TIAM-UCL Global Model Documentation

9 downloads 690 Views 8MB Size Report
University College London (UCL). The objective of the Energy System theme is to make a world-class contribution to energy system modelling by showing how ...
i

TIAM-UCL Global Model Documentation Working Paper February 2011: REF UKERC/WP/ESY/2011/001

Gabrial Anandarajah, Steve Pye, William Usher, Fabian Kesicki and Christophe Mcglade University College London

This document has been prepared to enable results of on-going work to be made available rapidly. It has not been subject to review and approval, and does not have the authority of a full Research Report.

UKERC/WP/ESY/2011/001

THE UK ENERGY RESEARCH CENTRE Operating at the cusp of research and policy-making, the UK Energy Research Centre's mission is to be the UK's pre-eminent centre of research, and source of authoritative information and leadership, on sustainable energy systems. The Centre takes a whole systems approach to energy research, incorporating economics, engineering and the physical, environmental and social sciences while developing and maintaining the means to enable cohesive research in energy. To achieve this we have developed the Energy Research Atlas, a comprehensive database of energy research, development and demonstration competences in the UK. We also act as the portal for the UK energy research community to and from both UK stakeholders and the international energy research community. THE ENERGY SYSTEMS (ES) THEME OF UKERC UKERC‘s ES research activities are being undertaken within the UCL Energy Institute at University College London (UCL). The objective of the Energy System theme is to make a world-class contribution to energy system modelling by showing how the UK, in a range of global contexts, could achieve its carbon targets and increase its energy system resilience over the period 2020-2050, and exploring the associated economic and environmental implications. Building on the work and achievements of the Energy Systems and Modelling theme in UKERC I, the Energy Systems (ES) work in UKERC II will encompass a range of qualitative and quantitative methods, but will specialise in formal modelling of the energy system and its relationship with the economy and the environment. ES is focussed on the following three objectives: 1. Decarbonisation pathways: This will involve the construction of a global TIMES model (TIAM-UCL) with a dedicated UK region. Key research questions will include the impact on the UK of global resource flows, international emissions trading, and global technology innovation. 2. Security of oil and gas supplies 3. Energy system uncertainties: Staged optimisation, innovation and vintaging, stochastic hedging strategies, probabilistic inputs i

CONTENTS 1

INTRODUCTION ......................................................................................................... 1 1.1 OVERVIEW .................................................................................................................... 1 1.2 MODEL METHODOLOGY ................................................................................................... 2 1.3 MODEL STRUCTURE ........................................................................................................ 5 1.4 TIAM-UCL GLOBAL MODEL DEVELOPMENT .......................................................................... 6 1.5 TIAM-UCL VINTAGES AND ALTERNATE DATA....................................................................... 8 1.6 REFERENCES.................................................................................................................. 9

2

MODEL STRUCTURE ................................................................................................. 11 2.1 INTRODUCTION ........................................................................................................... 11 2.2 OVERVIEW OF MODEL STRUCTURE ..................................................................................... 11 2.3 DEMANDS AND DRIVERS................................................................................................. 14 2.4 BASE-YEAR TEMPLATES.................................................................................................. 15 2.5 SUBRES ..................................................................................................................... 16 2.6 RESOURCE .................................................................................................................. 17 2.7 TRADE ...................................................................................................................... 17 2.8 SCENARIO MODULE ....................................................................................................... 18 2.9 REFERENCES................................................................................................................ 19

3

DEMAND DRIVERS AND PROJECTION ........................................................................ 21 3.1 INTRODUCTION ........................................................................................................... 21 3.2 DRIVERS AND PROJECTION .............................................................................................. 21

iii

3.2.1

Population ....................................................................................................... 21

3.2.2

GDP ................................................................................................................. 23

3.2.3

Households ...................................................................................................... 25

3.2.4

Sectoral drivers ................................................................................................ 26

3.2.5

Energy services demand ................................................................................... 27

3.3 DRIVER ELASTICITY ....................................................................................................... 28 3.4 REFERENCES ................................................................................................................ 29 4

TRANSPORT SECTOR ................................................................................................ 31 4.1 INTRODUCTION ............................................................................................................ 31 4.2 ENERGY SERVICES DEMAND .............................................................................................. 31 4.3 SECTOR FUELS AND EMISSIONS ......................................................................................... 32 4.4 TECHNOLOGIES ............................................................................................................ 34 4.5 BASE-YEAR CALIBRATION ................................................................................................ 46 4.6 REFERENCES ................................................................................................................ 49

5

INDUSTRY SECTOR ................................................................................................... 51 5.1 INTRODUCTION ............................................................................................................ 51 5.2 ENERGY-SERVICE DEMANDS ............................................................................................. 51 5.3 SECTOR FUELS .............................................................................................................. 53 5.4 TECHNOLOGIES ............................................................................................................ 55 5.5 BASE-YEAR CALIBRATION ................................................................................................ 67 5.6 REFERENCES ................................................................................................................ 70

6

RESIDENTIAL SECTOR ............................................................................................... 71 6.1 INTRODUCTION ............................................................................................................ 71 6.2 ENERGY SERVICE DEMANDS .............................................................................................. 71 6.3 SECTOR FUELS .............................................................................................................. 72 6.4 TECHNOLOGIES ............................................................................................................ 74 iv

6.5 BASE-YEAR CALIBRATION ............................................................................................... 89 6.6 REFERENCES................................................................................................................ 89 7

COMMERCIAL SECTOR ............................................................................................. 91 7.1 INTRODUCTION ........................................................................................................... 91 7.2 ENERGY SERVICES DEMAND ............................................................................................. 91 7.3 SECTOR FUELS ............................................................................................................. 92 7.4 TECHNOLOGIES ........................................................................................................... 94 7.5 BASE-YEAR CALIBRATION ............................................................................................. 118 7.6 REFERENCES.............................................................................................................. 118

8

AGRICULTURE SECTOR ........................................................................................... 119 8.1 INTRODUCTION ......................................................................................................... 119 8.2 ENERGY SERVICES DEMAND ........................................................................................... 119 8.3 SECTOR FUELS ........................................................................................................... 120 8.4 BASE-YEAR CALIBRATION ............................................................................................. 121 8.5 REFERENCES.............................................................................................................. 122

9

ELECTRICITY AND HEAT GENERATION SECTOR........................................................ 123 9.1 INTRODUCTION ......................................................................................................... 123 9.2 BASE YEAR CALIBRATION .............................................................................................. 124 9.3 NEW TECHNOLOGIES ................................................................................................... 126

9.3.1

Key technology options ................................................................................. 126

9.3.2

Sector constraints.......................................................................................... 129

9.3.3

Sequestration technologies ........................................................................... 130

9.4 REPRESENTATION OF GRIDS .......................................................................................... 132 9.5 FUTURE WORK IN THE ELECTRICITY AND HEAT SECTOR ......................................................... 132 v

9.6 REFERENCES ..............................................................................................................132 10

UPSTREAM ............................................................................................................. 133

10.1

INTRODUCTION ......................................................................................................133

10.2

ENERGY RESOURCES ................................................................................................134

10.3

PRIMARY TRANSFORMATION ......................................................................................139

10.4

SECONDARY TRANSFORMATION ..................................................................................140

10.5

OTHERS ................................................................................................................142

10.6

BASE-YEAR CALIBRATION ..........................................................................................143

10.7

REFERENCES ..........................................................................................................150

11

RESOURCE MODULE ............................................................................................... 151

11.1

INTRODUCTION ......................................................................................................151

11.2

COAL ...................................................................................................................151

11.3

OIL .....................................................................................................................152

11.3.1

Resources ...................................................................................................152

11.3.2

Costs ..........................................................................................................154

11.3.3

Resource cost .............................................................................................155

11.3.4

Upgrading oil .............................................................................................158

11.4

GAS.....................................................................................................................159

11.4.1 11.5

Resource costs ...........................................................................................160

OTHER FUELS .........................................................................................................161

11.5.1

Biomass for electricity sector......................................................................161

11.6

URANIUM ..............................................................................................................162

11.7

REFERENCES ..........................................................................................................164

12

CROSS-SECTOR MODULES ...................................................................................... 167 vi

12.1

INTRODUCTION...................................................................................................... 167

12.2

ALTERNATIVE FUEL ................................................................................................. 167

12.3

HYDROGEN ........................................................................................................... 168

12.4

SEQUESTRATION .................................................................................................... 173

12.5

LAND-USE CO2 ..................................................................................................... 173

12.6

NON-CO2 GASES................................................................................................... 174

12.7

CH4 MEASURES ...................................................................................................... 174

12.8

N2O MEASURES ..................................................................................................... 177

12.9

REFERENCES .......................................................................................................... 178

13

13.1

INTRODUCTION...................................................................................................... 179

13.2

ENERGY TRADING ................................................................................................... 179

13.2.1

Coal ........................................................................................................... 180

13.2.2

Gas ............................................................................................................ 180

13.2.3

Oil and oil products ................................................................................... 181

13.3

EMISSION TRADING ................................................................................................. 182

13.4

BIOMASS TRADING .................................................................................................. 182

13.5

REFERENCES .......................................................................................................... 182

14

vii

TRADE MODULE .................................................................................................... 179

CLIMATE MODULE ................................................................................................. 183

14.1

OVERVIEW ............................................................................................................ 183

14.2

CONCENTRATION ................................................................................................... 184

14.2.1

Carbon dioxide .......................................................................................... 184

14.2.2

Methane .................................................................................................... 185

14.2.3

Nitrous oxide............................................................................................. 185

14.3

RADIATIVE FORCING ................................................................................................185

14.3.1

Carbon Dioxide ..........................................................................................186

14.3.2

Methane and Nitrous Oxide ........................................................................186

14.3.3

Exogenous forcing .....................................................................................186

14.3.4

Linear approximation .................................................................................187

14.4

TEMPERATURE INCREASE ...........................................................................................187

14.5

PARAMETERS OF THE CLIMATE MODULE........................................................................188

14.6

REFERENCES ..........................................................................................................188

viii

LIST of FIGURES Figure 1-1: representation of elastic demand version of TIAM-UCL ..................................... 3 Figure 1-2: The TIAM-UCL global model structure ............................................................... 6 Figure 2-1: Simplified Reference Energy System in TIAM Source: Loulou and Labriet (2007b) ........................................................................................................................ 12 Figure 2-2: Simplified representation of the TIAM Source: Loulou and Labriet (2007) ........ 13 Figure 3-1: World population data used in TIAM-UCL ........................................................ 22 Figure 3-2: Annual population growth during 2005-2100 ................................................. 22 Figure 3-3: Global population in TIAM compared to SRES scenarios ................................... 23 Figure 3-4: Per capita GDP in the 21st Century ................................................................... 24 Figure 3-5: GDP growth rate from 2004-2100 ................................................................... 25 Figure 3-6: Growth rate of household numbers during 2005-2100 ................................... 26 Figure 3-7: Growth rate of sectoral outputs (iron & steel and non-ferrous metals. ............ 27 Figure 4-1: Projected energy-service demands in transport sector .................................... 32 Figure 4-2: Technology specific hurdle rate for different regions in TIAM-UCL .................. 36 Figure 5-1: projected industry sector energy-service demands at global level ................... 53 Figure 5-2: Regional specific hurdle rate for industry sector technologies ......................... 56 Figure 6-1: Projected energy-service demands in residential sector .................................. 72 Figure 6-2: Regional specific hurdle rate for residential sector technologies...................... 75 Figure 7-1: Projected energy-service demands in commercial sector ................................. 92 Figure 7-2: Regional specific hurdle rate for end-use technologies ................................... 95 Figure 8-1: Agriculture energy –service demand projection by region .............................. 120 Figure 8-2: Base-year agriculture energy consumption mix by fuel ................................. 122

ix

Figure 9-1: Existing Electricity Generation Capacity by Region in 2005 (Model base year), GW ..............................................................................................................................125 Figure 9-2: Existing Electricity Generation Capacity by Type in 2005 (Model base year), GW ..............................................................................................................................125 Figure 11-1 Supply cost curve for hard and brown coal ....................................................152 Figure 11-2 Depletion cost curves for each category of oil examined ...............................156 Figure 11-3 show an example of 2P reserves in the OPEC African region, of supply cost curve generated ..........................................................................................................157 Figure 11-4 shows the supply cost curve for all oil differentiated by region .....................158 Figure 11-5 shows the supply cost curve for all oil differentiated by oil category .............158 Figure 11-6 shows the natural gas supply cost curve by region ........................................161 Figure 11-7 shows the natural gas supply cost curve by resource type .............................161 Figure 14-1: Illustration of the TIAM climate module ........................................................183

x

LIST of TABLES Table 1-1: List of regions and countries in the 16 region TIAM-UCL model ......................... 7 Table 2-1: Energy-services demand and respective drivers ................................................ 14 Table 2-2: List of templates in the SubRES ......................................................................... 16 Table 2-3: Resources traded in the 16R TIAM-UCL global model ....................................... 18 Table 2-4: Scenario workbooks in TIAM-UCL ..................................................................... 18 Table 3-1: Fraction of energy-service demands ................................................................. 28 Table 3-2: Driver elasticities for the United Kingdom ......................................................... 28 Table 4-1: Energy-service demands in transport sector ..................................................... 31 Table 4-2: Sector fuel technologies-existing ...................................................................... 33 Table 4-3: Sector fuel technologies-new technologies ....................................................... 33 Table 4-4: transport technologies-existing ........................................................................ 34 Table 4-5: transport technologies-existing ........................................................................ 36 Table 4-6: Breakout of transport sector base-year energy consumption by mode and fuel (PJ)......................................................................................................................... 48 Table 5-1: Transport sector energy-services ...................................................................... 51 Table 5-5-2: Elastic demand parameters ........................................................................... 52 Table 5-3: Sector fuel technologies-existing ...................................................................... 53 Table 5-4: Sector fuel technologies-new ............................................................................ 54 Table 5-5: Sector fuel technologies-new ............................................................................ 57 Table 5-6: Base-year industry sector final energy consumption by energy-services and fuel (PJ)......................................................................................................................... 68 Table 6-1: Residential sector energy-services .................................................................... 72 Table 6-2: Residential sector technologies-existing........................................................... 73

xi

Table 6-3: Residential sector fuel technologies-new ........................................................... 74 Table 6-4: Residential sector new end-use technologies .................................................... 76 Table 6-5: Base-year residential sector final energy consumption ...................................... 89 Table 7-1: Energy-services in commercial sector ................................................................ 91 Table 7-2: commercial sector fuel technologies-existing ................................................... 93 Table 7-3: Commercial sector fuel technologies-new ......................................................... 93 Table 7-4: Commercial sector end-use technologies-new .................................................. 96 Table 7-5: Base-year commercial sector final energy consumption (PJ) ............................118 Table 8-1: Agriculture sector fuel technologies-existing ..................................................120 Table 9-1: New technology options for electricity and heat generation .............................126 Table 9-2: Overview of technology characteristics by technology group (for WEU region) .128 Table 9-3: Overview of sequestration technology characteristics ......................................130 Table 9-4: Types of storage technologies .........................................................................131 Table 10-1: Non-renewable primary resources .................................................................135 Table 10-2: Renewable primary resources ........................................................................137 Table 10-3: Technologies to produce upstream sector fuels .............................................137 Table 10-4: Primary transformation technologies .............................................................139 Table 10-5: Secondary transformation technologies .........................................................140 Table 10-6: Existing CHP in refinery sector .......................................................................142 Table 10-7: IEA Energy Balance data used for base-year calibration .................................144 Table 10-8: IEA Energy Balance data used for base-year calibration (continued from table 10-7) .................................................................................................................145 Table 10-9: IEA Energy Balance data used for base-year calibration (continued from table 10-8) .................................................................................................................147

xii

Table 10-10: Upstream energy consumption ................................................................... 149 Table 10-11: CHP in refinery (upstream) .......................................................................... 149 Table 11-1Coal reserves and resource data at regional level ............................................ 151 Table 11-2 shows cost ranges assumed for each category of oil in TIAM-UCL ................. 155 Table 11-3 show details of upgrading technologies for unconventional oils .................... 159 Table 11-4 shows the cost ranges for each type of gas resource ..................................... 160 Table 11-5 Biomass resource availability in 2050 and 2100............................................. 162 Table 11-6 Cumulative Uranium resource availability (PJ)-data used in TIAM-UCL ........... 163 Table 12-1: List of SubRes files in the TIAM-UCL model .................................................. 167 Table 12-2: Alternative fuel technologies ......................................................................... 168 Table 12-3: Hydrogen production and supply technologies ............................................. 169 Table 12-4 Hydrogen technologies in transport sector .................................................... 169 Table 12-5 Hydrogen production technologies in ETSAP-TIAM ........................................ 172 Table 12-6: Non-CO2 emission sources ........................................................................... 174 Table 12-7: Technologies to mitigate CH4 ........................................................................ 175 Table 12-8: Technologies to mitigate CH4 ....................................................................... 175 Table 12-9: Technologies to mitigate N2O ....................................................................... 178 Table 14-1 shows the default values of all parameters of the climate module ................. 188

xiii

1 Introduction 1.1

Overview

The analysis of climate change mitigation and energy security requires a combination of UK and international analysis. The core aim of the Energy Systems research theme in the UKERC II project is developing a global optimisation model to analyse accelerated decarbonisation of the global E3 (energy-environment-economy) system, with a comprehensive investigation of costs and benefits of the different decarbonisation options. This adds to work carried out in UKERC I placing the detailed analysis of the UK in a global context, which was not possible with the UK MARKAL model, the main tool developed under UKERC I. The Energy System research team in the UCL Energy Institute (University College London) developed the 16 Region TIAM-UCL global model (named TIAM-UCL), under the UKERC II research activity by breaking out the UK from the Western Europe (WEU) region in the 15 Region ETSAP (Energy Technology Systems Analysis Program)-TIAM1 model. TIAM is the TIMES Integrated Assessment Model. The UK is an explicit region in the TIAM-UCL with its own energy system. A global model has several advantages: 

Energy and climate policies (carbon tax, cap-and-trade) can be applied for a region or a group of regions or at global level



It generates regional marginal CO2 (and GHG) abatement cost (depends on cap-andtrade policy and emission trading schemes)



It implicitly generates regional specific resource prices for fossil fuels such as gas oil and coal.



1

Global Endogenous technology learning

ETSAP-TIAM, originally developed by KanLo (www.kanors.com/DCM/TIAM)



TIAM-UCL also has a Climate module, which quantifies the release of GHG emissions, that can be used to: o

Limit the atmospheric CO2 concentration

o

Limit the temperature change

o

Limit radiative forcing

TIAM-UCL also has disadvantages: 

It is very complex as it has 16 regions, each with a huge database of technologies, resources, infrastructure and several modules



It has a less detailed regional energy system compared to a national model (for example, the UK region in TIAM-UCL is less detailed as compared to the UK MARKAL model)

1.2

Model methodology

The TIMES model generator (an acronym for The Integrated MARKAL-EFOM System) is a technology rich bottom–up cost optimisation model. TIMES is the successor to the MARKAL model generator. The main building blocks of a TIMES model are processes (technologies) and commodities, which are connected by commodity flows in a network called a Reference Energy System (RES). The dynamic part of a model is determined by the time horizon and resolution, the evolutionary development of supply and technologies, the growth of the demand for energy services, and policies (e.g., mitigation targets, renewable portfolio standards), complimented by various alternate scenarios. TIAM is the Times Integrated Assessment Model. ETSAP-TIAM is the global multiregional incarnation of the TIMES model generator (Loulou and Labriet, 2007 and Loulou et al., 2009) and it was developed and is maintained by the Energy Technology Systems Analysis Programme (ETSAP). The ETSAP-TIAM model has been applied in various studies (Lechon et al. 2005; Syri et al. 2008; Vaillancourt et al.2008; Ekholm et al. 2010) to analyse different climate change mitigation policies by the international modelling community.

2

TIAM is a whole energy system model covering from energy resources to conversion to infrastructure to end-use sectors. This is a linear programming model that minimises total discounted energy system cost in the standard version and maximises societal welfare (total surplus) in the elastic demand version to compute a partial equilibrium. Linear programming is formulated in the GAMS (General Algebraic Modelling System) language and solved via powerful linear programming optimisers (CPLEX, XPRESS). A simplified representation of energy supply and elastic demands is given in Figure 1-1. The standard TIAM model optimization, when energy service demands are unchanging - i.e. are a straight vertical line on the horizontal axis, is on (discounted) energy systems cost - i.e. the minimum cost of meeting all energy services. With non-changing demands, this is equivalent to the area between the supply curve in the Reference Scenario and the horizontal line from the equilibrium price. In the elastic demand version (which computes a partial equilibrium), energy service demands respond to supply price changes (Loulou and Labriet, 2007), and the objective function maximises total surplus (consumer surplus + producer surplus) by minimising discounted total system cost and cost of demand reduction (as shown in Figure 1-1).

Price

(Max) Total surplus = consumer surplus + producer surplus Supply curve Policy scenarios

Consumer surplus P1 Po

Supply curve Reference scenario

Producer surplus

Demand curve Cost of demand reduction

Total energy system cost D1

Do

Quantity

Figure 1-1: representation of elastic demand version of TIAM-UCL In elastic demand mode, these exogenously defined energy-service demands have been replaced with demand curves (actually implemented in a series of small steps). The TIAM

3

model implicitly constructs demand curves using the supply prices generated in the reference case (in the standard version) and the price elasticity of demand. In the elastic demand version, demand functions determine how each energy-service demand varies as a function of the market price of that energy-service. The demand function has the following functional form:



( ⁄ )

(1)

Where:

D is a demand for an energy-service in the policy scenario; D0 is the demand in the reference case;

P is the price of each energy-service demand in the policy scenario; P0 is the marginal price of each energy-service demand in the reference case;

E is the (negative) own-price elasticity of the demand. A combination of the change in prices (P/P0) and the elasticity parameter (E) determines the energy-service demand changes. Note that changes in energy-service demand also depend on the availability and costs of technological conservation, efficiency and fuel switching options as they influence the energy-service price. Following calibration to a reference case that exactly matches the standard TIAM reference case, TIAM elastic demand version then has the option of increasing or decreasing demands as final energy costs fall and rise respectively. Thus demand responses combine with supply responses in an alternate scenario (e.g. one with a CO2 constraint). Under fixed energy services demands in the standard TIAM-UCL, CO2 reduction is achieved by shifting to efficient technologies, alternative fuels (low/zero carbon fuels) and sequestration. In addition to shifting to efficient technologies, low carbon fuels and sequestration, demand reduction also plays a role in reducing CO2 emissions in the elastic demand version of the TIAM-UCL model. The elasticities used in the TIAM-UCL model are long-run elasticities and are the same as those used in the ETSAP-TIAM model.

4

There are numerous variants of the model that can be activated to analyse particular attributes of the energy system in question. Most of these are not mutually exclusive, thus it is possible to examine Endogenous Technology Learning while exploring climatic effects with the Climate Module. These are listed below:

1.3



Standard TIAM



Elastic Demand



Endogenous Technology Learning



Climate Module



Discrete Investment



Time Stepped Solution (run in step)



Stochastic TIAM Model Structure

A simplified representation of the TIAM-UCL model structure is presented in Figure 1-2. Each region in the multi-region (16 region) TIAM-UCL model has its own energy system and, if allowed, each region can trade fossil fuel resources (natural gas, LNG, coal, crude oil, oil fractions), biomass (energy crops and solid biomass) or emission permits with other regions or a central market. Base-year energy-service demands are exogenous and are projected for the future using drivers such as GDP, population, household, sector output etc. In TIAM, the base-year final energy consumption is calibrated in the Base-Year templates. Separate BaseYear templates are available for each region for end-use sectors (transport, industry and residential), upstream and power sector. Residential sector templates include (on separate sheets) data for the commercial and agricultural sectors. All existing technologies and resources are included in the Base Year templates. Technologies available for the future years are modelled in a separate module called ‗New Technologies‘ (SubRes_B-NewTech). The future technologies are available to all regions, while transformation templates allow various parameters of the technologies to be modified from region to region. Resource data such as cost, cumulative and annual availability of

5

different resources are modelled in the ‗Resource Module‘ (B-Extraction). The primary energy resources and the petroleum processing sector are further divided in OPEC and nonOPEC sub-regions. The world regions are linked through trade in fossil fuel, biomass and emissions. Regional fossil fuel trade and emission trade are defined in the trade module. The climate module calculates impacts of GHG emissions in the atmosphere (CO2 concentration, temperature changes and radiative forces). The model structure is discussed in detail in Chapter 2 (Model Structure) of the TIAM-UCL global model documentation.

Resource1 Resource 2 Resource 3

Endogenous technology learning Module: New Technologies

Reg. 1

Module: Market for emission trading

Reg. 16

OPEC

Climate Module

Reg. 2

Reg. ....

Reg. ...

Figure 1-2: The TIAM-UCL global model structure 1.4

TIAM-UCL global model development

A list of regions and the countries that comprise these regions in TIAM-UCL are provided in Table 1-1. The TIAM-UCL model development has two phases: the first is breaking out UK from the 15 region ETSAP-TIAM model, calibrating the base year data for final energy consumption and electricity generation and revising resource and trade modules for future 6

years; the second is enhancing TIAM-UCL by revising/adding new drivers and resources for all regions and adding new features. The major task (the first phase) was breaking out UK from the 15 region model and model calibration (calibrating UK and Western Europe regions). As a first step in breaking out the UK from Western Europe (WEU) region, separate Base-Year templates were created for enduse sectors, upstream and power sectors for the UK and calibrated final energy consumption to the actual base year data 2005 for the UK and the WEU regions. The underlying data for the base year calibration in TIAM-UCL is the IEA Extended Energy Balances of OECD and non-OECD countries. This data can be accessed through the online portal www.esds.ac.uk in the UK. A database of the IEA Extended Energy Balances has been developed to import the IEA data into the data tables on the base year templates in the TIAM-UCL with a software application which allows easy aggregation of country data into regions. Energy services demands for different end-use sectors and drivers of projections of them during the model period 2005-2100 are created for the UK region. Besides calibration of resource and trade modules of the UK and the WEU regions, all other scenario files are also updated and calibrated. Once the 16R TIAM-UCL had been successfully calibrated, the model was enhanced (the second phase) through technical improvements such as adding new drivers, new resources, climate change policies (cap-and-trade, carbon tax), supply resource cost curves etc. Development of the database of the IEA Extended Energy Balances helped to recalibrate all 16 regions in the TIAM model to the IEA primary energy production/consumption, final consumption and electricity generation (and heat) data (IEA, 2005). Details of the updates are available in the relevant chapters. Table 1-1: List of regions and countries in the 16 region TIAM-UCL model Region

Countries Algeria, Angola, Benin, Cameroon, Congo, Congo Republic, Egypt,

Africa (AFR)

Ethiopia, Gabon, Ghana, Ivory Coast, Kenya, Libya, Morocco, Mozambique, Nigeria, Other Africa, Senegal, South Africa, Sudan, Tanzania, Tunisia, Zambia, Zimbabwe

7

Australia (AUS)

Australia and New Zealand

Canada (CAN)

Canada

Region

Countries Argentina, Bolivia, Brazil, Chile, Colombia, Costa Rica, Cuba,

Central and South

Dominican Republic, Ecuador, El Salvador, Guatemala, Haiti, Honduras,

America (CSA)

Jamaica, Netherlands Antilles, Nicaragua, Other Latin America, Panama, Paraguay, Peru, Trinidad-Tobago, Uruguay, Venezuela

China (CHI) Eastern Europe (EEU)

China Albania, Bosnia-Herzegovina, Bulgaria, Croatia, Czech Republic, Hungary, Macedonia, Poland, Romania, Slovakia, Slovenia, Yugoslavia Armenia, Azerbaijan, Belarus, Estonia, Georgia, Kazakhstan,

Former Soviet Union

Kyrgyzstan, Latvia, Lithuania, Moldova, Russia, Tajikistan,

(FSU)

Turkmenistan, Ukraine, Uzbekistan

India (IND)

India

Japan (JAP)

Japan

Mexico (MEX)

Mexico Bahrain, Cyprus, Iran, Iraq, Israel, Jordan, Kuwait, Lebanon, Oman,

Middle-east (MEA) Other Developing Asia

Qatar, Saudi Arabia, Syria, Turkey, United Arab Emirates, Yemen Bangladesh, Brunei, Chinese Taipei, Indonesia, North Korea, Malaysia,

(ODA)

Myanmar, Nepal, Other Asia, Pakistan, Philippines, Singapore, Sri Lanka, Thailand, Vietnam

South Korea (SKO)

South Korea

United Kingdom (UK)

United Kingdom

USA (USA)

United States of America Austria, Belgium, Denmark, Finland, France, Germany, Gibraltar,

Western Europe (WEU)

Greece, Greenland, Iceland, Ireland, Italy, Luxembourg, Malta, Netherlands, Norway, Portugal, Spain, Sweden, Switzerland

1.5

TIAM-UCL vintages and alternate data

The TIAM-UCL model and its variants will be applied to a wide range of policy analyses, research collaborations and academic publications from 2010. Major outputs as of today are listed below. Each model run is carried out with one or a range of alternative assumptions and model extensions. The underlying data listed in the documentation is a set of base data and it is updated to the date on the cover page. It is stressed that successive model applications use alternate assumptions and this documentation should hence be viewed as a guide on model structure and not as a definitive data depiction. 1. Anandarajah, G. Kesicki, F. and Pye, S. 2010. Carbon Tax vs. Cap-and-Trade: Implications on Developing Countries Emissions. IAEE International Conference, June 6-9 2010, RIO, Brazil

8

2. Pye, S., Strachan, N. and Anandarajah, G. 2010. The UK energy system in an uncertain world: Insights from different modelling scales. International Energy

Workshop (IEW 2010), June 21-23 2010, Stockholm, Sweden 3. Anandarajah, G. and Kesicki, F. 2010. Global Climate Change Mitigation: What is the role of demand reduction? IAEE Europe conference, August 25-28, Vilnius, Lithuania 4. Usher, W., Anandarajah, G and Strachan, N. 2010. The TIAM-UCL Global Energy Systems Model: Critical Comparison of UK and Global Climate Decarbonisation Trajectories, 8th BIEE Academic Conference, 22-23 2010 September, Oxford, UK. 1.6

References

Ekholm, T., Soimakallioa, S., Moltmannb, S., Höhneb, N., Syria, S. and Savolainena, I. 2010. Effort sharing in ambitious, global climate change mitigation scenarios. Energy Policy, 34, Issue 4, pp. 1797-1810 Lechon Y., Cabal H., Varela M., Saez R., Eherer C., Baumannb, M., Duweke J. Hamacherc, T. and Tosato G. 2005. A global energy model with fusion. Fusion Engineering and Design. 75-79. 1141-1144. Loulou and Labriet (2007). ETSAP-TIAM: the TIMES integrated assessment model Part I: Model structure. DOI 10.1007/s10287-007-0046-z. http://www.springerlink.com/content/j8613681347971q5/fulltext.pdf Loulou, R., Labriet, M. and Kanudia, A. 2009. Deterministic and stochastic analysis of alternative climate targets under differentiated cooperation regimes. Energy Economics, 31, pp. 131-143. Richard Loulou, R., Labriet, M. And Kanudia, A. 2009. Deterministic and stochastic analysis of alternative climate targets under differentiated cooperation regimes. Energy Economics, 31, pp. 131-143. Syri, S., Lehtila, A., Ekholm, T., Savolainen, I., Holttinen, H. and Peltola, E. 2008. Global energy and emissions scenarios for effective climate change mitigation— 9

Deterministic and stochastic scenarios with the TIAM model. International Journal of Greenhouse Gas Control, 2, pp. 274-285. Vaillancourt, K., Labriet, M., Louloua, R., and Waaub, J. 2008. The role of nuclear energy in long-term climate scenarios: An analysis with the World-TIMES model, Energy Policy 36. pp. 2296-2307

10

2 Model Structure 2.1

Introduction

VEDA2 Front-End (VEDA_FE) is one of the two interfaces available for MARKAL and TIMES model. It is used to formulate the TIAM-UCL model database that lay down the basic structure of the model and hold fundamental data and assumptions for processes (technologies) and commodities. This chapter discusses the TIAM-UCL global model structure in details. Following the Introduction; Section 2.2 provides an overview of the model structure; Section 2.3 presents the energy-service demands, drivers and relationship for projection of energy-service demand; Section 2.4 briefs the Base-Year templates, where the base-year data is calibrated; Section 2.5 provides details of SubRES, where process and commodity data for future years are modelled; Section 2.6 briefly discusses the fossil fuels resource module; Section 2.7 discusses trade module, where fossil fuel resource and emission trading are modelled; and Section 2.8 provides other scenario modules. 2.2

Overview of model structure

The main building blocks of a TIMES model are the processes and commodities, which are connected by commodity flows in a network representation called a Reference Energy System (or RES, shown in Figure 2-1). The dynamic part of a model is determined by the time horizon and resolution, the evolutionary development of supply and technologies, the growth of the demand for energy services, and policies (e.g., mitigation targets, renewable portfolio standards), complimented by various alternate scenarios.

2

VEDA is a set of tools geared to facilitate the creation, maintenance, browsing, and modification of

the large data bases required by complex mathematical and economic models. Data and assumptions are fed into VEDA_FE that provides input to the TIMES code. VEDA_FE accepts input from a variety of Excel files with different (flexible) structures that are tailored to work efficiently with data intensive models.

In each region, the TIAM-UCL model describes the entire energy system by all essential current and future energy technologies from the primary energy supply over the processing, conversion, transport, distribution of energy carriers to the end-use sectors and the useful energy demand (Figure 2-1). These demands are linked to exogenous underlying drivers, like population growth or GDP development, via demand elasticities. Each region can trade one or more resources (fossil fuels and biomass) with other regions (Figure 2-2). Regional trade will depend on demand, supply (resource availability) and cost (resource and transportation cost) of the resources.

Figure 2-1: Simplified Reference Energy System in TIAM Source: Loulou and Labriet (2007b) Base-year energy-service demands are exogenous and are projected over 2005-2100 using drivers such as GDP, population, household, sector output etc. The base-year final energy consumption is calibrated in the Base-Year templates. Separate Base-Year templates are available for each region for end-use sectors, upstream and the electricity generation sector. A representation of all existing technologies and resources are included in the BaseYear templates. Technologies available for the future years are modelled in a separate 12

module called ‗New Technologies‘. Any region can access the technology module if it is cost effective to do so. Resource data such as cost, cumulative and annual availability of different resources are modelled in the ‗Resource Module‘. The world regions are linked through the trade in crude oil, hard coal, pipeline gas, LNG (liquefied natural gas), petroleum products (diesel, gasoline, naphtha, heavy fuel oil), biomass (energy crops and solid biomass) and emission permits (CO2, non-CO2 and GHG) via the trade module. There are separate modules available for hydrogen production, carbon sequestration, land-use CO2 emissions, N2O measures, CH4 measures, etc. Climate module calculates impacts of GHG emissions in the Atmosphere (CO2 concentration and temperature changes). Beside these modules, there are several scenario files which are used to apply different policies and constraints. Further details on the TIAM model structure is available in Loulou and Labriet (2007).

CGE model and other studies

Figure 2-2: Simplified representation of the TIAM Source: Loulou and Labriet (2007)

13

2.3

Demands and drivers

Demand drivers (population, GDP, family units, etc.) are obtained externally, via other models or from accepted other sources. Energy-service demands and respective drivers in the TIAM-UCL are presented in Table 2-1. The demands for energy services are linked to the drivers' projections via elasticities. These elasticities of demands are intended to reflect changing patterns in energy service demands in relation to socio-economic growth, such as saturation in some energy end-use demands, increased urbanization, or changes in consumption patterns once the basic needs are satisfied. The energy-service demands for future years are projected using the following relationship:

Where, k is a constant; it is one for most of the energy services demand. The constant k is population and number of households when the driver is GDPP and GDPPHOU respectively. Table 2-1: Energy-services demand and respective drivers Code

Description

Unit

Driver

ICH

Chemicals

PJ

PCHEM

IIS

Iron and Steel

Mt

PISNF

INF

Non-ferrous metals

Mt

PISNF

INM

Non Metals

PJ

POEI

ILP

Pulp and Paper

Mt

POEI

IOI

Other Industries

PJ

POI

I00

Other Industrial consumption

PJ

Constant

NEO

Industrial and Other Non Energy Uses

PJ

GDP

ONO

Other non-specified consumption

PJ

GDP

AGR

Agricultural demand

PJ

PAGR

CC1

Commercial Cooling - Region 1

PJ

PSER

CCK

Commercial Cooking

PJ

PSER

CH1

Commercial Space Heat - Region 1

PJ

PSER

CHW

Commercial Hot Water

PJ

PSER

CLA

Commercial Lighting

PJ

PSER

COE

Commercial Office Equipment

PJ

PSER

CRF

Commercial Refrigeration

PJ

PSER

RC1

Residential Cooling - Region 1

PJ

HOU/GDPPHOU*

RCD

Residential Clothes Drying

PJ

HOU/GDPPHOU*

RCW

Residential Clothes Washing

PJ

HOU/GDPPHOU*

RDW

Residential Dishwashing

PJ

HOU/GDPPHOU*

REA

Residential Other Electric

PJ

HOU/GDPPHOU*

14

Code

Description

Unit

Driver

RH1

Residential Space Heat - Region 1

PJ

HOU

RHW

Residential Hot Water

PJ

POP

RK1

Residential Cooking - Region 1

PJ

POP

RL1

Residential Lighting - Region 1

PJ

GDPP

RRF

Residential Refrigeration

PJ

HOU/GDPPHOU*

NEU

Non Energy Uses

PJ

GDP

TAD

Domestic Aviation

PJ

GDP

TAI

International Aviation

PJ

GDP

TRB

Road Bus Demand

Bv-km

POP

TRC

Road Commercial Trucks Demand

Bv-km

GDP

TRE

Road Three Wheels Demand

Bv-km

POP

TRH

Road Heavy Trucks Demand

Bv-km

GDP

TRL

Road Light Vehicle Demand

Bv-km

GDP

TRM

Road Medium Trucks Demand

Bv-km

GDP

TRT

Road Auto Demand

Bv-km

GDPP

TRW

Road Two Wheels Demand

Bv-km

POP

TTF

Rail-Freight

PJ

GDP

TTP

Rail-Passengers

PJ

POP

TWD

Domestic Internal Navigation

PJ

GDP

TWI

International Navigation

PJ

GDP

*Driver is GDPPHOU for AFR, CHI, CSA, EEU, FSU, IND, MEA, MEX, ODA and SKO 2.4

Base-year templates

Base-Year templates deal with broad sectors of the reference energy system covering primary energy production to conversion to end-use sectors. The base-year data (supply and demand) is calibrated in the Base-Year templates. There are five Base-Year templates available in TIAM model: three for end-use sectors and one each for power sector and upstream. The electricity template (ELC) describes all central electricity and heat production including combined heat and power (CHP). The industrial template (IND) deals with the industrial end-uses, and the industrial electricity and CHP self-production (autogeneration). The residential template (RES) contains the agricultural, the residential and the commercial end-uses. The transportation template (TRA) contains the transport end-uses including international aviation and shipping. The upstream template (UPS) describes fossil fuel extraction, renewable potential, and various fuel transformation processes including petroleum refineries. In summary, the templates contain:  15

The model‘s basic structure (number of end-uses and sub-regions within a region).



The fuel consumption by end-use in the base year.



The energy production by fuel in the base year.



The base-year energy-service demands.



The existing technology stock.



The user constraints (not all constraints).



The static and dynamic emission coefficients by fuel (the model computes technology level coefficients based on the fuel inputs).



Sectoral elastic demand parameters



Other parameters (discount or hurdle rates, transmission efficiency, etc.).

