in  length increased. However, in this paper, we estimate the action to press passwords as changes in  the z‐axis, so even if such lines are added, there was still no difficulty in estimating the password.  the z‐axis, so even if such lines are added, there was still no difficulty in estimating the password.  the z‐axis, so even if such lines are added, there was still no difficulty in estimating the password.  Table 5. Pattern acquisition by angle change. Table 5. Pattern acquisition by angle change.  Table 5. Pattern acquisition by angle change.  Table 5. Pattern acquisition by angle change.  Acquired Acquired Tablet Angle TabletTablet  Angle Tablet Angle Tablet  Tablet  Tablet  Tablet  Tablet  Tablet  Tablet  Tablet  Tablet  Tablet  Tablet  Tablet Angle  Tablet Angle  Tablet Angle  Patterns Acquired Patterns  Acquired Patterns  Acquired Patterns  Acquired Patterns  Acquired Patterns  Acquired Patterns  Patterns Tablet Angle  Tablet Angle  Acquired Patterns  Acquired Patterns  Acquired Patterns  Acquired Patterns  Tablet Angle  Acquired Patterns  Acquired Patterns  Angle  Angle  Angle  Angle  Angle  Angle  Angle  Angle  Angle 

0◦

Angle  Angle  Angle 

10◦10°  10° 10°  10°  10°  10° 

0°  0°  0°  0°  0°  0° 

  

30°  30°  30°  30° 30°  30◦ 30° 

  

  

20°  20◦20°  20° 20°  20°  20° 

  

  

40°  40°  40°  40° 40°  40◦40° 

  

  

  

Acquired Patterns

Acquired Patterns  Acquired Patterns  Acquired Patterns  Acquired Patterns  Acquired Patterns  Acquired Patterns 

  

50°  50°  50° 50°  50°  50◦50° 

  

  

  

3.6. Results of Password Estimation  3.6. Results of Password Estimation  3.6. Results of Password Estimation 

3.6. Results of Password Estimation

Table 6 shows the results of the password estimation analysis.  Table 6 shows the results of the password estimation analysis.  Table 6 shows the results of the password estimation analysis. 

Table 6 shows the results of the password estimation analysis.

Table 6. Estimated passwords by test case.  Table 6. Estimated passwords by test case.  Table 6. Estimated passwords by test case. 

Table 6. Estimated passwords by test case. Test Case  Test Case  Test Case  Password  Password  Password  Characteristics of the Patterns  Characteristics of the Patterns  Characteristics of the Patterns  Test Case  Test Case  Password  Password  Characteristics of the Patterns  Characteristics of the Patterns  Test Case  Password  Characteristics of the Patterns 

1234, 4560, 7890 1234, 4560, 7890 1234, 4560, 7890 1234, 4560, 7890 1234, 4560, 7890 1234, 4560, 7890

1  1  1  1 

2  2 

2  2  2  2 



3  3  3  3 

1333 1333  1333  1333  1333  1333  1234

horizontal, overlapping  horizontal, overlapping  horizontal, overlapping  horizontal, overlapping  horizontal, overlapping  horizontal, overlapping  horizontal

1222, 1333, 4555, 4666, 7888, 7999, 0000 1222, 1333, 4555, 4666, 7888, 7999, 0000 1222, 1333, 4555, 4666, 7888, 7999, 0000 1222, 1333, 4555, 4666, 7888, 7999, 0000 1222, 1333, 4555, 4666, 7888, 7999, 0000 1222, 1333, 4555, 4666, 7888, 7999, 0000 1234, 4560, 7890

100  100  100  100  100100 100 

4  4  4  4 

2000  2000  2000  2000  2000  2000  2580

vertical, overlapping  vertical, overlapping  vertical, overlapping  vertical, overlapping  vertical, overlapping  vertical, overlapping  vertical

1444, 1777, 1000, 2555, 2888, 2000, 3666, 3999 1444, 1777, 1000, 2555, 2888, 2000, 3666, 3999 1444, 1777, 1000, 2555, 2888, 2000, 3666, 3999 1444, 1777, 1000, 2555, 2888, 2000, 3666, 3999 1444, 1777, 1000, 2555, 2888, 2000, 3666, 3999 1444, 1777, 1000, 2555, 2888, 2000, 3666, 3999 1470, 2580, 3690

100  100  100 100  100  100100 

5  5  5  5 

1399  1399  1399  1333 1399  1399  1399 

ㄱ‐shaped, overlapping  ㄱ‐shaped, overlapping  ㄱ‐shaped, overlapping  horizontal, overlapping ㄱ‐shaped, overlapping  ㄱ‐shaped, overlapping  ㄱ‐shaped, overlapping 

6  6  6  6 

2000 1357  1357  1357  1357  1357 1357 

vertical, overlapping horizontal, diagonal  horizontal, diagonal  horizontal, diagonal  horizontal, diagonal  horizontal, diagonal  horizontal, diagonal 

1357 1733 9054 9054  9054  9054  9054  9054  7597 8642  8642  8642  8642  8642  8642  9054 75920  75920  75920  75920  75920  75920  8642 39547  39547  39547  39547  39547  39547  75920 13333  13333  13333  39547 13333  13333  13333  13333 10000  10000  10000  10000  10000  10000 

horizontal, diagonal triangle  triangle  triangle  triangle  triangle  triangle  vertical, diagonal random  random  random  random  random  random  triangle random  random  random  random  random  random  random 5‐digits  5‐digits  5‐digits  5‐digits  5‐digits  5‐digits  random 5‐digits  5‐digits  5‐digits  5‐digits  5‐digits  5‐digits  5-digits 5‐digits  5‐digits  5‐digits  5-digits 5‐digits  5‐digits  5‐digits  5-digits 5‐digits  5‐digits  5‐digits  5‐digits  5‐digits  5‐digits 

1 3  4  2 4  5  3 5  4 6  6  5 7  7  6 8  8  7 9  8 9  10  910  11  1011  12  1112  13  1213  1314  14  15  1415 

7  7  7  7  8  8  8  8  9  9  9  9  10  10  10  10  11  11  11  11  12  12  12  12  13  13  13  13  14  14  14  14 

Password

2580 2580  2580  2580  2580  2580 

1399 1733  1733  1733  1733  1733  1733 

7597  7597  7597  7597  7597 7597 

horizontal  horizontal  horizontal  of the horizontal  horizontal  horizontal  Characteristics vertical  vertical  vertical  Patterns vertical  vertical  vertical 

Estimation Success Rate Estimation Success Rate Estimation Success Rate Estimation Success Rate Estimation Success Rate Estimation Success Rate

1  1 

Test Case

1234 1234  1234  1234  1234  1234 

Estimated Passwords  Estimated Passwords  Estimated Passwords  Estimated Passwords  Estimated Passwords  Estimated Passwords 

¬-shaped, overlapping vertical, diagonal  vertical, diagonal  vertical, diagonal  vertical, diagonal  vertical, diagonal  vertical, diagonal 

15  79831  79831  15  15  15  79831  79831  79831  79831  10000

5‐digits  5‐digits  5‐digits  5‐digits  5‐digits  5‐digits  5-digits

16  16  16  976154  976154  976154  976154  16  16  976154  976154  16 

6‐digits  6‐digits  6‐digits  6‐digits  6‐digits  6‐digits 

17  391736  391736  17  17  17  391736  391736  391736  391736 

6‐digits  6‐digits  6‐digits  6‐digits  6‐digits  6‐digits 

15 17  17  16 17 18

79831 976154 391736 798105

5-digits 6-digits 6-digits 6-digits

19

800000

6-digits

20

139712

6-digits

Estimated Passwords 1470, 2580, 3690 1470, 2580, 3690 1470, 2580, 3690 1470, 2580, 3690 1470, 2580, 3690 1470, 2580, 3690

1255, 1288, 1366, 1399  1255, 1288, 1366, 1399  1255, 1288, 1366, 1399  1222, 1333, 4555, 4666, 7888, 7999, 0000 1255, 1288, 1366, 1399  1255, 1288, 1366, 1399  1255, 1288, 1366, 1399  1444, 1777, 1000, 2555, 2888, 2000, 3666, 3999 1357, 1350, 4680 1357, 1350, 4680 1357, 1350, 4680 1357, 1350, 4680 1357, 1350, 4680 1357, 1350, 4680 1255, 1288, 1366, 1399 1733, 1766, 4033, 4066 1733, 1766, 4033, 4066 1733, 1766, 4033, 4066 1733, 1766, 4033, 4066 1733, 1766, 4033, 4066 1733, 1766, 4033, 4066 1357, 1350, 4680 4264, 7297, 7597 4264, 7297, 7597 4264, 7297, 7597 4264, 7297, 7597 4264, 7297, 7597 4264, 7297, 7597 1733, 1766, 4033, 4066 6821, 6021, 9054 6821, 6021, 9054 6821, 6021, 9054 6821, 6021, 9054 6821, 6021, 9054 6821, 6021, 9054 4264, 7297, 7597 0975, 0972, 8642 0975, 0972, 8642 0975, 0972, 8642 0975, 0972, 8642 0975, 0972, 8642 0975, 0972, 8642 6821, 6021, 9054 7592075920 75920 75920 75920 75920 0975, 0972, 8642 39547, 39540 39547, 39540 39547, 39540 39547, 39540 39547, 39540 39547, 39540 75920 13333, 46666, 79999, 13333, 46666, 79999, 13333, 46666, 79999, 39547, 39540 13333, 46666, 79999, 13333, 46666, 79999, 13333, 46666, 79999, 13333, 46666, 79999, 14444, 17777, 10000, 25555, 28888, 20000 3666, 39999 14444, 17777, 10000, 25555, 28888, 20000 3666, 39999 14444, 17777, 10000, 25555, 28888, 20000 3666, 39999 14444, 17777, 10000, 25555, 28888, 20000 3666, 39999 14444, 17777, 10000, 25555, 28888, 20000 3666, 39999 14444, 17777, 10000, 25555, 28888, 20000 3666, 39999 14444, 17777, 10000, 25555, 28888, 20000 3666, 46531, 79831, 79864 46531, 79831, 79864 46531, 79831, 79864 46531, 79831, 79864 46531, 79831, 79864 46531, 79831, 79864 39999 976154 976154 976154 976154 976154 976154 46531, 79831, 79864 281714, 391736, 392825 281714, 391736, 392825 281714, 391736, 392825 281714, 391736, 392825 281714, 391736, 392825 281714, 391736, 392825 976154 281714, 391736, 392825 798105 144444, 177777, 100000, 200000, 255555, 288888, 366666, 399999 400000, 4777777, 500000, 588888, 699999, 700000, 800000 136412, 139012, 139712, 469745