In each sector, the energy production and consumption have been calibrated in the templates to match IEA data for the base-year 2005 for all regions in the TIAM-UCL. 2.5

SubRES

This is a sub reference energy system where all process and commodity data for future years are modelled in different Excel templates. There are templates available for alternative fuels (SubRES_AltFuel), new technologies (SubRes_B-NewTechs), CH4 measures (SubRes_CH4measures), hydrogen (SubRes_Hydrogen), land use CO2 emissions (SUBRES_LUCO2), N2O measures (SubRes-N2O measures), Non-CO2 gases (EusRes_NonCO2gases), sequestration (SubRes_SequestrationB) and nuclear resources (SubRes_NucResources) as shown in Table 2-2. Cost, availability factor, efficiency, lifetime, annual and cumulative availability, discount rate, hurdle rate are modelled for process and commodity. Table 2-2: List of templates in the SubRES Spreadsheet

Description

SubRES_AltFuel

Alternative fuels technologies are modelled here for all regions for the future years.

SubRes_B-NewTechs

All technologies for future years are modelled. New technologies are available from 2006. Regional specific capacity factor (CF) for different technologies and cost (INVCOST, FIXOM, VAROM).

16

Provide fractional share of methanol and gasoline and ethanol and gasoline for methanol and ethanol car respectively. Boundaries and discount rates are also provided SubRes_CH4measures

Provide CH4 abatement options in Upstream in UPS

SubRes_Hydrogen

H2 production and vehicle technologies. Efficiency, cost, availability and discount rates, etc.

SUBRES_LUCO2

Only one technology is available for agriculture land use CO2 emission. Total emissions from land-use for different year are given

SubRes-N2O measures

N2O abatement options

EusRes_NonCO2gases

Nitric acid calculation. CH4 from landfill, manure, bio-burning, waste water, agriculture

SubRes_Sequestration

Electricity generation technologies (include different removal technologies) with CCS. H2 production with CCS. Removal technologies. Different storage options: onshore and offshore. Afforestation is also included. Sequestration potential (cumulative, annual, global, regional)

SubRes_NucResources 2.6

Uranium cost supply curve at regional level is provided

Resource

This module contains detailed data on domestic resource availability (cumulative and annual) at regional level for the modelling period 2005-2100. The name of the template in TIAM-UCL is ‗Scen_B_Extraction‘. It also provides supply cost curves for different resources such as coal, oil, gas and liquefied natural gas (LNG) resources. The primary energy resources are further divided into OPEC and non-OPEC sub-regions. Total global resource availability in the resource module in the base-year 2005 matches the indigenous production, import and export of resources in the Base-Year upstream templates. 2.7

Trade

Regional trade is modelled in the trade module. In the current version of TIAM-UCL, regional trade is allowed for coal, natural gas, LNG, natural gas liquid, uranium oil and oil products such as heavy fuel oil, gasoline, naphtha, diesel, energy crops and solid biomass. Emission trading under cap-and-trade policy is also modelled and the level of trading can be constrained. Trading in the base-year 2005 is calibrated to the actual energy import and

17

export data. Traded fuel and respective TIAM-UCL code is provided in Table 2-3. Base-year energy trade (import and export of fossil resources) for the UK is taken from DUKES (2010). Table 2-3: Resources traded in the 16R TIAM-UCL global model TIAM Code

Resource

OILCRD

Crude oil

COAHCO

Hard coal

GASNGA

Natural gas

OILHFO

Heavy fuel oil

OILNAP

Naphtha

OILGSL

Gasoline

OILNGL

Natural gas liquid

OILDST

Distillates (diesel)

GASLNG

Liquefied natural gas

DMYNUC 2.8

Uranium

Scenario module

There are several scenario templates has been created for modelling energy and environmental policies and constraint as shown in Table 2-4. New scenario sheets can be created for a policy or technical constraint under this module. Table 2-4: Scenario workbooks in TIAM-UCL Spreadsheet

Description

B_BASEextra

Upper activity bounds on oil / gas production; Upper seasonal / annual availability factors (AF) for large hydro; Upper seasonal / annual AFs for wind; Methane emission factor coefficients for upstream sector; FRs in the base year across all energy service demands.

Scen_B_Extraction

Resource data (discussed in section 2.6)

Scen_ClimParameters-

This is the climate module (climate parameters), which calculates

TOCSIN

the impacts of GHG emissions in the atmosphere (N2O, CH4 and CO2 concentration and temperature changes)

Scen_ElastPar

Elasticity values for different energy services demands for when running in elastic demand version

Scen_ELC-UC

Sets MAX and MIN level of nuclear, wind, geothermal and hydro generation. A fill tables takes the minimum share of generation from REN from base year (BY) templates, using hydro technologies as a basis; feeds into Min Ren sheet, which constrains renewable

18

Spreadsheet

Description generation for the minimum share

Scen_ELC-UC-MaxCoal

Provide shares of coal generation in base year, sourced from BY templates using FILL function. Maximum coal share in fossil generation

Scen_EMITAX

CO2 tax policy is applied

Scen_CAP

Cap-and-trade policy is applied. Emission trading can be limited to certain percentage of the target

Scen_Oil-UC-opec_080

Control maximum oil production by OPEC region

Scen_TRA-UC

Constraining transport fuels

Scen_UPS-UC

Constraints (upper and/or lower) are applied for sequestration, heat, CHP, and alternative fuels. Finds values from templates on levels of electricity from CHP in UPS (& fills on upload)

2.9

References

Loulou and Labriet (2007a). ETSAP-TIAM: the TIMES integrated assessment model Part I: Model structure. DOI 10.1007/s10287-007-0046-z. http://www.springerlink.com/content/j8613681347971q5/fulltext.pdf Loulou, R., and Labriet, M. 2007b. The TIMES Integrated Assessment, Model (TIAM): some details on model, and database. TIAM day, Ottawa, March 14, 2007. DUKES. 2010. www.decc.gov.uk/en/content/cms/statistics/publications/dukes/dukes.aspx International Energy Agency (IEA), World Energy Balances, 2009, ESDS International, (Mimas) University of Manchester

19

3 Demand Drivers and Projection 3.1

Introduction

As TIAM is a partial-equilibrium model, the model needs a reference energy-service demand level for all energy services in the model. Table 2-1 lists the 42 energy-service demands for the five different end-use sectors in TIAM. A driver is allocated to each energy service demand to project demand for future years throughout the model horizon (2005 to 2100). The driver is linked to the energy-service demand by a constant and an elasticity (see section 2.3). Demand drivers include population, GDP, number of households, GDP per capita, GDP per household and agricultural, service and industrial drivers. Assumptions on the development of drivers are based on several sources, which are explained in the following subsections. Assumptions on demand drivers have been substantially updated from the ESTAP-TIAM model. 3.2 3.2.1

Drivers and projection Population

Population figures up to 2050 are based on UN estimations (UN, 2009). For the second half of the 21st century, population growth is assumed to follow the pattern of the first half, i.e. that population growth rates decline or become negative. It is assumed that world population will increase from 6.7 billion people in 2005 to 9.3 billion people in 2050, reach the peak in 2090 with 9.8 billion and then decline slightly (Figure 3-1). The biggest population increase over the 21st century is expected to happen in Africa, India, Other Developing Asia and the Middle East (Figure 3-2). Under the given assumptions China, Eastern Europe, Former Soviet Union, Japan, Mexico, South Korea and Western Europe experience negative population growth rates in the second half of the 21st century. Especially for South Korea and Japan, it is assumed that the population will shrink significantly over the course of the 21st century.

Figure 3-1: World population data used in TIAM-UCL

Figure 3-2: Annual population growth during 2005-2100 In comparison to the IPCC's Special Report on Emission Scenarios (SRES) scenarios (Nakicenovic and IPCC 2000), TIAM is situated within the range of the four population scenarios and comes close to scenario B2 (Figure 3-3).

22

Figure 3-3: Global population in TIAM compared to SRES scenarios 3.2.2

GDP

Estimations of future economic growth are much more uncertain than future population growth. Figures for future economic growth are based on an assumption of economic convergence between regions. In detail, this means that per capita income is assumed to converge between different regions (see Figure 3-4), i.e. that low income regions grow faster compared to high income regions. The figure, which has a logarithmic scale, shows this convergence of per capita income among world regions. The GDP per person is calculated as the ratio of GDP and population. The economic convergence is a central point in the assumptions on socio-economic drivers. The effect becomes clear when one compares the GDP per head in different regions. India is the poorest region with a GDP per head of 10% of the world average and the USA is the richest region with 608% of the world average in 2005. In 2100 this picture changes to India still being the poorest country with GDP per head but with 47% of the world average and the USA being the richest country with 303% of the world average.

23

Figure 3-4: Per capita GDP in the 21st Century As assumptions on future GDP are very uncertain, only very few studies exist that forecast GDP up to 2100. Unlike population assumptions, GDP figures are not based on a single source. Economic growth rates have been compared to assumptions made for scenarios in the 4th assessment report of the IPCC (Tsuneyuki 1999) and Clarke et al. (2007). Global GDP is assumed to grow from $49 trillion in 2010 to $148 trillion in 2050 and $337 trillion in 2100. Current figures for 2010 have been taken from the IMF (2009). GDP growth rates are expected to decline over the course of the 21st century, while they remain higher for developing countries than for developed countries (Figure 3-5). Owing to the shrinking population, the growth rates for South Korea and Japan are very low and turn negative at the end of the 21st century. Growth rates for Western Europe, the UK and the United States are assumed to drop from an average of 2.2% to 1.3% p.a. in 2050. The only region that is expected to increase GDP growth rates over the first decades is Africa based on a growing population and its current low income levels.

24

Figure 3-5: GDP growth rate from 2004-2100

In comparison to the SRES scenarios, global economic growth is rather at the lower range of possible scenarios. It is, however, in the middle of the range of all the models used in the EMF-21 study (Weyant et al. 2006). 3.2.3

Households

The growth rate of household numbers during 2005-2100 for different regions are presented in Figure 3-5. The number of households is based on population estimates and occupancy rate. There exists no database for the occupancy rate for each region in the TIAM-UCL model. Therefore, the numbers in this section rely on national statistics. For some countries, there exist forecasts for the near future (up to 2030) concerning the development of the average number of people in a household. These have been used where available in order to determine the household growth for the near future. For the longer term, it is assumed that the occupancy rate will increase in line with historic data to 1.7 to 3 persons per household, depending on the region. The reason for this range is the difference in current average persons per household, e.g. in 2005 the average Indian household

25

consisted of 5.3 persons, while the average Western European household consisted of 2.1 persons per household.

Figure 3-6: Growth rate of household numbers during 2005-2100 In order to simplify the data needed for the calculation, characteristic countries have been chosen for regions that consist of more than two countries. Those are South Africa for Africa, Brazil for Central and South America, Poland for Eastern Europe, Russia for Former Soviet Union, Iran for Middle East, Indonesia for Other Developing Asia and Germany for Western Europe. Numbers for the driver ‗GDP per household‘ have been calculated as the ratio of GDP and number of households for each given region. 3.2.4

Sectoral drivers

There exist no reliable data for the forecast of industrial production, agricultural or service output for the next 90 years. Industrial production is subdivided into chemical industry, iron & steel and non-ferrous metals, pulp & paper and non-metallic minerals, and other industries. Initial numbers are based on number from ETSAP-TIAM published by KANORS (2010). The development of sectoral growth rates are geared to the GDP numbers and imply a shift in GDP composition towards the service sector, so that agriculture and industry will 26

become less important for the whole economy over the 21st century. To this end, the GDP composition of the most important regions has been extracted from national statistics according to the sectoral aggregation in TIAM. In a next step, the sectoral drivers have been calibrated in such a way that they yield a more service orientated economy. In addition, the driver for the iron & steel industry is geared to historical data on steel production obtained from statistics of the World Steel Association. As an example, Figure 3-7 depicts the annual growth rates for one particular industrial driver, iron & steel and non-ferrous metals.

Figure 3-7: Growth rate of sectoral outputs (iron & steel and non-ferrous metals. 3.2.5

Energy services demand

Demand fractions determine the fraction of service demand to be met during a specific period of the day in a given season (or timeslice). The temporal resolution is determined by three seasons, summer, winter and intermediate. Each of the seasons accounts for a third of the whole year or 4 month. These timeslices are again split into night and day, where day represents 16 hours and night 8 hours (Table 3-1).

27

Table 3-1: Fraction of energy-service demands Time slice

Month share

Day share

Fraction

ID

0.333 (4 months)

0.666 (16 hours)

0.223

0.333 (8 hours)

0.111

0.666

0.223

0.333

0.111

0.666

0.221

0.333

0.111

IN SD

0.333

SN WD

0.333

WN 3.3

Driver Elasticity

Driver elasticities determine the sensitivity of changes in energy-service demand to changes in the underlying driver. An elasticity of 1 means that a change of the underlying driver is exactly reflected in the energy-service demand. Energy-service demands with an elasticity below 1 are demand inelastic, while those with an elasticity of one or higher are demand elastic. In general it is assumed that energy-service demands grow slower than the underlying driver, such as GDP, GDP per capita or number of household. This decoupling of energy demand and economic growth is expected to increase during the 21 st century so that all elasticities fall. Residential space heating (RH1), for example, has an elasticity of 0.8 in 2010, which drops to 0.5 in 2100. This means that initially the energy demand for space heating increases at 80% of household number growth, the specific underlying driver, and in the 2nd half of the century at only 50% of the household number growth rate. Table 3-2: Driver elasticities for the United Kingdom Energy-service demand

2010

2020

2030

2040

2050

2100

AGR

0.8

0.8

0.8

0.8

0.8

0.6

CC1

0.8

0.8

0.8

0.8

0.7

0.4

CCK

0.5

0.5

0.5

0.5

0.5

0.4

CH1

0.5

0.5

0.5

0.5

0.5

0.3

CHW

0.5

0.5

0.5

0.5

0.5

0.4

CLA

0.5

0.5

0.5

0.5

0.5

0.4

COE

0.5

0.5

0.5

0.5

0.5

0.4

COT

0.5

0.5

0.5

0.5

0.5

0.4

CRF

0.5

0.5

0.5

0.5

0.5

0.4

I00

0.6

0.6

0.6

0.6

0.6

0.5

ICH

0.8

0.8

0.8

0.8

0.7

0.5

IIS

0.7

0.7

0.7

0.7

0.7

0.5 28

3.4

Energy-service demand

2010

2020

2030

2040

2050

2100

ILP

0.8

0.8

0.8

0.8

0.7

0.5

INF

0.8

0.8

0.8

0.8

0.7

0.5

INM

0.8

0.8

0.8

0.8

0.7

0.5

IOI

0.8

0.8

0.8

0.8

0.8

0.6

NEO

0.6

0.6

0.6

0.6

0.6

0.5

NEU

1

1

1

1

0.9

0.5

ONO

0.6

0.6

0.6

0.6

0.6

0.5

RCD

1

1

1

1

1

0.8

RCW

1

1

1

1

1

0.8

RDW

1

1

1

1

1

0.8

REA

1

1

1

1

1

0.8

RH1

0.8

0.8

0.8

0.8

0.8

0.5

RK1

0.7

0.7

0.7

0.7

0.7

0.5

RL1

1

1

1

1

0.9

0.7

ROT

1

1

1

1

1

0.8

RRF

1

1

1

1

1

0.8

RHW

1

1

1

1

1

0.8

TAD

1.2

1.2

1.1

1.1

0.9

0.1

TAI

1.2

1.2

1.1

1.1

0.9

0.1

TRB

0.7

0.7

0.7

0.7

0.7

0.8

TRC

0.7

0.7

0.7

0.7

0.7

0.4

TRE

0.7

0.7

0.7

0.7

0.7

0.7

TRH

0.7

0.7

0.7

0.7

0.7

0.4

TRL

0.7

0.7

0.7

0.7

0.7

0.4

TRM

0.7

0.7

0.7

0.7

0.7

0.4

TRT

1.2

1.2

1.2

1.2

1

0.5

TRW

0.7

0.7

0.7

0.7

0.7

0.7

TTF

1

1

1

0.8

0.6

0.1

TTP

0.8

0.8

0.8

0.8

0.8

0.7

TWD

0.8

0.8

0.8

0.6

0.5

0.1

TWI

0.8

0.8

0.8

0.6

0.5

0.1

References

Clarke, L., J. Edmonds, H. D. Jacoby, H. Pitcher, J. M. Reilly and R. Richels (2007): Scenarios of Greenhouse Gas Emissions and Atmospheric Concentrations. Sub-report 2.1A of Synthesis and Assessment Product 2.1 by the U.S. Climate Change Science Program and the Subcommittee on Global Change Research. Department of Energy / Office of Biological & Environmental Research. Washington, DC.: 154.

29

IEA (2010): Energy Balances of Non-OECD and OECD countries. Paris. International Monetary Fund (IMF) (2009): World Economic Outlook Database, October 2009 KAnORS (2010): Growth rate of industrial output by region, http://www.kanors.com/Index.asp Morita, Tsuneyuki (1999) Emission Scenario Database prepared for IPCC Special Report on Emission Scenarios convened by Dr. Nebosja Nakicenovic, National Institute for Environmental Studies Centre for Global Environmental Research Nakicenovic, N. and Intergovernmental Panel on Climate Change (2000): Special report on emissions scenarios : a special report of Working Group III of the Intergovernmental Panel on Climate Change. Cambridge ; New York, Cambridge University Press. UN (2009): World Population Prospects: The 2008 Revision, Population Division of the Department of Economic and Social Affairs of the United Nations Secretariat, http://esa.un.org/unpp, February 10, 2010 Weyant, J. P., F. C. de la Chesnaye and G. J. Blanford (2006) : Overview of EMF-21: Multigas Mitigation and Climate Policy. Energy Journal 27 (Multi-Greenhouse Gas Mitigation): 1-32.

30

4 Transport Sector 4.1

Introduction

This chapter discusses set-up of transport sector Base-Year template where transport sector energy-services, transport technologies and commodities are defined. Separate Base-Year template available for each region. The Base-Year templates contains excel sheets for baseyear IEA data input, technology and commodity data. Separate sheets available for each transport sector energy-services such as car, bur, HGV, etc. The Base-year template also contains data for transport sector emissions accounting. 4.2

Energy services demand

The transportation sector is characterized by 14 energy-services plus one non-energy use demand segment (Table 4-1). Six of the energy-services are considered as generic demands: international and domestic aviation (TAI, TAD), freight and passenger rail transportation (TTF, TTP), domestic and international navigation (TWD, TWI). All other energy-services are for road transport. Demand for road transport energy-services is expressed in b-vkm and others are in PJ. Drivers for each energy-service demands are presented and explained in Section 2.3 and Chapter 3 (Demands and Drivers). Projected energy-service demands at global level are resented in Figure 4-1. The model projects energy-services demands for each region. Table 4-1: Energy-service demands in transport sector Code

Energy-service demand

Unit

TAD

Domestic Aviation

PJ

TAI

International Aviation

PJ

TRB

Road Bus Demand

Bv-km

TRC

Road Commercial Trucks Demand

Bv-km

TRE

Road Three Wheels Demand

Bv-km

TRH

Road Heavy Trucks Demand

Bv-km

TRL

Road Light Vehicle Demand

Bv-km

TRM

Road Medium Trucks Demand

Bv-km

TRT

Road Auto Demand

Bv-km

TRW

Road Two Wheels Demand

Bv-km

10

Code

Energy-service demand

Unit

TTF

Rail-Freight

PJ

TTP

Rail-Passengers

PJ

TWD

Domestic Internal Navigation

PJ

TWI

International Navigation

PJ

Projected energy-service demands

TAI

9

Index (2005=1)

TAD TRB

8

TRC

7

TRE TRH

6

TRL

5

TRM TRT

4

TRW

3

TTF

2

TTP

1

TWD

0

TWI

2000 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100

Figure 4-1: Projected energy-service demands in transport sector 4.3

Sector fuels and emissions

The technologies created to produce aggregated transportation fuels (Fuel Tech) are named uniformly using the name of the aggregated fuels as specified in the column Commodity OUT plus three zeros (000 for existing technologies (Table 4-2) and 005 for new technologies from 20063 (Table 4-3). Their description changes according to the fuel (e.g.

3

The previous version of the TIAM model was calibrated to a base-year of 2000 and the

latest version of TIAM is calibrated to a base-year of 2005. That is the reason for 000 for existing technologies and 005 for new technologies.

32

Fuel Tech – Coal (TRA) or Fuel Tech - Natural Gas (TRA). The fractional shares of the disaggregated fuels (Commodity IN) used to produce an aggregated fuel (Commodity OUT) are calculated from their consumption over the total for this category in the base-year, as given in the IEA database. The TRA_Emi sheet contains the emission coefficients for CO2, CH4 and N2O of each transportation aggregated fuel: the Static coefficients and the Dynamic coefficients. The dynamics coefficients are calculated using the static coefficients of the disaggregated fuels. Table 4-2: Sector fuel technologies-existing Tech. Name

Technology Description

Comm.-IN

Comm.OUT

TRACOA000

Fuel Tech - Coal (TRA) - Existing

TRANGA000

Fuel Tech - Natural Gas (TRA) - Existing

TRALPG000

Fuel Tech - Liquified Petroleum Gas (TRA) Existing

TRAGSL000

Fuel Tech - Gasoline (TRA) - Existing

TRAAVG000

Fuel Tech - Aviation Gasoline (TRA) - Existing

TRAJTK000

Fuel Tech - Jet Kerosene (TRA) - Existing

TRADST000

Fuel Tech - Diesel (TRA) - Existing

TRAHFO000

Fuel Tech - Heavy Fuel Oil (TRA) - Existing

TRAELC000

Fuel Tech - Electricity (TRA)

TRAETH005

Fuel Tech - Ethanol (TRA)

COAHCO COABCO

TRACOA

GASNGA

TRANGA

OILLPG

TRALPG

OILGSL

TRAGSL

OILAVG OILJTG OILJTK OILKER OILDST OILHFO OILNSP ELCC ELCD ALCETH

TRAAVG TRAJTK TRADST TRAHFO TRAELC TRAETH

Table 4-3: Sector fuel technologies-new technologies Tech. Name

Technology Description

Comm.-IN

Comm.OUT

TRACOA005

Fuel Tech - Coal (TRA) - New

COAHCO

TRACOA

COABCO TRANGA005

33

Fuel Tech - Natural Gas (TRA) - New

GASNGA

TRANGA

Tech. Name

Technology Description

Comm.-IN

Comm.OUT

TRALPG005

Fuel Tech - Liquefied Petroleum Gas (TRA) -

OILLPG

TRALPG

New TRAGSL005

Fuel Tech - Gasoline (TRA) - New

OILGSL

TRAGSL

TRAAVG005

Fuel Tech - Aviation Gasoline (TRA) - New

OILAVG

TRAAVG

OILJTG TRAJTK005

Fuel Tech - Jet Kerosene (TRA) - New

OILJTK

TRAJTK

OILKER TRADST005

Fuel Tech - Diesel (TRA) - New

OILDST

TRADST

BIODST TRAHFO005

Fuel Tech - Heavy Fuel Oil (TRA) - New

OILHFO

TRAHFO

OILNSP TRAMET005

Fuel Tech - Methanol (TRA)

ALCMET

TRAMET

TRAETH005

Fuel Tech - Ethanol (TRA)

ALCETH

TRAETH

4.4

Technologies

Table 4-4 presents the list of technology to meet the base-year energy-service demand in each transport subsector. Most of the existing technologies are modelled to meet the energy-service demands in the base year. No new investments are allowed for existing technologies. Table 4-4: transport technologies-existing Tech. Name

Technology Description

activity

Fuel

TRAELC000

Fuel Tech - Electricity (TRA)

PJ

electricity

TAD000

Generic Domestic Aircraft-Existing

PJ

Jet fuel

TAI000

Generic International Aircraft-Existing

PJ

Jet fuel

TRBDST000

BUS: .00.CFV.DST.EXISTING.STD.

Bv-km

diesel

TRBELC000

BUS: .00.AFV.ELC.EXISTING.STD.

Bv-km

electricity

TRBETH000

BUS: .00.AFV.ETH.EXISTING.STD.

Bv-km

ethanol

TRBGAS000

BUS: .00.CFV.GAS.EXISTING.STD.

Bv-km

gasoline

TRBLPG000

BUS: .00.AFV.LPG.EXISTING.STD.

Bv-km

LPG

TRBMET000

BUS: .00.AFV.MET.EXISTING.STD.

Bv-km

methanol

TRBNGA000

BUS: .00.AFV.NGA.EXISTING.STD.

Bv-km

natural gas

TRCDST000

COMMERCIAL TRUCK: .00.CFV.DST.EXISTING.STD.

Bv-km

diesel

TRCETH000

COMMERCIAL TRUCK: .00.AFV.ETH.EXISTING.STD.

Bv-km

ethanol

TRCGAS000

COMMERCIAL TRUCK: .00.CFV.GAS.EXISTING.STD.

Bv-km

gasoline

TRCLPG000

COMMERCIAL TRUCK: .00.AFV.LPG.EXISTING.STD.

Bv-km

LPG

34

Tech. Name

Technology Description

activity

Fuel

TRCMET000

COMMERCIAL TRUCK: .00.AFV.MET.EXISTING.STD.

Bv-km

methanol

TRCNGA000

COMMERCIAL TRUCK: .00.AFV.NGA.EXISTING.STD.

Bv-km

natural gas

TREDST000

THREE WHEELS: .00.CFV.DST.

Bv-km

diesel

TREGSL000

THREE WHEELS: .00.CFV.GAS.

Bv-km

gasoline

TRHDST000

HEAVY TRUCK: .00.CFV.DST.EXISTING.STD.

Bv-km

diesel

TRHETH000

HEAVY TRUCK: .00.AFV.ETH.EXISTING.STD.

Bv-km

ethanol

TRHGAS000

HEAVY TRUCK: .00.CFV.GAS.EXISTING.STD.

Bv-km

gasoline

TRHLPG000

HEAVY TRUCK: .00.AFV.LPG.EXISTING.STD.

Bv-km

LPG

TRHMET000

HEAVY TRUCK: .00.AFV.MET.EXISTING.STD.

Bv-km

methanol

TRHNGA000

HEAVY TRUCK: .00.AFV.NGA.EXISTING.STD.

Bv-km

natural gas

TRLDST000

LIGHT TRUCK: .00.CFV.DST.EXISTING.STD.

Bv-km

diesel

TRLELC000

LIGHT TRUCK: .00.AFV.ELC.EXISTING.STD.

Bv-km

electricity

TRLETH000

LIGHT TRUCK: .00.AFV.ETH.EXISTING.STD.

Bv-km

ethanol

TRLGAS000

LIGHT TRUCK: .00.CFV.GAS.EXISTING.STD.

Bv-km

gasoline

TRLLPG000

LIGHT TRUCK: .00.AFV.LPG.EXISTING.STD.

Bv-km

LPG

TRLMET000

LIGHT TRUCK: .00.AFV.MET.EXISTING.STD.

Bv-km

methanol

TRLNGA000

LIGHT TRUCK: .00.AFV.NGA.EXISTING.STD.

Bv-km

natural gas

TRMDST000

MEDIUM TRUCK: .00.CFV.DST.EXISTING.STD.

Bv-km

diesel

TRMETH000

MEDIUM TRUCK: .00.AFV.ETH.EXISTING.STD.

Bv-km

ethanol

TRMGAS000

MEDIUM TRUCK: .00.CFV.GAS.EXISTING.STD.

Bv-km

gasoline

TRMLPG000

MEDIUM TRUCK: .00.AFV.LPG.EXISTING.STD.

Bv-km

LPG

TRMMET000

MEDIUM TRUCK: .00.AFV.MET.EXISTING.STD.

Bv-km

methanol

TRMNGA000

MEDIUM TRUCK: .00.AFV.NGA.EXISTING.STD.

Bv-km

natural gas

TRTDST000

CAR: .00.CFV.DST.EXISTING.STD.

Bv-km

diesel

TRTELC000

CAR: .00.AFV.ELC.EXISTING.STD.

Bv-km

electricity

TRTETH000

CAR: .00.AFV.ETH.EXISTING.STD.

Bv-km

ethanol

TRTGAS000

CAR: .00.CFV.GAS.EXISTING.STD.

Bv-km

gasoline

TRTLPG000

CAR: .00.AFV.LPG.EXISTING.STD.

Bv-km

LPG

TRTMET000

CAR: .00.AFV.MET.EXISTING.STD.

Bv-km

methanol

TRTNGA000

CAR: .00.AFV.NGA.EXISTING.STD.

Bv-km

natural gas

TRWMCG000

MOTOR CYCLE: .00.CFV.GAS.MCG.

Bv-km

gasoline

TRWMPG000

MOTOR PED: .00.CFV.GAS.MPG.

Bv-km

gasoline

TTF000

Generic Freight Train-Existing

PJ

diesel, gasoline

TTP000

Generic Passengers Train-Existing

PJ

electricity, coal

TWD000

Generic Domestic Navigation Ship Existing

PJ

diesel, coal, HFO,

TWI000

Generic International Boat-Existing

PJ

gasoline

New technologies available after the first period (2005) are listed in Table 4-5 with vintages. For each end-use, a number of existing technologies are in competition to satisfy the energy-services demand for future years. Efficiency and cost of these technologies improve over the period with vintages. These technologies progressively replace the existing ones

35

and they are characterized by the same type of parameters such as efficiency, and investment cost. There are many new technologies available for the road transport sector whereas technological detail is very limited in rail, shipping and aviation modes. Investment and O&M costs shown are US dollar reference prices. They are multiplied by regionally specific factors for each region. Technology and regional specific hurdle rate, which are used to annualise the investment cost, are also applied as shown in Figure 4-2. 35%

Hurdle rate

30%

25% 20% 15% 10% 5% 0% Car and light truck

Heavy and m edium truck

Bus

2 & 3 wheeler

AFR AUS CAN CHI CSA EEU FSU IND JPN MEA MEX ODA SKO USA WEU UK

Figure 4-2: Technology specific hurdle rate for different regions in TIAM-UCL Table 4-5: transport technologies-existing Tech. Name

Technology Description

START

LIFE

IN.COST

F.OM

EFF

Car TRTGCA005

CAR: .05.CFV.GAS.CAFE.STD.

2006

12.50

1150

23

0.34

TRTGCA010

CAR: .10.CFV.GAS.CAFE.STD.

2008

12.50

1150

23

0.34

TRTGCA020

CAR: .20.CFV.GAS.CAFE.STD.

2018

12.50

1150

23

0.41

TRTGCA030

CAR: .30.CFV.GAS.CAFE.STD.

2028

12.50

1150

23

0.44

TRTGCA040

CAR: .40.CFV.GAS.CAFE.STD.

2038

12.50

1150

23

0.48

TRTGCA050

CAR: .50.CFV.GAS.CAFE.STD.

2048

12.50

1150

23

0.51

TRTGCB005

CAR: .05.CFV.GAS.CAFE.3.5MPG.

2006

12.50

1210

24

0.39

TRTGCB010

CAR: .10.CFV.GAS.CAFE.3.5MPG.

2008

12.50

1210

24

0.43

TRTGCB020

CAR: .20.CFV.GAS.CAFE.3.5MPG.

2018

12.50

1210

24

0.48

TRTGCB030

CAR: .30.CFV.GAS.CAFE.3.5MPG.

2028

12.50

1210

24

0.53

TRTGCB040

CAR: .40.CFV.GAS.CAFE.3.5MPG.

2038

12.50

1210

24

0.58

TRTGCB050

CAR: .50.CFV.GAS.CAFE.3.5MPG.

2048

12.50

1210

24

0.63

TRTGCC005

CAR: .05.CFV.GAS.CAFE.7.0MPG.

2006

12.50

1225

25

0.44

TRTGCC010

CAR: .10.CFV.GAS.CAFE.7.0MPG.

2008

12.50

1225

25

0.48

TRTGCC020

CAR: .20.CFV.GAS.CAFE.7.0MPG.

2018

12.50

1225

25

0.54

36

Tech. Name

Technology Description

START

LIFE

IN.COST

F.OM

EFF

TRTGCC030

CAR: .30.CFV.GAS.CAFE.7.0MPG.

2028

12.50

1225

25

0.59

TRTGCC040

CAR: .40.CFV.GAS.CAFE.7.0MPG.

2038

12.50

1225

25

0.65

TRTGCC050

CAR: .50.CFV.GAS.CAFE.7.0MPG.

2048

12.50

1225

25

0.70

TRTDCA005

CAR: .05.CFV.DST.CAFE.STD.

2006

12.50

1250

25

0.38

TRTDCA010

CAR: .10.CFV.DST.CAFE.STD.

2008

12.50

1250

25

0.38

TRTDCA020

CAR: .20.CFV.DST.CAFE.STD.

2018

12.50

1250

25

0.46

TRTDCA030

CAR: .30.CFV.DST.CAFE.STD.

2028

12.50

1250

25

0.49

TRTDCA040

CAR: .40.CFV.DST.CAFE.STD.

2038

12.50

1250

25

0.53

TRTDCA050

CAR: .50.CFV.DST.CAFE.STD.

2048

12.50

1250

25

0.57

TRTDCB005

CAR: .05.CFV.DST.CAFE.3.5MPG.

2006

12.50

1275

26

0.43

TRTDCB010

CAR: .10.CFV.DST.CAFE.3.5MPG.

2008

12.50

1275

26

0.47

TRTDCB020

CAR: .20.CFV.DST.CAFE.3.5MPG.

2018

12.50

1275

26

0.53

TRTDCB030

CAR: .30.CFV.DST.CAFE.3.5MPG.

2028

12.50

1275

26

0.58

TRTDCB040

CAR: .40.CFV.DST.CAFE.3.5MPG.

2038

12.50

1275

26

0.63

TRTDCB050

CAR: .50.CFV.DST.CAFE.3.5MPG.

2048

12.50

1275

26

0.69

TRTDCC005

CAR: .05.CFV.DST.CAFE.7.0MPG.

2006

12.50

1300

26

0.48

TRTDCC010

CAR: .10.CFV.DST.CAFE.7.0MPG.

2008

12.50

1300

26

0.53

TRTDCC020

CAR: .20.CFV.DST.CAFE.7.0MPG.

2018

12.50

1300

26

0.59

TRTDCC030

CAR: .30.CFV.DST.CAFE.7.0MPG.

2028

12.50

1300

26

0.65

TRTDCC040

CAR: .40.CFV.DST.CAFE.7.0MPG.

2038

12.50

1300

26

0.71

TRTDCC050

CAR: .50.CFV.DST.CAFE.7.0MPG.

2048

12.50

1300

26

0.77

TRTLPG005

CAR:.05.AFV.LPG.

2006

12.50

1170

23

0.34

TRTLPG010

CAR: .10.AFV.LPG.

2008

12.50

1170

23

0.34

TRTLPG020

CAR: .20.AFV.LPG.

2018

12.50

1170

23

0.41

TRTLPG030

CAR: .30.AFV.LPG.

2028

12.50

1170

23

0.44

TRTLPG040

CAR: .40.AFV.LPG.

2038

12.50

1170

23

0.48

TRTLPG050

CAR: .50.AFV.LPG.

2048

12.50

1170

23

0.51

TRTNGA005

CAR:.05.AFV.NGA.

2006

12.50

1350

27

0.34

TRTNGA010

CAR: .10.AFV.NGA.

2008

12.50

1350

27

0.34

TRTNGA025

CAR: .20.AFV.NGA.

2018

12.50

1350

27

0.41

TRTNGA030

CAR: .30.AFV.NGA.

2028

12.50

1350

27

0.44

TRTNGA040

CAR: .40.AFV.NGA.

2038

12.50

1275

26

0.48

TRTNGA050

CAR: .50.AFV.NGA.

2048

12.50

1275

26

0.51

TRTMET005

CAR: .05.AFV.MET.

2006

12.50

1265

25

0.37

TRTMET010

CAR: .10.AFV.MET.

2008

12.50

1265

25

0.37

TRTMET020

CAR: .20.AFV.MET.

2018

12.50

1265

25

0.45

TRTMET030

CAR: .30.AFV.MET.

2028

12.50

1265

25

0.49

TRTMET040

CAR: .40.AFV.MET.

2038

12.50

1265

25

0.52

TRTMET050

CAR: .50.AFV.MET.

2048

12.50

1265

25

0.56

TRTETH005

CAR: .05.AFV.ETH.

2006

12.50

1265

25

0.34

TRTETH010

CAR: .10.AFV.ETH.

2008

12.50

1265

25

0.34

TRTETH020

CAR: .20.AFV.ETH.

2018

12.50

1265

25

0.41

37

Tech. Name

Technology Description

START

LIFE

IN.COST

F.OM

EFF

TRTETH030

CAR: .30.AFV.ETH.

2028

12.50

1265

25

0.44

TRTETH040

CAR: .40.AFV.ETH.

2038

12.50

1265

25

0.48

TRTETH050

CAR: .50.AFV.ETH.

2048

12.50

1265

25

0.51

TRTETA005

CAR: .05.AFV.ETH.10%MPG

2006

12.50

1265

25

0.39

TRTETA010

CAR: .10.AFV.ETH.10%MPG

2008

12.50

1265

25

0.39

TRTETA020

CAR: .20.AFV.ETH.10%MPG

2018

12.50

1265

25

0.48

TRTETA030

CAR: .30.AFV.ETH.10%MPG

2028

12.50

1265

25

0.53

TRTETA040

CAR: .40.AFV.ETH.10%MPG

2038

12.50

1265

25

0.58

TRTETA050

CAR: .50.AFV.ETH.10%MPG

2048

12.50

1265

25

0.63

TRTETB005

CAR: .05.AFV.ETH.20%MPG

2006

12.50

1265

25

0.44

TRTETB010

CAR: .10.AFV.ETH.20%MPG

2008

12.50

1265

25

0.44

TRTETB020

CAR: .20.AFV.ETH.20%MPG

2018

12.50

1265

25

0.54

TRTETB030

CAR: .30.AFV.ETH.20%MPG

2028

12.50

1265

25

0.59

TRTETB040

CAR: .40.AFV.ETH.20%MPG

2038

12.50

1265

25

0.65

TRTETB050

CAR: .50.AFV.ETH.20%MPG

2048

12.50

1265

25

0.70

TRTELC005

CAR: .05.AFV.ELC.

2006

12.50

1742

35

0.55

TRTELC010

CAR: .10.AFV.ELC.

2008

12.50

1725

35

0.55

TRTELC020

CAR: .20.AFV.ELC.

2018

12.50

1708

34

0.78

TRTELC030

CAR: .30.AFV.ELC.

2028

12.50

1691

34

0.86

TRTELC040

CAR: .40.AFV.ELC.

2038

12.50

1691

34

0.93

TRTELC050

CAR: .50.AFV.ELC.

2048

12.50

1691

34

1.01

TRTHYB005

CAR: .05.AFV.HYB.

2006

12.50

1800

36

0.52

TRTHYB010

CAR: .10.AFV.HYB.

2008

12.50

1600

32

0.52

TRTHYB020

CAR: .20.AFV.HYB.

2018

12.50

1500

30

0.74

TRTHYB030

CAR: .30.AFV.HYB.

2028

12.50

1300

26

0.82

TRTHYB040

CAR: .40.AFV.HYB.

2038

12.50

1250

25

0.88

TRTHYB050

CAR: .50.AFV.HYB.

2048

12.50

1225

25

0.96

TRTFUC010

CAR: .10.AFV.FUC.

2008

12.50

1600

120

0.74

TRTFUC020

CAR: .20.AFV.FUC.

2018

12.50

1500

70.00

0.82

TRTFUC030

CAR: .30.AFV.FUC.

2028

12.50

1300

55.00

0.88

TRTFUC040

CAR: .40.AFV.FUC.

2038

12.50

1250

45.00

0.96

TRTFUC050

CAR: .50.AFV.FUC.

2048

12.50

1225

30.00

0.96

TRTDMG005

CAR: .05.AFV.DMG.MET/GAS.

2006

12.50

1210.00

24.20

0.39

TRTDEG005

CAR: .05.AFV.DEG.ETH/GAS.

2006

12.50

1210.00

24.20

0.39

TRTDMG010

CAR: .10.AFV.DMG.MET/GAS.

2008

12.50

1210.00

24.20

0.43

TRTDMG015

CAR: .15.AFV.DMG.MET/GAS.

2013

12.50

1210.00

24.20

0.46

TRTDMG020

CAR: .20.AFV.DMG.MET/GAS.

2018

12.50

1210.00

24.20

0.48

TRTDEG010

CAR: .10.AFV.DEG.ETH/GAS.

2008

12.50

1210.00

24.20

0.43

TRTDEG015

CAR: .15.AFV.DEG.ETH/GAS.

2013

12.50

1210.00

24.20

0.46

TRTDEG020

CAR: .20.AFV.DEG.ETH/GAS.

2018

12.50

1210.00

24.20

0.48

TRTGHY010

CAR: .10.AFV.HYB.GAS/ELC

2008

12.50

1500.00

30.00

1.50

TRTGHY020

CAR: .20.AFV.HYB.GAS/ELC

2018

12.50

1450.00

29.00

1.50

38

Tech. Name

Technology Description

START

LIFE

IN.COST

F.OM

EFF

TRTGHY030

CAR: .30.AFV.HYB.GAS/ELC

2028

12.50

1400.00

28.00

1.50

TRTGHY040

CAR: .40.AFV.HYB.GAS/ELC

2038

12.50

1300.00

26.00

1.50

TRTGHY050

CAR: .50.AFV.HYB.GAS/ELC

2048

12.50

1300.00

26.00

1.50

Personal light trucks TRLGCA005

Light Truck: .05.CFV.GAS.CAFE.STD.

2006

12.50

1005

20

0.31

TRLGCB005

Light Truck: .05.CFV.GAS.CAFE.2.0MPG.

2006

12.50

1055

21

0.35

TRLGCC005

Light Truck: .05.CFV.GAS.CAFE.4.0MPG.

2006

12.50

1105

22

0.38

TRLDCA005

Light Truck: .05.CFV.DST.CAFE.STD.

2006

12.50

1105

22

0.38

TRLDCB005

Light Truck: .05.CFV.DST.CAFE.2.0MPG.

2006

12.50

1145

23

0.42

TRLDCC005

Light Truck: .05.CFV.DST.CAFE.4.0MPG.

2006

12.50

1185

24

0.46

TRLHYB005

LIGHT TRUCK: .05.AFV.HYB.

2006

12.50

1205

24

0.47

TRLGCA010

Light Truck: .10.CFV.GAS.CAFE.STD.

2008

12.50

1005

20

0.32

TRLGCB010

Light Truck: .10.CFV.GAS.CAFE.2.0MPG.

2008

12.50

1055

21

0.35

TRLGCC010

Light Truck: .10.CFV.GAS.CAFE.4.0MPG.

2008

12.50

1105

22

0.39

TRLGCA015

Light Truck: .15.CFV.GAS.CAFE.STD.

2013

12.50

1005

20

0.32

TRLGCB015

Light Truck: .15.CFV.GAS.CAFE.2.0MPG.

2013

12.50

1050

21

0.35

TRLGCC015

Light Truck: .15.CFV.GAS.CAFE.4.0MPG.

2013

12.50

1080

22

0.39

TRLGCA030

Light Truck: .30.CFV.GAS.FUTURE.STD

2028

12.50

1005

20

0.34

TRLGCB030

Light Truck: .30.CFV.GAS.FUTURE.2.0MPG.

2028

12.50

1050

21

0.37

TRLGCC030

Light Truck: .30.CFV.GAS.FUTURE.4.0MPG

2028

12.50

1070

21

0.41

TRLGCA040

Light Truck: .40.CFV.GAS.FUTURE.STD

2038

12.50

1005

20

0.35

TRLGCB040

Light Truck: .40.CFV.GAS.FUTURE.2.0MPG

2038

12.50

1050

21

0.39

TRLGCC040

Light Truck: .40.CFV.GAS.FUTURE.4.0MPG

2038

12.50

1070

21

0.42

TRLGCA050

Light Truck: .50.CFV.GAS.FUTURE.STD

2048

12.50

1005

20

0.36

TRLGCB050

Light Truck: .50.CFV.GAS.FUTURE.2.0MPG

2048

12.50

1050

21

0.40

TRLGCC050

Light Truck: .50.CFV.GAS.FUTURE.4.0MPG

2048

12.50

1070

21

0.43

TRLDCA010

Light Truck: .10.CFV.DST.CAFE.STD.

2008

12.50

1105

22

0.38

TRLDCB010

Light Truck: .10.CFV.DST.CAFE.2.0MPG.

2008

12.50

1145

23

0.42

TRLDCC010

Light Truck: .10.CFV.DST.CAFE.4.0MPG.

2008

12.50

1175

23

0.46

TRLDCA015

Light Truck: .15.CFV.DST.CAFE.STD.

2013

12.50

1105

22

0.38

TRLDCB015

Light Truck: .15.CFV.DST.CAFE.2.0MPG.

2013

12.50

1140

23

0.42

TRLDCC015

Light Truck: .15.CFV.DST.CAFE.4.0MPG.

2013

12.50

1160

23

0.46

TRLDCA030

Light Truck: .30.CFV.DST.FUTURE.STD

2028

12.50

1105

22

0.40

TRLDCB030

Light Truck: .30.CFV.DST.FUTURE.2.0MPG.

2028

12.50

1140

23

0.44

TRLDCC030

Light Truck: .30.CFV.DST.FUTURE.4.0MPG

2028

12.50

1150

23

0.48

TRLDCA040

Light Truck: .40.CFV.DST.FUTURE.STD

2038

12.50

1105

22

0.42

TRLDCB040

Light Truck: .40.CFV.DST.FUTURE.2.0MPG

2038

12.50

1140

23

0.46

TRLDCC040

Light Truck: .40.CFV.DST.FUTURE.4.0MPG

2038

12.50

1150

23

0.50

TRLDCA050

Light Truck: .50.CFV.DST.FUTURE.STD

2048

12.50

1105

22

0.43

TRLDCB050

Light Truck: .50.CFV.DST.FUTURE.2.0MPG

2048

12.50

1140

23

0.47

TRLDCC050

Light Truck: .50.CFV.DST.FUTURE.4.0MPG

2048

12.50

1150

23

0.51

TRLFUC010

Light Truck: .10.AFV.FUC.

2008

12.50

1811

36

0.62

39

Tech. Name

Technology Description

START

LIFE

IN.COST

F.OM

EFF

TRLFUC020

Light Truck: .20.AFV.FUC.

2018

12.50

1685

34

0.65

TRLFUC030

Light Truck: .30.AFV.FUC.

2028

12.50

1400

30

0.70

TRLFUC040

Light Truck: .40.AFV.FUC.

2038

12.50

1350

28

0.72

TRLFUC050

Light Truck: .50.AFV.FUC.

2048

12.50

1300

25

0.75

TRLDMG005

LIGHT TRUCK: .05.AFV.DMG.MET/GAS.

2006

12.50

1105

22

0.38

TRLDMG010

LIGHT TRUCK: .10.AFV.DMG.MET/GAS.

2008

12.50

1105

22

0.39

TRLDMG015

LIGHT TRUCK: .15.AFV.DMG.MET/GAS.

2013

12.50

1080

22

0.39

TRLDMG030

LIGHT TRUCK: .30.AFV.DMG.MET/GAS.

2028

12.50

1070

21

0.41

TRLDMG040

LIGHT TRUCK: .40.AFV.DMG.MET/GAS.

2038

12.50

1070

21

0.42

TRLDMG050

LIGHT TRUCK: .50.AFV.DMG.MET/GAS.

2048

12.50

1070

21

0.43

TRLDEG005

LIGHT TRUCK: .05.AFV.DEG.ETH/GAS.

2006

12.50

1105

22

0.38

TRLDEG010

LIGHT TRUCK: .10.AFV.DEG.ETH/GAS.

2008

12.50

1105

22

0.39

TRLDEG015

LIGHT TRUCK: .15.AFV.DEG.ETH/GAS.

2013

12.50

1080

22

0.39

TRLDEG030

LIGHT TRUCK: .30.AFV.DEG.ETH/GAS.

2028

12.50

1070

21

0.41

TRLDEG040

LIGHT TRUCK: .40.AFV.DEG.ETH/GAS.

2038

12.50

1070

21

0.42

TRLDEG050

LIGHT TRUCK: .50.AFV.DEG.ETH/GAS.

2048

12.50

1070

21

0.43

TRLELC005

LIGHT TRUCK: .05.AFV.ELC.

2006

12.50

1742

35

0.70

TRLNGA005

LIGHT TRUCK: .05.AFV.NGA.

2006

12.50

1540

31

0.33

TRLNGA010

LIGHT TRUCK: .10.AFV.NGA.

2008

12.50

1550

31

0.34

TRLNGA015

LIGHT TRUCK: .15.AFV.NGA.

2013

12.50

1560

31

0.34

TRLNGA020

LIGHT TRUCK: .20.AFV.NGA.

2018

12.50

1570

31

0.34

TRLETH010

LIGHT TRUCK: .10.AFV.ETH.

2008

12.50

1105

22

0.39

TRLETH015

LIGHT TRUCK: .15.AFV.ETH.

2013

12.50

1080

22

0.39

TRLETH020

LIGHT TRUCK: .20.AFV.ETH.

2018

12.50

1080

22

0.39

TRLETH030

LIGHT TRUCK: .30.AFV.ETH.

2028

12.50

1080

22

0.41

TRLETH040

LIGHT TRUCK: .40.AFV.ETH.

2038

12.50

1080

22

0.42

TRLETH050

LIGHT TRUCK: .50.AFV.ETH.

2048

12.50

1080

22

0.42

TRLMET010

LIGHT TRUCK: .10.AFV.MET.

2008

12.50

1105

22

0.39

TRLMET015

LIGHT TRUCK: .15.AFV.MET.

2013

12.50

1080

22

0.39

TRLMET020

LIGHT TRUCK: .20.AFV.MET.

2018

12.50

1080

22

0.39

TRLMET050

LIGHT TRUCK: .50.AFV.MET.

2048

12.50

1070

21

0.42

TRLLPG005

LIGHT TRUCK: .05.AFV.LPG.

2006

12.50

1550

31

0.33

TRLLPG010

LIGHT TRUCK: .10.AFV.LPG.

2008

12.50

1550

31

0.34

TRLLPG015

LIGHT TRUCK: .15.AFV.LPG.

2013

12.50

1560

31

0.34

TRLLPG020

LIGHT TRUCK: .20.AFV.LPG.

2018

12.50

1570

31

0.34

TRLELC010

LIGHT TRUCK: .10.AFV.ELC.

2008

12.50

1930

39

0.61

TRLELC015

LIGHT TRUCK: .15.AFV.ELC.

2013

12.50

1940

39

0.62

TRLELC020

LIGHT TRUCK: .20.AFV.ELC.

2018

12.50

1960

39

0.63

TRLHYB015

LIGHT TRUCK: .15.AFV.HYB.

2013

12.50

1560

31

0.58

TRLHYB020

LIGHT TRUCK: .20.AFV.HYB.

2018

12.50

1460

29

0.58

TRLHYB030

LIGHT TRUCK: .30.AFV.HYB.

2028

12.50

1400

28

0.62

TRLHYB040

LIGHT TRUCK: .40.AFV.HYB.

2038

12.50

1375

28

0.63

40

Tech. Name

Technology Description

START

LIFE

IN.COST

F.OM

EFF

TRLHYB050

LIGHT TRUCK: .50.AFV.HYB.

2048

12.50

1350

27

0.63

Heavy duty trucks TRHDST005

HEAVY TRUCK: .05.CFV.DST.STD.

2006

15.00

967

19

0.08

TRHDST010

HEAVY TRUCK: .10.CFV.DST.STD.

2008

15.00

967

19

0.08

TRHDST020

HEAVY TRUCK: .20.CFV.DST.STD.

2018

15.00

967

19

0.09

TRHDST030

HEAVY TRUCK: .30.CFV.DST.STD.

2028

15.00

967

19

0.10

TRHDST040

HEAVY TRUCK: .40.CFV.DST.STD.

2038

15.00

967

19

0.10

TRHDST050

HEAVY TRUCK: .50.CFV.DST.STD.

2048

15.00

967

19

0.11

TRHDSA005

HEAVY TRUCK: .05.CFV.DST.10%MPG.

2006

15.00

1217

24

0.10

TRHDSA010

HEAVY TRUCK: .10.CFV.DST.10%MPG.

2008

15.00

1217

24

0.10

TRHDSA020

HEAVY TRUCK: .20.CFV.DST.10%MPG.

2018

15.00

1217

24

0.11

TRHDSA030

HEAVY TRUCK: .30.CFV.DST.10%MPG.

2028

15.00

1217

24

0.12

TRHDSA040

HEAVY TRUCK: .40.CFV.DST.10%MPG.

2038

15.00

1217

24

0.12

TRHDSA050

HEAVY TRUCK: .50.CFV.DST.10%MPG.

2048

15.00

1217

24

0.13

TRHDSB005

HEAVY TRUCK: .05.CFV.DST.20%MPG.

2006

15.00

1367

27

0.12

TRHDSB010

HEAVY TRUCK: .10.CFV.DST.20%MPG.

2008

15.00

1367

27

0.12

TRHDSB020

HEAVY TRUCK: .20.CFV.DST.20%MPG.

2018

15.00

1367

27

0.13

TRHDSB030

HEAVY TRUCK: .30.CFV.DST.20%MPG.

2028

15.00

1367

27

0.14

TRHDSB040

HEAVY TRUCK: .40.CFV.DST.20%MPG.

2038

15.00

1367

27

0.14

TRHDSB050

HEAVY TRUCK: .50.CFV.DST.20%MPG.

2048

15.00

1367

27

0.15

TRHGAS005

HEAVY TRUCK: .05.CFV.GAS.STD.

2006

15.00

964

19

0.06

TRHGAS010

HEAVY TRUCK: .10.CFV.GAS.STD.

2008

15.00

964

19

0.06

TRHGAS020

HEAVY TRUCK: .20.CFV.GAS.STD.

2018

15.00

964

19

0.08

TRHGAS030

HEAVY TRUCK: .30.CFV.GAS.STD.

2028

15.00

964

19

0.09

TRHGAS040

HEAVY TRUCK: .40.CFV.GAS.STD.

2038

15.00

964

19

0.09

TRHGAS050

HEAVY TRUCK: .50.CFV.GAS.STD.

2048

15.00

964

19

0.09

TRHNGA005

HEAVY TRUCK: .05.AFV.NGA.

2006

15.00

1305

26

0.06

TRHNGA010

HEAVY TRUCK: .10.AFV.NGA.

2008

15.00

1305

26

0.06

TRHNGA020

HEAVY TRUCK: .20.AFV.NGA.

2018

15.00

1305

26

0.06

TRHNGA030

HEAVY TRUCK: .30.AFV.NGA.

2028

15.00

1305

26

0.07

TRHNGA040

HEAVY TRUCK: .40.AFV.NGA.

2038

15.00

1305

26

0.07

TRHNGA050

HEAVY TRUCK: .50.AFV.NGA.

2048

15.00

1305

26

0.07

TRHETH005

HEAVY TRUCK: .05.AFV.ETH.

2006

15.00

1160

23

0.08

TRHETH010

HEAVY TRUCK: .10.AFV.ETH.

2008

15.00

1160

23

0.08

TRHETH020

HEAVY TRUCK: .20.AFV.ETH.

2018

15.00

1160

23

0.09

TRHETH030

HEAVY TRUCK: .30.AFV.ETH.

2028

15.00

1160

23

0.09

TRHETH040

HEAVY TRUCK: .40.AFV.ETH.

2038

15.00

1160

23

0.09

TRHETH050

HEAVY TRUCK: .50.AFV.ETH.

2048

15.00

1160

23

0.09

TRHMET005

HEAVY TRUCK: .05.AFV.MET.

2006

15.00

1319

26

0.08

TRHMET010

HEAVY TRUCK: .10.AFV.MET.

2008

15.00

1319

26

0.08

TRHMET020

HEAVY TRUCK: .20.AFV.MET.

2018

15.00

1319

26

0.10

TRHMET030

HEAVY TRUCK: .30.AFV.MET.

2028

15.00

1319

26

0.10

41

Tech. Name

Technology Description

START

LIFE

IN.COST

F.OM

EFF

TRHMET040

HEAVY TRUCK: .40.AFV.MET.

2038

15.00

1319

26

0.11

TRHMET050

HEAVY TRUCK: .50.AFV.MET.

2048

15.00

1319

26

0.12

TRHLPG005

HEAVY TRUCK: .05.AFV.LPG.

2006

15.00

1063

21

0.05

TRHLPG010

HEAVY TRUCK: .10.AFV.LPG.

2008

15.00

1063

21

0.05

TRHLPG020

HEAVY TRUCK: .20.AFV.LPG.

2018

15.00

1063

21

0.06

TRHLPG030

HEAVY TRUCK: .30.AFV.LPG.

2028

15.00

1063

21

0.06

TRHLPG040

HEAVY TRUCK: .40.AFV.LPG.

2038

15.00

1063

21

0.06

TRHLPG050

HEAVY TRUCK: .50.AFV.LPG.

2048

15.00

1063

21

0.07

TRHHYDFC30

Heavy Truck: HYD Fuel Cell 2030

2030

15.00

1500

50

0.10

TRHHYDFC50

Heavy Truck: HYD Fuel Cell 2050

2050

15.00

1300

45

0.10

Buses TRBGAS005

BUS: .05.CFV.GAS.STD.

2006

15.00

4971

99

0.09

TRBGAS010

BUS: .10.CFV.GAS.STD.

2008

15.00

4971

99

0.09

TRBGAS020

BUS: .20.CFV.GAS.STD.

2013

15.00

4971

99

0.11

TRBGAS030

BUS: .30.CFV.GAS.STD.

2028

15.00

4971

99

0.11

TRBGAS040

BUS: .40.CFV.GAS.STD.

2038

15.00

4971

99

0.12

TRBGAS050

BUS: .50.CFV.GAS.STD.

2048

15.00

4971

99

0.12

TRBDST005

BUS: .05.CFV.DST.STD.

2006

15.00

4971

99

0.09

TRBDST010

BUS: .10.CFV.DST.STD.

2008

15.00

4971

99

0.09

TRBDST020

BUS: .20.CFV.DST.STD.

2013

15.00

4971

99

0.11

TRBDST030

BUS: .30.CFV.DST.STD.

2028

15.00

4971

99

0.11

TRBDST040

BUS: .40.CFV.DST.STD.

2038

15.00

4971

99

0.12

TRBDST050

BUS: .50.CFV.DST.STD.

2048

15.00

4971

99

0.12

TRBNGA005

BUS: .05.AFV.NGA.

2006

15.00

6421

128

0.09

TRBNGA010

BUS: .10.AFV.NGA.

2008

15.00

6549

131

0.09

TRBNGA020

BUS: .20.AFV.NGA.

2013

15.00

6678

134

0.09

TRBNGA030

BUS: .30.AFV.NGA.

2028

15.00

6806

136

0.09

TRBNGA040

BUS: .40.AFV.NGA.

2038

15.00

6935

139

0.08

TRBNGA050

BUS: .50.AFV.NGA.

2048

15.00

5779

116

0.10

TRBLPG005

BUS: .05.AFV.LPG.

2006

15.00

5696

114

0.08

TRBLPG010

BUS: .10.AFV.LPG.

2008

15.00

5696

114

0.08

TRBLPG020

BUS: .20.AFV.LPG.

2013

15.00

5696

114

0.08

TRBLPG030

BUS: .30.AFV.LPG.

2028

15.00

5696

114

0.09

TRBLPG040

BUS: .40.AFV.LPG.

2038

15.00

5696

114

0.09

TRBLPG050

BUS: .50.AFV.LPG.

2048

15.00

5696

114

0.10

TRBELC005

BUS: .05.AFV.ELC.

2006

15.00

8699

174

0.15

TRBELC010

BUS: .10.AFV.ELC.

2008

15.00

8699

174

0.15

TRBELC020

BUS: .20.AFV.ELC.

2013

15.00

8699

174

0.15

TRBELC030

BUS: .30.AFV.ELC.

2028

15.00

8699

174

0.15

TRBELC040

BUS: .40.AFV.ELC.

2038

15.00

8699

174

0.15

TRBELC050

BUS: .50.AFV.ELC.

2048

15.00

8699

174

0.15

TRBHYB005

BUS: .05.AFV.HYB.

2006

15.00

8699

174

0.15

42

Tech. Name

Technology Description

START

LIFE

IN.COST

F.OM

EFF

TRBHYB010

BUS: .10.AFV.HYB.

2008

15.00

8699

174

0.15

TRBHYB020

BUS: .20.AFV.HYB.

2013

15.00

8699

174

0.17

TRBHYB030

BUS: .30.AFV.HYB.

2028

15.00

8699

174

0.18

TRBHYB040

BUS: .40.AFV.HYB.

2038

15.00

8699

174

0.19

TRBHYB050

BUS: .50.AFV.HYB.

2048

15.00

8699

174

0.20

TRBMET005

BUS: .05.AFV.MET.

2006

15.00

7249

145

0.09

TRBMET010

BUS: .10.AFV.MET.

2008

15.00

7249

145

0.09

TRBMET020

BUS: .20.AFV.MET.

2013

15.00

7249

145

0.11

TRBMET030

BUS: .30.AFV.MET.

2028

15.00

7249

145

0.11

TRBMET040

BUS: .40.AFV.MET.

2038

15.00

7249

145

0.12

TRBMET050

BUS: .50.AFV.MET.

2048

15.00

7249

145

0.12

TRBETH005

BUS: .05.AFV.ETH.

2006

15.00

5468

109

0.09

TRBETH010

BUS: .10.AFV.ETH.

2008

15.00

5468

109

0.09

TRBETH020

BUS: .20.AFV.ETH.

2013

15.00

5468

109

0.11

TRBETH030

BUS: .30.AFV.ETH.

2028

15.00

5468

109

0.11

TRBETH040

BUS: .40.AFV.ETH.

2038

15.00

5468

109

0.12

TRBETH050

BUS: .50.AFV.ETH.

2048

15.00

5468

109

0.12

TRBFUE010

BUS, FUEL CELL

2008

15.00

12427

249

0.16

TRBFUE020

BUS, FUEL CELL

2013

15.00

12000

240

0.16

TRBFUE030

BUS, FUEL CELL

2028

15.00

11000

220

0.18

TRBFUE040

BUS, FUEL CELL

2038

15.00

10000

200

0.19

TRBFUE050

BUS, FUEL CELL

2048

15.00

9000

180

0.20

TRBHYDFC30

BUS, HYD Fuel Cell 2030

2030

15.00

14000

300

0.20

TRBHYDFC50

BUS, HYD Fuel Cell 2050

2050

15.00

13000

275

0.21

Commercial trucks TRCDST005

COMMERCIAL TRUCK: .05.CFV.DST.STD.

2006

15.00

1280

26

0.18

TRCDST0010

COMMERCIAL TRUCK: .10.CFV.DST.STD.

2008

15.00

1275

26

0.18

TRCDST020

COMMERCIAL TRUCK: .20.CFV.DST.STD.

2013

15.00

1270

25

0.19

TRCDST030

COMMERCIAL TRUCK: .30.CFV.DST.STD.

2028

15.00

1265

25

0.20

TRCDST040

COMMERCIAL TRUCK: .40.CFV.DST.STD.

2038

15.00

1260

25

0.21

TRCDST050

COMMERCIAL TRUCK: .50.CFV.DST.STD.

2048

15.00

1255

25

0.22

TRCDSA005

COMMERCIAL TRUCK: .05.CFV.DST.10%MPG.

2006

15.00

1360

27

0.21

TRCDSA0010

COMMERCIAL TRUCK: .10.CFV.DST.10%MPG.

2008

15.00

1355

27

0.21

TRCDSA020

COMMERCIAL TRUCK: .20.CFV.DST.10%MPG.

2013

15.00

1350

27

0.22

TRCDSA030

COMMERCIAL TRUCK: .30.CFV.DST.10%MPG.

2028

15.00

1345

27

0.23

TRCDSA040

COMMERCIAL TRUCK: .40.CFV.DST.10%MPG.

2038

15.00

1340

27

0.24

TRCDSA050

COMMERCIAL TRUCK: .50.CFV.DST.10%MPG.

2048

15.00

1335

27

0.25

TRCDSB005

COMMERCIAL TRUCK: .05.CFV.DST.20%MPG.

2006

15.00

1440

29

0.24

TRCDSB0010

COMMERCIAL TRUCK: .10.CFV.DST.20%MPG.

2008

15.00

1435

29

0.24

TRCDSB020

COMMERCIAL TRUCK: .20.CFV.DST.20%MPG.

2013

15.00

1430

29

0.25

TRCDSB030

COMMERCIAL TRUCK: .30.CFV.DST.20%MPG.

2028

15.00

1425

29

0.26

TRCDSB040

COMMERCIAL TRUCK: .40.CFV.DST.20%MPG.

2038

15.00

1420

28

0.27

43

Tech. Name

Technology Description

START

LIFE

IN.COST

F.OM

EFF

TRCDSB050

COMMERCIAL TRUCK: .50.CFV.DST.20%MPG.

2048

15.00

1415

28

0.28

TRCGAS005

COMMERCIAL TRUCK: .05.CFV.GAS.STD.

2006

15.00

1250

25

0.16

TRCGAS0010

COMMERCIAL TRUCK: .10.CFV.GAS.STD.

2008

15.00

1250

25

0.16

TRCGAS020

COMMERCIAL TRUCK: .20.CFV.GAS.STD.

2013

15.00

1250

25

0.18

TRCGAS030

COMMERCIAL TRUCK: .30.CFV.GAS.STD.

2028

15.00

1250

25

0.19

TRCGAS040

COMMERCIAL TRUCK: .40.CFV.GAS.STD.

2038

15.00

1250

25

0.20

TRCGAS050

COMMERCIAL TRUCK: .50.CFV.GAS.STD.

2048

15.00

1250

25

0.21

TRCLPG005

COMMERCIAL TRUCK: .05.AFV.LPG.

2006

15.00

1400

28

0.18

TRCLPG010

COMMERCIAL TRUCK: .10.AFV.LPG.

2008

15.00

1400

28

0.18

TRCLPG020

COMMERCIAL TRUCK: .20.AFV.LPG.

2013

15.00

1400

28

0.20

TRCLPG030

COMMERCIAL TRUCK: .30.AFV.LPG.

2028

15.00

1400

28

0.21

TRCLPG040

COMMERCIAL TRUCK: .40.AFV.LPG.

2038

15.00

1400

28

0.22

TRCLPG050

COMMERCIAL TRUCK: .05.AFV.LPG.

2048

15.00

1400

28

0.23

TRCMET005

COMMERCIAL TRUCK: .05.AFV.MET.

2006

15.00

1400

28

0.16

TRCMET010

COMMERCIAL TRUCK: .10.AFV.MET.

2008

15.00

1400

28

0.16

TRCMET020

COMMERCIAL TRUCK: .20.AFV.MET.

2013

15.00

1400

28

0.18

TRCMET030

COMMERCIAL TRUCK: .30.AFV.MET.

2028

15.00

1400

28

0.19

TRCMET040

COMMERCIAL TRUCK: .40.AFV.MET.

2038

15.00

1400

28

0.20

TRCMET050

COMMERCIAL TRUCK: .05.AFV.MET.

2048

15.00

1400

28

0.21

TRCETH005

COMMERCIAL TRUCK: .05.AFV.ETH.

2006

15.00

1450

29

0.16

TRCETH010

COMMERCIAL TRUCK: .10.AFV.ETH.

2008

15.00

1450

29

0.16

TRCETH020

COMMERCIAL TRUCK: .20.AFV.ETH.

2013

15.00

1450

29

0.18

TRCETH030

COMMERCIAL TRUCK: .30.AFV.ETH.

2028

15.00

1450

29

0.19

TRCETH040

COMMERCIAL TRUCK: .40.AFV.ETH.

2038

15.00

1450

29

0.20

TRCETH050

COMMERCIAL TRUCK: .05.AFV.ETH.

2048

15.00

1450

29

0.21

TRCETA005

COMMERCIAL TRUCK: .05.AFV.ETH.10%MPG

2006

15.00

1490

30

0.18

TRCETA010

COMMERCIAL TRUCK: .10.AFV.ETH.10%MPG

2008

15.00

1490

30

0.18

TRCETA020

COMMERCIAL TRUCK: .20.AFV.ETH.10%MPG

2013

15.00

1490

30

0.20

TRCETA030

COMMERCIAL TRUCK: .30.AFV.ETH.10%MPG

2028

15.00

1490

30

0.21

TRCETA040

COMMERCIAL TRUCK: .40.AFV.ETH.10%MPG

2038

15.00

1490

30

0.22

TRCETA050

COMMERCIAL TRUCK: .05.AFV.ETH.10%MPG

2048

15.00

1490

30

0.23

TRCETB005

COMMERCIAL TRUCK: .05.AFV.ETH.20%MPG

2006

15.00

1530

31

0.20

TRCETB010

COMMERCIAL TRUCK: .10.AFV.ETH.20%MPG

2008

15.00

1530

31

0.20

TRCETB020

COMMERCIAL TRUCK: .20.AFV.ETH.20%MPG

2013

15.00

1530

31

0.22

TRCETB030

COMMERCIAL TRUCK: .30.AFV.ETH.20%MPG

2028

15.00

1530

31

0.23

TRCETB040

COMMERCIAL TRUCK: .40.AFV.ETH.20%MPG

2038

15.00

1530

31

0.24

TRCETB050

COMMERCIAL TRUCK: .05.AFV.ETH.20%MPG

2048

15.00

1530

31

0.25

TRCNGA005

COMMERCIAL TRUCK: .05.AFV.NGA.

2006

15.00

1400

28

0.16

TRCNGA010

COMMERCIAL TRUCK: .10.AFV.NGA.

2008

15.00

1400

28

0.16

TRCNGA020

COMMERCIAL TRUCK: .20.AFV.NGA.

2013

15.00

1400

28

0.18

TRCNGA030

COMMERCIAL TRUCK: .30.AFV.NGA.

2028

15.00

1400

28

0.19

TRCNGA040

COMMERCIAL TRUCK: .40.AFV.NGA.

2038

15.00

1400

28

0.20

44

Tech. Name

Technology Description

START

LIFE

IN.COST

F.OM

EFF

TRCNGA050

COMMERCIAL TRUCK: .05.AFV.NGA.

2048

15.00

1400

28

0.21

Medium trucks TRMDST005

MEDIUM TRUCK: .05.CFV.DST.STD.

2006

15.00

1300

26

0.12

TRMDST010

MEDIUM TRUCK: .10.CFV.DST.STD.

2008

15.00

1300

26

0.12

TRMDST020

MEDIUM TRUCK: .20.CFV.DST.STD.

2013

15.00

1300

26

0.13

TRMDST030

MEDIUM TRUCK: .30.CFV.DST.STD.

2028

15.00

1300

26

0.13

TRMDST040

MEDIUM TRUCK: .40.CFV.DST.STD.

2038

15.00

1300

26

0.14

TRMDST050

MEDIUM TRUCK: .50.CFV.DST.STD.

2048

15.00

1300

26

0.15

TRMDSA005

MEDIUM TRUCK: .05.CFV.DST.10%MPG.

2006

15.00

1380

28

0.13

TRMDSA010

MEDIUM TRUCK: .10.CFV.DST.10%MPG.

2008

15.00

1380

28

0.13

TRMDSA020

MEDIUM TRUCK: .20.CFV.DST.10%MPG.

2013

15.00

1380

28

0.14

TRMDSA030

MEDIUM TRUCK: .30.CFV.DST.10%MPG.

2028

15.00

1380

28

0.15

TRMDSA040

MEDIUM TRUCK: .40.CFV.DST.10%MPG.

2038

15.00

1380

28

0.15

TRMDSA050

MEDIUM TRUCK: .50.CFV.DST.10%MPG.

2048

15.00

1380

28

0.16

TRMDSB005

MEDIUM TRUCK: .05.CFV.DST.20%MPG.

2006

15.00

1460

29

0.15

TRMDSB010

MEDIUM TRUCK: .10.CFV.DST.20%MPG.

2008

15.00

1460

29

0.15

TRMDSB020

MEDIUM TRUCK: .20.CFV.DST.20%MPG.

2013

15.00

1460

29

0.16

TRMDSB030

MEDIUM TRUCK: .30.CFV.DST.20%MPG.

2028

15.00

1460

29

0.16

TRMDSB040

MEDIUM TRUCK: .40.CFV.DST.20%MPG.

2038

15.00

1460

29

0.17

TRMDSB050

MEDIUM TRUCK: .50.CFV.DST.20%MPG.

2048

15.00

1460

29

0.18

TRMGAS005

MEDIUM TRUCK: .05.CFV.GAS.STD.

2006

15.00

1250

25

0.10

TRMGAS010

MEDIUM TRUCK: .10.CFV.GAS.STD.

2008

15.00

1250

25

0.10

TRMGAS020

MEDIUM TRUCK: .20.CFV.GAS.STD.

2013

15.00

1250

25

0.11

TRMGAS030

MEDIUM TRUCK: .30.CFV.GAS.STD.

2028

15.00

1250

25

0.12

TRMGAS040

MEDIUM TRUCK: .40.CFV.GAS.STD.

2038

15.00

1250

25

0.12

TRMGAS050

MEDIUM TRUCK: .50.CFV.GAS.STD.

2048

15.00

1250

25

0.13

TRMLPG005

MEDIUM TRUCK: .05.AFV.LPG.

2006

15.00

1400

28

0.13

TRMLPG010

MEDIUM TRUCK: .10.AFV.LPG.

2008

15.00

1400

28

0.13

TRMLPG020

MEDIUM TRUCK: .20.AFV.LPG.

2013

15.00

1400

28

0.14

TRMLPG030

MEDIUM TRUCK: .30.AFV.LPG.

2028

15.00

1400

28

0.15

TRMLPG040

MEDIUM TRUCK: .40.AFV.LPG.

2038

15.00

1400

28

0.15

TRMLPG050

MEDIUM TRUCK: .50.AFV.LPG.

2048

15.00

1400

28

0.16

TRMMET005

MEDIUM TRUCK: .05.AFV.MET.

2006

15.00

1400

28

0.10

TRMMET010

MEDIUM TRUCK: .10.AFV.MET.

2008

15.00

1400

28

0.10

TRMMET020

MEDIUM TRUCK: .20.AFV.MET.

2013

15.00

1400

28

0.11

TRMMET030

MEDIUM TRUCK: .30.AFV.MET.

2028

15.00

1400

28

0.12

TRMMET040

MEDIUM TRUCK: .40.AFV.MET.

2038

15.00

1400

28

0.12

TRMMET050

MEDIUM TRUCK: .50.AFV.MET.

2048

15.00

1400

28

0.13

TRMETH005

MEDIUM TRUCK: .05.AFV.ETH.

2006

15.00

1550

31

0.10

TRMETH010

MEDIUM TRUCK: .10.AFV.ETH.

2008

15.00

1550

31

0.10

TRMETH020

MEDIUM TRUCK: .20.AFV.ETH.

2013

15.00

1550

31

0.11

TRMETH030

MEDIUM TRUCK: .30.AFV.ETH.

2028

15.00

1550

31

0.12

45

Tech. Name

Technology Description

START

LIFE

IN.COST

F.OM

EFF

TRMETH040

MEDIUM TRUCK: .40.AFV.ETH.

2038

15.00

1550

31

0.12

TRMETH050

MEDIUM TRUCK: .50.AFV.ETH.

2048

15.00

1550

31

0.13

TRMETA005

MEDIUM TRUCK: .05.AFV.ETH.10%MPG

2006

15.00

1630

33

0.13

TRMETA010

MEDIUM TRUCK: .10.AFV.ETH.10%MPG

2008

15.00

1630

33

0.13

TRMETA020

MEDIUM TRUCK: .20.AFV.ETH.10%MPG

2013

15.00

1630

33

0.14

TRMETA030

MEDIUM TRUCK: .30.AFV.ETH.10%MPG

2028

15.00

1630

33

0.15

TRMETA040

MEDIUM TRUCK: .40.AFV.ETH.10%MPG

2038

15.00

1630

33

0.15

TRMETA050

MEDIUM TRUCK: .50.AFV.ETH.10%MPG

2048

15.00

1630

33

0.16

TRMETB005

MEDIUM TRUCK: .05.AFV.ETH.20%MPG

2006

15.00

1710

34

0.10

TRMETB010

MEDIUM TRUCK: .10.AFV.ETH.20%MPG

2008

15.00

1710

34

0.10

TRMETB020

MEDIUM TRUCK: .20.AFV.ETH.20%MPG

2013

15.00

1710

34

0.11

TRMETB030

MEDIUM TRUCK: .30.AFV.ETH.20%MPG

2028

15.00

1710

34

0.12

TRMETB040

MEDIUM TRUCK: .40.AFV.ETH.20%MPG

2038

15.00

1710

34

0.12

TRMETB050

MEDIUM TRUCK: .50.AFV.ETH.20%MPG

2048

15.00

1710

34

0.13

TRMNGA005

MEDIUM TRUCK: .05.AFV.NGA.

2006

15.00

1400

28

0.10

TRMNGA010

MEDIUM TRUCK: .10.AFV.NGA.

2008

15.00

1400

28

0.10

TRMNGA020

MEDIUM TRUCK: .20.AFV.NGA.

2013

15.00

1400

28

0.11

TRMNGA030

MEDIUM TRUCK: .30.AFV.NGA.

2028

15.00

1400

28

0.12

TRMNGA040

MEDIUM TRUCK: .40.AFV.NGA.

2038

15.00

1400

28

0.12

TRMNGA050

MEDIUM TRUCK: .50.AFV.NGA.

2048

15.00

1400

28

0.13

Two-three-wheeler TRWMPG005

MOTOR PED: .05.CFV.GAS.MPG.

2006

10.00

600

20

1.00

TRWMCG005

MOTOR CYCLE: .05.CFV.GAS.MCG.

2006

10.00

800

30

0.70

TREGSL005

THREE WHEELS: .05.CFV.GAS.

2006

10.00

1200

40

0.50

TREDST005

THREE WHEELS: .05.CFV.DST.

2006

10.00

1200

60

0.40

Aviation TAI005

alternate generic plane long dist

2040

25

100

2.64

TAD005

alternate generic plane domestic

2040

25

100

2.64

Freight rail TTF005

alternate generic freight train

2040

40

20

1.00

TTP005

alternate generic passenger train

2040

40

20

1.00

Water transport TWD005

alternate generic domestic ship

2040

40

80

2.640

TWI005

alternate generic international ship

2040

40

80

2.640

4.5

Base-year calibration

Base-year transport sector final energy consumption is modelled in the Base-Year template for each region. It is calibrated to IEA extended energy balance data for each region. The IEA database provides energy consumption estimates for the main transportation modes (road, rail, international and domestic aviation, international and internal navigation), but is not

46

assigned to different types of road vehicles or trains. The modeller (based on expert judgment and/or specific regional information) provides share estimates to split fuel consumption between road modes and rail modes. For road energy use, fuel consumption (IEA data) is disaggregated first between light-duty vehicles and other road vehicles and second between the different vehicles inside each category: autos (cars), light trucks and two-three wheels on one hand and buses, medium trucks, commercial trucks and heavy trucks. Similarly, rail energy consumption needed the shares to split fuel consumption between freight and passengers rail transportation. Table 4-6 provides split of transport sector energy consumption by modes and fuels at global level. Similar tables are generated for each region based on the IEA energy balance data and assumed split fuel consumption by modes. Fuels in Table 4-6 are the same as the commodity out in Table 4-2, where sector fuel technologies are defined. Calibration means the sum of fuel consumption by all endsectors should match the total final energy consumption data in the upstream sector by fuels besides matching transport sector fuel consumption by modes and fuel in the baseyear.