100  100  100  100 100  100  Estimation 100  100  100  Success Rate 100  100  100 

100  100  100100  100 100  100 

100100 100  100  100  100  100  100100 100  100  100 100  100 

100 100 100  100  100  100  100100 100  100  100 100  100  100  100100  100  100  100 100  100  100100  100  100  100 100  100  100100  100  100  100100  100 100  100  100100  100  100  100 100  100  100  100 100  100  100  100 

100  100 100  100  100  100100  100  100  100  100 100  100 

100 100 100 100

100  100 100  100  100  100 

100 100

Symmetry 2017, 9, 101

14 of 21

4. Verification The reduction rate of the number of cases was calculated by Formula (2), and on reviewing the reduction rates along with the characteristics by pattern in Table 7, the following characteristics of decreases in reduction rates were found. 1−

the number o f estimated passwords total number o f estimated

(2)

Table 7. Reduction rate by test case.

Test Case

Password

No. of Digits

Characteristics of the Patterns

Total Number of Cases of Passwords

Number of Estimated Password

Number of Cases Reduction Rate

1 1234 4 horizontal 1000 3 99.700 2 2580 4 vertical 1000 3 99.700 3 1333 4 horizontal, overlapping 1000 7 99.300 4 2000 4 vertical, overlapping 1000 8 99.200 Symmetry 2017, 9, x FOR PEER REVIEW    15 of 21  5 1399 4 ¬-shaped, overlapping 1000 4 99.600 6 1357 4 horizontal, diagonal 1000 3 99.700 7 1733 4 vertical, diagonal 1000 4 of  overlapping  digits  decreases,  the  range  of  movements  of  pattern  increases  and 99.600 the  range  of  8 7597 4 triangle 1000 3 99.700 locations of pressing actions would also increase, leading to narrower ranges of estimation.  9 9054 4 random 1000 3 99.700 10 8642 4 random 1000 3 99.700 11 75920 5 random 10,000 1 99.990 4.3. Reduction Rates for the Number of Cases According to Pattern Complexity  12 39547 5 random 10,000 2 99.980 13 13333 5 horizontal, overlapping 10,000 3 99.970 14 10000 overlapping 99.920 On  reviewing  Figures  15 5and  16 vertical, once  again,  it  can  be 10,000 seen  that  the 8rate  of  reduction  of  the  15 79831 5 Random 10,000 3 99.970 number  of  cases  increased  as  the  number  of  digits  of  passwords  increased  and  the  number  of  16 976154 6 Random 100,000 1 99.999 17 391736 6 Random 100,000 3 99.997 overlapping  digits  decreased.  This  means  that  the  rate  of  reduction  of  the  number  of  cases  18 798105 6 Random 100,000 1 99.999 decreased when the motions taken by the user to input passwords were wider and more complex  19 800000 6 vertical, overlapping 100,000 15 99.985 20 139712 6 random 100,000 4 99.996 and the locations where the motions were taken were not overlapping and were more complicated. 

Organized  according  to  the  number  of  digits,  the  reduction  rates  according  to  the  complexity  of  4.1. Reduction Rates for Number of Cases by the Number of Digits of Passwords user’s password patterns can be explained with Figure 17. It was shown that when the actions taken  by the user to input the password were more complicated, the reduction rate was higher.  Figure 15 shows reduction rates according to the numbers of digits in the passwords.

  Figure 15. Reduction rates according to the numbers of digits of passwords. Figure 15. Reduction rates according to the numbers of digits of passwords. 

If the number of digits of the passwords were one, the total number of cases of passwords would be 10. However, the reduction rate would be zero because the user took only one action for each password, and the number of estimated passwords would also be 10. Even when the number of digits of passwords was only increased to two, the reduction rates would increase drastically because the

user’s password patterns can be explained with Figure 17. It was shown that when the actions taken  by the user to input the password were more complicated, the reduction rate was higher. 

Symmetry 2017, 9, 101

15 of 21

total number of cases increases by a power of 10, but the number of estimated passwords in the present paper was not large enough to the extent that the number exceeded 10. 4.2. Reduction Rates for Number of Cases by the Number of Overlapping Digits Figure 16 shows the rates of reduction of the numbers of cases according to the numbers of overlapping digits calculated on the basis of four-digit passwords. It can be seen that as the number of overlapping digits increased, the reduction rate decreased. This is because, if all the numbers in four digits were assumed to be the same, the user would take pressing actions at the same location,   the number of leading to a wider range of passwords that could be estimated. On the contrary, when overlapping digits decreases, the range of movements of pattern increases and the range of locations Figure 15. Reduction rates according to the numbers of digits of passwords.  of pressing actions would also increase, leading to narrower ranges of estimation.