47

Table 4-6: Breakout of transport sector base-year energy consumption by mode and fuel (PJ) Mode

Coal

Ethanol

Nat Gas

LPG

Motor Gas

Aviation Gas

Kerosene

DST (diesel)

HFO

Electricity

Total

INTL. AVIATION

0.0

0.0

0.0

0.0

0.0

20.9

5473.0

0.1

0.0

0.0

5493.9

DOMESAIR

0.0

0.0

0.0

0.0

0.7

66.9

4610.9

0.2

1.0

0.0

4679.8

ROAD Auto

0.0

327.9

45.7

319.3

13543.6

0.0

0.0

1305.5

0.0

0.0

15542.0

Light Trucks

0.0

327.9

45.7

136.8

6771.8

0.0

0.0

1305.5

0.0

0.0

8587.7

Three Wheels

0.0

0.0

0.0

0.0

1354.4

0.0

0.0

0.0

0.0

0.0

1354.4

Bus

0.0

0.0

219.5

91.2

4063.1

0.0

0.0

8224.9

0.0

0.0

12598.7

Heavy Trucks

0.0

0.0

0.0

91.2

580.4

0.0

0.0

8224.9

0.0

0.0

8896.6

Medium Trucks

0.0

0.0

0.0

121.6

4643.5

0.0

0.0

2350.0

0.0

0.0

7115.1

Commercial Trucks

0.0

0.0

54.9

0.0

2321.8

0.0

0.0

4700.0

0.0

0.0

7076.6

Two Wheels

0.0

0.0

0.0

0.0

4063.1

0.0

0.0

0.0

0.0

0.0

4063.1

RAIL Freight

140.1

0.0

0.0

0.0

0.0

0.0

0.0

1039.7

0.0

241.8

1421.6

Passengers

35.0

0.0

0.0

0.0

0.0

0.0

0.0

445.6

0.0

564.2

1044.8

INTLWATER

3.9

0.0

0.0

0.4

181.5

0.0

0.0

871.3

544.9

0.0

1602.0

OTHERS

0.1

0.0

11.0

16.4

0.0

0.0

0.0

93.1

26.8

129.2

276.6

BUNKERS

0.0

0.0

0.0

0.0

0.0

0.0

0.0

1071.9

6081.0

0.0

7152.8

179.1

655.7

376.8

777.0

37523.8

87.8

10084.0

29632.6

6653.8

935.1

86905.6

Total

48

4.6

References

International Energy Agency (IEA), World Energy Balances, 2009, ESDS International, (Mimas) University of Manchester EFDA (2004). EFDA World TIMES Model, Final report, prepared by ORDECSYS, KanORS, HALOA, KUL. www.efda.org

49

5 Industry Sector 5.1

Introduction

Industry sector Base-Year templates are used to calibrate base-year final energy consumption to IEA data and to account existing technologies and sector fuels in the baseyear. Industry sector also covers industrial production and auto-production of electricity, heat and cogeneration (CHP). Industry sector energy and non-energy related emissions are also captured in the Base-Year templates. Industry process emissions are currently not modelled in TIAM-UCL. The Base-year template for the industry sector has 49 worksheets for modelling input data, modelling sector fuel information and modelling industry sector technologies. 5.2

Energy-service demands

The industrial sector is characterized by 6 energy-services, each representing either the physical output of the industry or the total energy requirement (Table 5-1). There are also one demand for ―Other non-specified energy consumption (ONO)‖, one for ―Industrial and Other non-energy uses (NEO)‖ and one for ‗Very Other industries (I00)‘, which are considered as a generic demands. The last one (I00) has been added for minor calibration purposes and is generally not used. There are different technologies and fuels modelled for supplying steam, process heat, machine drives and electro-chemical process for each energy-service demand in the Base-year templates. Elastic demand parameters for energyservice demand are presented in Table 5-2. Table 5-1: Transport sector energy-services Code

Energy-service demand

Unit

I00

Other Industrial consumption

PJ

ICH

Chemicals

PJ

IIS

Iron and Steel

Mt

ILP

Pulp and Paper

Mt

INF

Non-ferrous metals

Mt

INM

Non Metals

PJ

IOI

Other Industries

PJ

Code

Energy-service demand

Unit

NEO

Industrial and Other Non Energy Uses

PJ

ONO

Other non-specified consumption

PJ

Table 5-2: Elastic demand parameters Code

Energy-

STEP~UP

STEP~LO

10

10

VAR~UP

VAR~LO

ELAST~UP

ELAST~LO

0.15

0.15

-0.1

-0.1

service INF

Non-ferrous metals

IIS

Iron and Steel

10

10

0.15

0.15

-0.1

-0.1

ICH

Chemicals

10

10

0.15

0.15

-0.1

-0.1

INM

Non Metals

10

10

0.15

0.15

-0.1

-0.1

ILP

Pulp and

10

10

0.15

0.15

-0.1

-0.1

10

10

0.15

0.15

-0.1

-0.1

Paper IOI

Other Industries

Energy service demands are projected to 2100 using general economic and demographic drivers (population, GDP, GDP per capita and sectoral output). Section 2.3 and Chapter 3 provide details of drivers for each and every energy-service demand and assumptions. To develop projections of future energy service demands, estimates of drivers are used in conjunction with user assumptions on the topic of service demand sensitivity to these drivers. Projected industry sector energy-service demands at a global level are presented in Figure 5-1. Similar tables have been generated for each region. Industry sector has relatively high growth in China as compared to other regions.

52

9

Projected energy-service demands

8

IIS

7

Index (2005=1)

ICH

ILP

6

INF

5

INM

4

IOI

3

NEO

2

NEU

1

ONO 0 2000 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100

Figure 5-1: projected industry sector energy-service demands at global level 5.3

Sector fuels

Industry sector fuel technologies are modelled in the sheet IND_Fuels in Industry sector Base-Year templates. The technologies created to produce aggregated industrial fuels (Fuel Tech) are named uniformly using the name of the aggregated fuels as specified in the column Commodity OUT plus three zero (000 for existing technologies). Their description changes according to the fuel (e.g. Fuel Tech - Coal (IND) or Fuel Tech - Natural Gas (IND). The fractional shares of the disaggregated fuels (Commodity IN) used to produce an aggregated fuel (Commodity OUT) are calculated from their consumption over the total for this category, as given in the IEA database. Table 5-3 and Table 5-4 present existing and new technologies respectively for sector fuels. Table 5-3: Sector fuel technologies-existing Tech. Name

Technology Description

Comm.-IN

Comm.OUT

INDNGA000

Fuel Tech - Natural Gas Mix (IND)

GASNGA GASGWG

INDCO2N INDCH4N INDN2ON INDNGA

INDLPG000

Fuel Tech - Liquefied Petroleum Gases (IND)

53

OILLPG

INDLPG

Tech. Name

Technology Description

Comm.-IN

Comm.OUT

INDNGL000

Fuel Tech - Natural Gas Liquids (IND)

OILNGL

INDNGL

INDCOA000

Fuel Tech - Coal (IND)

COAHCO

INDCOA

COABCO INDCOK000

Fuel Tech – Oven coke (IND)

COAOVC

INDCOK

INDCOG000

Fuel Tech - Coke Oven Gas (IND)

GASCOG

INDCOG

INDBFG000

Fuel Tech - Blast Furnace Gas (IND)

GASBFG

INDBFG

COAGSC INDOXY000

Fuel Tech - Oxygen Steel Furnace Gas

GASOXY

INDOXY

OILHFO

INDHFO

(IND) INDHFO000

Fuel Tech - Heavy Fuel Oil (IND)

OILCRD OILNSP INDOIL000

Fuel Tech - Refined Petroleum Products

OILDST

(IND)

OILKER

INDOIL

OILGSL OILJTK INDETH000

Fuel Tech - Ethane (IND)

GASETH

INDETH

GASRFG INDNAP000

Fuel Tech - Naphta (IND)

OILNAP

INDNAP

INDPTC000

Fuel Tech - Petroleum Coke (IND)

OILPTC

INDPTC

INDBIO000

Fuel Tech - Biofuels (IND)

BIOBSL

INDBIO

BIOCHR BIOGAS BIOBMU BIOBIN INDGEO000

Fuel Tech - Geothermal (IND)

INDELC000

Fuel Tech - Electricity (IND)

GEO

INDGEO

ELCC

INDELC

ELCD INDHET000

Fuel Tech - Heat (IND)

HET

INDHET

Table 5-4: Sector fuel technologies-new Tech. Name

Technology Description

Comm.-IN

Comm.-OUT

INDNGA005

Fuel Tech - Natural Gas Mix (IND) - New

GASNGA

INDCO2N

GASGWG

INDCH4N INDN2ON INDNGA 54

Tech. Name

Technology Description

Comm.-IN

Comm.-OUT

INDLPG005

Fuel Tech - Liquefied Petroleum Gases (IND)

OILLPG

INDLPG

- New INDNGL005

Fuel Tech - Natural Gas Liquids (IND) - New

OILNGL

INDNGL

INDCOA005

Fuel Tech - Coal (IND) - New

COAHCO

INDCOA

COABCO INDCOK005

Fuel Tech – Oven coke (IND) - New

COAOVC

INDCOK

INDCOG005

Fuel Tech - Coke Oven Gas (IND) - New

GASCOG

INDCOG

INDBFG005

Fuel Tech - Blast Furnace Gas (IND) - New

GASBFG

INDBFG

COAGSC INDOXY005

Fuel Tech - Oxygen Steel Furnace Gas (IND)

GASOXY

INDOXY

OILHFO

INDHFO

- New INDHFO005

Fuel Tech - Heavy Fuel Oil (IND) - New

OILCRD OILNSP INDOIL005

Fuel Tech - Refined Petroleum Products

OILDST

(IND) - New

OILKER

INDOIL

OILGSL OILJTK INDETH005

Fuel Tech - Ethane (IND) - New

GASETH

INDETH

GASRFG INDNAP005

Fuel Tech - Naphta (IND) - New

OILNAP

INDNAP

INDPTC005

Fuel Tech - Petroleum Coke (IND) - New

OILPTC

INDPTC

INDBIO005

Fuel Tech - Biofuels (IND) - New

BIOBSL

INDBIO

BIOCHR BIOGAS BIOBMU BIOBIN INDGEO005

Fuel Tech - Geothermal (IND) - New

GEO

INDGEO

INDGEO105

Fuel Tech - Geothermal (IND) - New

GEO

INDGEO

INDGEO205

Fuel Tech - Geothermal (IND) - New

GEO

INDGEO

INDHET005

Fuel Tech - Heat - New (IND)

HET

INDHET

5.4

Technologies

There are hundreds of technologies modelled in the industry sector to meet the energyservice demands. For each energy-services of each industry, a number of existing technologies are in competition to satisfy energy-service demand. They are characterized by an efficiency, an annual utilization factor, a lifetime, operation costs, and six seasonal share coefficients (summer-day, summer-night, intermediary day, intermediary-night, winter-day, 55

winter-night). The technologies included in the Base-Year template are the existing technologies to meet the base-year demand and the residual capacities can be used till end of their life period. No new investments are allowed in the existing technologies in any sector. Since the list is very long only new technologies, which are modelled in new technology sheet, are listed in Table 5-5. These technologies progressively replace the existing ones and they are characterized by the same type of parameters such as efficiency, and investment cost. Regional specific hurdle rates are applies to industry sector new technologies as shown in Figure 5-2. It varies from 10% (developed countries) to 20% (least developed countries). 25%

Hurdle rate f or industry sector technologies

20%

15%

10%

5%

0% AFR AUS CAN CHI CSA EEU FSU IND JPN MEA MEX ODA SKO USA WEU UK

Figure 5-2: Regional specific hurdle rate for industry sector technologies

56

Table 5-5: Sector fuel technologies-new Tech. Name

Technology Description

Comm.Out

START

LIFE

INVCOST

FIXOM

VAROM

EFF

AF

ISNFHFO005

Steam Non-ferrous metals Heavy Oil New

ISNF

2006

30

1.237

0.221

0.212

0.89

0.8

ISNFDST005

Steam Non-ferrous metals Distillate Oil New

ISNF

2006

30

1.172

0.301

0.212

0.89

0.8

ISNFDST105

Steam Non-ferrous metals Distillate Oil Imp

ISNF

2006

30

1.499

0.301

0.212

0.94

0.8

ISNFNGA005

Steam Non-ferrous met Natural Gas New

ISNF

2006

30

0.868

0.221

0.212

0.90

0.8

ISNFNGA105

Steam Non-ferrous met Natural Gas Imp

ISNF

2006

30

1.066

0.221

0.212

0.95

0.8

ISNFNGA205

Steam Non-ferrous met Natural Gas Cond

ISNF

2006

30

1.378

0.221

0.212

1.00

0.8

ISNFCOA005

Steam Non-ferrous metals Coal New

ISNF

2006

30

30.000

1.332

0.81

0.8

IPNFHFO005

Process Heat N-ferrous met Heavy Fuel New

IPNF

2006

30

1.237

0.221

0.212

0.89

0.8

IPNFDST005

Process Heat N-ferrous met Distillate Fuel New

IPNF

2006

30

1.172

0.301

0.212

0.89

0.8

IPNFDST105

Process Heat N-ferrous met Distillate Fuel Imp

IPNF

2006

30

1.499

0.301

0.212

0.94

0.8

IPNFNGA005

Process Heat N-ferrous met Natural Gas New

IPNF

2006

30

0.868

0.221

0.212

0.90

0.8

IPNFNGA105

Process Heat N-ferrous met Natural Gas Imp

IPNF

2006

30

1.066

0.221

0.212

0.95

0.8

IPNFNGA205

Process Heat N-ferrous met Natural Gas Cond

IPNF

2006

30

1.378

0.221

0.212

1.00

0.8

IPNFCOA005

Process Heat N-ferrous met Coal New

IPNF

2006

30

235.276

23.528

0.81

0.8

IPNFCOK005

Process Heat N-ferrous met Coke New

IPNF

2006

30

235.276

23.528

0.81

0.8

IPNFELC005

Process Heat N-ferrous met Electric New

IPNF

2006

30

0.982

0.044

0.205

0.98

0.8

IPNFLPG005

Process Heat N-ferrous met LPG New

IPNF

2006

30

0.868

0.221

0.212

0.90

0.8

IMNFDST005

Machine Drive N-ferrous met Distillate Oil New

IMNF

2006

20

25.641

2.564

0.30

0.25

IMNFLPG005

Machine Drive N-ferrous met LPG New

IMNF

2006

20

25.641

2.564

0.40

0.25

IMNFNGA005

Machine Drive N-ferrous met Natural Gas New

IMNF

2006

20

28.490

2.849

0.40

0.25

IMNFELC005

Machine Drive N-ferrous met Electric New

IMNF

2006

20

1.825

0.182

0.90

0.25

IMNFELI005

Machine Drive N-ferrous met Electric Imp eff

IMNF

2006

20

2.189

0.219

0.93

0.25

IMNFELH005

Machine Drive N-ferrous met Electric High eff.

IMNF

2006

20

2.463

0.246

0.94

0.25

IENFELC005

Elec-Chemical Process N-ferrous met Electric

IENF

2006

30

81.475

5.280

1.00

0.8

57

Tech. Name

Technology Description

Comm.Out

START

LIFE

INVCOST

FIXOM

VAROM

EFF

AF

New IONFHFO005

Other N-ferrous met Heavy Oil New

IONF

2006

30

3.086

0.309

1.00

0.8

IONFDST005

Other N-ferrous met Distillate Oil New

IONF

2006

30

2.939

0.294

1.00

0.8

IONFNGA005

Other N-ferrous met Natural Gas New

IONF

2006

30

2.659

0.266

1.00

0.8

IONFELC005

Other N-ferrous met Electric New

IONF

2006

30

3.704

0.370

1.00

0.8

IONFCOA005

Other N-ferrous met Coal New

IONF

2006

30

3.086

0.309

1.00

0.8

IONFCOK005

Other N-ferrous met Coke New

IONF

2006

30

3.086

0.309

1.00

0.8

ISISHFO005

Steam Iron and Steel Heavy Oil New

ISIS

2006

30

1.237

0.221

0.212

0.89

0.8

ISISDST005

Steam Iron and Steel Distillate Oil New

ISIS

2006

30

1.172

0.301

0.212

0.89

0.8

ISISDST105

Steam Iron and Steel Distillate Oil Imp

ISIS

2006

30

1.499

0.301

0.212

0.94

0.8

ISISNGA005

Steam Iron and Steel Natural Gas New

ISIS

2006

30

0.868

0.221

0.212

0.90

0.8

ISISNGA105

Steam Iron and Steel Natural Gas Imp

ISIS

2006

30

1.066

0.221

0.212

0.95

0.8

ISISNGA205

Steam Iron and Steel Natural Gas Cond

ISIS

2006

30

1.378

0.221

0.212

1.02

0.8

ISISCOA005

Steam Iron and Steel Coal New

ISIS

2006

30

30.000

1.332

0.81

0.8

ISISBIO005

Steam Iron and Steel Bio New

ISIS

2006

30

6.000

0.550

0.81

0.8

ISISCOG005

Steam Iron and Steel Cokeoven Gas New

ISIS

2006

30

3.907

1.332

0.81

0.8

ISISBFG005

Steam Iron and Steel Blast Furnace gas New

ISIS

2006

30

3.907

1.332

0.81

0.8

IPISHFO005

Process Heat Iron and Steel Heavy Fuel New

IPIS

2006

30

1.237

0.221

0.212

0.89

0.8

IPISDST005

Process Heat Iron and Steel Distillate Fuel New

IPIS

2006

30

1.172

0.301

0.212

0.89

0.8

IPISDST105

Process Heat Iron and Steel Distillate Fuel Imp

IPIS

2006

30

1.499

0.301

0.212

0.94

0.8

IPISNGA005

Process Heat Iron and Steel Natural Gas New

IPIS

2006

30

0.868

0.221

0.212

0.90

0.8

IPISNGA105

Process Heat Iron and Steel Natural Gas Imp

IPIS

2006

30

1.066

0.221

0.212

0.95

0.8

IPISNGA205

Process Heat Iron and Steel Natural Gas Cond

IPIS

2006

30

1.378

0.221

0.212

1.00

0.8

IPISCOA005

Process Heat Iron and Steel Coal New

IPIS

2006

30

3.704

1.332

0.81

0.8

IPISELC005

Process Heat Iron and Steel Electric New

IPIS

2006

30

1.237

0.221

0.89

0.8

IPISCOG005

Process Heat Iron and Steel Cokeoven Gas New

IPIS

2006

30

20.951

2.638

0.81

0.8

0.212

58

Tech. Name

Technology Description

Comm.Out

START

LIFE

INVCOST

FIXOM

IPISBFG005

Process Heat Iron and Steel Blast Furnace Gas

IPIS

2006

30

20.951

IPIS

2006

30

VAROM

EFF

AF

2.638

0.81

0.8

20.951

2.638

0.81

0.8

0.90

0.8

New IPISOXY005

Process Heat Iron and Steel Oxygen Furnace Gas New

IPSLPG005

Process Heat Iron and Steel LPG New

IPIS

2006

30

0.868

0.221

0.212

IMISDST005

Machine Drive Iron and Steel Distillate Oil New

IMIS

2006

20

25.641

2.564

0.30

0.25

IMISNGA005

Machine Drive Iron and Steel Natural Gas New

IMIS

2006

20

28.490

2.849

0.40

0.25

IMISELC005

Machine Drive Iron and Steel Electric New

IMIS

2006

20

1.825

0.182

0.90

0.25

IMISELI005

Machine Drive Iron and Steel Electric Imp eff.

IMIS

2006

20

1.825

0.182

0.93

0.25

IMISELH005

Machine Drive Iron and Steel Electric High eff.

IMIS

2006

20

2.093

0.209

0.96

0.25

IEISELC005

Elec-Chemical Process Iron and Steel Electric

IEIS

2006

30

144.727

17.805

1.00

0.8

New IOISHFO005

Other Iron and Steel Heavy Oil New

IOIS

2006

30

3.256

0.533

1.00

0.8

IOISDST005

Other Iron and Steel Distillate Oil New

IOIS

2006

30

3.256

0.533

1.00

0.8

IOISNGA005

Other Iron and Steel Natural Gas New

IOIS

2006

30

3.101

0.533

1.00

0.8

IOISCOA005

Other Iron and Steel Coal New

IOIS

2006

30

3.256

0.533

1.00

0.8

IOISCOG005

Other Iron and Steel Cokeoven Gas New

IOIS

2006

30

3.256

0.533

1.00

0.8

IOISBFG005

Other Iron and Steel Blast Furnace Gas New

IOIS

2006

30

3.256

0.533

1.00

0.8

IOISOXY005

Other Iron and Steel Oxygen Furnace Gas New

IOIS

2006

30

3.256

0.533

1.00

0.8

IOISELC005

Other Iron and Steel Electric New

IOIS

2006

30

2.805

0.480

1.00

0.8

ISCHHFO005

Steam Chemicals Heavy Oil New

ISCH

2006

30

1.237

0.221

0.212

0.89

0.8

ISCHDST005

Steam Chemicals Distillate Oil New

ISCH

2006

30

1.172

0.301

0.212

0.89

0.8

ISCHDST105

Steam Chemicals Distillate Oil Imp

ISCH

2006

30

1.499

0.301

0.212

0.94

0.8

ISCHNGA005

Steam Chemicals Natural Gas New

ISCH

2006

30

0.868

0.221

0.212

0.90

0.8

ISCHNGA105

Steam Chemicals Natural Gas Imp

ISCH

2006

30

1.066

0.221

0.212

0.95

0.8

ISCHNGA205

Steam Chemicals Natural Gas Adv

ISCH

2006

30

1.378

0.221

0.212

1.00

0.8

59

Tech. Name

Technology Description

Comm.Out

START

LIFE

INVCOST

FIXOM

ISCHCOA005

Steam Chemicals Coal New

ISCH

2006

30

30.000

ISCHBIO005

Steam Chemicals Biomass New

ISCH

2006

30

ISCHELC005

Steam Chemicals Electric New

ISCH

2006

IPCHHFO005

Process Heat Chemicals Heavy Fuel New

IPCH

IPCHDST005

Process Heat Chemicals Distillate Fuel New

IPCHDST105

VAROM

EFF

AF

0.550

0.81

0.8

6.000

0.550

0.81

0.8

30

0.982

0.044

0.205

0.90

0.8

2006

30

1.237

0.221

0.212

0.89

0.8

IPCH

2006

30

1.172

0.301

0.212

0.89

0.8

Process Heat Chemicals Distillate Fuel Imp

IPCH

2006

30

1.499

0.301

0.212

0.94

0.8

IPCHNGA005

Process Heat Chemicals Natural Gas New

IPCH

2006

30

0.868

0.221

0.212

0.90

0.8

IPCHNGA105

Process Heat Chemicals Natural Gas Imp

IPCH

2006

30

1.066

0.221

0.212

0.95

0.8

IPCHNGA205

Process Heat Chemicals Natural Gas Cond

IPCH

2006

30

1.378

0.221

0.212

1.00

0.8

IPCHCOA005

Process Heat Chemicals Coal New

IPCH

2006

30

3.439

0.550

0.81

0.8

IPCHCOK005

Process Heat Chemicals Coke New

IPCH

2006

30

3.439

0.550

0.81

0.8

IPCHELC005

Process Heat Chemicals Electric New

IPCH

2006

30

0.982

0.044

0.98

0.8

IPCHLPG005

Process Heat Chemicals LPG New

IPCH

2006

30

2.947

0.550

0.81

0.8

IMCHDST005

Machine Drive Chemicals Distillate Oil New

IMCH

2006

20

25.641

0.550

0.30

0.25

IMCHNGA005

Machine Drive Chemicals Natural Gas New

IMCH

2006

20

28.490

2.849

0.40

0.25

IMCHELC005

Machine Drive Chemicals Electric New

IMCH

2006

20

1.825

0.182

0.90

0.25

IMCHELI005

Machine Drive Chemicals Electric Improved eff.

IMCH

2006

20

2.093

0.209

0.93

0.25

IMCHELH005

Machine Drive Chemicals Electric High eff.

IMCH

2006

20

2.252

0.225

0.96

0.25

IECHELC005

Elec-Chemical Process Chemicals Electric New

IECH

2006

30

10.000

1.000

1.00

0.8

IOCHHFO005

Other Chemicals Heavy Oil New

IOCH

2006

30

3.086

0.533

1.00

0.8

IOCHDST005

Other Chemicals Distillate Oil New

IOCH

2006

30

2.939

0.533

1.00

0.8

IOCHNGA005

Other Chemicals Natural Gas New

IOCH

2006

30

2.659

0.480

1.00

0.8

IOCHCOA005

Other Chemicals Coal New

IOCH

2006

30

3.086

0.533

1.00

0.8

IOCHCOK005

Other Chemicals Coke New

IOCH

2006

30

3.086

0.533

1.00

0.8

IOCHETH005

Other Chemicals Ethane New

IOCH

2006

30

3.086

0.533

1.00

0.8

IOCHNAP005

Other Chemicals Naphtha New

IOCH

2006

30

3.086

0.533

1.00

0.8

0.205

60

Tech. Name

Technology Description

Comm.Out

START

LIFE

INVCOST

FIXOM

IOCHELC005

Other Chemicals Electric New

IOCH

2006

30

2.778

IOCHLPG005

Other Chemicals LPG New

IOCH

2006

30

2.659

IFCHNGA005

Natural Gas to non-energy petrochemical feeds

IFCH

2006

IFCHLPG005

LPG to non-energy petrochemical feedstocks

IFCH

IFCHNGL005

NGL to non-energy petrochemical feedstocks

IFCHCOA005

VAROM

EFF

AF

0.436

1.00

0.8

0.436

1.00

0.8

30

1.00

0.8

2006

30

1.00

0.8

IFCH

2006

30

1.00

0.8

Coal to non-energy petrochemical feedstocks

IFCH

2006

30

1.00

0.8

IFCHHFO005

Distillate Oil to non-energy petrochemical feeds

IFCH

2006

30

1.00

0.8

IFCHDST005

Heavy Oil to non-energy petrochemical

IFCH

2006

30

1.00

0.8

feedstocks IFCHETH005

Ethane to non-energy petrochemical feedstocks

IFCH

2006

30

1.00

0.8

IFCHNAP005

Naphtha to non-energy petrochemical

IFCH

2006

30

1.00

0.8

feedstocks ISNMHFO005

Steam Non-metals Heavy Oil New

ISNM

2006

30

1.237

0.221

0.212

0.89

0.8

ISNMDST005

Steam Non-metals Distillate Oil New

ISNM

2006

30

1.172

0.301

0.212

0.89

0.8

ISNMDST105

Steam Non-metals Distillate Oil Imp

ISNM

2006

30

1.499

0.301

0.212

0.94

0.8

ISNMNGA005

Steam Non-metals Natural Gas New

ISNM

2006

30

0.868

0.221

0.212

0.90

0.8

ISNMNGA105

Steam Non-metals Natural Gas Imp

ISNM

2006

30

1.066

0.221

0.212

0.95

0.8

ISNMNGA205

Steam Non-metals Natural Gas Cond

ISNM

2006

30

1.378

0.221

0.212

1.00

0.8

ISNMCOA005

Steam Non-metals Coal New

ISNM

2006

30

30.000

1.332

0.81

0.8

ISNMELC005

Steam Non-metals Electric New

ISNM

2006

30

0.982

0.044

0.205

0.98

0.8

IPNMHFO005

Process Heat Non-metals Heavy Fuel New

IPNM

2006

30

1.237

0.221

0.212

0.89

0.8

IPNMDST005

Process Heat Non-metals Distillate Fuel New

IPNM

2006

30

1.172

0.301

0.212

0.89

0.8

IPNMDST105

Process Heat Non-metals Distillate Fuel Imp

IPNM

2006

30

1.499

0.301

0.212

0.94

0.8

IPNMNGA005

Process Heat Non-metals Natural Gas New

IPNM

2006

30

0.868

0.221

0.212

0.90

0.8

IPNMNGA105

Process Heat Non-metals Natural Gas Imp

IPNM

2006

30

1.066

0.221

0.212

0.95

0.8

IPNMNGA205

Process Heat Non-metals Natural Gas Cond

IPNM

2006

30

1.378

0.221

0.212

1.00

0.8

61

Tech. Name

Technology Description

Comm.Out

START

LIFE

INVCOST

FIXOM

IPNMCOA005

Process Heat Non-metals Coal New

IPNM

2006

30

37.360

IPNMCOK005

Process Heat Non-metals Coke New

IPNM

2006

30

IPNMPTC005

Process Heat Non-metals PetCoke New

IPNM

2006

IPNMELC005

Process Heat Non-metals Electric New

IPNM

IPNMLPG005

Process Heat Non-metals LPG New

IMNMDST005

VAROM

EFF

AF

3.362

0.81

0.8

37.360

3.362

0.81

0.8

30

37.360

3.362

0.81

0.8

2006

30

0.982

0.044

0.205

0.98

0.8

IPNM

2006

30

0.868

0.221

0.212

0.90

0.8

Machine Drive Non-metals Distillate Oil New

IMNM

2006

20

25.641

2.564

0.30

0.25

IMNMNGA005

Machine Drive Non-metals Natural Gas New

IMNM

2006

20

28.490

2.849

0.40

0.25

IMNMELC005

Machine Drive Non-metals Electric New

IMNM

2006

20

1.825

0.182

0.90

0.25

IMNMELI005

Machine Drive Non-metals Electric Imp eff.

IMNM

2006

20

2.093

0.209

0.93

0.25

IMNMELH005

Machine Drive Non-metals Electric High eff.

IMNM

2006

20

2.252

0.225

0.96

0.25

IENMELC005

Elec-Chemical Process Non-metals Electric New

IENM

2006

30

0.000

0.000

1.00

0.8

IONMHFO005

Other Non-metals Heavy Oil New

IONM

2006

30

3.708

0.533

1.00

0.8

IONMDST005

Other Non-metals Distillate Oil New

IONM

2006

30

3.532

0.533

1.00

0.8

IONMNGA005

Other Non-metals Natural Gas New

IONM

2006

30

3.205

0.480

1.00

0.8

IONMCOA005

Other Non-metals Coal New

IONM

2006

30

3.708

0.533

1.00

0.8

IONMCOK005

Other Non-metals Coke New

IONM

2006

30

3.708

0.533

1.00

0.8

IONMELC005

Other Non-metals Electric New

IONM

2006

30

2.914

0.437

1.00

0.8

IONMLPG005

Other Non-metals LPG New

IONM

2006

30

3.205

0.480

1.00

0.8

ISLPHFO005

Steam Pulp and Paper Heavy Oil New

ISLP

2006

30

1.237

0.221

0.212

0.89

0.8

ISLPDST005

Steam Pulp and Paper Distillate Oil New

ISLP

2006

30

1.172

0.301

0.212

0.89

0.8

ISLPDST105

Steam Pulp and Paper Distillate Oil Imp

ISLP

2006

30

1.499

0.301

0.212

0.94

0.8

ISLPNGA005

Steam Pulp and Paper Natural Gas New

ISLP

2006

30

0.868

0.221

0.212

0.90

0.8

ISLPNGA105

Steam Pulp and Paper Natural Gas Imp

ISLP

2006

30

1.066

0.221

0.212

0.95

0.8

ISLPNGA205

Steam Pulp and Paper Natural Gas Cond

ISLP

2006

30

1.378

0.221

0.212

1.00

0.8

ISLPCOA005

Steam Pulp and Paper Coal New

ISLP

2006

30

30.000

1.332

0.81

0.8

ISLPELC005

Steam Pulp and Paper Electric New

ISLP

2006

30

0.982

0.044

0.98

0.8

0.205

62

Tech. Name

Technology Description

Comm.Out

START

LIFE

INVCOST

FIXOM

VAROM

EFF

AF

ISLPBIO005

Steam Pulp and Paper Biomass New

ISLP

2006

30

3.294

0.251

0.209

0.75

0.8

IPLPHFO005

Process Heat Pulp and Paper Heavy Fuel New

IPLP

2006

30

1.237

0.221

0.212

0.89

0.8

IPLPDST005

Process Heat Pulp and Paper Distillate Fuel New

IPLP

2006

30

1.172

0.301

0.212

0.89

0.8

IPLPDST105

Process Heat Pulp and Paper Distillate Fuel Imp

IPLP

2006

30

1.499

0.301

0.212

0.94

0.8

IPLPNGA005

Process Heat Pulp and Paper Natural Gas New

IPLP

2006

30

0.868

0.221

0.212

0.90

0.8

IPLPNGA105

Process Heat Pulp and Paper Natural Gas Imp

IPLP

2006

30

1.066

0.221

0.212

0.95

0.8

IPLPNGA205

Process Heat Pulp and Paper Natural Gas Cond

IPLP

2006

30

1.378

0.221

0.212

1.00

0.8

IPLPCOA005

Process Heat Pulp and Paper Coal New

IPLP

2006

30

122.990

5.426

0.81

0.8

IPLPELC005

Process Heat Pulp and Paper Electric New

IPLP

2006

30

0.982

0.044

0.205

0.98

0.8

IPLPLPG005

Process Heat Pulp and Paper LPG New

IPLP

2006

30

0.868

0.221

0.212

0.90

0.8

IPLPBIO005

Process Heat Pulp and Paper Biomass New

IPLP

2006

30

3.294

0.251

0.209

0.75

0.8

IMLPDST005

Machine Drive Pulp and Paper Distillate Oil New

IMLP

2006

20

25.641

2.564

0.30

0.25

IMLPNGA005

Machine Drive Pulp and Paper Natural Gas New

IMLP

2006

20

28.490

2.849

0.40

0.25

IMLPELC005

Machine Drive Pulp and Paper Electric New

IMLP

2006

20

1.825

0.182

0.90

0.25

IMLPELI005

Machine Drive Pulp and Paper Electric Imp eff.

IMLP

2006

20

2.093

0.209

0.93

0.25

IMLPELH005

Machine Drive Pulp and Paper Electric High eff

IMLP

2006

20

2.252

0.225

0.96

0.25

IOLPHFO005

Other Pulp and Paper Heavy Oil New

IOLP

2006

30

2.931

0.533

1.00

0.8

IOLPDST005

Other Pulp and Paper Distillate Oil New

IOLP

2006

30

2.792

0.533

1.00

0.8

IOLPNGA005

Other Pulp and Paper Natural Gas New

IOLP

2006

30

2.522

0.480

1.00

0.8

IOLPELC005

Other Pulp and Paper Electric New

IOLP

2006

30

2.293

0.344

1.00

0.8

IOLPLPG005

Other Pulp and Paper LPG New

IOLP

2006

30

2.522

0.480

1.00

0.8

IOLPCOA005

Other Pulp and Paper Coal New

IOLP

2006

30

3.517

1.332

1.00

0.8

IOLPCOK005

Other Pulp and Paper Coke New

IOLP

2006

30

3.517

1.332

1.00

0.8

IOLPBIO005

Other Pulp and Paper Biomass New

IOLP

2006

30

3.517

1.332

1.00

0.8

IELPELC005

Elec-Chemical Process Pulp and Paper Electric

IELP

2006

30

0.000

0.000

1.00

0.8

New 63

Tech. Name

Technology Description

Comm.Out

START

LIFE

INVCOST

FIXOM

VAROM

EFF

AF

ISOIHFO005

Steam Other Industry Heavy Oil New

ISOI

2006

30

1.237

0.221

0.212

0.89

0.8

ISOIDST005

Steam Other Industry Distillate Oil New

ISOI

2006

30

1.172

0.301

0.212

0.89

0.8

ISOIDST105

Steam Other Industry Distillate Oil Imp

ISOI

2006

30

1.499

0.301

0.212

0.94

0.8

ISOINGA005

Steam Other Industry Natural Gas New

ISOI

2006

30

0.868

0.221

0.212

0.90

0.8

ISOINGA105

Steam Other Industry Natural Gas Imp

ISOI

2006

30

1.066

0.221

0.212

0.95

0.8

ISOINGA205

Steam Other Industry Natural Gas Cond

ISOI

2006

30

1.378

0.221

0.212

1.00

0.8

ISOICOA005

Steam Other Industry Coal New

ISOI

2006

30

30.000

1.332

0.81

0.8

ISOIBIO005

Steam Other Industry Bio New

ISOI

2006

30

6.000

1.332

0.81

0.8

ISOIELC005

Steam Other Industry Electric New

ISOI

2006

30

0.982

0.044

0.205

0.98

0.8

ISOILPG005

Steam Other Industry LPG New

ISOI

2006

30

1.172

0.301

0.212

0.89

0.8

IPOIHFO005

Process Heat Other Industry Heavy Fuel New

IPOI

2006

30

1.237

0.221

0.212

0.89

0.8

IPOIDST005

Process Heat Other Industry Distillate Fuel New

IPOI

2006

30

1.172

0.301

0.212

0.89

0.8

IPOIDST105

Process Heat Other Industry Distillate Fuel Imp

IPOI

2006

30

1.499

0.301

0.212

0.94

0.8

IPOINGA005

Process Heat Other Industry Natural Gas New

IPOI

2006

30

0.868

0.221

0.212

0.90

0.8

IPOINGA105

Process Heat Other Industry Natural Gas Imp

IPOI

2006

30

1.066

0.221

0.212

0.95

0.8

IPOINGA205

Process Heat Other Industry Natural Gas Cond

IPOI

2006

30

1.378

0.221

0.212

1.00

0.8

IPOICOA005

Process Heat Other Industry Coal New

IPOI

2006

30

22.100

2.230

0.81

0.8

IPOICOK005

Process Heat Other Industry Coke New

IPOI

2006

30

22.100

2.230

0.81

0.8

IPOIELC005

Process Heat Other Industry Electric New

IPOI

2006

30

0.982

0.044

0.205

0.98

0.8

IPOILPG005

Process Heat Other Industry LPG New

IPOI

2006

30

0.868

0.221

0.212

0.90

0.8

IMOIDST005

Machine Drive Other Industry Distillate Oil New

IMOI

2006

20

25.641

2.564

0.81

0.25

IMOINGA005

Machine Drive Other Industry Natural Gas New

IMOI

2006

20

28.490

2.849

0.81

0.25

IMOIELC005

Machine Drive Other Industry Electric New

IMOI

2006

20

1.825

0.182

0.85

0.25

IMOIELI005

Machine Drive Other Industry Electric Imp eff.

IMOI

2006

20

2.093

0.209

0.90

0.25

IMOIELH005

Machine Drive Other Industry Electric High eff.

IMOI

2006

20

2.252

0.225

0.93

0.25

IOOIHFO005

Other All Other Industry Heavy Oil New

IOOI

2006

30

3.086

0.533

1.00

0.8 64

Tech. Name

Technology Description

Comm.Out

START

LIFE

INVCOST

FIXOM

IOOIDST005

Other All Other Industry Distillate Oil New

IOOI

2006

30

2.939

IOOINGA005

Other All Other Industry Natural Gas New

IOOI

2006

30

IOOICOA005

Other All Other Industry Coal New

IOOI

2006

IOOICOK005

Other All Other Industry Coke New

IOOI

IOOICOG005

Other All Other Industry Cokeoven Gas New

IOOIPTC005

VAROM

EFF

AF

0.533

1.00

0.8

2.659

0.480

1.00

0.8

30

3.704

1.332

1.00

0.8

2006

30

3.704

1.332

1.00

0.8

IOOI

2006

30

3.704

1.332

1.00

0.8

Other All Other Industry Petroleum Coke New

IOOI

2006

30

3.704

1.332

1.00

0.8

IOOIELC005

Other All Other Industry Electric New

IOOI

2006

30

2.932

0.506

1.00

0.8

IOOIGEO005

Other All Other Industry Geothermal New

IOOI

2006

30

3.858

0.666

1.00

0.8

IOOILPG005

Other All Other Industry LPG New

IOOI

2006

30

2.659

0.480

1.00

0.8

IEOIELC005

Elec-Chemical Process Other Industry Electric

IEOI

2006

30

0.000

0.000

1.00

0.8

New IOOIBIO005

Other All Other Industry BIO New

IOOI

2006

30

3.086

0.533

1.00

0.8

IOISBIO005

Other Iron and Steel Industry BIO New

IOOI

2006

30

3.086

0.533

1.00

0.8

IOCHBIO005

Other Chemical Industry BIO New

IOCH

2006

30

3.086

0.533

1.00

0.8

IONFBIO005

Other Non-ferrous Industry BIO New

IONF

2006

30

3.086

0.533

1.00

0.8

IONMBIO005

Other Non-metal Industry BIO New

IONM

2006

30

3.086

0.533

1.00

0.8

IMLPHFO005

Machine Drive Pulp and Paper HFO Oil New

IMLP

2006

20

10.000

1.000

0.30

0.25

IMISHFO005

Machine Drive Iron and Steel HFO New

IMIS

2006

20

10.000

1.000

0.30

0.25

IMNMHFO005

Machine Drive Non Metals HFO New

IMNM

2006

20

10.000

1.000

0.30

0.25

IMNFHFO005

Machine Drive Non Ferrous HFO New

IMNM

2006

20

10.000

1.000

0.30

0.25

IMOIHFO005

Machine Drive Other Industries HFO New

IMOI

2006

20

10.000

1.000

0.30

0.25

IMCHHFO005

Machine Drive Chemicals HFO New

IMCH

2006

20

10.000

1.000

0.30

0.25

IMISLPG005

Machine Drive Iron and Steel LPG New

IMIS

2006

20

10.000

1.000

0.40

0.25

IMCHLPG005

Machine Drive Chemicals LPG New

IMCH

2006

20

10.000

1.000

0.40

0.25

IMOILPG005

Machine Drive Other Industries LPG New

IMOI

2006

20

10.000

1.000

0.40

0.25

IPISLPG005

Process Heat Iron and Steel LPG New

IPIS

2006

30

0.868

0.221

0.90

0.8

65

0.212

Tech. Name

Technology Description

Comm.Out

START

LIFE

INVCOST

FIXOM

ESTMNGA005

Auto CHP with NGA New

INDELC/INDHET

2006

25

1000.000

ESTMLPG005

Auto CHP with LPG New

INDELC/INDHET

2006

25

ESTMNGL005

Auto CHP with NGL New

INDELC/INDHET

2006

ESTMCOA005

Auto CHP with COA New

INDELC/INDHET

ESTMCOK005

Auto CHP with COK New

ESTMCOG005

VAROM

EFF

AF

50.000

0.44

0.7

1000.000

50.000

0.44

0.7

25

1000.000

50.000

0.44

0.7

2006

25

1600.000

80.000

0.35

0.7

INDELC/INDHET

2006

25

1600.000

80.000

0.35

0.7

Auto CHP with COG New

INDELC/INDHET

2006

25

1600.000

80.000

0.35

0.7

ESTMBFG005

Auto CHP with BFG New

INDELC/INDHET

2006

25

1000.000

50.000

0.44

0.7

ESTMOXY005

Auto CHP with OXY New

INDELC/INDHET

2006

25

1000.000

50.000

0.44

0.7

ESTMHFO005

Auto CHP with HFO New

INDELC/INDHET

2006

25

1000.000

50.000

0.44

0.7

ESTMOIL005

Auto CHP with OIL New

INDELC/INDHET

2006

25

1000.000

50.000

0.44

0.7

ESTMETH005

Auto CHP with ETH New

INDELC/INDHET

2006

25

1000.000

50.000

0.44

0.7

ESTMNAP005

Auto CHP with NAP New

INDELC/INDHET

2006

25

1000.000

50.000

0.44

0.7

ESTMPTC005

Auto CHP with PTC New

INDELC/INDHET

2006

25

1600.000

80.000

0.35

0.7

ESTMBIO005

Auto CHP with BIO New

INDELC/INDHET

2006

25

1600.000

80.000

0.35

0.7

ESTMGEO005

Auto CHP with GEO New

INDELC/INDHET

2006

25

1000.000

10.000

0.57

0.7

66

5.5

Base-year calibration

The IEA energy balance data has been used to calibrate the final energy consumption and it is modelled in the Base-Year industry sector template. As the IEA database only provides total energy consumption by fuel for the main industries, fractional share numbers were needed to split fuel consumption between specific energy-services within each industry. According to the regions, the need for expert assumptions depended on the level of detail of the national data sources. The non-specified energy consumption (ONO) and the nonenergy uses (NEO) are also provided by the IEA database. The IEA data has been disaggregated into different technologies in each energy-service by fuel types. Table 5-6 provides technology details and fuel consumption in 2005 at a global level. Similar tables have been generated for each region. Share of different technologies such as steam boilers, process heat, machine drive, electro-chemical process, feedstock and others are assumed to be identical for each region. Industry sector fuels (commodities) presented in Table 5-6 are the same as the commodities that are defined in the sector fuel technologies table (Table 5-3). Industry sector final consumption has been calibrated by energy-services and fuels. Further, sum of all end-use sector fuel consumption also matches total final consumption in the upstream sector by fuels.

67

INDPTC

INDBIO

INDGEO

0

0

0

0

0

0

59

30

0

0

0

0

0

502

1061

TOTAL

INDNAP

7

INDHET

INDETH

463

INDOIL

INDOXY

INDHFO

INDBFG

INDCOG

INDNGL

INDCOK

INDCOA

INDLPG

INDNGA

0

INDELC

Description

Demand

Identifier

Service

Table 5-6: Base-year industry sector final energy consumption by energy-services and fuel (PJ)

Iron and Steel ISIS

Steam Boiler

IPIS

Process Heat

IMIS

Machine Drive

IEIS

Electro-Chemical Process

IFIS

Feed stocks

IOIS

Other

Subtotal

0

2621

42

0

2100

0

1169

2582

64

333

170

0

0

0

0

0

0

9081

2593

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

2593

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0 2132

0

0

0

0

0

2084

0

0

0

0

0

0

2

46

0

0

0

288

0

0

0

0

0

0

0

0

0

0

0

0

0

269

0

0

557

2881

3083

50

0

2100

2084

1169

2582

64

392

200

0

2

46

269

0

502

15423

Non-ferrous Metals ISNF

Steam Boiler

0

138

0

0

85

0

12

1

0

54

18

0

0

0

5

0

87

401

IPNF

Process Heat

0

1171

14

0

255

0

0

0

0

163

53

0

0

0

0

0

0

1656

IMNF

Machine Drive

IENF

Electro-Chemical Process

n.a.

Feed stocks

IONF

Other

Subtotal

120

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

120

2152

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

2152

0

0

0

0

0

128

0

0

0

0

0

0

1

23

0

0

0

151

120

69

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

188

2391

1377

14

0

340

128

12

1

0

217

70

0

1

23

5

0

87

4667

Chemicals and Petrochemicals ISCH

Steam Boiler

0

0

0

0

320

0

28

1

0

686

282

0

0

0

0

0

1478

2796

IPCH

Process Heat

0

602

0

0

0

0

0

0

0

294

121

0

0

0

0

0

0

1017

IMCH

Machine Drive

2506

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

2506

IECH

Electro-Chemical Process

IFCH

Feed stocks

IOCH

Other

Subtotal

716

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

716

0

5416

293

0

1280

171

0

0

0

0

0

390

425

41

0

0

0

8015

358

0

0

0

0

0

0

0

0

0

0

0

0

0

86

0

0

444

3580

6018

293

0

1600

171

28

1

0

980

403

390

425

41

86

0

1478

15493

Paper, Pulp and Printing ISLP

Steam Boiler

0

1208

17

0

791

0

1

0

0

427

87

0

0

0

2052

6

355

4943

IPLP

Process Heat

176

345

5

0

0

0

0

0

0

75

25

0

0

0

0

0

0

626

68

Description

INDCOG

INDBFG

INDOXY

INDHFO

INDOIL

INDETH

INDNAP

INDPTC

INDBIO

INDGEO

INDHET

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1406

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

n.a.

Feed stocks

0

0

0

0

0

1

0

0

0

0

0

0

0

3

0

0

0

4

IOLP

Other

Subtotal

TOTAL

INDCOK

0

0

INDCOA

INDNGL

0

0

INDNGA

1406

Electro-Chemical Process

INDELC

INDLPG

Demand

Identifier

Machine Drive

IELP

Service

IMLP

176

173

2

0

0

0

0

0

0

0

12

0

0

0

0

0

0

363

1757

1726

24

0

791

1

1

0

0

502

125

0

0

3

2052

6

355

7342

Non-Metallic minerals (SCG) ISNM

Steam Boiler

0

139

0

0

0

0

17

1

2

114

146

0

0

0

212

0

105

735

IPNM

Process Heat

270

2504

80

0

5555

0

0

0

0

456

195

0

0

483

0

0

0

9544

IMNM

Machine Drive

946

0

0

0

0

0

0

0

0

0

33

0

0

0

0

0

0

980

IENM

Electro-Chemical Process

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

n.a.

Feed stocks

0

0

0

0

0

89

0

0

0

0

0

0

0

0

0

0

0

89

IONM

Other

135

139

9

0

0

0

0

0

0

0

42

0

0

0

0

0

0

325

1352

2782

89

0

5555

89

17

1

2

570

416

0

0

483

212

0

105

11672

Subtotal

Other Industrial ISOI

Steam Boiler

0

281

51

0

1486

0

0

0

0

894

951

0

0

0

4804

7

2292

10766

IPOI

Process Heat

3095

2533

457

0

2759

0

173

93

14

2086

3328

0

0

0

0

0

0

14538

IMOI

Machine Drive

5158

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

5158

IEOI

Electro-Chemical Process

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

n.a.

Feed stocks

0

0

0

0

0

431

0

0

0

0

0

110

36

307

0

0

0

884

IOOI

69

2063

0

0

0

0

0

0

0

0

0

475

0

0

0

0

0

0

2539

Subtotal

Other

10316

2814

508

0

4245

431

173

93

14

2980

4755

110

36

307

4804

7

2292

33885

Total

22277

17801

978

0

14631

2903

1401

2678

80

5642

5969

500

464

901

7427

12

4819

88483

5.6

References

International Energy Agency (IEA), World Energy Balances, 2009, ESDS International, (Mimas) University of Manchester EFDA (2004). EFDA World TIMES Model, Final report, prepared by ORDECSYS, KanORS, HALOA, KUL. www.efda.org

70

6 Residential Sector 6.1

Introduction

Base-year residential sector final energy consumption calibration is modelled in the BaseYear template for residential, commercial and agriculture sectors. The template has IEA residential sector final consumption data for the base-year 2005. It also includes details for residential sector fuels and all existing technologies in residential sector. The template also captures residential sector emissions. All new technologies that are available after the first year (base-year) are modelled in the new technology sheet ―SubRes_B-NewTechs‖. Selected energy-services in residential sector are also has demand data at sub region level for selected regions in order to have different growth rate at sun-region level for those energyservices. 6.2

Energy service demands

The residential sector includes 11 energy-services as presented in Table 6-1. All energyservice demands are in PJ. In the residential sector, some segments are identified using more than one code, which means that the demand can be disaggregated in four or less sub-regions. Currently, USA and CAN have four and three geographic regions, respectively, while AFR, CHI, IND, MEA and MEX each have two ‗sub-regions‘, corresponding to rural and urban areas. When no sub-regions have been defined, the codes for sub-region 1 are used by default (RH1, CH1, RL1, RK1, CH1, CC1). Energy service demands are projected to 2100 using general economic and demographic drivers (population, GDP and GDP per capita). To develop projections of future energy-service demands, estimates of drivers are used in conjunction with user assumptions on the topic of service demand sensitivity to these drivers (see Section 2.3 and Chapter 3 on demand projections and drivers). Projected energy-service demands during 2005-2100 are presented in Figure 6-1 at a global level. Growth rates for residential lighting are relatively high in selected sub-regions in the developing world. Thisis because of very low level of electrification at present (base-year) in these sub-regions.

Table 6-1: Residential sector energy-services Energy-Service

Unit

Code

Residential Cooling

PJ

RC1, RC2, RC3, RC4

Residential Clothes Drying

PJ

RCD

Residential Clothes Washing

PJ

RCW

Residential Dishwashing

PJ

RDW

Residential Other Electric

PJ

REA

Residential Space Heat

PJ

RH1, RH2, RH3, RH4

Residential Hot Water

PJ

RWH

Residential Cooking - Region 1

PJ

RK1, RK2, RK3, RK4

Residential Lighting - Region 1

PJ

RL1, RL2, RL3, RL4

Residential Refrigeration

PJ

RRF

Residential Others

PJ

ROH

Projected energy-service demands

30

Index (2005=1)

25 20 15 10 5 0 2000 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100

RC1 RC2 RC3 RC4 RCD RCW RDW REA RH1 RH2 RH3 RH4 RHW RK1 RK2 RK3 RL1 RL2 RL3 ROT RRF

Figure 6-1: Projected energy-service demands in residential sector 6.3

Sector fuels

The RES_Fuels sheet in the Base-Year template contains the technologies that are created to produce aggregated residential fuels including residential electricity (including geothermal and solar) and heat. Residential sector existing fuels are presented in Table 6-2. These technologies are named uniformly using the name of the aggregated fuels as specified in 72

73 the column ‗Commodity OUT‘ plus three zero (000 for existing technologies in the baseyear). Their description changes according to the fuel (e.g. Fuel Tech - Coal (RES) or Fuel Tech - Natural Gas (RES), etc.). The fractional shares of the disaggregated fuels (Commodity IN) used to produce an aggregated fuel (Commodity OUT) are calculated from their consumption over the total for this category, as given in the IEA Data sheet. Fuels are also named uniformly across sectors. New technologies for residential sector fuels are presented in Table 6-3. These new technologies are for the future periods. Table 6-2: Residential sector technologies-existing Tech. Name

Technology Description

Comm.-IN

Comm.-OUT

RESNGA000

Fuel Tech - Natural Gas Mix (RES) - Existing

GASNGA

RESNGA

GASGWG GASCOG RESDST000

Fuel Tech - Diesel (RES) - Existing

OILDST

RESDST

OILGSL OILNSP RESHFO000

Fuel Tech - Heavy Fuel Oil (RES) - Existing

OILHFO

RESHFO

OILCRD RESKER000

Fuel Tech - Kerosene (RES) - Existing

OILKER

RESKER

RESCOA000

Fuel Tech - Coal (RES) - Existing

COAHCO

RESCOA

COABCO COAOVC RESLPG000

Fuel Tech - Liquefied Petroleum Gases (RES)

OILLPG

RESLPG

BIOBSL

RESBIO

- Existing RESBIO000

Fuel Tech – Bio-fuels (RES) - Existing

BIOCHR BIOGAS BIOBMU BIOBIN RESGEO000

Fuel Tech - Geothermal (RES) - Existing

GEO

RESGEO

RESSOL000

Fuel Tech - Solar (RES) - Existing

SOL

RESSOL

RESELC000

Fuel Tech - Electricity (RES)

ELCC

RESELC

ELCD RESHET000

73

Fuel Tech - Heat (RES)

HET

RESHET

Table 6-3: Residential sector fuel technologies-new Tech. Name

Technology Description

Comm.-IN

Comm.-OUT

RESNGA005

Fuel Tech - Natural Gas Mix (RES) - New

GASNGA

RESNGA

GASGWG GASCOG RESDST005

Fuel Tech - Diesel (RES) - New

OILDST

RESDST

OILGSL OILNSP RESHFO005

Fuel Tech - Heavy Fuel Oil (RES) - New

OILHFO

RESHFO

OILCRD RESKER005

Fuel Tech - Kerosene (RES) - New

OILKER

RESKER

RESCOA005

Fuel Tech - Coal (RES) - New

COAHCO

RESCOA

COABCO COAOVC RESLPG005

Fuel Tech - Liquefied Petroleum Gases (RES) -

OILLPG

RESLPG

BIOBSL

RESBIO

New RESBIO005

Fuel Tech – Bio-fuels (RES) - New

BIOCHR BIOGAS BIOBMU BIOBIN RESSOL005

Fuel Tech - Solar (RES) - New

SOL

RESSOL

RESGEO005

Fuel Tech - Geothermal (RES) - New

GEO

RESGEO

RESGEO105

Fuel Tech - Geothermal (RES) - New

GEO

RESGEO

RESGEO205

Fuel Tech - Geothermal (RES) - New

GEO

RESGEO

RESHET005

Fuel Tech - Heat (RES) - New

HET

RESHET

6.4

Technologies

Residential sector existing end-use technologies are modelled in the Base-Year templates. No investment can be made in existing technologies. The new technologies for the future years are modelled in the new technologies templates ―SubRes_B-NewTech‖. Due to long list of end-use technologies available for residential sector in the TIAM-UCL only new technologies and their characteristics are presented in Table 6-4. These technologies progressively replace the existing ones as they reach the end of their technology life

74

75 assumptions. For each end-use energy-service, a number of existing technologies are in competition to satisfy the demand. They are characterized by an efficiency, an annual utilization factor, a lifetime, operation costs, and six seasonal share coefficients (summerday, summer-night, intermediary-day, intermediary-night, winter-day, winter-night). The sum product of the final energy consumption and the efficiency of technologies give the base-year demand value. Region specific hurdle rates, which are used to annualise investment cost of the residential end-use technologies, has been applied to residential sector technologies (Figure 6-2). 35%

Hurdle rate f or residential sector technologies

30%

25% 20% 15%

10% 5% 0%

AFR AUS CAN CHI CSA EEU FSU IND JPN MEA MEX ODA SKO USA WEU UK

Figure 6-2: Regional specific hurdle rate for residential sector technologies

75

Table 6-4: Residential sector new end-use technologies Tech. Name

Technology Description

Comm.-IN

YEAR

LIFE

INVCOST

FIXOM

EFF

RESELC

2006

15

374.64

3.744

1

RESELC

2010

15

374.64

3.744

1.227

RESELC

2020

15

374.64

3.744

1.363

RESELC

2006

15

406.93

4.071

1.5

RESELC

2010

15

366.24

3.663

1.5

RESELC

2020

15

325.55

3.256

1.5

RESELC

2006

15

620.96

6.205

1.672

RESELC

2010

15

558.86

5.585

1.672

RESELC

2020

15

496.77

4.964

1.672

RESELC

2006

15

34.909

0.963

0.9

RESELC

2010

15

34.909

0.963

0.92

RESELC

2020

15

34.909

0.963

0.94

RESELC

2006

15

140.76

13.21

1.77

RESELC

2010

15

126.68

11.30

1.8

RESELC

2020

15

112.61

9.536

2

RESELC

2006

15

222.87

5.197

0.88

RESELC

2010

15

200.59

4.677

0.88

RESELC

2020

15

178.30

4.157

0.88

RESDST

2006

15

18.111

0.175

0.58

RESDST

2010

15

16.300

0.157

0.58

RESDST

2020

15

14.489

0.140

0.58

RESHFO

2006

15

18.111

0.175

0.58

Refrigerators RRFEXS005

RRFIMP005

RRFGLD005

RES: .05.ELC.REFRIGERATORS.STD.

RES: .05.ELC.REFRIGERATORS.IMP.

RES: .05.ELC.REFRIGERATORS.GOLDEN CARROT.

Water heating RHWELC005

RHWELA005

RHWELS005

RHWDST005

RHWHFO005

RES: .05.ELC.WATER HEATER.RESISTANCE.STD.

RES: .05.ELC.WATER HEATER.HEAT PUMP.

RES: .05.ELC.WATER HEATER.SOLAR.

RES: .05.DST.WATER HEATER.STD.

RES: .05.HFO.WATER HEATER.STD.

76

77 Tech. Name

RHWLPG005

RHWDSO005

RHWLPS005

RHWNGA005

RHWNGS005

RHWSOL005 RHWHET005

RHWGEO005

RHWELB005 77

Technology Description

RES: .05.LPG.WATER HEATER.STD.

RES: .05.DST.WATER HEATER.SOLAR.

RES: .05.LPG.WATER HEATER.SOLAR.

RES: .05.NGA.WATER HEATER.STD.

RES: .05.NGA.WATER HEATER.SOLAR.

RES: .05.SOL.WATER HEATER.STD. RES: .05.HET.WATER HEATER.STD.

RES: .05.GEO.WATER HEATER.STD.

RES: .05.ELC.WATER HEATER.RESISTANCE.NEW.

Comm.-IN

YEAR

LIFE

INVCOST

FIXOM

EFF

RESHFO

2010

15

16.300

0.157

0.58

RESHFO

2020

15

14.489

0.140

0.58

RESLPG

2006

15

18.111

0.301

0.54

RESLPG

2010

15

16.300

0.271

0.54

RESLPG

2020

15

14.489

0.241

0.54

RESDST

2006

15

222.87

4.457

0.54

RESDST

2010

15

200.59

4.011

0.54

RESDST

2020

15

178.30

3.565

0.54

RESLPG

2006

15

222.87

4.457

0.54

RESLPG

2010

15

200.59

4.011

0.54

RESLPG

2020

15

178.30

3.565

0.54

RESNGA

2006

15

18.111

0.181

0.65

RESNGA

2010

15

16.300

0.163

0.65

RESNGA

2020

15

14.489

0.144

0.65

RESNGA

2006

15

222.87

4.457

0.54

RESNGA

2010

15

200.59

4.011

0.54

RESNGA

2020

15

178.30

3.565

0.54

RESSOL

2006

20

222.87

4.457

1

RESSOL

2010

20

200.59

4.011

1

RESHET

2006

20

222.87

4.457

1

RESHET

2010

20

200.59

4.011

1

RESHET

2020

20

178.30

3.565

1

RESGEO

2006

20

222.87

4.457

1

RESGEO

2010

20

200.59

4.011

1

RESGEO

2020

20

178.30

3.565

1

RESELC

2006

20

34.909

0.701

0.96

Tech. Name

RHWNGB005

RHWNGA010

RHWBIO005

Technology Description

RES: .05.NGA.WATER HEATER.NEW.

RES: .10.NGA.WATER HEATER.ADV.

Comm.-IN

YEAR

LIFE

INVCOST

FIXOM

EFF

RESELC

2010

20

31.418

0.631

0.96

RESELC

2020

20

27.927

0.561

0.96

RESNGA

2006

20

30.217

0.761

0.7

RESNGA

2010

20

27.195

0.645

0.7

RESNGA

2020

20

24.174

0.486

0.7

RESNGA

2010

20

30.217

0.614

0.86

RESNGA

2010

20

27.195

0.553

0.86

RESNGA

2020

20

24.174

0.491

0.86

RESBIO

2006

20

40

1

0.5

RESBIO

2010

40

1

0.5

RESBIO

2020

40

1

0.5

RES: .05.BIO.WATER HEATER.STD.

RHWKER005

RES: .05.KER.WATER HEATER.STD.

RESKER

2006

20

70

0.188

0.58

RHWCOA005

RES: .05.COA.WATER HEATER.STD.

RESCOA

2006

20

60

0.277

0.5

Cloth washing machines RCWELC305

RES: .05.ELC.CLOTH WASHING.REDUCED WATER.

RESELC

2006

15

238.13

4.762

3

RCWELC405

RES: .05.ELC.CLOTH WASHING.ULTRA SOUND.

RESELC

2006

15

318.28

4.243

4

Cloth driers RCDELC005

RES: .05.ELC.CLOTH DRIERS.STD.

RESELC

2006

15

155.05

4.134

1

RCDELC005

RES: .05.ELC.CLOTH DRIERS.IMP.

RESELC

2006

15

227.85

4.340

1.25

RCDNGA005

RES: .05.NGA.CLOTH DRIERS.STD.

RESNGA

2006

15

265.48

5.530

1

Dish washer RDWELC005

RES: .05.ELC.DISH WASHER.STD.

RESELC

2006

10

173.76

7.898

1

RDWELC105

RES: .05.ELC.DISH WASHER.IMP.

RESELC

2006

10

257.96

5.862

1.3

RDWELC210

RES: .10.ELC.DISH WASHER.ADV.

RESELC

2010

10

362.18

3.165946

2

RESNGA

2006

17

183.97

4.599

1

Cooking RK1NGA005

RES.COOK.R1: .05.NGA.

78

79 Tech. Name

Technology Description

Comm.-IN

YEAR

LIFE

INVCOST

FIXOM

EFF

RK1KER005

RES.COOK.R1: .05.KER.

RESKER

2006

17

148.89

3.722

1

RK1DST005

RES.COOK.R1: .05.DST.

RESDST

2006

17

148.89

3.722

1

RK1COA005

RES.COOK.R1: .05.COA.

RESCOA

2006

17

66.176

9.926

1

RK1LPG005

RES.COOK.R1: .05.LPG.

RESLPG

2006

17

183.97

4.599

1

RK1ELC005

RES.COOK.R1: .05.ELC.

RESELC

2006

17

183.97

4.599

1

RK1BIO005

RES.COOK.R1: .05.BIO.

RESBIO

2006

17

66.176

4.963

1

RK1SOL005

RES.COOK.R1: .05.SOL.

RESSOL

2006

17

164.11

2.735

1

RK2NGA005

RES.COOK.R2: .05.NGA.

RESNGA

2006

17

183.97

4.599

1

RK2KER005

RES.COOK.R2: .05.KER.

RESKER

2006

17

148.89

3.722

1

RK2DST005

RES.COOK.R2: .05.DST.

RESDST

2006

17

148.89

3.722

1

RK2COA005

RES.COOK.R2: .05.COA.

RESCOA

2006

17

66.176

9.926

1

RK2LPG005

RES.COOK.R2: .05.LPG.

RESLPG

2006

17

183.97

4.599

1

RK2ELC005

RES.COOK.R2: .05.ELC.

RESELC

2006

17

183.97

4.599

1

RK2BIO005

RES.COOK.R2: .05.BIO.

RESBIO

2006

17

66.176

4.963

1

RK2SOL005

RES.COOK.R2: .05.SOL.

RESSOL

2006

17

164.11

2.735

1

RK3NGA005

RES.COOK.R3: .05.NGA.

RESNGA

2006

17

183.97

4.599

1

RK3KER005

RES.COOK.R3: .05.KER.

RESKER

2006

17

148.89

3.722

1

RK3DST005

RES.COOK.R3: .05.DST.

RESDST

2006

17

148.89

3.722

1

RK3COA005

RES.COOK.R3: .05.COA.

RESCOA

2006

17

66.176

9.926

1

RK3LPG005

RES.COOK.R3: .05.LPG.

RESLPG

2006

17

183.97

4.599

1

RK3ELC005

RES.COOK.R3: .05.ELC.

RESELC

2006

17

183.97

4.599

1

RK3BIO005

RES.COOK.R3: .05.BIO.

RESBIO

2006

17

66.176

4.963

1

RK3SOL005

RES.COOK.R3: .05.SOL.

RESSOL

2006

17

164.11

2.735

1

RK4NGA005

RES.COOK.R4: .05.NGA.

RESNGA

2006

17

183.97

4.599

1

RK4KER005

RES.COOK.R4: .05.KER.

RESKER

2006

17

148.89

3.722

1

RK4DST005

RES.COOK.R4: .05.DST.

RESDST

2006

17

148.89

3.722

1

79

Tech. Name

Technology Description

Comm.-IN

YEAR

LIFE

INVCOST

FIXOM

EFF

RK4COA005

RES.COOK.R4: .05.COA.

RESCOA

2006

17

66.176

9.926

1

RK4LPG005

RES.COOK.R4: .05.LPG.

RESLPG

2006

17

183.97

4.599

1

RK4ELC005

RES.COOK.R4: .05.ELC.

RESELC

2006

17

183.97

4.599

1

RK4BIO005

RES.COOK.R4: .05.BIO.

RESBIO

2006

17

66.176

4.963

1

RESELC

2006

15

1.6647

5.163

1

RESELC

2010

15

1.4982

4.646

1

RESELC

2020

15

1.3318

4.130

1

RESELC

2006

15

1.6647

5.163

1

RESELC

2010

15

1.4982

4.646

1

RESELC

2020

15

1.3318

4.130

1

RESELC

2006

15

1.6647

5.163

1

RESELC

2010

15

1.4982

4.646

1

RESELC

2020

15

1.3318

4.130

1

RESELC

2006

15

1.6647

5.163

1

RESELC

2010

15

1.4982

4.646

1

RESELC

2020

15

1.3318

4.130

1

RESELC

2006

15

47.881

2.630

4.6

RESELC

2010

15

43.093

2.367

4.6

RESELC

2020

15

38.305

2.104

4.6

RESELC

2006

15

47.881

2.630

4.6

RESELC

2010

15

43.093

2.367

4.6

RESELC

2020

15

38.305

2.104

4.6

RESELC

2006

15

47.881

2.630

4.6

RESELC

2010

15

43.093

2.367

4.6

RESELC

2020

15

38.305

2.104

4.6

Lighting RL1ICE005

RL2ICE005

RL3ICE005

RL4ICE005

RL1FLE005

RL2FLE005

RL3FLE005

RES.LIGH.R1: .05.ELC.INCANDESCENT.STD.

RES.LIGH.R2: .05.ELC.INCANDESCENT.STD.

RES.LIGH.R3: .05.ELC.INCANDESCENT.STD.

RES.LIGH.R4: .05.ELC.INCANDESCENT.STD.

RES.LIGH.R1: .05.ELC.FLUORESCENT.BASELINE.

RES.LIGH.R2: .05.ELC.FLUORESCENT.BASELINE.

RES.LIGH.R3: .05.ELC.FLUORESCENT.BASELINE.

80

81 Tech. Name

Technology Description

Comm.-IN

YEAR

LIFE

INVCOST

FIXOM

EFF

RL4FLE005

RES.LIGH.R4: .05.ELC.FLUORESCENT.BASELINE.

RESELC

2006

15

47.881

2.630

4.6

RESELC

2010

15

43.093

2.367

4.6

RESELC

2020

15

38.305

2.104

4.6

RESELC

2006

15

61.501

2.607

6.642

RESELC

2010

15

55.351

2.346

7.571

RESELC

2020

15

49.200

2.085

7.571

RESELC

2006

15

61.501

2.607

6.642

RESELC

2010

15

55.351

2.346

7.571

RESELC

2020

15

49.200

2.085

7.571

RESELC

2006

15

61.501

2.607

6.642

RESELC

2010

15

55.351

2.346

7.571

RESELC

2020

15

49.200

2.085

7.571

RESELC

2006

15

61.501

2.607

6.642

RESELC

2010

15

55.351

2.346

7.571

RESELC

2020

15

49.200

2.085

7.571

RESELC

2010

15

22.196

24.02

5.164

RESELC

2010

15

19.977

20.62

5.164

RESELC

2020

15

17.757

17.26

5.164

RESELC

2010

15

22.196

24.02

5.164

RESELC

2010

15

19.977

20.62

5.164

RESELC

2020

15

17.757

17.26

5.164

RESELC

2010

15

22.196

24.02

5.164

RESELC

2010

15

19.977

20.62

5.164

RESELC

2020

15

17.757

17.26

5.164

RESELC

2010

15

22.196

24.02

5.164

RESELC

2010

15

19.977

20.62

5.164

RL1FLA005

RL2FLA005

RL3FLA005

RL4FLA005

RL1ICA010

RL2ICA010

RL3ICA010

RL4ICA010

81

RES.LIGH.R1: .05.ELC.FLUORESCENT.RAPIDSTART.

RES.LIGH.R2: .05.ELC.FLUORESCENT.RAPIDSTART.

RES.LIGH.R3: .05.ELC.FLUORESCENT.RAPIDSTART.

RES.LIGH.R4: .05.ELC.FLUORESCENT.RAPIDSTART.

RES.LIGH.R1: .10.ELC.INCANDESCENT.ADV.

RES.LIGH.R2: .10.ELC.INCANDESCENT.ADV.

RES.LIGH.R3: .10.ELC.INCANDESCENT.ADV.

RES.LIGH.R4: .10.ELC.INCANDESCENT.ADV.

Tech. Name

Technology Description

Comm.-IN

YEAR

LIFE

INVCOST

FIXOM

EFF

RESELC

2020

15

17.757

17.26

5.164

RL1HAE005

RES.LIGH.R1: .05.ELC.HALOGEN.

RESELC

2006

15

6.2468

12.49

2.8

RL2HAE005

RES.LIGH.R2: .05.ELC.HALOGEN.

RESELC

2006

15

6.2468

12.49

2.8

RL3HAE005

RES.LIGH.R3: .05.ELC.HALOGEN.

RESELC

2006

15

6.2468

12.49

2.8

RL4HAE005

RES.LIGH.R4: .05.ELC.HALOGEN.

RESELC

2006

15

6.2468

12.49

2.8

RL1CFL005

RES.LIGH.R1: .05.ELC.FLUO.LAMP.COMPACT.

RESELC

2006

15

14.237

0.943

4

RL2CFL005

RES.LIGH.R2: .05.ELC.FLUO.LAMP.COMPACT.

RESELC

2006

15

14.237

0.943

4

RL3CFL005

RES.LIGH.R3: .05.ELC.FLUO.LAMP.COMPACT.

RESELC

2006

15

14.237

0.943

4

RL4CFL005

RES.LIGH.R4: .05.ELC.FLUO.LAMP.COMPACT.

RESELC

2006

15

14.237

0.943

4

RL1KER005

RES.LIGH.R1: .05.KER.LAMP.

RESKER

2006

10

20

1.388

0.5

RL2KER005

RES.LIGH.R2: .05.KER.LAMP.

RESKER

2006

10

20

1.388

0.5

RL3KER005

RES.LIGH.R3: .05.KER.LAMP.

RESKER

2006

10

20

1.388

0.5

RL4KER005

RES.LIGH.R4: .05.KER.LAMP.

RESKER

2006

10

20

1.388

0.5

Space heating RH1ERS005

RES.HEAT.R1: .05.ELC.INS-REG.RESISTANCE.

RESELC

2006

20

55.360

1.335

1

RH2ERS005

RES.HEAT.R2: .05.ELC.INS-REG.RESISTANCE.

RESELC

2006

20

55.360

1.335

1

RH3ERS005

RES.HEAT.R3: .05.ELC.INS-REG.RESISTANCE.

RESELC

2006

20

55.360

1.335

1

RH4ERS005

RES.HEAT.R4: .05.ELC.INS-REG.RESISTANCE.

RESELC

2006

20

55.360

1.335

1

RH1EHP005

RES.HEAT.R1: .05.ELC.INS-REG.HEAT PUMP.AIR.STD.

RESELC

2006

15

98.042

4.932

2.17

RH2EHP005

RES.HEAT.R2: .05.ELC.INS-REG.HEAT PUMP.AIR.STD.

RESELC

2006

15

98.042

4.932

2.17

RH3EHP005

RES.HEAT.R3: .05.ELC.INS-REG.HEAT PUMP.AIR.STD.

RESELC

2006

15

98.042

4.932

2.17

RH4EHP005

RES.HEAT.R4: .05.ELC.INS-REG.HEAT PUMP.AIR.STD.

RESELC

2006

15

98.042

4.932

2.17

RH1ELB005

RES.HEAT.R1: .05.ELC.INS-REG.HEAT PUMP.AIR.IMP.

RESELC

2006

15

125.53

5.647

3.52

RH2ELB005

RES.HEAT.R2: .05.ELC.INS-REG.HEAT PUMP.AIR.IMP.

RESELC

2006

15

125.53

5.647

3.52

RH3ELB005

RES.HEAT.R3: .05.ELC.INS-REG.HEAT PUMP.AIR.IMP.

RESELC

2006

15

125.53

5.647

3.52

RH4ELB005

RES.HEAT.R4: .05.ELC.INS-REG.HEAT PUMP.AIR.IMP.

RESELC

2006

15

125.53

5.647

3.52 82

83 Tech. Name

Technology Description

Comm.-IN

YEAR

LIFE

INVCOST

FIXOM

EFF

RH1ELD005

RES.HEAT.R1: .05.ELC.INS-REG.HEAT PUMP.AIR.ADV.

RESELC

2006

15

156.91

6.429

4.31

RH2ELD005

RES.HEAT.R2: .05.ELC.INS-REG.HEAT PUMP.AIR.ADV.

RESELC

2006

15

156.91

6.429

4.31

RH3ELD005

RES.HEAT.R3: .05.ELC.INS-REG.HEAT PUMP.AIR.ADV.

RESELC

2006

15

156.91

6.429

4.31

RH4ELD005

RES.HEAT.R4: .05.ELC.INS-REG.HEAT PUMP.AIR.ADV.

RESELC

2006

15

156.91

6.429

4.31

RH1ELF005

RES.HEAT.R1: .05.GEO.INS-REG.HEAT PUMP.GROUND.STD.

RESELC

2006

15

188.30

7.477

4.1

RH2ELF005

RES.HEAT.R2: .05.GEO.INS-REG.HEAT PUMP.GROUND.STD.

RESELC

2006

15

188.30

7.477

4.1

RH3ELF005

RES.HEAT.R3: .05.GEO.INS-REG.HEAT PUMP.GROUND.STD.

RESELC

2006

15

188.30

7.477

4.1

RH4ELF005

RES.HEAT.R4: .05.GEO.INS-REG.HEAT PUMP.GROUND.STD.

RESELC

2006

15

188.30

7.477

4.1

RH1ELS005

RES.HEAT.R1: .05.ELC.INS-REG.SOLAR.

RESELC

2006

20

1403.8

70.09

1

RH2ELS005

RES.HEAT.R2: .05.ELC.INS-REG.SOLAR.

RESELC

2006

20

1403.8

70.09

1

RH3ELS005

RES.HEAT.R3: .05.ELC.INS-REG.SOLAR.

RESELC

2006

20

1403.8

70.09

1

RH4ELS005

RES.HEAT.R4: .05.ELC.INS-REG.SOLAR.

RESELC

2006

20

1403.8

70.09

1

RH1DST005

RES.HEAT.R1: .05.DST.INS-REG.BURNER.STD.

RESDST

2006

20

55.360

2.738

0.78

RH2DST005

RES.HEAT.R2: .05.DST.INS-REG.BURNER.STD.

RESDST

2006

20

55.360

2.738

0.78

RH3DST005

RES.HEAT.R3: .05.DST.INS-REG.BURNER.STD.

RESDST

2006

20

55.360

2.738

0.78

RH4DST005

RES.HEAT.R4: .05.DST.INS-REG.BURNER.STD.

RESDST

2006

20

55.360

2.738

0.78

RH1LPG005

RES.HEAT.R1: .05.LPG.INS-REG.BURNER.

RESLPG

2006

20

55.360

1.214

0.72

RH2LPG005

RES.HEAT.R2: .05.LPG.INS-REG.BURNER.

RESLPG

2006

20

55.360

1.214

0.72

RH3LPG005

RES.HEAT.R3: .05.LPG.INS-REG.BURNER.

RESLPG

2006

20

55.360

1.214

0.72

RH4LPG005

RES.HEAT.R4: .05.LPG.INS-REG.BURNER.

RESLPG

2006

20

55.360

1.214

0.72

RH1KER005

RES.HEAT.R1: .05.KER.INS-REG.BURNER.

RESKER

2006

10

55.360

1.214

0.72

RH2KER005

RES.HEAT.R2: .05.KER.INS-REG.BURNER.

RESKER

2006

10

55.360

1.214

0.72

RH3KER005

RES.HEAT.R3: .05.KER.INS-REG.BURNER.

RESKER

2006

10

55.360

1.214

0.72

RH4KER005

RES.HEAT.R4: .05.KER.INS-REG.BURNER.

RESKER

2006

10

55.360

1.214

0.72

RH1DSA005

RES.HEAT.R1: .05.DST.INS-REG.BURNER.IMP.

RESDST

2006

20

71.969

2.944

0.95

RH2DSA005

RES.HEAT.R2: .05.DST.INS-REG.BURNER.IMP.