  Figure 16. Reduction rates according to the numbers of overlapping digits (on the basis of Figure 16. Reduction rates according to the numbers of overlapping digits (on the basis of four‐digit  four-digit passwords). passwords). 

4.3. Reduction Rates for the Number of Cases According to Pattern Complexity On reviewing Figures 15 and 16 once again, it can be seen that the rate of reduction of the number of cases increased as the number of digits of passwords increased and the number of overlapping digits decreased. This means that the rate of reduction of the number of cases decreased when the motions taken by the user to input passwords were wider and more complex and the locations where the motions were taken were not overlapping and were more complicated. Organized according to the number of digits, the reduction rates according to the complexity of user’s password patterns can be explained with Figure 17. It was shown that when the actions taken by the user to input the password were more complicated, the reduction rate was higher.

Symmetry 2017, 9, 101 Symmetry 2017, 9, x FOR PEER REVIEW   

16 of 21 16 of 21 

  Figure 17. Reduction rates according to the complexity of patterns. Figure 17. Reduction rates according to the complexity of patterns. 

4.4. Binary Classification Result  4.4. Binary Classification Result The precision, recall factors, and F‐scores calculated in 20 test cases are as shown in Table 8.  The precision, recall factors, and F-scores calculated in 20 test cases are as shown in Table 8. Table 8. Binary classification result.  Table 8. Binary classification result. Test  Numbers of Predicted  Password  Predicted Passwords  Precision  NumbersPasswords  of Case  Recall Test Case Password Predicted Passwords Predicted Precision 1234, 4560, 7890 1  1234  3  0.333  Factor Passwords 1470, 2580, 3690 2  2580  3  0.333  1222, 1333, 4555, 4666, 7888, 7999, 0000 3  1333  7  0.143  1 1234 1234, 4560, 7890 3 0.333 1.000 1444, 1777, 1000, 2555, 2888, 2000, 3666, 3999 4  2000  8  0.125  2 2580 1470, 2580, 3690 3 0.333 1.000 1255, 1288, 1366, 1399 5  1399  4  0.250  3 1357  1333 1222, 1333,1357, 1350, 4680 4555, 4666, 7888, 7999, 0000 7 0.143 1.000 6  3  0.333  4 1733  2000 1444, 1777, 1733, 1766, 4033, 4066 1000, 2555, 2888, 2000, 3666, 3999 8 0.125 1.000 7  4  0.250  5 7597  1399 1255, 1288, 1366, 1399 4 0.250 1.000 4264, 7297, 7597 8  3  0.333  6 9054  1357 1357, 1350, 4680 3 0.333 1.000 6821, 6021, 9054 9  3  0.333  0975, 0972, 8642 10  3  0.333  7 8642  1733 1733, 1766, 4033, 4066 4 0.250 1.000 75920 11  1  1.000  8 75920  7597 4264, 7297, 7597 3 0.333 1.000 39547, 39540 12  2  0.500  9 39547  9054 6821, 6021, 9054 3 0.333 1.000 13333, 46666, 79999 13  3  0.333  10 13333  8642 0975, 0972, 8642 3 0.333 1.000 14444, 17777, 10000, 25555, 28888, 20000 36666, 39999 14  8  0.125  11 10000  75920 75920 1 1.000 1.000 46531, 79831, 79864 15  79831  3  0.333  12 39547 39547, 39540 2 0.500 1.000 976154 16  976154  1  1.000  13 391736  13333 13333, 46666, 79999 3 0.333 1.000 281714, 391736, 392825 17  3  0.333  14444, 17777, 10000, 25555, 28888, 20000 36666, 798105 18  1  1.000  14 798105  10000 8 0.125 1.000 39999 144444, 177777, 100000, 200000, 255555, 288888, 366666, 399,999 400,000,  19  800000  15  0.067  15 79831 46531, 79831, 79864 3 0.333 1.000 4777777, 500000, 588888, 699999, 700000, 800000  16 139712  976154 976154 1 1.000 1.000 136412, 139012, 139712, 469745 20  4  0.250 

Recall  F‐Score Factor  F-Score 1.000  0.500  1.000  0.500  1.000  0.250  0.500 1.000  0.222  0.500 1.000  0.400  0.250 1.000  0.500  0.222 1.000  0.400  1.000  0.4000.500  1.000  0.5000.500  1.000  0.4000.500  1.000  0.5001.000  1.000  0.5000.667  1.000  0.5000.500  1.000  1.0000.222  1.000  0.500  0.667 1.000  1.000  0.500 1.000  0.500  1.000  0.2221.000  1.000  0.5000.125 