RESDST

2006

20

71.969

2.944

0.95

83

Tech. Name

Technology Description

Comm.-IN

YEAR

LIFE

INVCOST

FIXOM

EFF

RH3DSA005

RES.HEAT.R3: .05.DST.INS-REG.BURNER.IMP.

RESDST

2006

20

71.969

2.944

0.95

RH4DSA005

RES.HEAT.R4: .05.DST.INS-REG.BURNER.IMP.

RESDST

2006

20

71.969

2.944

0.95

RH1DSO005

RES.HEAT.R1: .05.DST.INS-REG.SOLAR.

RESDST

2006

20

1403.8

70.01

0.72

RH2DSO005

RES.HEAT.R2: .05.DST.INS-REG.SOLAR.

RESDST

2006

20

1403.8

70.01

0.72

RH3DSO005

RES.HEAT.R3: .05.DST.INS-REG.SOLAR.

RESDST

2006

20

1403.8

70.01

0.72

RH4DSO005

RES.HEAT.R4: .05.DST.INS-REG.SOLAR.

RESDST

2006

20

1403.8

70.01

0.72

RH1NGA005

RES.HEAT.R1: .05.NGA.INS-REG.BURNER.STD.

RESNGA

2006

20

55.360

4.606

0.8

RH2NGA005

RES.HEAT.R2: .05.NGA.INS-REG.BURNER.STD.

RESNGA

2006

20

55.360

4.606

0.8

RH3NGA005

RES.HEAT.R3: .05.NGA.INS-REG.BURNER.STD.

RESNGA

2006

20

55.360

4.606

0.8

RH4NGA005

RES.HEAT.R4: .05.NGA.INS-REG.BURNER.STD.

RESNGA

2006

20

55.360

4.606

0.8

RH1NHP005

RES.HEAT.R1: .05.NGA.INS-REG.HEAT PUMP.AIR.STD.

RESNGA

2006

15

125.53

6.288

2

RH2NHP005

RES.HEAT.R2: .05.NGA.INS-REG.HEAT PUMP.AIR.STD.

RESNGA

2006

15

125.53

6.288

2

RH3NHP005

RES.HEAT.R3: .05.NGA.INS-REG.HEAT PUMP.AIR.STD.

RESNGA

2006

15

125.53

6.288

2

RH4NHP005

RES.HEAT.R4: .05.NGA.INS-REG.HEAT PUMP.AIR.STD.

RESNGA

2006

15

125.53

6.288

2

RH1NGC005

RES.HEAT.R1: .05.NGA.INS-REG.HEAT PUMP.AIR.HICOOL.

RESNGA

2006

15

225.96

11.26

2

RH2NGC005

RES.HEAT.R2: .05.NGA.INS-REG.HEAT PUMP.AIR.HICOOL.

RESNGA

2006

15

225.96

11.26

2

RH3NGC005

RES.HEAT.R3: .05.NGA.INS-REG.HEAT PUMP.AIR.HICOOL.

RESNGA

2006

15

225.96

11.26

2

RH4NGC005

RES.HEAT.R4: .05.NGA.INS-REG.HEAT PUMP.AIR.HICOOL.

RESNGA

2006

15

225.96

11.26

2

RH1NGD005

RES.HEAT.R1: .05.NGA.INS-REG.BURNER.IMP.

RESNGA

2006

20

98.858

7.318

0.963

RH2NGD005

RES.HEAT.R2: .05.NGA.INS-REG.BURNER.IMP.

RESNGA

2006

20

98.858

7.318

0.963

RH3NGD005

RES.HEAT.R3: .05.NGA.INS-REG.BURNER.IMP.

RESNGA

2006

20

98.858

7.318

0.963

RH4NGD005

RES.HEAT.R4: .05.NGA.INS-REG.BURNER.IMP.

RESNGA

2006

20

98.858

7.318

0.963

RH1NGS005

RES.HEAT.R1: .05.NGA.INS-REG.SOLAR

RESNGA

2006

20

1403.8

70.25

0.72

RH2NGS005

RES.HEAT.R2: .05.NGA.INS-REG.SOLAR

RESNGA

2006

20

1403.8

70.25

0.72

RH3NGS005

RES.HEAT.R3: .05.NGA.INS-REG.SOLAR

RESNGA

2006

20

1403.8

70.25

0.72

RH4NGS005

RES.HEAT.R4: .05.NGA.INS-REG.SOLAR

RESNGA

2006

20

1403.8

70.25

0.72 84

85 Tech. Name

Technology Description

Comm.-IN

YEAR

LIFE

INVCOST

FIXOM

EFF

RH1HET005

RES.HEAT.R1: .05.HET.INS-REG.EXCHANGER.

RESHET

2006

30

540.11

26.88

0.93

RH2HET005

RES.HEAT.R2: .05.HET.INS-REG.EXCHANGER.

RESHET

2006

30

540.11

26.88

0.93

RH3HET005

RES.HEAT.R3: .05.HET.INS-REG.EXCHANGER.

RESHET

2006

30

540.11

26.88

0.93

RH4HET005

RES.HEAT.R4: .05.HET.INS-REG.EXCHANGER.

RESHET

2006

30

540.11

26.88

0.93

RH1DSB005

RES.HEAT.R1: .05.DST.INS-REG.BURNER.NEW.

RESDST

2006

20

98.858

4.483

0.87

RH2DSB005

RES.HEAT.R2: .05.DST.INS-REG.BURNER.NEW.

RESDST

2006

20

98.858

4.483

0.87

RH3DSB005

RES.HEAT.R3: .05.DST.INS-REG.BURNER.NEW.

RESDST

2006

20

98.858

4.483

0.87

RH4DSB005

RES.HEAT.R4: .05.DST.INS-REG.BURNER.NEW.

RESDST

2006

20

98.858

4.483

0.87

RH1NGE005

RES.HEAT.R1: .05.NGA.INS-REG.BURNER.NEW.

RESNGA

2006

20

98.858

6.694

0.88

RH2NGE005

RES.HEAT.R2: .05.NGA.INS-REG.BURNER.NEW.

RESNGA

2006

20

98.858

6.694

0.88

RH3NGE005

RES.HEAT.R3: .05.NGA.INS-REG.BURNER.NEW.

RESNGA

2006

20

98.858

6.694

0.88

RH4NGE005

RES.HEAT.R4: .05.NGA.INS-REG.BURNER.NEW.

RESNGA

2006

20

98.858

6.694

0.88

RH1BIO005

RES.HEAT.R1: .05.BIO.INS-REG.WOODSTOVES.

RESBIO

2006

30

94.779

1.008

0.25

RH2BIO005

RES.HEAT.R2: .05.BIO.INS-REG.WOODSTOVES.

RESBIO

2006

30

94.779

1.008

0.25

RH3BIO005

RES.HEAT.R3: .05.BIO.INS-REG.WOODSTOVES.

RESBIO

2006

30

94.779

1.008

0.25

RH4BIO005

RES.HEAT.R4: .05.BIO.INS-REG.WOODSTOVES.

RESBIO

2006

30

94.779

1.008

0.25

RH1COA005

RES.HEAT.R1: .05.COA.INS-REG.BURNER.

RESCOA

2006

20

98.858

4.954

0.6

RH2COA005

RES.HEAT.R2: .05.COA.INS-REG.BURNER.

RESCOA

2006

20

98.858

4.954

0.6

RH3COA005

RES.HEAT.R3: .05.COA.INS-REG.BURNER.

RESCOA

2006

20

98.858

4.954

0.6

RH4COA005

RES.HEAT.R4: .05.COA.INS-REG.BURNER.

RESCOA

2006

20

98.858

4.954

0.6

RH1GEO005

RES.HEAT.R1: .05.GEO.INS-REG.EXCHANGER.

RESGEO

2006

30

14.077

0.194

0.93

RH2GEO005

RES.HEAT.R2: .05.GEO.INS-REG.EXCHANGER.

RESGEO

2006

30

14.077

0.194

0.93

RH3GEO005

RES.HEAT.R3: .05.GEO.INS-REG.EXCHANGER.

RESGEO

2006

30

14.077

0.194

0.93

RH4GEO005

RES.HEAT.R4: .05.GEO.INS-REG.EXCHANGER.

RESGEO

2006

30

14.077

0.194

0.93

RH1HFO005

RES.HEAT.R1: .05.HFO.INS-REG.BURNER.

RESHFO

2006

20

48

0.694

0.75

RH2HFO005

RES.HEAT.R2: .05.HFO.INS-REG.BURNER.

RESHFO

2006

20

48

0.694

0.75

85

Tech. Name

Technology Description

Comm.-IN

YEAR

LIFE

INVCOST

FIXOM

EFF

RH3HFO005

RES.HEAT.R3: .05.HFO.INS-REG.BURNER.

RESHFO

2006

20

48

0.694

0.75

RH4HFO005

RES.HEAT.R4: .05.HFO.INS-REG.BURNER.

RESHFO

2006

20

48

0.694

0.75

Space cooling RC1ELC005

RES.COOL.R1: .05.ELC.INS-REG.CENTRAL.STD.

RESELC

2006

15

372.85

7.408

2.93

RC2ELC005

RES.COOL.R2: .05.ELC.INS-REG.CENTRAL.STD.

RESELC

2006

15

372.85

7.408

2.93

RC3ELC005

RES.COOL.R3: .05.ELC.INS-REG.CENTRAL.STD.

RESELC

2006

15

372.85

7.408

2.93

RC4ELC005

RES.COOL.R4: .05.ELC.INS-REG.CENTRAL.STD.

RESELC

2006

15

372.85

7.408

2.93

RC1ELA005

RES.COOL.R1: .05.ELC.INS-REG.HEAT PUMP.AIR.STD.

RESELC

2006

15

242.66

4.853

2.75

RC2ELA005

RES.COOL.R2: .05.ELC.INS-REG.HEAT PUMP.AIR.STD.

RESELC

2006

15

242.66

4.853

2.75

RC3ELA005

RES.COOL.R3: .05.ELC.INS-REG.HEAT PUMP.AIR.STD.

RESELC

2006

15

242.66

4.853

2.75

RC4ELA005

RES.COOL.R4: .05.ELC.INS-REG.HEAT PUMP.AIR.STD.

RESELC

2006

15

242.66

4.853

2.75

RC1ELB005

RES.COOL.R1: .05.ELC.INS-REG.HEAT PUMP.AIR.IMP.

RESELC

2006

15

310.71

5.649

3.52

RC2ELB005

RES.COOL.R2: .05.ELC.INS-REG.HEAT PUMP.AIR.IMP.

RESELC

2006

15

310.71

5.649

3.52

RC3ELB005

RES.COOL.R3: .05.ELC.INS-REG.HEAT PUMP.AIR.IMP.

RESELC

2006

15

310.71

5.649

3.52

RC4ELB005

RES.COOL.R4: .05.ELC.INS-REG.HEAT PUMP.AIR.IMP.

RESELC

2006

15

310.71

5.649

3.52

RC1ELD005

RES.COOL.R1: .05.ELC.INS-REG.ROOM.STD.

RESELC

2006

15

90.417

1.806

3.43

RC2ELD005

RES.COOL.R2: .05.ELC.INS-REG.ROOM.STD.

RESELC

2006

15

90.417

1.806

3.43

RC3ELD005

RES.COOL.R3: .05.ELC.INS-REG.ROOM.STD.

RESELC

2006

15

90.417

1.806

3.43

RC4ELD005

RES.COOL.R4: .05.ELC.INS-REG.ROOM.STD.

RESELC

2006

15

90.417

1.806

3.43

RC1ELE005

RES.COOL.R1: .05.ELC.INS-REG.HEAT PUMP.AIR.ADV.

RESELC

2006

15

388.39

7.767

4.31

RC2ELE005

RES.COOL.R2: .05.ELC.INS-REG.HEAT PUMP.AIR.ADV.

RESELC

2006

15

388.39

7.767

4.31

RC3ELE005

RES.COOL.R3: .05.ELC.INS-REG.HEAT PUMP.AIR.ADV.

RESELC

2006

15

388.39

7.767

4.31

RC4ELE005

RES.COOL.R4: .05.ELC.INS-REG.HEAT PUMP.AIR.ADV.

RESELC

2006

15

388.39

7.767

4.31

RC1ELF005

RES.COOL.R1: .05.GEO.INS-REG.HEAT PUMP.GROUND.STD.

RESELC

2006

15

466.07

8.604

4.1

RC2ELF005

RES.COOL.R2: .05.GEO.INS-REG.HEAT PUMP.GROUND.STD.

RESELC

2006

15

466.07

8.604

4.1

RC3ELF005

RES.COOL.R3: .05.GEO.INS-REG.HEAT PUMP.GROUND.STD.

RESELC

2006

15

466.07

8.604

4.1 86

87 Tech. Name

Technology Description

Comm.-IN

YEAR

LIFE

INVCOST

FIXOM

EFF

RC4ELF005

RES.COOL.R4: .05.GEO.INS-REG.HEAT PUMP.GROUND.STD.

RESELC

2006

15

466.07

8.604

4.1

RC1NGA005

RES.COOL.R1: .05.NGA.INS-REG.HEAT PUMP.AIR.STD.

RESNGA

2006

15

310.71

6.214

1.05

RC2NGA005

RES.COOL.R2: .05.NGA.INS-REG.HEAT PUMP.AIR.STD.

RESNGA

2006

15

310.71

6.214

1.05

RC3NGA005

RES.COOL.R3: .05.NGA.INS-REG.HEAT PUMP.AIR.STD.

RESNGA

2006

15

310.71

6.214

1.05

RC4NGA005

RES.COOL.R4: .05.NGA.INS-REG.HEAT PUMP.AIR.STD.

RESNGA

2006

15

310.71

6.214

1.05

RC1NGB005

RES.COOL.R1: .05.NGA.INS-REG.CENTRAL.NEW.

RESNGA

2006

15

419.46

9.990

4.41

RC2NGB005

RES.COOL.R2: .05.NGA.INS-REG.CENTRAL.NEW.

RESNGA

2006

15

419.46

9.990

4.41

RC3NGB005

RES.COOL.R3: .05.NGA.INS-REG.CENTRAL.NEW.

RESNGA

2006

15

419.46

9.990

4.41

RC4NGB005

RES.COOL.R4: .05.NGA.INS-REG.CENTRAL.NEW.

RESNGA

2006

15

419.46

9.990

4.41

RC1ELG005

RES.COOL.R1: .05.ELC.INS-REG.ROOM.NEW.

RESELC

2006

15

110.61

2.236

3.52

RC2ELG005

RES.COOL.R2: .05.ELC.INS-REG.ROOM.NEW.

RESELC

2006

15

110.61

2.236

3.52

RC3ELG005

RES.COOL.R3: .05.ELC.INS-REG.ROOM.NEW.

RESELC

2006

15

110.61

2.236

3.52

RC4ELG005

RES.COOL.R4: .05.ELC.INS-REG.ROOM.NEW.

RESELC

2006

15

110.61

2.236

3.52

RC1NGC015

RES.COOL.R1: .15.NGA.INS-REG.HEAT

RESNGA

2015

15

466.07

9.846

1.2

RESNGA

2015

15

466.07

9.846

1.2

RESNGA

2015

15

466.07

9.846

1.2

RESNGA

2015

15

466.07

9.846

1.2

PUMP.AIR.HICOOL.NEW. RC2NGC015

RES.COOL.R2: .15.NGA.INS-REG.HEAT PUMP.AIR.HICOOL.NEW.

RC3NGC015

RES.COOL.R3: .15.NGA.INS-REG.HEAT PUMP.AIR.HICOOL.NEW.

RC4NGC015

RES.COOL.R4: .15.NGA.INS-REG.HEAT PUMP.AIR.HICOOL.NEW.

RC1GEO005

RES.COOL.R1: .05.GEO.INS-REG.HEAT PUMP.IMP.

RESGEO

2006

15

350

2.777

4.2

RC2GEO005

RES.COOL.R2: .05.GEO.INS-REG.HEAT PUMP.IMP.

RESGEO

2006

15

350

2.777

4.2

RC3GEO005

RES.COOL.R3: .05.GEO.INS-REG.HEAT PUMP.IMP.

RESGEO

2006

15

350

2.777

4.2

RC4GEO005

RES.COOL.R4: .05.GEO.INS-REG.HEAT PUMP.IMP.

RESGEO

2006

15

350

2.777

4.2

87

Tech. Name

Technology Description

Comm.-IN

YEAR

LIFE

INVCOST

FIXOM

EFF

RESELC

2006

10

0.1

1.944

1

Miscellaneous all electric equipment, REA REAELC005

RES: .05.ELC.EQUIPMENT.MISCELLANEOUS. Residential Other

ROTDST005

Other Residential Distillate equipment New

RESDST

2006

10

0.2

2

1

ROTHFO005

Other Residential Heavy Fuel Oil equipment New

RESHFO

2006

10

0.2

2

1

ROTKER005

Other Residential Kerosene equipment New

RESKER

2006

10

0.2

2

1

ROTCOA005

Other Residential Coal equipment New

RESCOA

2006

10

0.2

2

1

ROTGEO005

Other Residential Geothermal equipment New

RESGEO

2006

10

0.2

2

1

ROTSOL005

Other Residential Solar equipment New

RESSOL

2006

10

0.2

2

1

ROTBIO005

Other Residential Biomass equipment New

RESBIO

2006

10

0.2

2

1

ROTHET005

Other District Heat New

RESHET

2006

10

0.2

2

1

ROTLPG005

Other Residential LPG equipment New

RESLPG

2006

10

0.2

2

1

ROTNGA005

Other Residential Natural Gas equipment New

RESNGA

2006

10

0.2

2

1

88

89 6.5

Base-year calibration

Residential sector final consumption by fuel has been calibrated to IEA extended energy balance 2005 data. Because neither the IEA Energy Balances nor any other comprehensive database provides data at the energy service level, expert judgment is used to define the split of fuel consumption between end-use energy service demands. Table 6-5 provides the split of residential fuel consumptions at a global level. Similar tables have been generated for each region to split fuel consumption for various energy-services. Fuels presented in Table 6-5 are the same as the commodities (commodity out) in the sector fuel technology table (Table 6-2), which defines the sector fuel technologies. The base-year residential sector final consumption by fuel has been calibrated.

Natural Gas

Total

Lighting

Electric Energy

Miscellaneous

Other Energy

Residential

Washers Dishwasher

Clothes

Cooking

Residential

Clothes Drying

and Freezers

Refrigerators

Water Heating

Space Heating

Space Cooling

Table 6-5: Base-year residential sector final energy consumption

1702

0

5105

0

0

10209

0

0

0

0

0

17015

952

0

2221

0

0

0

0

0

0

0

0

3173

57

0

0

0

0

0

0

0

0

0

0

57

0

0

0

0

0

115

0

0

0

0

2180

2295

Coal

568

0

853

0

0

1421

0

0

0

0

0

2842

LPG

214

0

643

0

0

3428

0

0

0

0

0

4285

3120

0

6241

0

0

21842

0

0

0

0

0

31204

151

302

756

1512

15

302

121

15

0

2117

9831

15125

3972

0

0

0

0

0

0

0

0

0

0

3972

87

0

0

0

0

0

0

0

0

0

0

87

Solar

153

0

0

0

0

0

0

0

0

0

0

153

Total

10976

302

15818

1512

15

37318

121

15

0

2117

12011

80206

Distillate Heavy Kerosene

Biomass Electricity Heat Geothermal

6.6

References

International Energy Agency (IEA), World Energy Balances, 2009, ESDS International, (Mimas) University of Manchester

89

EFDA (2004). EFDA World TIMES Model, Final report, prepared by ORDECSYS, KanORS, HALOA, KUL. www.efda.org

90

7 Commercial Sector 7.1

Introduction

Commercial sector base-year final energy consumption is calibrated in the residential sector Base-Year template, which has separate sheets for commercial sector IEA data, sector fuel data, end-use technology data and emissions data. There are separate sheets available for technology data for each energy-service demand. 7.2

Energy services demand

The commercial sector includes eight energy service demands for each region as presented in Table 7-1. Some segments of the commercial sector energy-services are identified using more than one code, which means that the demand can be disaggregated in four or less sub-regions. Currently, USA and CAN have four and three geographic regions, respectively, while AFR, CHI, IND, MEA and MEX each have two ‗sub-regions‘, corresponding to rural and urban areas. When no sub-regions have been defined, the codes for sub-region 1 are used by default (CH1, CH1, CC1). The energy-service demands for the future period (2005-2100) are projected using appropriate drivers and elasticity. Details of drivers and elasticities are presented in Section 2.3 and Chapter 3. Projected energy-service demands are presented in Figure 7-1. Table 7-1: Energy-services in commercial sector Energy-service

Unit

Code

Commercial Cooling

PJ

CC1, CC2, CC3, CC4

Commercial Cooking

PJ

CCK

Commercial Space Heat

PJ

CH1, CH2, CH3, CH4

Commercial Hot Water

PJ

CHW

Commercial Lighting

PJ

CLA

Energy-service

Unit

Code

Commercial Office

PJ

COE

PJ

CRF

Equipment Commercial Refrigeration

Projected energy-service demands

7

CC1 CC2 CC3

6

Index (2005=1)

CC4 5

CCK CH1

4

CH2 CH3

3

CH4 CHW

2

CLA COE

1

COT CRF

0 2000 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100

Figure 7-1: Projected energy-service demands in commercial sector 7.3

Sector fuels

The COM_Fuels sheet in the Base-Year template contains the technologies created to produce aggregated residential fuels including electricity and heat. The technologies created to produce aggregated fuels (Fuel Tech) are named uniformly using the name of the aggregated fuels as specified in the column Commodity OUT plus three zero (000 for existing technology in the base-year). Their description changes according to the fuel (e.g. Fuel Tech - Coal (RES) or Fuel Tech - Natural Gas (RES). The Base-Year template contains details of existing fuel technologies (Table 7-2) s as well as new fuel technologies (Table 7-3) for commercial sector. Commercial sector emissions factor to capture commercial sector emissions are also included in the Base-Year template.

92

93 Table 7-2: commercial sector fuel technologies-existing Tech. Name

Technology Description

Com.-IN

Com.-OUT

COMNGA000

Fuel Tech - Natural Gas Mix (COM) - Existing

GASNGA

COMNGA

GASGWG GASCOG COMDST000

Fuel Tech - Diesel (COM) - Existing

OILDST

COMDST

OILGSL OILNSP COMHFO000

Fuel Tech - Heavy Fuel Oil (COM) - Existing

OILHFO

COMHFO

OILCRD COMKER000

Fuel Tech - Kerosene (COM) - Existing

OILKER

COMKER

COMCOA000

Fuel Tech - Coal (COM) - Existing

COAHCO

COMCOA

COABCO COAOVC COMLPG000

Fuel Tech - Liquefied Petroleum Gases (COM) -

OILLPG

COMLPG

BIOBSL

COMBIO

Existing COMBIO000

Fuel Tech - Biofuels (COM) - Existing

BIOCHR BIOGAS BIOBMU BIOBIN COMGEO000

Fuel Tech - Geothermal (COM) - Existing

GEO

COMGEO

COMSOL000

Fuel Tech - Solar (COM) - Existing

SOL

COMSOL

COMELC000

Fuel Tech - Electricity (COM)

ELCC

COMELC

ELCD COMHET000

Fuel Tech - Heat (COM)

HET

COMHET

Table 7-3: Commercial sector fuel technologies-new Tech. Name

Technology Description

Com.-IN

Com.-OUT

COMNGA005

Fuel Tech - Natural Gas Mix (COM) - New

GASNGA

COMNGA

GASGWG GASCOG COMDST005

Fuel Tech - Diesel (COM) - New

OILDST

COMDST

OILGSL OILNSP COMHFO005

Fuel Tech - Heavy Fuel Oil (COM) - New

OILHFO

COMHFO

OILCRD COMKER005

93

Fuel Tech - Kerosene (COM) - New

OILKER

COMKER

Tech. Name

Technology Description

Com.-IN

Com.-OUT

COMCOA005

Fuel Tech - Coal (COM) - New

COAHCO

COMCOA

COABCO COAOVC COMLPG005

Fuel Tech - Liquefied Petroleum Gases (COM) -

OILLPG

COMLPG

BIOBSL

COMBIO

New COMBIO005

Fuel Tech - Biofuels (COM) - New

BIOCHR BIOGAS BIOBMU BIOBIN COMSOL005

Fuel Tech - Solar (COM) - New

SOL

COMSOL

COMGEO005

Fuel Tech - Geothermal (COM) - New

GEO

COMGEO

COMGEO105

Fuel Tech - Geothermal (COM) - New

GEO

COMGEO

COMGEO205

Fuel Tech - Geothermal (COM) - New

GEO

COMGEO

COMHET005

Fuel Tech - Heat (COM) - New

HET

COMHET

7.4

Technologies

There are a number of existing technologies modelled for each energy service demand in the Base-Year template for each region and sub-region. For each energy service demand, a number of technologies are in competition to satisfy the demand. They are characterized by an efficiency, an annual utilization factor, a lifetime, operation costs, and six seasonal share coefficients (summer-day, summer-night, intermediary-day, intermediary-night, winterday, winter-night). No future investment is allowed in the existing technologies. A list of new technologies are modelled in new technology sheet ―SubRes_B-NewTech‖. These technologies (listed in Table 7-4) are available after the first period (base-year) and progressively replace the existing ones as they reach the end of their technology life assumptions. In addition to parameters specified for existing technologies, new technology descriptions include information such as technology cost. Technologies are always identified with a nine-character code (e.g. CH1DST005): the first three letters refer to the end-use (e.g. CH1 for commercial space heating); the next three letters for the fuel consumed by the technology (e.g. DST for diesel). When there is more than one technology that consumes the same fuel, some variants are used to avoid repeated codes (e.g. DSA or any code beginning with D* for diesel). The last three digits for the year of the technology‘s first availability (e.g. 94

95 006 for 2006). The parameters such as cost, efficiency, etc., can improve over the years with vintages. Regional specific hurdle rates, which is used to annualised the investment cost, are used for commercial end-use technologies (Figure 7-2). 35%

Hurdle rate f or commercial sector technologies

30%

25% 20% 15%

10% 5% 0%

AFR AUS CAN CHI CSA EEU FSU IND JPN MEA MEX ODA SKO USA WEU UK

Figure 7-2: Regional specific hurdle rate for end-use technologies

95

Table 7-4: Commercial sector end-use technologies-new Tech. Name

Technology Description

Com.-IN

YEAR

LIFE

INVCOST

FIXOM

EFF

Commercial Lighting CLAFLE005

COM.LIGH: .05.ELC.FLUORESCENT.BASELINE.

COMELC

2006

15

66.737

10.010

4.5

CLAICE005

COM.LIGH: .05.ELC.INCANDESCENT.

COMELC

2006

15

7.7344

15.468

1

CLAHID005

COM.LIGH: .05.ELC.MERCURY.

COMELC

2006

15

88.393

4.9107

7

CLAHAE005

COM.LIGH: .05.ELC.HALOGEN.

COMELC

2006

15

4.3533

0.8706

2

CLACFL005

COM.LIGH: .05.ELC.FLUO.LAMP.COMPACT.

COMELC

2006

15

9.9222

2.6459

4

CLAFLA005

COM.LIGH: .05.ELC.FLUORESCENT.RAPIDSTART.

COMELC

2006

15

85.719

14.286

6

CLAFLB010

COM.LIGH: .05.ELC.FLUORESCENT.ELECTRODELESS.

COMELC

2008

15

27.623

1.3811

8

CLASUL005

COM.LIGH: .05.ELC.SULFER.

COMELC

2006

15

99.443

6.2151

7

CLAKER005

COM.LIGH: .05.KER.LAMP.

COMKER

2006

10

20

1.3888

0.5

Commercial water heating CHWELD005

COM: .05.ELC.WATER HEATER.RESISTANCE.STD.

COMELC

2006

15

18

0

0.9

CHWELC005

COM: .05.ELC.WATER HEATER.RESISTANCE.IMP.

COMELC

2006

15

21

0

0.93

2008

15

21

0

0.944

2018

15

21

0

0.958

2028

15

21

0

0.972

2038

15

21

0

0.986

2048

15

21

0

1

2006

15

45

0

1.86

2008

15

45

0

1.888

2018

15

45

0

1.916

2028

15

45

0

1.944

2038

15

45

0

1.972

CHWELA005

COM: .05.ELC.WATER HEATER.HEAT PUMP.STD.

COMELC

96

97 Tech. Name CHWELB005

Technology Description COM: .05.ELC.WATER HEATER.HEAT PUMP.ADV.

Com.-IN COMELC

YEAR

LIFE

INVCOST

FIXOM

EFF

2048

15

45

0

2

2006

15

60

0

2.5

2008

15

60

0

2.6

2018

15

60

0

2.7

2028

15

60

0

2.8

2038

15

60

0

2.9

2048

15

60

0

3

CHWDST005

COM: .05.DST.WATER HEATER.STD.

COMDST

2006

15

35

0

0.6

CHWDSA005

COM: .05.DST.WATER HEATER.IMP.

COMDST

2006

15

45

0

0.78

CHWKER005

COM: .05.KER.WATER HEATER.STD.

COMKER

2006

15

35.740

0

0.6

CHWHFO005

COM: .05.HFO.WATER HEATER.STD.

COMHFO

2006

15

35

0

0.6

CHWCOA005

COM: .05.COA.WATER HEATER.STD.

COMCOA

2006

15

60

0

0.55

CHWLPG005

COM: .05.LPG.WATER HEATER.STD.

COMLPG

2006

15

35

0

0.6

CHWNGA005

COM: .05.NGA.WATER HEATER.STD.

COMNGA

2006

15

28

0

0.86

2008

28

0

0.886

2018

28

0

0.912

2028

28

0

0.938

2038

28

0

0.964

2048

28

0

0.99

33

0

0.9

2008

33

0

0.92

2018

33

0

0.94

2028

33

0

0.96

2038

33

0

0.98

2048

33

0

1

3

0

0.95

CHWNGB005

CHWHET005 97

COM: .05.NGA.WATER HEATER.IMP.

COM: .05.HET.WATER HEATER.STD.

COMNGA

COMHET

2006

2006

15

15

Tech. Name

Technology Description

Com.-IN

YEAR

LIFE

INVCOST

FIXOM

EFF

CHWGEO005

COM: .05.GEO.WATER HEATER.STD.

COMGEO

2006

15

600

0

1

CHWSOL005

COM: .05.SOL.WATER HEATER.STD.

COMSOL

2006

15

100

0

1

2008

90

0

1

2018

80

0

1

2028

70

0

1

2038

60

0

1

2048

50

0

1

CHWSOD005

COM: .05.SOL.WATER HEATER.DST.

COMDST

2008

15

250

0

0.54

CHWBIO005

COM: .05.BIO.WATER HEATER.STD.

COMBIO

2006

20

60

0

0.5

Commercial space heating CH1ERS005

COM.HEAT.R1: .05.ELC.RESISTANCE.

COMELC

2006

20

50

0.98

CH2ERS005

COM.HEAT.R2: .05.ELC.RESISTANCE.

COMELC

2006

20

50

0.98

CH3ERS005

COM.HEAT.R3: .05.ELC.RESISTANCE.

COMELC

2006

20

50

0.98

CH4ERS005

COM.HEAT.R4: .05.ELC.RESISTANCE.

COMELC

2006

20

50

0.98

CH1EHP005

COM.HEAT.R1: .05.ELC.HEAT PUMP.AIR.STD.

COMELC

2006

15

80

2.7

2008

76.8

2.88

2018

73.6

3.06

2028

70.4

3.24

2038

67.2

3.42

2048

64

3.6

80

2.7

2008

76.8

2.88

2018

73.6

3.06

2028

70.4

3.24

2038

67.2

3.42

2048

64

3.6

CH2EHP005

COM.HEAT.R2: .05.ELC.HEAT PUMP.AIR.STD.

COMELC

2006

15

98

99 Tech. Name

Technology Description

Com.-IN

YEAR

LIFE

INVCOST

CH3EHP005

COM.HEAT.R3: .05.ELC.HEAT PUMP.AIR.STD.

COMELC

2006

15

80

2.7

2008

76.8

2.88

2018

73.6

3.06

2028

70.4

3.24

2038

67.2

3.42

2048

64

3.6

80

2.7

2008

76.8

2.88

2018

73.6

3.06

2028

70.4

3.24

2038

67.2

3.42

2048

64

3.6

85

3

2008

81.6

3.24

2018

78.2

3.48

2028

74.8

3.72

2038

71.4

3.96

2048

68

4.2

85

3

2008

81.6

3.24

2018

78.2

3.48

2028

74.8

3.72

2038

71.4

3.96

2048

68

4.2

85

3

81.6

3.24

CH4EHP005

CH1ELB005

CH2ELB005

CH3ELB005

COM.HEAT.R4: .05.ELC.HEAT PUMP.AIR.STD.

COM.HEAT.R1: .05.ELC.HEAT PUMP.AIR.IMP.

COM.HEAT.R2: .05.ELC.HEAT PUMP.AIR.IMP.

COM.HEAT.R3: .05.ELC.HEAT PUMP.AIR.IMP.

COMELC

COMELC

COMELC

COMELC

2006

2006

2006

2006 2008

99

15

15

15

15

FIXOM

EFF

Tech. Name

CH4ELB005

CH1ELD005

CH2ELD005

CH3ELD005

Technology Description

COM.HEAT.R4: .05.ELC.HEAT PUMP.AIR.IMP.

COM.HEAT.R1: .05.GEO.HEAT PUMP.GROUND.IMP.

COM.HEAT.R2: .05.GEO.HEAT PUMP.GROUND.IMP.

COM.HEAT.R3: .05.GEO.HEAT PUMP.GROUND.IMP.

Com.-IN

COMELC

COMELC

COMELC

COMELC

YEAR

LIFE

INVCOST

FIXOM

EFF

2018

78.2

3.48

2028

74.8

3.72

2038

71.4

3.96

2048

68

4.2

85

3

2008

81.6

3.24

2018

78.2

3.48

2028

74.8

3.72

2038

71.4

3.96

2048

68

4.2

90

4.1

2008

86.4

4.48

2018

82.8

4.86

2028

79.2

5.24

2038

75.6

5.62

2048

72

6

90

4.1

2008

86.4

4.48

2018

82.8

4.86

2028

79.2

5.24

2038

75.6

5.62

2048

72

6

90

4.1

2008

86.4

4.48

2018

82.8

4.86

2028

79.2

5.24

2006

2006

2006

2006

15

15

15

15

100

101 Tech. Name

CH4ELD005

CH1ELE010

CH2ELE010

CH3ELE010

CH4ELE010

101

Technology Description

COM.HEAT.R4: .05.GEO.HEAT PUMP.GROUND.IMP.

COM.HEAT.R1: .10.GEO.HEAT PUMP.GROUND.ADV.

COM.HEAT.R2: .10.GEO.HEAT PUMP.GROUND.ADV.

COM.HEAT.R3: .10.GEO.HEAT PUMP.GROUND.ADV.

COM.HEAT.R4: .10.GEO.HEAT PUMP.GROUND.ADV.

Com.-IN

COMELC

COMELC

COMEL

COMELC

COMELC

YEAR

LIFE

INVCOST

FIXOM

EFF

2038

75.6

5.62

2048

72

6

90

4.1

2008

86.4

4.48

2018

82.8

4.86

2028

79.2

5.24

2038

75.6

5.62

2048

72

6

95

5

2018

90.25

5.5

2028

85.5

6

2038

80.75

6.5

2048

76

7

95

5

2018

90.25

5.5

2028

85.5

6

2038

80.75

6.5

2048

76

7

95

5

2018

90.25

5.5

2028

85.5

6

2038

80.75

6.5

2048

76

7

95

5

2018

90.25

5.5

2028

85.5

6

2006

2008

2008

2008

2008

15

20

20

20

20

Tech. Name

CH1DSB010

CH2DSB010

CH3DSB010

CH4DSB010

CH1DSA005

Technology Description

COM.HEAT.R1: .10.DST.BURNER.ADV.

COM.HEAT.R2: .10.DST.BURNER.ADV.

COM.HEAT.R3: .10.DST.BURNER.ADV.

COM.HEAT.R4: .10.DST.BURNER.ADV.

COM.HEAT.R1: .05.DST.BURNER.NEW.

Com.-IN

COMDST

COMDST

COMDST

COMDST

COMDST

YEAR

LIFE

INVCOST

FIXOM

EFF

2038

80.75

6.5

2048

76

7

105

0.92

2018

99.75

0.935

2028

94.5

0.95

2038

89.25

0.965

2048

84

0.98

105

0.92

2018

99.75

0.935

2028

94.5

0.95

2038

89.25

0.965

2048

84

0.98

105

0.92

2018

99.75

0.935

2028

94.5

0.95

2038

89.25

0.965

2048

84

0.98

105

0.92

2018

99.75

0.935

2028

94.5

0.95

2038

89.25

0.965

2048

84

0.98

90

0.85

2008

89.1

0.868

2018

88.2

0.886

2028

87.3

0.904

2008

2008

2008

2008

2006

20

20

20

20

20

102

103 Tech. Name

CH2DSA005

CH3DSA005

CH4DSA005

CH1DST005

103

Technology Description

COM.HEAT.R2: .05.DST.BURNER.NEW.

COM.HEAT.R3: .05.DST.BURNER.NEW.

COM.HEAT.R4: .05.DST.BURNER.NEW.

COM.HEAT.R1: .05.DST.BURNER.STD.

Com.-IN

COMDST

COMDST

COMDST

COMDST

YEAR

LIFE

INVCOST

FIXOM

EFF

2038

86.4

0.922

2048

85.5

0.94

90

0.85

2008

89.1

0.868

2018

88.2

0.886

2028

87.3

0.904

2038

86.4

0.922

2048

85.5

0.94

90

0.85

2008

89.1

0.868

2018

88.2

0.886

2028

87.3

0.904

2038

86.4

0.922

2048

85.5

0.94

90

0.85

2008

89.1

0.868

2018

88.2

0.886

2028

87.3

0.904

2038

86.4

0.922

2048

85.5

0.94

80

0.78

2008

79.2

0.81

2018

78.4

0.84

2028

77.6

0.87

2038

76.8

0.9

2048

76

0.93

2006

2006

2006

2006

20

20

20

20

Tech. Name

Technology Description

Com.-IN

YEAR

LIFE

INVCOST

CH2DST005

COM.HEAT.R2: .05.DST.BURNER.STD.

COMDST

2006

20

80

0.78

2008

79.2

0.81

2018

78.4

0.84

2028

77.6

0.87

2038

76.8

0.9

2048

76

0.93

80

0.78

2008

79.2

0.81

2018

78.4

0.84

2028

77.6

0.87

2038

76.8

0.9

2048

76

0.93

80

0.78

2008

79.2

0.81

2018

78.4

0.84

2028

77.6

0.87

2038

76.8

0.9

2048

76

0.93

100

0.89

2008

99

0.904

2018

98

0.918

2028

97

0.932

2038

96

0.946

2048

95

0.96

100

0.89

99

0.904

CH3DST005

CH4DST005

CH1DSD005

CH2DSD005

COM.HEAT.R3: .05.DST.BURNER.STD.

COM.HEAT.R4: .05.DST.BURNER.STD.

COM.HEAT.R1: .05.DST.BURNER.IMP.

COM.HEAT.R2: .05.DST.BURNER.IMP.

COMDST

COMDST

COMDST

COMDST

2006

2006

2006

2006 2008

20

20

20

20

FIXOM

EFF

104

105 Tech. Name

CH3DSD005

CH4DSD005

CH1LPG005

CH2LPG005

105

Technology Description

COM.HEAT.R3: .05.DST.BURNER.IMP.

COM.HEAT.R4: .05.DST.BURNER.IMP.

COM.HEAT.R1: .05.LPG.

COM.HEAT.R2: .05.LPG.