1.000  1.0000.400  281714, 391736, 392825 3 0.333 1.000 0.500 798105 1 1.000 1.000 1.000 The  precision  is 144444, the  probability  for  the  actual  177777, 100000, 200000, 255555, 288888,password  to  be  included  in  the  predicted  19 800000 400,000, 4777777, 500000, 588888, 15 0.067 1.000 0.125 passwords,  the  recall 366666, rate  399,999 is  the  probability  for  predicted  passwords  to  be  included  in  the  actual  699999, 700000, 800000 20 139712 the  f‐score  136412, 139712,obtained  469745 0.400 passwords,  and  is 139012, a  score  by  the  4 formula; 0.250 f‐score  1.000 =  2×(precision  × 

17 18

391736 798105

recall/precision+recall)  [24  ].  The  precision  was  identified  to  be  low  through  calculations  with  values  not  exceeding  33%  in  most  for cases  although tothe  of  passwords  that  The precision is the probability thebecause  actual password be number  includedof  in cases  the predicted passwords, could  be  1000  in  the  case  of  four  digit  passwords  was  reduced  to  1~7,  the  actual  number  of  the recall rate is the probability for predicted passwords to be included in the actual passwords, and passwords was fixed to 1. However, since all the groups of passwords predicted using the method  the f-score is a score obtained by the formula; f-score = 2×(precision × recall/precision+recall) [24]. proposed in the present paper included actual passwords, the recall factors were identified as 100%  The precision was identified to be low through calculations with values not exceeding 33% in most in all cases.  cases because although the number of cases of passwords that could be 1000 in the case of four digit passwords was reduced to 1~7, the actual number of passwords was fixed to 1. However, since all 4.5. Energy Efficient  the groups of passwords predicted using the method proposed in the present paper included actual passwords, the recall factors were identified as 100% in all cases. We have also set forth the energy efficiency of the smartwatch and smartphone with regard to  password prediction.  Figure 18 shows a graph of the amounts of energy consumed in the experiment described in  the present paper. The upper side shows the energy consumed when one test case is experimented.  One  test  case  took  approximately  5  s  of  experimental  time  and  both  the  smartwatch  and  smartphone showed a charge amount of 99.8%. The bottom side is a report on the amount of energy 

Symmetry 2017, 9, 101

17 of 21

4.5. Energy Efficient We have also set forth the energy efficiency of the smartwatch and smartphone with regard to password prediction. Figure 18 shows a graph of the amounts of energy consumed in the experiment described in the present paper. The upper side shows the energy consumed when one test case is experimented. One test case took approximately 5 s of experimental time and both the smartwatch and smartphone Symmetry 2017, 9, x FOR PEER REVIEW    17 of 21  showed a charge amount of 99.8%. The bottom side is a report on the amount of energy consumed when all the 20 test cases were experimented. Approximately 120 s of experimental time was spent consumed when all the 20 test cases were experimented. Approximately 120 s of experimental time  when the 20 test cases were experimented. The smartwatch showed a charge amount of 96.8% with an was spent when the 20 test cases were experimented. The smartwatch showed a charge amount of  energy consumption of 3.2%, while the smartphone showed a charge amount of approximately 98% 96.8%  with  an  energy  consumption  of  3.2%,  while  the  smartphone  showed  a  charge  amount  of  with a battery energy consumption of approximately 2%. The reason why the battery consumption of approximately 98% with a battery energy consumption of approximately 2%. The reason why the  the smartwatch was higher was that the smartwatch was loaded with a battery with lower specification battery  consumption  of  the  smartwatch  was  higher  was  that  the  smartwatch  was  loaded  with  a  than that of the smartphone, considering the size and specification of the smartwatch [12,13]. The fact battery with lower specification than that of the smartphone, considering the size and specification  that the period of use of the smartwatch was longer than that of smartphone was also a reason for of the smartwatch [12,13]. The fact that the period of use of the smartwatch was longer than that of  this effect. smartphone was also a reason for this effect. 

  Figure (upper side: Experiment 1 test case,case,  bottom side: side:  Experiment 20 test20  case). Figure 18. 18. Energy Energy efficiency efficiency  (upper  side:  Experiment  1  test  bottom  Experiment  test  case). 

5. Related Work  Studies  of  attacks  on  components  of  smart  devices  such  as  sensors  have  mainly  dealt  with  threats  that  may  arise  from  using  smart  device  sensors,  rather  than  from  the  weaknesses  of  algorithms that can occur within the code of the application that runs the sensor [25,26]. Most smart  devices are installed not with only motion sensors, but with other sensors such as various cameras, 