Com.-IN

COMDST

COMDST

COMLPG

COMLPG

YEAR

LIFE

INVCOST

FIXOM

EFF

2018

98

0.918

2028

97

0.932

2038

96

0.946

2048

95

0.96

100

0.89

2008

99

0.904

2018

98

0.918

2028

97

0.932

2038

96

0.946

2048

95

0.96

100

0.89

2008

99

0.904

2018

98

0.918

2028

97

0.932

2038

96

0.946

2048

95

0.96

80

0.78

2008

79.2

0.81

2018

78.4

0.84

2028

77.6

0.87

2038

76.8

0.9

2048

76

0.93

80

0.78

2008

79.2

0.81

2018

78.4

0.84

2028

77.6

0.87

2006

2006

2006

2006

20

20

20

20

Tech. Name

CH3LPG005

CH4LPG005

CH1KER005

CH2KER005

Technology Description

COM.HEAT.R3: .05.LPG.

COM.HEAT.R4: .05.LPG.

COM.HEAT.R1: .05.KER.

COM.HEAT.R2: .05.KER.

Com.-IN

COMLPG

COMLPG

COMKER

COMKER

YEAR

LIFE

INVCOST

FIXOM

EFF

2038

76.8

0.9

2048

76

0.93

80

0.78

2008

79.2

0.81

2018

78.4

0.84

2028

77.6

0.87

2038

76.8

0.9

2048

76

0.93

80

0.78

2008

79.2

0.81

2018

78.4

0.84

2028

77.6

0.87

2038

76.8

0.9

2048

76

0.93

80

0.78

2008

79.2

0.81

2018

78.4

0.84

2028

77.6

0.87

2038

76.8

0.9

2048

76

0.93

80

0.78

2008

79.2

0.81

2018

78.4

0.84

2028

77.6

0.87

2038

76.8

0.9

2048

76

0.93

2006

2006

2006

2006

20

20

20

20

106

107 Tech. Name

Technology Description

Com.-IN

YEAR

LIFE

INVCOST

CH3KER005

COM.HEAT.R3: .05.KER.

COMKER

2006

20

80

0.78

2008

79.2

0.81

2018

78.4

0.84

2028

77.6

0.87

2038

76.8

0.9

2048

76

0.93

80

0.78

2008

79.2

0.81

2018

78.4

0.84

2028

77.6

0.87

2038

76.8

0.9

2048

76

0.93

80

0.78

2008

79.2

0.81

2018

78.4

0.84

2028

77.6

0.87

2038

76.8

0.9

2048

76

0.93

80

0.78

2010

79.2

0.81

2020

78.4

0.84

2030

77.6

0.87

2040

76.8

0.9

2050

76

0.93

80

0.78

79.2

0.81

CH4KER005

CH1HFO005

CH2HFO005

CH3HFO005

COM.HEAT.R4: .05.KER.

COM.HEAT.R1: .05.HFO.BOILER.STD.

COM.HEAT.R2: .05.HFO.BOILER.STD.

COM.HEAT.R3: .05.HFO.BOILER.STD.

COMKER

COMHFO

COMHFO

COMHFO

2006

2006

2006

2006 2008

107

20

20

20

20

FIXOM

EFF

Tech. Name

CH4HFO005

CH1HFA005

CH2HFA005

CH3HFA005

CH4HFA005

Technology Description

COM.HEAT.R4: .05.HFO.BOILER.STD.

COM.HEAT.R1: .05.HFO.BURNER.ADV.

COM.HEAT.R2: .05.HFO.BURNER.ADV.

COM.HEAT.R3: .05.HFO.BURNER.ADV.

COM.HEAT.R4: .05.HFO.BURNER.ADV.

Com.-IN

COMHFO

COMHFO

COMHFO

COMHFO

COMHFO

YEAR

LIFE

INVCOST

FIXOM

EFF

2018

78.4

0.84

2028

77.6

0.87

2038

76.8

0.9

2048

76

0.93

80

0.78

2008

79.2

0.81

2018

78.4

0.84

2028

77.6

0.87

2038

76.8

0.9

2048

76

0.93

105

0.92

2008

99.75

0.935

2018

94.5

0.95

2028

89.25

0.965

2038

84

0.98

105

0.92

2018

99.75

0.935

2028

94.5

0.95

2038

89.25

0.965

2048

84

0.98

105

0.92

2018

99.75

0.935

2028

94.5

0.95

2038

89.25

0.965

2048

84

0.98

105

0.92

2006

2006

2008

2008

2008

20

20

20

20

20

108

109 Tech. Name

CH1HFB005

CH2HFB005

CH3HFB005

CH4HFB005

109

Technology Description

COM.HEAT.R1: .05.HFO.BURNER.IMP.

COM.HEAT.R2: .05.HFO.BURNER.IMP.

COM.HEAT.R3: .05.HFO.BURNER.IMP.

COM.HEAT.R4: .05.HFO.BURNER.IMP.

Com.-IN

COMHFO

COMHFO

COMHFO

COMHFO

YEAR

LIFE

INVCOST

FIXOM

EFF

2018

99.75

0.935

2028

94.5

0.95

2038

89.25

0.965

2048

84

0.98

100

0.89

2008

99

0.904

2018

98

0.918

2028

97

0.932

2038

96

0.946

2048

95

0.96

100

0.89

2008

99

0.904

2018

98

0.918

2028

97

0.932

2038

96

0.946

2048

95

0.96

100

0.89

2008

99

0.904

2018

98

0.918

2028

97

0.932

2038

96

0.946

2048

95

0.96

100

0.89

2008

99

0.904

2018

98

0.918

2028

97

0.932

2006

2006

2006

2006

20

20

20

20

Tech. Name

CH1NGB005

CH2NGB005

CH3NGB005

CH4NGB005

Technology Description

COM.HEAT.R1: .05.NGA.BURNER.IMP.

COM.HEAT.R2: .05.NGA.BURNER.IMP.

COM.HEAT.R3: .05.NGA.BURNER.IMP.

COM.HEAT.R4: .05.NGA.BURNER.IMP.

Com.-IN

COMNGA

COMNGA

COMNGA

COMNGA

YEAR

LIFE

INVCOST

FIXOM

EFF

2038

96

0.946

2048

95

0.96

70

0.88

2008

69.3

0.902

2018

68.6

0.924

2028

67.9

0.946

2038

67.2

0.968

2048

66.5

0.99

70

0.88

2008

69.3

0.902

2018

68.6

0.924

2028

67.9

0.946

2038

67.2

0.968

2048

66.5

0.99

70

0.88

2008

69.3

0.902

2018

68.6

0.924

2028

67.9

0.946

2038

67.2

0.968

2048

66.5

0.99

70

0.88

2008

69.3

0.902

2018

68.6

0.924

2028

67.9

0.946

2038

67.2

0.968

2048

66.5

0.99

2006

2006

2006

2006

20

20

20

20

110

111 Tech. Name

Technology Description

Com.-IN

YEAR

LIFE

INVCOST

CH1NGA005

COM.HEAT.R1: .05.NGA.BURNER.STD.

COMNGA

2006

20

60

0.8

2008

59.4

0.834

2018

58.8

0.868

2028

58.2

0.902

2038

57.6

0.936

2048

57

0.97

60

0.8

2008

59.4

0.834

2018

58.8

0.868

2028

58.2

0.902

2038

57.6

0.936

2048

57

0.97

60

0.8

2008

59.4

0.834

2018

58.8

0.868

2028

58.2

0.902

2038

57.6

0.936

2048

57

0.97

60

0.8

2008

59.4

0.834

2018

58.8

0.868

2028

58.2

0.902

2038

57.6

0.936

2048

57

0.97

80

0.963

79.2

0.974

CH2NGA005

CH3NGA005

CH4NGA005

CH1NGC005

COM.HEAT.R2: .05.NGA.BURNER.STD.

COM.HEAT.R3: .05.NGA.BURNER.STD.

COM.HEAT.R4: .05.NGA.BURNER.STD.

COM.HEAT.R1: .05.NGA.BURNER.ADV.

COMNGA

COMNGA

COMNGA

COMNGA

2006

2006

2006

2006 2008

111

20

20

20

20

FIXOM

EFF

Tech. Name

CH2NGC005

CH3NGC005

CH4NGC005

Technology Description

COM.HEAT.R2: .05.NGA.BURNER.ADV.

COM.HEAT.R3: .05.NGA.BURNER.ADV.

COM.HEAT.R4: .05.NGA.BURNER.ADV.

Com.-IN

COMNGA

COMNGA

COMNGA

YEAR

LIFE

INVCOST

FIXOM

EFF

2018

78.4

0.985

2028

77.6

0.997

2038

76.8

1.008

2048

76

1.02

80

0.963

2008

79.2

0.974

2018

78.4

0.985

2028

77.6

0.997

2038

76.8

1.008

2048

76

1.02

80

0.963

2008

79.2

0.974

2018

78.4

0.985

2028

77.6

0.997

2038

76.8

1.008

2048

76

1.02

80

0.963

2008

79.2

0.974

2018

78.4

0.985

2028

77.6

0.997

2038

76.8

1.008

2048

76

1.02

2006

2006

2006

20

20

20

CH1HET005

COM.HEAT.R1: .05.HET.EXCHANGER.

COMHET

2006

20

20

40.908

0.93

CH2HET005

COM.HEAT.R2: .05.HET.EXCHANGER.

COMHET

2006

20

20

40.908

0.93

CH3HET005

COM.HEAT.R3: .05.HET.EXCHANGER.

COMHET

2006

20

20

40.908

0.93

CH4HET005

COM.HEAT.R4: .05.HET.EXCHANGER.

COMHET

2006

20

20

40.908

0.93 112

113 Tech. Name

Technology Description

Com.-IN

YEAR

LIFE

INVCOST

FIXOM

EFF

CH1DSO005

COM.HEAT.R1: .05.DST.SOLAR.

COMDST

2006

20

900

0.72

CH2DSO005

COM.HEAT.R2: .05.DST.SOLAR.

COMDST

2006

20

900

0.72

CH3DSO005

COM.HEAT.R3: .05.DST.SOLAR.

COMDST

2006

20

900

0.72

CH4DSO005

COM.HEAT.R4: .05.DST.SOLAR.

COMDST

2006

20

900

0.72

CH1COA005

COM.HEAT.R1: .05.COA.BURNER.

COMCOA

2006

20

100

0.6

CH2COA005

COM.HEAT.R2: .05.COA.BURNER.

COMCOA

2006

20

100

0.6

CH3COA005

COM.HEAT.R3: .05.COA.BURNER.

COMCOA

2006

20

100

0.6

CH4COA005

COM.HEAT.R4: .05.COA.BURNER.

COMCOA

2006

20

100

0.6

CH1BIO005

COM.HEAT.R1: .05.BIO.BURNER.

COMBIO

2006

20

100

0.6

CH2BIO005

COM.HEAT.R2: .05.BIO.BURNER.

COMBIO

2006

20

100

0.6

CH3BIO005

COM.HEAT.R3: .05.BIO.BURNER.

COMBIO

2006

20

100

0.6

CH4BIO005

COM.HEAT.R4: .05.BIO.BURNER.

COMBIO

2006

20

100

0.6

CH1GEO005

COM.HEAT.R1: .05.GEO.EXCHANGER.

COMGEO

2006

30

2800

0.75

CH2GEO005

COM.HEAT.R2: .05.GEO.EXCHANGER.

COMGEO

2006

30

2800

0.75

CH3GEO005

COM.HEAT.R3: .05.GEO.EXCHANGER.

COMGEO

2006

30

2800

0.75

CH4GEO005

COM.HEAT.R4: .05.GEO.EXCHANGER.

COMGEO

2006

30

2800

0.75

CH1NHP005

COM.HEAT.R1: .05.NGA.HEAT PUMP.STD.

COMNGA

2006

20

125.53

2

CH2NHP005

COM.HEAT.R2: .05.NGA.HEAT PUMP.STD.

COMNGA

2006

20

125.53

2

CH3NHP005

COM.HEAT.R3: .05.NGA.HEAT PUMP.STD.

COMNGA

2006

20

125.53

2

CH4NHP005

COM.HEAT.R4: .05.NGA.HEAT PUMP.STD.

COMNGA

2006

20

125.53

2

Commercial space cooling CC1ELC005

COM.COOL.R1: .05.ELC.CHILLER.ROOFTOP.STD.

COMELC

2006

15

80.857

4.8226

3.1

CC2ELC005

COM.COOL.R2: .05.ELC.CHILLER.ROOFTOP.STD.

COMELC

2006

15

80.857

4.8226

3.1

CC3ELC005

COM.COOL.R3: .05.ELC.CHILLER.ROOFTOP.STD.

COMELC

2006

15

80.857

4.8226

3.1

CC4ELC005

COM.COOL.R4: .05.ELC.CHILLER.ROOFTOP.STD.

COMELC

2006

15

80.857

4.8226

3.1

CC1ELA005

COM.COOL.R1: .05.ELC.HEAT PUMP.AIR.STD.

COMELC

2006

15

154.21

7.7105

2.9

113

Tech. Name

Technology Description

Com.-IN

YEAR

LIFE

INVCOST

FIXOM

EFF

CC2ELA005

COM.COOL.R2: .05.ELC.HEAT PUMP.AIR.STD.

COMELC

2006

15

154.21

7.7105

2.9

CC3ELA005

COM.COOL.R3: .05.ELC.HEAT PUMP.AIR.STD.

COMELC

2006

15

154.21

7.7105

2.9

CC4ELA005

COM.COOL.R4: .05.ELC.HEAT PUMP.AIR.STD.

COMELC

2006

15

154.21

7.7105

2.9

CC1ELB005

COM.COOL.R1: .05.ELC.HEAT PUMP.AIR.IMP.

COMELC

2006

15

246.81

9.8726

5.28

CC2ELB005

COM.COOL.R2: .05.ELC.HEAT PUMP.AIR.IMP.

COMELC

2006

15

246.81

9.8726

5.28

CC3ELB005

COM.COOL.R3: .05.ELC.HEAT PUMP.AIR.IMP.

COMELC

2006

15

246.81

9.8726

5.28

CC4ELB005

COM.COOL.R4: .05.ELC.HEAT PUMP.AIR.IMP.

COMELC

2006

15

246.81

9.8726

5.28

CC1ELD005

COM.COOL.R1: .05.GEO.HEAT PUMP.GROUND.IMP.

COMELC

2006

15

296.18

9.8726

3.96

CC2ELD005

COM.COOL.R2: .05.GEO.HEAT PUMP.GROUND.IMP.

COMELC

2006

15

296.18

9.8726

3.96

CC3ELD005

COM.COOL.R3: .05.GEO.HEAT PUMP.GROUND.IMP.

COMELC

2006

15

296.18

9.8726

3.96

CC4ELD005

COM.COOL.R4: .05.GEO.HEAT PUMP.GROUND.IMP.

COMELC

2006

15

296.18

9.8726

3.96

CC1ELE010

COM.COOL.R1: .10.GEO.HEAT PUMP.GROUND.ADV.

COMELC

2008

15

296.18

8.4623

6.15

CC2ELE010

COM.COOL.R2: .10.GEO.HEAT PUMP.GROUND.ADV.

COMELC

2008

15

296.18

8.4623

6.15

CC3ELE010

COM.COOL.R3: .10.GEO.HEAT PUMP.GROUND.ADV.

COMELC

2008

15

296.18

8.4623

6.15

CC4ELE010

COM.COOL.R4: .10.GEO.HEAT PUMP.GROUND.ADV.

COMELC

2008

15

296.18

8.4623

6.15

CC1ELF005

COM.COOL.R1: .05.ELC.CHILLER.ROOFTOP.NEW.

COMELC

2006

20

76.217

3.6722

3.4

CC2ELF005

COM.COOL.R2: .05.ELC.CHILLER.ROOFTOP.NEW.

COMELC

2006

20

76.217

3.6722

3.4

CC3ELF005

COM.COOL.R3: .05.ELC.CHILLER.ROOFTOP.NEW.

COMELC

2006

20

76.217

3.6722

3.4

CC4ELF005

COM.COOL.R4: .05.ELC.CHILLER.ROOFTOP.NEW.

COMELC

2006

20

76.217

3.6722

3.4

CC1ELG005

COM.COOL.R1: .05.ELC.CHILLER.RECIPROCATING.NEW.

COMELC

2006

20

147.00

2.4877

3.6

CC2ELG005

COM.COOL.R2: .05.ELC.CHILLER.RECIPROCATING.NEW.

COMELC

2006

20

147.00

2.4877

3.6

CC3ELG005

COM.COOL.R3: .05.ELC.CHILLER.RECIPROCATING.NEW.

COMELC

2006

20

147.00

2.4877

3.6

CC4ELG005

COM.COOL.R4: .05.ELC.CHILLER.RECIPROCATING.NEW.

COMELC

2006

20

147.00

2.4877

3.6

CC1ELH005

COM.COOL.R1: .10.ELC.CHILLER.RECIPROCATING.IMP.

COMELC

2008

20

167.83

2.4615

3.8

CC2ELH005

COM.COOL.R2: .10.ELC.CHILLER.RECIPROCATING.IMP.

COMELC

2008

20

167.83

2.4615

3.8

CC3ELH005

COM.COOL.R3: .10.ELC.CHILLER.RECIPROCATING.IMP.

COMELC

2008

20

167.83

2.4615

3.8 114

115 Tech. Name

Technology Description

Com.-IN

YEAR

LIFE

INVCOST

FIXOM

EFF

CC4ELH005

COM.COOL.R4: .10.ELC.CHILLER.RECIPROCATING.IMP.

COMELC

2008

20

167.83

2.4615

3.8

CC1ELI005

COM.COOL.R1: .05.ELC.CHILLER.CENTRIFUGAL.NEW.

COMELC

2006

20

97.056

0.8237

6.4

CC2ELI005

COM.COOL.R2: .05.ELC.CHILLER.CENTRIFUGAL.NEW.

COMELC

2006

20

97.056

0.8237

6.4

CC3ELI005

COM.COOL.R3: .05.ELC.CHILLER.CENTRIFUGAL.NEW.

COMELC

2006

20

97.056

0.8237

6.4

CC4ELI005

COM.COOL.R4: .05.ELC.CHILLER.CENTRIFUGAL.NEW.

COMELC

2006

20

97.056

0.8237

6.4

CC1ELJ005

COM.COOL.R1: .15.ELC.CHILLER.CENTRIFUGAL.IMP.

COMELC

2013

20

107.08

0.8262

7.3

CC2ELJ005

COM.COOL.R2: .15.ELC.CHILLER.CENTRIFUGAL.IMP.

COMELC

2013

20

107.08

0.8262

7.3

CC3ELJ005

COM.COOL.R3: .15.ELC.CHILLER.CENTRIFUGAL.IMP.

COMELC

2013

20

107.08

0.8262

7.3

CC4ELJ005

COM.COOL.R4: .15.ELC.CHILLER.CENTRIFUGAL.IMP.

COMELC

2013

20

107.08

0.8262

7.3

CC1DST015

COM.COOL.R1: .15.DST.CHILLER.

COMDST

2013

20

180.74

2.5422

0.75

CC2DST015

COM.COOL.R2: .15.DST.CHILLER.

COMDST

2013

20

180.74

2.5422

0.75

CC3DST015

COM.COOL.R3: .15.DST.CHILLER.

COMDST

2013

20

180.74

2.5422

0.75

CC4DST015

COM.COOL.R4: .15.DST.CHILLER.

COMDST

2013

20

180.74

2.5422

0.75

CC1NGA005

COM.COOL.R1: .05.NGA.CHILLER.ABSORPTION.

COMNGA

2006

20

180.74

1.2200

1

CC2NGA005

COM.COOL.R2: .05.NGA.CHILLER.ABSORPTION.

COMNGA

2006

20

180.74

1.2200

1

CC3NGA005

COM.COOL.R3: .05.NGA.CHILLER.ABSORPTION.

COMNGA

2006

20

180.74

1.2200

1

CC4NGA005

COM.COOL.R4: .05.NGA.CHILLER.ABSORPTION.

COMNGA

2006

20

180.74

1.2200

1

CC1NGB005

COM.COOL.R1: .05.NGA.CHILLER.ENGINE.STD.

COMNGA

2006

20

273.39

2.3694

2

CC2NGB005

COM.COOL.R2: .05.NGA.CHILLER.ENGINE.STD.

COMNGA

2006

20

273.39

2.3694

2

CC3NGB005

COM.COOL.R3: .05.NGA.CHILLER.ENGINE.STD.

COMNGA

2006

20

273.39

2.3694

2

CC4NGB005

COM.COOL.R4: .05.NGA.CHILLER.ENGINE.STD.

COMNGA

2008

20

273.39

2.3694

2

CC1NGC005

COM.COOL.R1: .10.NGA.CHILLER.ENGINE.IMP.

COMNGA

2008

20

303.77

2.3933

2.2

CC2NGC005

COM.COOL.R2: .10.NGA.CHILLER.ENGINE.IMP.

COMNGA

2008

20

303.77

2.3933

2.2

CC3NGC005

COM.COOL.R3: .10.NGA.CHILLER.ENGINE.IMP.

COMNGA

2008

20

303.77

2.3933

2.2

CC4NGC005

COM.COOL.R4: .10.NGA.CHILLER.ENGINE.IMP.

COMNGA

2008

20

303.77

2.3933

2.2

CC1GEO005

COM.COOL.R1: .05.GEO.HEAT PUMP.IMP.

COMGEO

2006

15

350

2.7777

4.2

115

Tech. Name

Technology Description

Com.-IN

YEAR

LIFE

INVCOST

FIXOM

EFF

CC2GEO005

COM.COOL.R2: .05.GEO.HEAT PUMP.IMP.

COMGEO

2006

15

350

2.7777

4.2

CC3GEO005

COM.COOL.R3: .05.GEO.HEAT PUMP.IMP.

COMGEO

2006

15

350

2.7777

4.2

CC4GEO005

COM.COOL.R4: .05.GEO.HEAT PUMP.IMP.

COMGEO

2006

15

350

2.7777

4.2

CC1ELK005

COM.COOL.R1: .05.ELC.CENTRAL.

COMELC

2006

15

200

2.0169

2.93

CC2ELK005

COM.COOL.R2: .05.ELC.CENTRAL.

COMELC

2006

15

200

2.0169

2.93

CC3ELK005

COM.COOL.R3: .05.ELC.CENTRAL.

COMELC

2006

15

200

2.0169

2.93

CC4ELK005

COM.COOL.R4: .05.ELC.CENTRAL.

COMELC

2006

15

200

2.0169

2.93

CC1ELR005

COM.COOL.R1: .05.ELC.ROOM.

COMELC

2006

15

250

2.2055

3.43

CC2ELR005

COM.COOL.R2: .05.ELC.ROOM.

COMELC

2006

15

250

2.2055

3.43

CC3ELR005

COM.COOL.R3: .05.ELC.ROOM.

COMELC

2006

15

250

2.2055

3.43

CC4ELR005

COM.COOL.R4: .05.ELC.ROOM.

COMELC

2006

15

250

2.2055

3.43

CC1DST005

COM.COOL.R1: .05.DST.CHILLER.

COMDST

2006

20

300

3.5162

0.7

CC2DST005

COM.COOL.R2: .05.DST.CHILLER.

COMDST

2006

20

300

3.5162

0.7

CC3DST005

COM.COOL.R3: .05.DST.CHILLER.

COMDST

2006

20

300

3.5162

0.7

CC4DST005

COM.COOL.R4: .05.DST.CHILLER.

COMDST

2006

20

300

3.5162

0.7

CCKNGA005

COM: .05.NGA.COOKING.

COMNGA

2006

15

190

2.7777

0.8

CCKKER005

COM: .05.KER.COOKING.

COMKER

2006

15

200

3.3333

0.55

CCKLPG005

COM: .05.LPG.COOKING.

COMLPG

2006

15

200

3.5

0.8

CCKDST005

COM: .05.DST.COOKING.

COMDST

2006

15

200

3.5

0.55

CCKCOA005

COM: .05.COA.COOKING.

COMCOA

2006

15

220

3.8888

0.2

CCKELC005

COM: .05.ELC.COOKING.

COMELC

2006

15

180

2.2222

0.7

CCKSOL005

COM: .05.SOL.COOKING.

COMSOL

2006

15

180

2.2222

1

CCKBIO005

COM: .05.BIO.COOKING.

COMBIO

2006

17

200

4.1666

0.17

2006

10

0.4

4.1111

1

Commercial Electric Office Equipment COEELC005

COM: .05.ELC.EQUIPMENT.MISCELLANEOUS.

COMELC

Commercial Other 116

117 Tech. Name

Technology Description

Com.-IN

YEAR

LIFE

INVCOST

FIXOM

EFF

COTELC005

COM: .05.ELC.EQUIPMENT.OTHERS.

COMELC

2006

10

0.5

4.1666

1

COTDST005

COM: .05.DST.EQUIPMENT.OTHERS.

COMDST

2006

10

0.5

4.1666

1

COTNGA005

COM: .05.NGA.EQUIPMENT.OTHERS.

COMNGA

2006

10

0.5

4.1666

1

2006

15

0.6

3.6666

1

Commercial Refrigeration CRFELC005

117

COM: .05.ELC.REFRIGERATORS.

COMELC

7.5

Base-year calibration

Since IEA energy balance provides data on commercial sector energy consumption by fuel type at an aggregated level, there is a need to assign fuel consumption to different energyservices. Table 7-5 presents commercial sector final energy consumption by energyservices and fuels. Similar tables have been generated for each region for the base-year calibration. Actually, IEA Energy balance provides more detailed data by having larger number of fuels than listed in the Table 7-5. The fuels are aggregated into 11 categories and aggregation is the same as presented in Table 7-2, which defines the sector fuel technologies.

Total

Other

Commercial

Equipment

Electric Office

Refrigeration

Cooking

Lighting

Water Heating

Space Heating

Space Cooling

Table 7-5: Base-year commercial sector final energy consumption (PJ)

Natural Gas

661

0

1322

0

4628

0

0

0

6611

Distillate

957

0

2234

0

0

0

0

0

3191

Heavy Oil

476

0

0

0

0

0

0

0

476

Kerosene

0

0

0

596

31

0

0

0

627

140

0

280

0

280

0

0

0

700

LPG

59

0

117

0

410

0

0

0

586

Biomass

61

0

122

0

429

0

0

0

612

129

386

643

5915

643

1929

3214

0

12858

1180

0

0

0

0

0

0

0

1180

33

0

0

0

0

0

0

0

33

Solar

0

0

9

0

0

0

0

0

9

Total

3695

386

4727

6510

6421

1929

3214

0

26882

Coal-Commercial

Electricity Heat Geothermal

7.6

References

International Energy Agency (IEA), World Energy Balances, 2009, ESDS International, (Mimas) University of Manchester EFDA (2004). EFDA World TIMES Model, Final report, prepared by ORDECSYS, KanORS, HALOA, KUL. www.efda.org

118

8 Agriculture Sector 8.1

Introduction

Agriculture sector base-year calibration is modelled in the residential sector Base-Year template along with the commercial sector. There are separate sheets for IEA data, sector fuel data and emission factors. Agriculture sector is modelled with single energy-service and the energy-service demand can be met by different fuels, mix of which is fixed. There is no technology choice and fuel choice allowed in agriculture sector and no new technology sheets available. Agriculture sector is poorly modelled in TIAM-UCL. Note that the agricultural sector only covers energy use in the agricultural sector. 8.2

Energy services demand

Agriculture sector energy-service demand (single segment) is projected using the driver ‗agricultural sector output‘ for each region. Figure 8-1 presents the projected energyservice demand by region. Note that there are no new technologies associated with the generic demand (AGR: Agriculture). In this sector, it is assumed that increases in agricultural output result in proportionate increases in fuel input.

30

Projected energy-service demand

AFR AUS

25

CAN CHI CSA

Index (2005=1)

20

EEU FSU

15

IND JPN MEA

10

MEX ODA

5

SKO UK USA

0 2000

2010

2020

2030

2040

2050

2060

2070

2080

2090

WEU

2100

Figure 8-1: Agriculture energy –service demand projection by region 8.3

Sector fuels

Sectoral fuel technologies are modelled in the sheet AGR_Fuels in the residential Base-Year template as shown in Table 8-1. The fuels are aggregated into 12 categories consumed in the agriculture sector. Aggregation ratios are based on data provided by the IEA database. The technologies created to produce aggregated fuels (Fuel Tech) are named uniformly using the name of the aggregated fuels as specified in the column Commodity OUT plus three zero (000 for existing technology in the base-year). Their description changes according to the fuel (e.g. Fuel Tech - Coal (AGR) or Fuel Tech - Natural Gas (AGR). The fractional shares of the disaggregated fuels (Commodity IN) used to produce an aggregated fuel (Commodity OUT) are calculated from their consumption over the total for this category, as given in the IEA database. Table 8-1: Agriculture sector fuel technologies-existing Tech. Name

Technology Description

AGRNGA000

Fuel Tech - Natural Gas Mix (AGR)

Com.-IN

Com.-OUT

GASNGA

AGRNGA

GASGWG GASCOG AGRNGA111

Fuel Tech - Natural Gas (AGR)

GASNGA

AGRNGA

120

121 Tech. Name

Technology Description

Com.-IN

Com.-OUT

AGRDST000

Fuel Tech - Diesel (AGR)

OILDST

AGRDST

OILNSP AGRGSL000

Fuel Tech - Gasoline (AGR)

OILGSL

AGRGSL

AGRHFO000

Fuel Tech - Heavy Fuel Oil (AGR)

OILHFO

AGRHFO

OILCRD AGRKER000

Fuel Tech - Kerosene (AGR)

OILKER

AGRKER

AGRCOA000

Fuel Tech - Coal (AGR)

COAHCO

AGRCOA

COABCO COAOVC AGRLPG000

Fuel Tech - Liquified Petroleum Gases (AGR)

AGRBIO000

Fuel Tech - Biofuels (AGR)

OILLPG

AGRLPG

BIOBSL

AGRBIO

BIOCHR BIOGAS BIOBMU BIOBIN AGRGEO000

Fuel Tech - Geothermal (AGR)

GEO

AGRGEO

AGRSOL000

Fuel Tech - Solar (AGR)

SOL

AGRSOL

AGRELC000

Fuel Tech - Electricity (AGR)

ELCC

AGRELC

ELCD AGRHET000 8.4

Fuel Tech - Heat (AGR)

HET

AGRHET

Base-year calibration

IEA energy balance provides agriculture energy consumption by fuels. Since agriculture sector is defined with a single energy-service, there is no need for that split of fuel consumptions into different sub-sector as we did for other end-use sector. Fuels in the IEA energy balance has been aggregated into 13 fuels (commodity) as defined in the sector fuel table (Table 8-1). Base-year global agriculture final energy consumption is 7,283 PJ, mix of which is presented in Figure 8-2 at a global level.

121

Diesel 54%

Natural Gas 4%

Gasoline 4%

Solar 0%

Heavy 3%

Geothermal 0%

Heat 2%

Electricity 19%

LPG Biomass 2% 4%

Coal 8%

Kerosene 0%

Figure 8-2: Base-year agriculture energy consumption mix by fuel 8.5

References

International Energy Agency (IEA), World Energy Balances, 2009, ESDS International, (Mimas) University of Manchester EFDA (2004). EFDA World TIMES Model, Final report, prepared by ORDECSYS, KanORS, HALOA, KUL. www.efda.org

122

9 Electricity and Heat Generation Sector 9.1

Introduction

The electricity and heat generation sector represents many different technology types, using a wide range of fossil-based and renewables sources. The existing system is represented in generic terms whilst the options for future investments are characterised in more detail. Electricity and heat supply is temporally disaggregated across six periods (or time slices), based on three season and two diurnal periods (Day / night) to represent changes in load based on sector demand profiles. This sector is divided in the following technology types (as represented in the IEA statistics): 

Electricity generation plant, providing electricity to the grid



Public CHP plant, providing electricity to the grid and heat to local networks



Sector CHP plant (autoproducers), providing electricity and heat to specific industries. Further information on these plants can be found in Chapters 5 and 10 on industry and upstream sectors.



Public heat generation plant (heat only plants), providing heat to local networks

Electricity generation plant are additionally categorised as providing electricity to the centralised or decentralised grid. Decentralised producers tend to be small scale, connected to the distribution network or serving local grids, and produce the commodity ELCD in the model. Centralised producers, connected to transmission network, produce the commodity ELCC. The electricity sector Base-Year template is used to calibrate the base-year electricity and heat generation. In the Base-Year template (providing information on existing plant), characterisation of plants is fairly generic, with all production of electricity categorised as ELCC. Off-grid production (via micro-generation technologies) is not explicitly captured in the model, with small-scale generation represented in the decentralised producer group.

9.2

Base year calibration

Base year calibration for the power sector for each region is based on IEA extended energy balance statistics for 2005. These data and process of calibration can be seen in the sector base-year templates (labelled VT_XXX_ELC_V1p1, where XXX is the region code) and are structured as follows: 

IEA Data: Contains the IEA statistics (IEA, 2009) for 2005, used to calibrate the model4



ELC_FUELS: Contains technologies that produce electricity sector fuels, primarily for tracking fuel use in this sector. These technologies also define the shares of individual commodities that contribute to electricity sector fuels.



ELC_New: Lists the technologies that produce electricity in the base year. Note these are fairly generic technology types, adequate for calibration and representing base year stock. For electricity, the main technology categories include gas, oil, coal, biomass, hydro, nuclear, geothermal and wind. For CHP and heat plant, these are categorised as oil, gas, coal and biomass. Retirement of stock is based on annual retirement factors (typically around 2-5% depending on the technology).

4



ELC_EMI: Emission factors for power sector, including new technologies



~Processes / COMM: Define electricity sector technologies and commodities

Disaggregation of WEU and UK regions for the ELC sector has been done in XLS UK-IEA ELC 05(v2). Checks on BY

calibration have been done in XLS CalibResults_151009.

124

125 800 700

WIND

600

TIDAL SOLAR

500 GW

OIL 400

NUCLEAR

300

HYDRO

GEOTHERMAL

200

GAS 100

COAL

0

WEU

USA

UK

SKO

ODA

MEX

MEA

JPN

IND

FSU

EEU

CSA

CHI

CAN

AFR

AUS

BIOMASS

Figure 9-1: Existing Electricity Generation Capacity by Region in 2005 (Model base year), GW SOLAR, 0.8

TIDAL, 0.3

WIND, 53.9

BIOMASS, 56.2

OIL, 401.6

NUCLEAR, 395.9

COAL, 1171.3

HYDRO, 738.6

GAS, 607.6 GEOTHERMAL, 32.0

Figure 9-2: Existing Electricity Generation Capacity by Type in 2005 (Model base year), GW

125

9.3

New technologies

9.3.1

Key technology options

New electricity generation technologies are characterised in the template ―SubRes_BNewTechs/ELC‖, and are listed in Table 9-1. Further work is required to include new CHP technologies, which are not available for public system or industry investment. Table 9-1: New technology options for electricity and heat generation Technology

Model Technology

Group

Name

Coal

ECOAAFB105

EPLT:G1.05.ADV.COA.Atmospheric Fl Bed.

ECOACCA105

EPLT: .G1.05.ADV.COA.Air Blown IGCC.

ECOACCO105

EPLT: .G1.05.ADV.COA.Oxygen Blown IGCC.

ECOAPFB105

EPLT:G1.05.ADV.COA.Pressurized Fl Bed.

ECOAPUL105

EPLT: .G1.05.CON.COA.Pulverized Coal.

EGASSTE105

EPLT: .G1.05.CON.NGA.Gas Steam.

EGASFCE105

EPLT: .G1.05.ADV.NGA.Fuel Cells.

EGOICCA105

EPLT: .G1.05.ADV.GOI.Gas_Oil Comb Cycle.

EGOITUA105

EPLT: .G1.05.ADV.GOI.Advanced Gas_Oil Turbine.

EOILSTE105

EPLT: .G1.05.CON.OIL.Oil Steam.

EOILGBL105

EPLT: .G1.05.CON.OIL.Generic Dist Gen for Base

Gas Dual gas / oil Oil

Model Technology Description

Load. EOILGPL105

EPLT: .G1.05.CON.OIL.Generic Dist Gen for Peak Load.

Nuclear

Hydro*

Biomass

ENUCADV105

EPLT: .G1.05.ADV.NUC.Advanced Nuclear.

ENUCFUS110

EPLT: .G1.05.ADV.NUC.Fusion Nuclear.

ENUCLWR105

EPLT: .G1.05.ADV.NUC.Advanced Nuclear LWR.

ENUCPBM110

EPLT: .G1.10.ADV.NUC.Advanced Nuclear PBMR.

EHYDDAM105

EPLT: .G1.05.CON.HYD.Generic Impoundment Hydro.

EHYDDAM205

EPLT: .G2.05.CON.HYD.Generic Impoundment Hydro.

EHYDDAM305

EPLT: .G3.05.CON.HYD.Generic Impoundment Hydro.

EHYDDAM405

EPLT: .G4.05.CON.HYD.Generic Impoundment Hydro.

EHYDDAM505

EPLT: .G5.05.CON.HYD.Generic Impoundment Hydro.

EHYDRUN105

EPLT: .G1.05.CON.HYD.Generic ROR Hydro.

EBIOCRC105

EPLT: .G1.05.CON.BIO.Crop Direct Combustion.

EBIOCRG105

EPLT: .G1.05.CON.BIO.Crop Gasification.

EBIOGAW105

EPLT: .G1.05.CON.BIO.Biogas from Waste.

EBIOMSW105

EPLT: .G1.05.CON.BIO.MSW Direct Combustion.

EBIOSLC105

EPLT: .G1.05.CON.BIO.Sld Biomass Direct Combustion. 126

127 Technology

Model Technology

Group

Name

Model Technology Description

EBIOSLG105

EPLT: .G1.05.CON.BIO.Sld Biomass Gasification.

EBIOSLCD05

EPLT: .G1.05.CON.BIO.Sld Biomass Direct Combustion.Decentralized

EBIOSLGD05

EPLT: .G1.05.CON.BIO.Sld Biomass Gasification.Decentralized

Geothermal

EGEOT105

EPLT: .G1.05.CON.GEO.CEN.Shallow.

EGEOT205

EPLT: .G1.05.CON.GEO.CEN.Deep.

EGEOT305

EPLT: .G1.05.CON.GEO.CEN.Very deep.

ESOPV0105

EPLT: .G1.03.CON.SOL.CEN.PV.T0

ESOPV105

EPLT: .G1.03.CON.SOL.CEN.PV.

ESOPV1105

EPLT: .G1.03.CON.SOL.CEN.PV.T1

ESOPV2105

EPLT: .G1.03.CON.SOL.CEN.PV.T2

ESOPV3105

EPLT: .G1.03.CON.SOL.CEN.PV.T3

ESOPV4105

EPLT: .G1.03.CON.SOL.CEN.PV.T4

ESOPV5105

EPLT: .G1.03.CON.SOL.CEN.PV.T5

ESOPVD0105

EPLT: .G1.05.CON.SOL.DCN.PV.T0

ESOPVD105

EPLT: .G1.05.CON.SOL.DCN.PV.

ESOPVD1105

EPLT: .G1.05.CON.SOL.DCN.PV.T1

ESOPVD2105

EPLT: .G1.05.CON.SOL.DCN.PV.T2

ESOPVD3105

EPLT: .G1.05.CON.SOL.DCN.PV.T3

ESOPVD4105

EPLT: .G1.05.CON.SOL.DCN.PV.T4

ESOPVD5105

EPLT: .G1.05.CON.SOL.DCN.PV.T5

Solar thermal

ESOTH105

EPLT: .G1.04.CON.SOL.CEN.Thermal.

Wind*

EWIND105

EPLT: .G1.04.CON.WIN.CEN.

EWIND205

EPLT: .G1.10.CON.WIN.CEN.Offshore.

EWIND305

EPLT: .G1.00.CON.WIN.DCN.Onshore.

EWIND405

EPLT: .G1.10.CON.WIN.DCN.Onshore.