Symmetry 2017, 9, 101

18 of 21

5. Related Work Studies of attacks on components of smart devices such as sensors have mainly dealt with threats that may arise from using smart device sensors, rather than from the weaknesses of algorithms that can occur within the code of the application that runs the sensor [25,26]. Most smart devices are installed not with only motion sensors, but with other sensors such as various cameras, global positioning system (GPS), and microphones. Previous studies have been conducted focusing on privacy infringement using information from these sensors. For instance, [27] designed a Driver Detection System (DDS) that calculates the change values of the motion sensor of the smartphone to detect the vehicle driving direction. This system first detects the NFC (Near Field Communication) and audio of the firmware installed in the vehicle with the smartphone to detect the presence of the driver in the driver’s seat nearby, and thereafter calculates the change values of motion sensors such as the accelerometer and gyroscope sensor to detect the driving speed and direction. In addition, the author of [28] injected malware that operates sensors into the smartphone to expose the privacy of user-based information leaked from sensors other than the motion sensor, that is, the microphone, GPS data, and camera. One of the interesting and sensitive pieces of information attackers aim to obtain in the field of security threats is information on passwords or pin codes. Such pieces of information can be predicted by expanding keystroke threats that can predict acts of typing on the smartphone screen. Studies conducted before the commercialization of smartwatches first used motion sensors to confirm the keystrokes on smartphones. Both studies [29,30] utilized motion sensors to predict motions for typing on the virtual keyboard of a touch screen and used the degree of change from the gyroscope sensor and accelerometer sensors. The authors of [29] have particularly conducted experiments where the users did not type at a fixed location but did type on handheld smart devices, and additionally mentioned the relationship between vibration state and keystrokes in such cases, and the author of [30] compared results from gyroscope sensors with those from accelerometer sensors to show that gyroscope sensors were superior to accelerometer sensors in terms of precision. Studies on keystrokes as such have been expanded to the prediction of passwords or pin codes. In [31], the movements of motion sensors inside the smartphones were monitored by installing a Trojan application. The affected sensors were the gyroscope and accelerometer sensors, and the application learned behaviors such as the touch events of the user, and predicted the actions conducted by the user on the touch screen based on the learning. Password stealing was one of the experiments in the current study. The current study conducted the experiment while expanding PIN codes consisting only of numbers to four, six, and eight digits, and showed a prediction rate of 80%. The author of [32] uses only accelerometer sensors and predicts passwords with character strings rather pin codes consisting of numbers. The author predicted the passwords by dividing smartphone screens into certain rectangles in proportion to the sizes of the screens and calculating the distances to coordinate values being touched. After smartwatches were commercialized, the threats of various keystrokes were demonstrated based on the movements of the smartwatch [33–36]. For instance, studies that predicted the movements of the smartwatch to predict keyboard typing logs [33] or smartphone pin codes [34] were conducted. The author of [33] predicted English words typed on the keyboard of a desktop or laptop computer based on signals from motion sensors such as the smartwatch’s accelerometer sensors and gyroscope sensors. The position of the wrist changed according to the position of alphabets on the keyboard and the degree of change, which was measured by the smart sensor's motion sensor, were used to predict the words being typed. Similarly, the author of [34] predicted PINs using motion sensors such as the accelerometer and gyroscope sensor, based on the movements of the smartwatch when the user entered the pin number of the smartphone after wearing a smartwatch. The pin number prediction of the relevant study adopted the random forest learning method, and the signals of the x-, y-, z-axes of the gyroscope and the accelerometer were used as features of the random forest learning. Similarly, the author of [35] also predicted pin numbers wearing a smartwatch. In the relevant study, the author

Symmetry 2017, 9, 101

19 of 21

made a 12-key number input device for pin number input by himself and predicted the pressed pin numbers through machine learning (deep learning). Our study was most similar to studies [34,35] in that the purpose of the study was to predict passwords such as PINs pressed while wearing a smartwatch. However, studies [34,35] predicted pin numbers based on machine learning. This means that the sensor values recorded in the smartwatch could be used again in learning, and the features used in learning could be also collected. Such processes mean that quite some effort and time should be spent in deriving predictable results. On the contrary, we predicted the passwords only through a series of calculation processes using only algorithms, without learning or feature collection, which naturally led to a reduction in the time and costs of prediction. 6. Conclusion In the present paper, the threat of sufficient leakage of user’s password patterns through the motion recognition sensors embedded in smartwatches that are prominent in wearable markets, was proved. Most smartwatches are provided with motion recognition sensors to expand the functionality and to overcome the limitations of hardware in smartwatches. However, users’ passwords can be sufficiently leaked through these motion recognition sensors. Therefore, it can be said that, ironically, wearable devices such as smartwatches released for increasing speed and convenience, may be subject to security threats such as password pattern leakage, due to that fact that those wearable devices are worn by the users. In the present paper, passwords were predicted by collecting the patterns of passwords entered by users wearing a smartwatch using accelerometer sensors, which are motion recognition sensors. Basically, if the number of digits of passwords was assumed to be four, the number of cases of possible passwords is 104 = 1000. However, according to the method proposed in the present paper, three to eight passwords were predicted for each of the four-digit passwords depending on the overlapping numbers, showing a reduction rate for the number of cases, of 99%, and the predicted passwords showed high accuracy. In the current study, the experiment was expanded to predict passwords with more than four digits. In the results of this experiment, the reduction rate for the number of cases decreased as the number of digits of the passwords increased, or as the number of overlapping numbers of passwords decreased. This means that the information for the prediction of passwords increased as the number of numbers not overlapping increased. On the contrary, the method proposed in the present paper showed a limitation in that the number of cases did not decrease at all in the case of passwords consisting of only one number of one digit passwords. However, the above limitation could be overcome because bank users do not set their important passwords as a single number or a one-digit password, pursuant to the password protection policy [37]. We plan to carry out future works with more extended scenarios. The password prediction system proposed in the present paper simply transmits the sensor values from the smartwatch to the connected smartphone, and the transmitted sensor values are again transmitted to the server connected to the smartphone. First, this may involve a weak point because it can be subject to spatial restriction in security threat scenarios, and we plan to overcome this weak point, because attackers wish to capture target information without being subject to spatial restriction. Therefore, their first goal is usually to steal the sensor values from the smartwatch within the smartphone, and secretly retransmit the sensor values from the smartphone to the cloud environment. Second, the user’s act of transmitting sensor values may be a limitation. In the present paper, sensor values were transmitted assuming that the act of inputting passwords was a prototype, and the point of transmitting sensor values was set to the point of completion of transmission. However, the act of transmitting sensor values can be a limitation because such behaviors can sufficiently occur in everyday life. To overcome the foregoing, we plan to approach the issue with a reinforced scenario such as enabling the user to obtain sensor values only when the user conducts the act of entering the password near the relevant GPS address after storing the GPS values of the coordinates of the bank and ATM.

Symmetry 2017, 9, 101

20 of 21

Acknowledgments: This work was supported by the MSIP (Ministry of Science, ICT and Future Planning), Korea, under the ITRC (Information Technology Research Center) support program (IITP-2016-R2718-16-0035) supervised by the IITP (National IT Industry Promotion Agency), the Basic Science Research Program through the NRF funded by the Ministry of Education (NRF-2015R1C1A1A02037561) and the 2016 Yeungnam University Research Grant. Author Contributions: Jihun Kim and Jonghee M. Youn conceived, designed and performed the experiments; Jihum Kim analyzed the data; Jihun Kim and Jonghee M. Youn wrote the paper. Conflicts of Interest: The authors declare no conflicts of interest.

References 1. 2.

3.

4.

5.

6.

7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17.

18.

19. 20.

Rawassizadeh, R.; Price, B.A.; Petre, M. Wearables: Has the age of smartwatches finally arrived? Commun. ACM 2015, 58, 45–47. [CrossRef] Chernbumroong, S.; Atkins, S.A.; Yu, H. Activity classification using a single wrist-worn accelerometer. In Proceedings of the 5th International Conference on Software, Knowledge Information, Industrial Management and Applications (SKIMA), Benevento, Italy, 8–11 September 2011. Hinckley, K.; Pierce, J.; Sinclair, M.; Horvitz, E. Sensing techniques for mobile interaction. In Proceedings of the 13th Annual ACM Symposium on User Interface Software and Technology, San Diego, CA, USA, 6–8 November 2000. Rawassizadeh, R.; Tomitsch, M.; Nourizadeh, M.; Momeni, E.; Peery, A.; Ulanova, L.; Pazzani, M. Energy-Efficient Integration of Continuous Context Sensing and Prediction into Smartwatches. Sensors 2015, 15, 22616–22645. [CrossRef] [PubMed] Udoh, E.S.; Alkharashi, A. Privacy risk awareness and the behavior of smartwatch users: A case study of Indiana University students. In Proceedings of the Future Technologies Conference (FTC), San Francisco, CA, USA, 6–7 December 2016. A PowerPoint Presentation by Paul E. Tippens, Professor of Physics Southern Polytechnic State University, 2017. Technical Paper. Available online: https://www.stcharlesprep.org/01_parents/vandermeer_s/ Useful%20Links/Honors%20Physics/pdf%20lectures/Acceleration.pdf (accessed on 29 June 2017). Dadafshar, M. Accelerometer and Gyroscopes Sensors: Operation, Sensing, and Applications; Maxim Integrated: San Jose, CA, USA, 2014. The Earth’s Gravitational Field. Techinical Paper. Available online: http://www-gpsg.mit.edu/12.201_12. 501/BOOK/chapter2.pdf (accessed on 29 June 2017). Takeda, R.; Tadano, S.; Todoh, M.; Morikawa, M.; Nakayasu, M.; Yoshinari, S. Gait analysis using gravitational acceleration measured by wearable sensors. J. Biomech. 2009, 42, 223–233. [CrossRef] [PubMed] Liu, M. A study of mobile sensing using smartphones. Int. J. Distrib. Sens. Netw. 2013. [CrossRef] Furutani, K.; Kato, M.; Tsuru, T. Low-Pass Filter. U.S. Patent 5,668,511, 16 September 1997. Welch, G.; Bishop, G. An Introduction to the Kalman Filter; University of North Carolina: Chapel Hill, NC, USA, 1995. LG Urbane. Available online: http://www.gsmarena.com/lg_watch_urbane_w150-7680.php (accessed on 29 June 2017). Samsung Galaxy S6. Available online: http://www.gsmarena.com/samsung_galaxy_s6-6849.php (accessed on 29 June 2017). Hardyck, C.; Petrinovich, L.F. Left-handedness. Psychol. Bull. 1977, 84, 385. [CrossRef] [PubMed] Watch Handedness. Available online: https://en.wikipedia.org/wiki/Watch#Handedness (accessed on 29 June 2017). Is It Acceptable to Wear a Watch on the Right Wrist? Available online: http://www.askandyaboutclothes. com/forum/showthread.php?116570-Is-it-acceptable-to-wear-a-watch-on-the-right-wrist (accessed on 29 June 2017). Why Wear a Watch on the Wrist Where You’re Hand Dominant? Available online: http://www.reddit. com/r/Watches/comments/1wzub5/question_why_wear_a_watch_on_the_wrist_where/ (accessed on 29 June 2017). Annett, M. Handedness and Brain Asymmetry: The Right Shift Theory; Psychology Press: Leicester, UK, 2002. Yan, S.; Soh, P.J.; Vandenbosch, G.A.E. Wearable dual-band composite right/left-handed waveguide textile antenna for WLAN applications. Electron. Lett. 2014, 50, 424–426. [CrossRef]

Symmetry 2017, 9, 101

21. 22. 23. 24.

25.

26. 27.

28.

29.

30. 31.

32.

33.

34.

35. 36.

37.

21 of 21

Why Don’t Apple Have Left Handed Watches? Available online: https://www.iphonetricks.org/5-reasonsto-wear-the-apple-watch-on-your-left-hand/ (accessed on 29 June 2017). Android Wear Left Handed Mode? Available online: https://www.reddit.com/r/AndroidWear/comments/ 3f77fs/left_handed_mode/ (accessed on 29 June 2017). How to Set Up the Apple Watch for Left-Handed Use. Available online: http://www.imore.com/how-setapple-watch-left-handed-use (accessed on 29 June 2017). Goutte, C.; Gaussier, E. A probabilistic interpretation of precision, recall and F-score, with implication for evaluation. In Proceedings of the European Conference on Information Retrieval, Santiago de Compostela, Spain, 21–23 March 2005. Nahapetian, A. Side-Channel Attacks on Mobile and Wearable Systems. In Proceedings of the 13th IEEE Annual Consumer Communications and Networking Conference (CCNC), Las Vegas, NV, USA, 9–12 January 2016. Spreitzer, R.; Moonsamy, V.; Korak, T.; Mangard, S. Systematic Classification of Side-Channel Attacks: A Case Study for Mobile Devices. arXiv 2010, arXiv:1611.03748. Chu, H.; Raman, V.; Shen, J.; Kansal, A.; Bahl, V.; Choudhury, R.R. I am a smartphone and I know my user is driving. In Proceedings of the 2014 Sixth International Conference on Communication Systems and Networks (COMSNETS), Bangalore, India, 6–10 January 2014. Cai, L.; Machiraju, S.; Chen, H. Defending against sensor-sniffing attacks on mobile phones. In Proceedings of the 1st ACM Workshop on Networking, Systems, and Applications for Mobile Handhelds, Barcelona, Spain, 17 August 2009. Cai, L.; Chen, H. TouchLogger: Inferring Keystrokes on Touch Screen from Smartphone Motion. In Proceedings of the 6th USENIX conference on Hot topics in security, San Francisco, CA, USA, 8–12 August 2011. Liang, C.; Chen, H. On the practicality of motion based keystroke inference attack. In Proceedings of the International Conference on Trust and Trustworthy Computing, Vienna, Austria, 13–15 June 2012. Xu, Z.; Bai, K.; Zhu, S. Taplogger: Inferring user inputs on smartphone touchscreens using on-board motion sensors. In Proceedings of the fifth ACM conference on Security and Privacy in Wireless and Mobile Networks, Tucson, AZ, USA, 16–18 April 2012. Owusu, E.; Han, J.; Das, S.; Perrig, A.; Zhang, J. ACCessory: Password inference using accelerometers on smartphones. In Proceedings of the Twelfth Workshop on Mobile Computing Systems & Applications, San Diego, CA, USA, 28–29 February 2012. Wang, H.; Lai, T.T.-T.; Choudhury, R.R. Mole: Motion leaks through smartwatch sensors. In Proceedings of the 21st Annual International Conference on Mobile Computing and Networking, Paris, France, 7–11 September 2015. Sarkisyan, A.; Debbiny, R.; Nahapetian, A. WristSnoop: Smartphone PINs prediction using smartwatch motion sensors. In Proceedings of the 2015 IEEE International Workshop on Information Forensics and Security (WIFS), Rome, Italy, 16–19 November 2015. Beltramelli, T.; Risi, S. Deep-Spying: Spying Using Smartwatch and Deep Learning. Master’s Thesis, IT University of Copenhagen, Copenhagen, Denmark, December 2015. Liu, X.; Zhou, Z.; Diao, W.; Li, Z.; Zhang, K. When good becomes evil: Keystroke inference with smartwatch. In Proceedings of the 22nd ACM SIGSAC Conference on Computer and Communications Security, Denver, CO, USA, 12–16 October 2015. SANS Technology Institute. Password policy. Available online: https://www.sans.edu/student-files/ projects/password-policy-updated.pdf (accessed on 29 June 2017). © 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

Suggest Documents