HETBIOP105

HPLT: .05.CON.BIO.

HETCOAP105

HPLT: .05.CON.COA.

HETGASP105

HPLT: .05.CON.NGA.

HETGEO105

HPLT: .05.CON.GEO.CEN.Shallow.

HETGEOP105

HPLT: .05.CON.GEO.

HETOILP105

HPLT: .05.CON.OIL.

Solar PV*

Heat generation

* Different tranches of renewable technologies represent differences in the cost of resources (hydro) or quality of the resource (wind, solar).

127

The other important file is the transformation (_Trans) file, which allows for regional differences to be introduced without having to duplicate technologies. For the electricity sector, the following parameters are controlled, and varied by region: 

Costs parameters (INVCOST, FIXOM and VAROM) - see worksheet

Param_transformation. Operation and maintenance costs tend to be lower in developing regions, as do investment cost where those regions have a technology manufacturing base e.g. China. 

Technology discount rate set to 10%, except for solar technologies, where the rate is higher for some regions - see worksheet Param_transformation (2). Higher rates are typically used for developing regions.



Seasonal AFs are set by region for solar technologies, accounting for different insolation values.



Construction time (defined by NCAP_ILED)5 is provided for hydro and nuclear technologies - 10 years for nuclear and hydro (dam) and 5 years for hydro (run-ofriver). No differentiation is made between regions.

An overview of the key parameters for the different technology groups is shown in below. Table 9-2: Overview of technology characteristics by technology group (for WEU region) Technology

Efficiency % (range)

Group

Gas / Dual

Comment

(range) 2005

Coal

Investment cost $/kW

40-49 37-57

2050 40-49 37-57

2005

2050

1430-

1265-

1870

1662

360-1000

300-

Lower cost and higher efficiency

1000

values represent combined cycle technology

5

Where this parameter is used, the time of investment is reflected in the model results.

However, the capacity does not become available until investment year + ILED length. 128

129 Technology

Efficiency % (range)

Investment cost $/kW

Group Oil

Comment

(range) 31-35

31-35

660-1045

6601045

Nuclear Hydro

1760-

1760-

Fusion costs set at 3300 $/kW

1870

1870

1650-

1540-

Five dam-based technologies

6050

5400

reflecting different cost of resource

Biomass

33-34

33-34

Geothermal

1870-

1870-

MSW plant significantly higher at

2200

2200

3850 $/kW

1925-

1650-

Three geothermal technologies

2780

2310

reflecting different cost of resource

Solar PV

7150-

1485-

Low cost is centralised plant and

11000

3025

high cost decentralised plant. Technology resource tranched on basis of AFs

Solar

13321

13321

thermal

Single technology with no evolution on costs

Wind

1065-

880-

One offshore (CEN) and 2

1650

1310

onshore (DCN) technologies. Offshore tech. represents the high costs.

9.3.2

Sector constraints

There are a range of constraints used to control the uptake of technologies in this sector. Two key scenario files are used: 

Scen_ELC-UC 

This constraint sets maximum (SU_MAXNUC) and minimum (SL_MINNUC) shares of nuclear generation by region. Shares of nuclear (based on 2006 level) are controlled as investment is not governed only by economics but by a range of different factors. In the near term, the share levels take account of the installed capacity in the base year.



There are a set of UC controls that ensure the maximum levels of different tranches of renewable potential by region. This includes constraints on geothermal, wind and hydro technologies.

129



The Min_Ren worksheet sets minimum share of electricity from renewable generation for centralised ELC, deriving near term shares based on levels in the base year. This reflects ongoing renewable policy across different regions.



Scen_ELC-UC-MaxCoal 

This constraint sets a maximum share on the level of coal generation over the time horizon, to ensure coal does not wholly dominate the reference picture. For the UK, the limits are 50% in 2010, rising to 90% by 2100.

Another scenario file, Scen_B_BASEextra, is used to define seasonal and annual AFs6 for wind and hydro technologies by region, in the base and future years (see worksheet BASEextra). 9.3.3

Sequestration technologies

For low carbon analyses, sequestration technologies in the electricity generation sector are very important. In this model, these are characterised in SUBRES_SequestrationB/ELC. Table 9-3: Overview of sequestration technology characteristics Model

Model Technology Description

Technology

Investment

Efficiency

cost ($/kW)

(%)

Name EZCCGO1XX

NGCC+Oxyfueling

950-1250

48-55

EZCCGT1XX

NGCC+CO2 removal from flue gas

800-1000

49-57

EZIGC11XX

IGCC+CO2 removal from input gas

1800-2300

40-48

EZOCOA1XX

Conventional Pulverized Coal+Oxyfueling

1900-2400

37-44

EZPCOA1XX

Conventional Pulverized Coal+CO2 removal

1850-2250

38-44

from flue gas EZSOFCOA35

SOFC (COAL) +CO2 removal - 2030

2200

48

EZSOFGAS30

SOFC (GAS) +CO2 removal - 2020

1600

58

EZBIOCRCC105

EPLT: .G1.05.CON.BIO.Crop Direct

2125

33

2500

34

Combustion. With CCS EZBIOCRGC105

6

EPLT: .G1.05.CON.BIO.Crop

Annual AF control annual availability; however seasonal AFs allow for higher or lower operation in a given season.

The sum of season operation can't be higher than the annual AF

130

131 Model

Model Technology Description

Technology

Investment

Efficiency

cost ($/kW)

(%)

Name Gasification.with CCS EZBIOSLCC105

EPLT: .G1.05.CON.BIO.Sld Biomass Direct

1700

33

2420

34

Combustion.with CCS EZBIOSLGC105

EPLT: .G1.05.CON.BIO.Sld Biomass Gasification.with CCS

* The first five technologies listed have vintages for 2010, 2020 and 2030.

The fossil-based plants produce SNKELCCO2, a 'dummy' commodity which then goes to the different storage technologies. Biomass plants with sequestration produce SNKTOTCO2, differentiated as technologies that capture CO2 from the atmosphere (negative emissions). The range of storage technologies in the model are listed below. Table 9-4: Types of storage technologies Model Technology

Model Technology Description

Name SINKCB1

Removal by Enhanced Coalbed Meth recov 1000 m

SINKDGF

Removal by Depl gas fields (offshore)

SINKDGO

Removal by Depl gas fields (onshore)

SINKDOC

Removal by Storage in the deep ocean

SINKDOF

Removal by Depl oil fields (offshore)

SINKDOO

Removal by Depl oil fields (onshore)

SINKDSA

Removal by Deep saline aquifers

SINKEOR

Removal by Enhanced Oil Recovery

SINKMIN

Mineralization for CO2 storage

* Technologies listed above capture SNKELCCO2. A '1' added to the technology name reflects those storage options that capture SNKTOTCO2.

The SUBRES_SequestrationB _Trans file provides information on the annual and cumulative storage potentials by region, and costs (see worksheet Param_transformation). These storage levels have been checked against those in the IPCC Special Report on Carbon Dioxide Capture and Storage.

131

9.4

Representation of grids

Electricity grids are not explicitly modelled, with no capacity limits or investment requirements for system infrastructure. Two commodities are produced to represent generation from centralised (ELCC) and decentralised (ELCD) technologies. Distribution losses are modelled by commodity efficiency for ELCC (using parameter COM_IE). They reflect regional differences in the base year but by 2100 are the same across all regions. Electricity supply is tracked at a DAYNITE timeslice resolution. This allows for simplistic modelling of the load curve, representing when consumers demand electricity (see section 3 on demand drivers for more information). DAYNITE time-slices total 6 periods, representing day and night in the three (equal length) seasons (summer, winter, intermediate). 9.5

Future work in the electricity and heat sector

Finally, an important point of note is that electricity is not traded between regions. This is probably not a major limitation as most electricity trade will be intra-region (between countries). However, it is important for some regions (e.g. USA / Canada) so is being considered for development in the model. Similarly there is no real representation of heat (HET) in the model. This is produced by CHP and dedicated heating plant, and is used directly in end use sector, with no distribution losses assigned. Heat is tracked seasonally in the model, reflecting varying demands at different times of the year. 9.6

References

International Energy Agency (IEA), World Energy Balances, 2009, ESDS International, (Mimas) University of Manchester

132

10 Upstream 10.1 Introduction The upstream Base-Year template in TIAM is used to calibrate the primary energy production, trade, conversion/transformation and total final energy consumption in the base-year 2005 and to account reserves and existing upstream technologies. No new technologies exist in upstream sector/template; investments are allowed in existing technologies to expand production capacity. New technologies are included in the new technology module ―B_NewTech‖ in SubRes_Templ. Annual and cumulative availability resources are modelled in a separate scenario file called ―Scen_B_Extraction‖ (Resource module) and fossil fuels and biomass trading is modelled in a scenario file called ―Scen_Trade‖. The upstream sector mainly covers reserves (fossil fuels, uranium), biomass and renewable potential, mining technologies, primary and secondary transformation process, emission coefficients for fossil fuels, endogenous trade parameters and climate parameters. Fossil fuels includes conventional as well as unconventional resources. Mining technologies (primary production) transform the reserve into fuels (primary fuels) while secondary transformation process transform primary fuels (coal, oil, gas) into secondary fuels such oil products, coke oven gas, blast furnace gas, etc. Endogenous trade parameters are included to avoid an infeasible solution if a resource is unable to meet demand, the model will choose endogenous trade and the trade result will be dummy import. Climate parameters section aggregate emissions (CO2 and Non CO2 gases) into billion tons of carbon equivalent (CO2GtC). Global warming potential is also modelled in the upstream sector. In the upstream and downstream sectors, a distinction is made between OPEC/Non-OPEC countries. Data related to fossil energy production, trade, and downstream use (coal mining, oil drilling, etc.) are separated for Non-OPEC countries and OPEC countries. OPEC and Non-OPEC energy commodities are merged to meet energy-service demand in different region.

The upstream template has several worksheets such as IEA data sheet (base-year data for calibration), MIN (non-renewable resources are modelled), RNW (renewable resource are modelled), UPS_Fuels (upstream fuel consumption) PRIM_PRD (primary production), SCND_TRF (secondary transformation), Transf_stock_stat (stock transfer), TRADE_templ (endogenous trade—dummy import), UPS_Emi (upstream emissions), Emissions (global warming potential is modelled) and Climate (aggregating emissions to CO2GtC). All commodities and process that are included in the upstream are also defined in separate sheets in the upstream template. The remaining sections in this chapter discuss the data that is used in these templates. 10.2 Energy Resources Fossil reserves and mining technologies are presented in Table 10-1. The first three letters are for mining (MIN). The next six or three letters refer to the energy carrier reserves or potentials (e.g. OINHEA for heavy oil, WIN for wind (Table 10-2), etc.). The last digit refers to the steps of the fossil fuel supply curves (e.g. 1, 2, etc.).The last digit is always 0 for the renewable technologies (Table 10-2). Sixth letter ―N‖ represents non-OPEC and it will be ―O‖ for OPEC countries. These reserves are mainly categorised into three: located reserves and producing pools; enhanced discovery (reserve growth); and new discovery. Four different types of oil reserves are modelled: light oil, heavy oil, oil sand and shale oil. A three-step supply curve for each type oil and gas source is defined. Each step is characterized by the cost of the resource and the amount of energy (annual) available at this cost (these are given in the scenario file ―Scen_B_Extraction‖). Unconventional and non-connected gas reserve is also modelled. It includes coal bed methane and tight gas. The uranium reserve is modelled as dummy reserves with the fossil fuel supply in the upstream. But cumulative uranium reserves by region is modelled in a different module called ―SubRes_NucResource‖ in SubRes_templ, which is discussed in Chapter 12. The model allows investment in the existing technologies and no new technologies are associated with the upstream sector. The technologies of the upstream template do not have a residual capacity (RESID) and there is no vintage information embedded in the naming convention of technologies. 134

135 Table 10-1: Non-renewable primary resources Technology

Technology Description

Name

Commodity out

Located reserves and producing pools MINOINLIG1

Light oil (ground) - Located reserves - Step 1 - Nopec

OINLIG

MINOINLIG2

Light oil (ground) - Located reserves - Step 2 - Nopec

OINLIG

MINOINLIG3

Light oil (ground) - Located reserves - Step 3 - Nopec

OINLIG

MINOINHEA1

Heavy oil (ground) - Located reserves - Step 1 - Nopec

OINHEA

MINOINHEA2

Heavy oil (ground) - Located reserves - Step 2 - Nopec

OINHEA

MINOINHEA3

Heavy oil (ground) - Located reserves - Step 3 - Nopec

OINHEA

MINOINSAN0

Oil sands (mined - synth) - Located reserves - Nopec

OINSAN

MINOINOBI1

Oil sands (in situ - ultra hvy) - Located reserves - Step 1

OINOBI

- Nopec MINOINOBI2

Oil sands (in situ - ultra hvy) - Located reserves - Step

OINOBI

2 - Nopec MINOINOBI3

Oil sands (in situ - ultra hvy) - Located reserves - Step 3

OINOBI

- Nopec MINOINOSH1

Shale oil (ground) - Located reserves - Step 1 - Nopec

OINOSH

MINOINOSH2

Shale oil (ground) - Located reserves - Step 2 - Nopec

OINOSH

MINOINOSH3

Shale oil (ground) - Located reserves - Step 3 - Nopec

OINOSH

MINGANNAT1

Natural gas (ground) - Located reserves - Step 1 -

GANNAT

Nopec MINGANNAT2

Natural gas (ground) - Located reserves - Step 2 -

GANNAT

Nopec MINGANNAT3

Natural gas (ground) - Located reserves - Step 3 -

GANNAT

Nopec MINCONBRO0

Brown coal (ground) - Located reserves - Nopec

CONBRO

MINCONHAR0

Hard coal (ground) - Located reserves - Nopec

CONHAR

Enhanced recovery : Reserves growth MINOINLIG4

Light oil (ground) - Reserves growth - Step 1 - Nopec

OINLIG

MINOINLIG5

Light oil (ground) - Reserves growth - Step 2 - Nopec

OINLIG

MINOINLIG6

Light oil (ground) - Reserves growth - Step 3 - Nopec

OINLIG

MINOINHEA4

Heavy oil (ground) - Reserves growth - Step 1 - Nopec

OINHEA

MINOINHEA5

Heavy oil (ground) - Reserves growth - Step 2 - Nopec

OINHEA

MINOINHEA6

Heavy oil (ground) - Reserves growth - Step 3 - Nopec

OINHEA

MINGANNAT4

Natural gas (ground) - Reserves growth - Step 1 -

GANNAT

Nopec MINGANNAT5

Natural gas (ground) - Reserves growth - Step 2 -

GANNAT

Nopec MINGANNAT6

Natural gas (ground) - Reserves growth - Step 3 -

GANNAT

Nopec MINOINSAN1 135

Oil sands (mined bitumen) - Enhanced recovery - Nopec

OINSAN

Technology

Technology Description

Name MINOINOBI4

Commodity out

Oil sands (in-situ - ultra hvy) - Enhanced recovery -

OINOBI

Step 1 - Nopec MINOINOBI5

Oil sands (in-situ - ultra hvy) - Enhanced recovery -

OINOBI

Step 2 - Nopec MINOINOBI6

Oil sands (in-situ - ultra hvy) - Enhanced recovery -

OINOBI

Step 3 - Nopec New discovery MINOINLIG7

Light oil (ground) - New discovery - Step 1 - Nopec

OINLIG

MINOINLIG8

Light oil (ground) - New discovery - Step 2 - Nopec

OINLIG

MINOINLIG9

Light oil (ground) - New discovery - Step 3 - Nopec

OINLIG

MINOINHEA7

Heavy oil (ground) - New discovery - Step 1 - Nopec

OINHEA

MINOINHEA8

Heavy oil (ground) - New discovery - Step 2 - Nopec

OINHEA

MINOINHEA9

Heavy oil (ground) - New discovery - Step 3 - Nopec

OINHEA

MINOINSAN2

Oil sands (mined bitumen) - New discovery - I - Nopec

OINSAN

MINGANNAT7

Natural gas (ground) - New discovery - Step 1 - Nopec

GANNAT

MINGANNAT8

Natural gas (ground) - New discovery - Step 2 - Nopec

GANNAT

MINGANNAT9

Natural gas (ground) - New discovery - Step 3 - Nopec

GANNAT

MINCONBRO1

Brown coal (ground) - New discovery - Nopec

CONBRO

MINCONHAR1

Hard coal (ground) - New discovery - Nopec

CONHAR

Unconventional and not-connected gas MINGANNATU

Natural gas (ground) - Unconventional - Nopec

GANNAT

MINGANCBM1

Natural gas (ground) - Coal bed methane - Step 1 -

GANNAT

Opec MINGANCBM2

Natural gas (ground) - Coal bed methane - Step 2 -

GANNAT

Opec MINGANCBM3

Natural gas (ground) - Coal bed methane - Step 3 -

GANNAT

Opec MINGANTIG1

Natural gas (ground) - Tight gas - Step 1 - Opec

GANNAT

MINGANTIG2

Natural gas (ground) - Tight gas - Step 2 - Opec

GANNAT

MINGANTIG3

Natural gas (ground) - Tight gas - Step 3 - Opec

GANNAT

Uranium MINDMYNUC0

Uranium (dummy) - Reserves

DMYNUC

Table 10-2 presents mining technology and commodity out for renewable resources that are modelled in the TIAM-UCL. Renewable electricity resources such as hydro, geothermal, solar, tidal and wave are modelled. Solid biomass, energy crops, municipal waste and landfill gas are also modelled. Biomass technologies compete directly at energy service demand level with fossil fuel technologies. No distinction is made between OPEC and Non-OPEC countries for primary and secondary biomass production. Annual availability of renewable 136

137 resources are controlled in different scenario files ―Scen_B_Extraction‖ and ―Scen_ELC_UC‖ (constraint on electricity generation by technology). Table 10-2: Renewable primary resources Technology

Technology Description

Commodity

Commodity

out

description

Name MINHYD0

Hydro potential

HYD

Hydro energy

MINGEO0

Geothermal potential

GEO

Geothermal energy

MINSOL0

Solar potential

SOL

Solar energy

MINTDL0

Tide potential

TDL

Tide energy

MINWIN0

Wind potential

WIN

Wind energy

MINBIOSLD1

Prod of Solid biomass - low price

BIOSLD

Solid Biomass

MINBIOSLD2

Prod of Solid biomass - med price

BIOSLD

MINBIOSLD3

Prod of Solid biomass - high price

BIOSLD

MINBIOBIN0

Prod of Industrial wastes

BIOBIN

Industrial wastes

MINBIOBMU0

Prod of Municipal wastes

BIOBMU

Municipal wastes

MINBIOGAS0

Prod of Gas from biomass (landfill

BIOGAS

Biogas (landfill)

BIOCRP

Energy crop

gas) MINBIOCRP0

Prod of Energy crop

Table 10-3 presents details of technologies that produces upstream fuels. The sheet UPS_FUELS accounts upstream sector fuel consumptions. It provides input fuel requirements for the commodity out. Amount of input from different fuels varies across the regions. Heat and electricity are also input fuel for the upstream sector and heat is produced by auto producers and CHP plants (as shown in Base-Year calibration section in this chapter). Table 10-3: Technologies to produce upstream sector fuels Technology

Technology Description

Name UPNNGA000

Fuel Tech - Natural Gas Mix (UPS) - Nopec

Commodity

Commodity

in

out

GANNGA

UPNNGA

GANGWG UPNNGA111

Fuel Tech - Natural Gas (UPS) - Nopec

GANNGA

UPNNGA

UPNCOA000

Fuel Tech - Coal Mix (UPS) - Nopec

CONHCO

UPNCOA

CONBCO CONOVC CONGSC GANCOG GANBFG 137

Technology

Technology Description

Name

Commodity

Commodity

in

out

GANOXY

UPNCOAH11

Fuel Tech - Hard coal (UPS) - Nopec

CONHCO

UPNCOA

UPNCOAB11

Fuel Tech - Brown coal (UPS) - Nopec

CONBCO

UPNCOA

UPNCRD000

Fuel Tech - Crude oil (UPS) - Nopec

OINCRL

UPNCRD

OINCRH OINNGL OINFEE OINADD OINNCR UPNCRD111

Fuel Tech - Crude oil (UPS) - Nopec

OINCRD

UPNCRD

UPNRPP000

Fuel Tech - Refined Pet Products-Liq (UPS) -

OINGSL

UPNRPP

Nopec

OINAVG OINJTG OINJTK OINKER OINDST OINHFO OINNAP OINWSP OINLUB OINASP OINWAX OINNSP OINPTC

UPNRPG00

Fuel Tech - Refined Pet Products-Gas (UPS)

GANRFG

- Nopec

GANETH

UPNRPG

OINLPG UPNREN000

Fuel Tech - Biofuels (UPS) - Nopec

BIOCHR

UPNREN

BIOBSL BIOBIN BIOBMU BIOGAS BIOLIQ UPNELC000

Fuel Tech - Electricity (UPS) - Nopec

ELCC

UPNELC

138

139 Technology

Technology Description

Name UPNSTM000

Fuel Tech - Heat (UPS) - Nopec

UNHESTM00

Converting UNNHET into UNNSTM - Nopec

Commodity

Commodity

in

out

HET

UPNHET

UPNHET

Steam (UPS)

UPNSTM 10.3 Primary transformation Primary transformation sheet contains technologies that transform resources to primary energy such as transforming light crude, heavy crude and oil sand to crude oils. Primary production technologies, including energy consumption, flaring and venting (Table 10-4 presents only energy consuming technologies). Table 10-4: Primary transformation technologies Technology

Description

Comm. in

Comm. out

UPRNOL100

Prod of Light Oil - Step 1 - Exist - Nopec

OINLIG

OINCRL

UPN*

OINCRLLOS GANFVL GANNAT

UPRNOH100

Prod of Heavy Oil - Step 1 - Exist - Nopec

OINHEA

OINCRH

UPN*

OINCRHLOS GANFVH GANNAT

UPRNOS100

Prod of Synth Oil (mined) - Step 1 - Exist

OINSAN

OINNCR

- Nopec

UPN*

OINNCRLOS GANFVS GANNAT

UPRNUH100 UPRNSH100

Prod of Ultra Hvy Oil - Step 1 - Exist -

OINOBI

Nopec

UPN*

Prod of Shale Oil - Step 1 - Exist - Nopec

OINOSH

OINUHV OINSHA

UPN* UCRN_SHA00

Mix OILSHA to OILCRD - Nopec

OINSHA

OINCRD

UCRN_NCR00

Mix OILNCR to OILCRD - Nopec

OINNCR

OINCRD

UCRN_CRL00

Mix OILCRL to OILCRD - Nopec

OINCRL

OINCRD

UCRN_CRH00

Mix OILCRH to OILCRD - Nopec

OINCRH

OINCRD

UCRN_UHV00

Mix OILUHV to OILCRD - Nopec

OINUHV

OINCRD

UPRNG100

Field + Gas Plant - Step 1 - Exist - Nopec

GANNAT

GANNGA

UPN*

GANNGALOS OINNGL GANFVG

139

Technology

Description

Comm. in

Comm. out

UPRNG2L100

Gas to LNG - Nopec

GANNGA

GANLNG

UPN* UPRNL2G100

LNG to Gas - Nopec

GANLNG

GANNGA

UPN* UPRNCH100

CONHAR

CONHCO

UPN*

CONHCOLOS

Prod of Browncoal - Step 1 - Exist -

CONBRO

CONBCO

Nopec

UPN*

CONBCOLOS

UPRNOADD00

Prod of Additives - Exist - Nopec

DMNADD

OINADD

UOGPIPN00

Existing oil and gas pipelines - Nopec

UPNNGA

DUMM2T

UPRNCB100

Prod of Hardcoal - Step 1 - Exist - Nopec

UPNELC * All these technologies and fuels exist also for OPEC countries. The letter P replaces the letter N (e.g. MINOINLIG1 becomes MINOIPLIG1 and OINLIG becomes OIPLIG). And for each technology that is presented as Step 1, there are associated technologies for Step 2 and Step3.

10.4 Secondary transformation Secondary transformation contains the information related to the secondary transformation processes such as refineries or technologies for production of coke, town gas, blast furnace gas, petrochemical, etc. (Table 10-5). CHP technology for refinery also included in the secondary transformation sheet (Table 10-6). In this example, a single flexible refinery represents the oil-refining sector: each output may reach a proportion of 0.5, but the sum of outputs is limited to one. The refinery converts crude oil (and possibly other inputs such as natural gas liquid, feedstocks, additives, etc.) into refined petroleum products (e.g. gasoline, diesel, heavy oil, etc.) for the electricity and end-use sectors. Table 10-5: Secondary transformation technologies Techn. Name

Technology Description

Comm-IN

CommOUT

UTRNCKOV00

TCOKEOVS- Pd coke and coke-oven-

COAHCO

CONOVC

gas - Nopec

OINPTC

GANCOG

UPN*

140

141 Techn. Name

Technology Description

Comm-IN

CommOUT

UTRNGWKS00

TGASWKS- Prod of town gas - Nopec

COAHCO

CONGSC

CONBCO

GANGWG

CONOVC GANCOG GANNGA OINNGL GANRFG OINLPG OINHFO OINDST UPN* UTRNBLSFU0

BLASTFUR- Blast furnace - Nopec

COAHCO

GANBFG

CONOVC

GANOXY

GANCOG

UPNCO2N

GANNGA OINLPG OINDST OINHFO OINPTC UTRNPETC00

PETCHEM- Petrochemicals/Refinery -

GANRFG

OINFEE

Nopec

GANETH

OINFEELO

OINLPG

S

OINGSL OINKER OINDST OINHFO OINNAP OINPTC OINNSP UTRNLIQU00

LIQUEFAC,ELNG- Liquef processes -

CONHCO

OINNCR

Nopec

GANNGA

GANETH GASLNG OINKER OINDST OINASP

UTRNNSPC00

TNONSPEC,TCHARCOAL- Transfo non

BIOBSL

BIOCHR

spec - Nopec

GANNGA

OINNCR

OINLPG OINHFO UPN* UTRNHEAT00

141

THEAT- Heatpumps - Nopec

ELCC

UPNHET

Techn. Name

Technology Description

Comm-IN

CommOUT

UTRNBOIL00

TBOILER- Electric boilers - Nopec

ELCC

UPNSTM

UTRNREFX00

Existing flexible refinery - Nopec

BIOLIQ

GANRFG

GANNGA

GANETH

OINCRD

OINLPG

OINFEE

OINGSL

OINADD

OINAVG

OINNGL

OINJTG OINJTK OINKER OINDST OINHFO OINNAP OINWSP OINLUB OINASP OINWAX OINPTC OINNSP

Table 10-6: Existing CHP in refinery sector Technology

Technology Description

Comm-IN

Comm-OUT

Cogen - Refinery sector - RPP - Nopec

UPNRPP

UPNELC

Name UCHPNRPP00

UPNHET UCHPNRPG00

Cogen - Refinery sector - RPG - Nopec

UPNRPG

UPNELC UPNHET

UCHPNNGA00

Cogen - Refinery sector - NGA - Nopec

UPNNGA

UPNELC UPNHET

UCHPNCOA00

Cogen - Refinery sector - COA - Nopec

UPNCOA

UPNELC UPNHET

10.5 Others Upstream sector emissions are tracked in the UPS_Emis sheet in the Upstream Base-Year template. The sheet contains unit and the Global warming potential (GWP) for each sector emission commodity to calculate total greenhouse gas emissions (GHG) and total CO2 emissions (TOTCO2). These coefficients allows conversion from kilo tonnes of CO2, kilo

142

143 tonnes of CH4 and kilo tonnes of N2O into millions tonnes of CO2-equivalent (GHG). The GWP of 25 and 298 is used for CH4 and N2O respectively. 10.6 Base-year calibration The TIAM-UCL is calibrated to the IEA extended energy balance data for 2005 from primary energy production to transformation/conversion to final energy consumption by end-use sectors. Input data (aggregated energy balance) that was used in the upstream Base-Year template is provided in Table 10-7, Table 10-8 and Table 10-9 at global level. The first column in the table is aggregation of anthracite, other bituminous coal, coking coal, heat output from non-specified combustion and patent fuel. The second column is aggregation of peat briquettes, lignite/brown coal, Peat and sub-bituminous coal. Other columns are straight forward. Actual input data for each region is taken from the IEA energy balance in the similar format as given in Table 10-7, Table 10-8 and Table 10-9. Calibration includes primary energy production, transformation/conversion and total final energy consumption (available to end-use sectors) for each region. For example base-year electricity and heat production in electricity sector should match the corresponding data in the upstream sector. Similarly, sum of final energy consumption by end-use sector should also match the total final consumption in the upstream sector for each fuel at regional level.

143

CRUDEOIL

NATGAS

OBIOLIQ

GBIOMASS

UNWASTER

MUNWASTEN,M

INDWASTE

SBIOMASS

CHARCOAL

OXYSTGS

BLFURGS

COKEOVGS

GASWKSGS

GASCOKE

OVENCOKE

NITE

N,SUBCOAL,LIG

PEAT,BKB,BROW

BITCOAL

FUEL,ANTCOAL,

HARDCOAL,PAT

Table 10-7: IEA Energy Balance data used for base-year calibration

INDPROD

98877.2

18921.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

38608.9

417.2

897.6

525.2

713.1

81973.8

IMPORTS

20158.8

554.5

808.3

0.0

0.0

0.0

0.0

0.0

6.4

101.8

0.0

0.0

0.0

26.4

29274.8

92115.6

EXPORTS

-17482.4

-294.6

-827.8

0.0

0.0

0.0

0.0

0.0

-14.0

-50.6

0.0

0.0

0.0

-56.1

-24028.0

-42053.2

BUNKERS STOCKCHA TPES

88743.8

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

-712.3

324.4

-478.5

0.0

-0.8

0.7

-0.9

0.0

-0.2

-2.9

-1.0

0.0

0.0

15.8

181.9

-228.1 138578.0

100841.3

19505.4

-497.9

0.0

-0.8

0.7

-0.9

0.0

-7.8

38657.2

416.2

897.6

525.2

699.3

87402.5

TRANSFER

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

STATDIFF

-218.2

94.8

-109.1

0.0

-40.1

7.1

3.2

0.0

1.7

2.3

-0.1

-0.1

0.0

-0.1

-119.7

-358.4

TOTTRANF

-79871.8

-18509.7

4166.8

90.1

330.9

1908.3

2756.6

79.8

1043.1

-4836.6

-204.3

-819.4

-274.3

-33.4

-34067.1

-137447

MAINELEC

-52083.3

-15523.8

0.0

0.0

-1.3

-59.1

-235.1

-11.5

0.0

-305.3

-14.9

-293.1

-86.9

-14.7

-16692.6

-415.0

AUTOELEC

-1069.7

-65.4

-0.6

0.0

-0.2

-170.0

-413.4

-25.1

0.0

-574.6

-14.3

-186.1

-91.2

-0.1

-1045.0

-11.6

MAINCHP

-4050.2

-2317.4

-2.3

0.0

-1.6

-23.8

-90.5

-3.7

0.0

-265.8

-9.2

-178.5

-62.4

-2.6

-9710.2

0.0

AUTOCHP

-670.4

-193.0

-0.5

0.0

-13.3

-68.2

-302.0

-19.4

0.0

-516.7

-115.2

-109.5

-25.4

-13.6

-2461.7

-0.2

MAINHEAT

-3010.9

-20.2

-0.3

0.0

-0.3

-0.2

-1.6

0.0

0.0

-94.5

-0.9

-21.3

-8.2

-2.3

-979.6

0.0

AUTOHEAT

-461.1

-217.6

-0.4

0.0

0.0

-52.1

-85.0

0.0

0.0

-87.1

-49.8

-31.0

-0.2

0.0

-2907.7

-32.0

THEAT

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

TBOILER

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

TPATFUEL

103.7

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

TCOKEOVS

-16601.9

-1.7

12877.1

0.0

0.0

2283.2

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

-2.3

0.0

TGASWKS

-480.4

-108.8

-61.2

90.1

394.9

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

-14.2

0.0

BLASTFUR

-817.2

-17.4

-8645.0

0.0

0.0

0.0

3886.1

139.5

0.0

0.0

0.0

0.0

0.0

0.0

-7.5

0.0

PETCHEM

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

TBKB

-0.3

-23.3

0.0

0.0

0.0

0.0

0.0

0.0

0.0

-0.2

0.0

0.0

0.0

0.0

0.0

0.0

TREFINER

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

-23.7

-136988

-730.2

-20.7

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

-702.5

0.0

0.1

0.0

0.0

0.0

0.0

0.0

0.0

0.0

1043.1

-2990.1

0.0

0.0

0.0

0.0

6.9

0.0

TOTENGY

-1950.8

-19.8

-45.9

0.0

-9.3

-461.6

-242.9

-11.3

0.0

-338.8

-11.2

0.0

-3.7

0.0

-6184.9

-274.4

Sub-total transf. (not

-1353.1

-15.2

-43.9

0.0

-9.3

-452.8

-237.2

-11.3

0.0

-337.5

-11.1

0.0

-3.6

0.0

-5663.9

-273.8

-996.8

-3.3

-10.2

0.0

0.0

-2.9

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

-5.8

0.0

LIQUEFAC,ELNG TNONSPEC,TCHARCOAL

ELC) MINES

144

CRUDEOIL

NATGAS

OBIOLIQ

GBIOMASS

UNWASTER

MUNWASTEN,M

INDWASTE

SBIOMASS

CHARCOAL

OXYSTGS

BLFURGS

COKEOVGS

GASWKSGS

GASCOKE

OVENCOKE

NITE

N,SUBCOAL,LIG

PEAT,BKB,BROW

BITCOAL

FUEL,ANTCOAL,

HARDCOAL,PAT

145

OILGASEX

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

-4257.9

-267.1

EPATFUEL

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

ECOKEOVS

-305.8

0.0

-28.1

0.0

0.0

-382.8

-140.1

-11.3

0.0

0.0

0.0

0.0

0.0

0.0

-3.1

0.0

-17.1

0.0

-1.5

0.0

-9.3

-13.7

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

-88.6

0.0

EBKB

0.0

-11.9

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

EREFINER

0.0

0.0

0.0

0.0

0.0

-4.8

0.0

0.0

0.0

0.0

-10.9

0.0

0.0

0.0

-1231.6

-6.3

EGASWKS

EPOWERPLT

-597.7

-4.6

-2.0

0.0

0.0

-8.8

-5.8

0.0

0.0

-1.3

-0.2

0.0

0.0

0.0

-86.4

-0.6

EPUMPST

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

ENUC

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

-33.4

-0.1

-4.1

0.0

0.0

-48.6

-97.0

0.0

0.0

-337.4

-0.1

0.0

-3.6

0.0

-76.8

-0.4

ENONSPEC DISTLOSS TFC

-42.7

-6.6

-2.9

0.0

-0.2

-6.0

-36.3

-4.9

-9.1

0.0

0.0

0.0

-0.5

0.0

-897.7

-161.4

18757.8

1064.1

3510.9

90.1

280.5

1448.3

2479.7

63.6

1027.9

33484.1

200.7

78.2

246.8

665.8

46133.2

336.2

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

2506.5

0.8

PIPELINE

0.0

129.9

0.0

0.0

0.0

2511.9

409.6

8706.5

7801.2

3958.7

149.3

WHITESP

0.0

1.2

NAPHTHA

0.0

21.7

RESFUEL

0.0

5790.7

GASDIES

0.0

2896.9

OTHKERO

0.0

21.8

JETKERO

0.0

0.0

JETGAS

0.0

68.8

AVGAS

872.2

102.6

LPG

220.1

2391.1

ETHANE

NONCRUDE

0.0

1227.3

REFINGAS

ADDITIVE

7338.7

IMPORTS

REFFEEDS

INDPROD

NGL

145

MOTORGAS

Table 10-8: IEA Energy Balance data used for base-year calibration (continued from table 10-7)

EXPORTS

-1256.0

-341.9

-47.8

-261.0

0.0

-14.8

-1238.3

-6455.5

-6.7

-0.2

-1948.1

-401.0

-8908.3

-8485.4

-1886.0

-95.5

BUNKERS

0.0

0.0

0.0

0.0

0.0

0.0

0.0

-1.0

-20.7

0.0

-5029.7

-31.0

-1060.3

-5443.7

0.0

0.0

STOCKCHA

-5.1

-51.4

5.1

2.1

0.0

-9.7

-25.1

136.6

-0.9

0.0

-9.8

-8.4

-265.6

207.0

-0.5

1.6

TPES

7304.9

1997.8

280.1

682.0

0.0

-2.8

1633.4

-529.2

-6.7

1.0

-4475.7

-30.8

-1397.7

-5921.0

2072.2

55.4

TRANSFER

-4372.0

2066.7

-66.4

-14.0

45.3

1282.8

2859.7

5.3

9.0

-0.6

-10.4

-248.0

-80.1

-113.7

-390.2

-8.4

STATDIFF

33.5

-58.4

2.0

-23.7

-22.4

-8.1

-24.5

-62.7

-0.8

0.0

-95.9

-5.4

-1.7

51.1

-84.5

-2.9

TOTTRANF

-2870.5

-4006.1

-215.7

-644.4

5246.3

30.1

4417.9

36804.2

63.4

1.4

9225.6

2768.2

43183.0

13366.7

7188.4

193.1

MAINELEC

-1.2

0.0

0.0

-28.9

0.0

0.0

-18.1

-3.3

0.0

0.0

-4.2

-24.7

-799.2

-5097.0

-34.1

0.0

AUTOELEC

0.0

0.0

0.0

-32.5

-105.3

0.0

-12.9

0.0

0.0

0.0

0.0

-4.3

-467.9

-481.6

-9.5

0.0

MAINCHP

0.0

0.0

0.0

-2.4

-7.2

0.0

-0.7

0.0

0.0

0.0

-0.2

-0.2

-14.1

-514.7

0.0

0.0

WHITESP

NAPHTHA

RESFUEL

GASDIES

OTHKERO

JETKERO

JETGAS

AVGAS

MOTORGAS

LPG

ETHANE

REFINGAS

NONCRUDE

ADDITIVE

REFFEEDS

NGL AUTOCHP

0.0

0.0

0.0

0.0

-203.1

-0.4

-4.0

0.0

0.0

0.0

0.0

0.0

-43.9

-349.9

-62.3

0.0

MAINHEAT

0.0

0.0

0.0

0.0

0.0

0.0

-0.4

0.0

0.0

0.0

0.0

-1.2

-14.7

-153.3

0.0

0.0

AUTOHEAT

0.0

0.0

0.0

0.0

-83.9

0.0

-6.2

0.0

0.0

0.0

0.0

0.0

-17.0

-304.2

0.0

0.0

THEAT

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

TBOILER

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

TPATFUEL

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

TCOKEOVS

0.0

0.0

0.0

1.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

-0.1

-0.9

0.0

0.0

TGASWKS

0.0

0.0

0.0

0.0

0.0

0.0

-4.0

0.0

0.0

0.0

0.0

0.0

0.0

-6.0

-55.3

0.0

BLASTFUR

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

-61.5

0.0

0.0

PETCHEM

0.0

1093.8

0.0

0.0

-27.6

-0.9

-111.9

-6.9

0.0

0.0

0.0

-3.6

-36.8

-50.7

-853.5

-1.4

TBKB

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

TREFINER

-2869.4

-5099.9

-216.2

-948.0

5683.2

31.4

4690.0

36814.4

63.4

1.4

9230.0

2802.4

44576.8

20393.7

8203.1

194.5

LIQUEFAC,ELNG

0.0

0.0

0.5

361.3

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

TNONSPEC,TCHARCOAL

0.0

0.0

0.0

0.0

0.0

0.0

16.4

0.6

0.0

0.0

2.9

0.5

93.1

26.8

0.0

0.0

TOTENGY

-29.3

0.0

0.0

0.0

-4753.9

-2.0

-211.3

-16.3

0.0

0.0

0.0

-3.3

-380.6

-1649.8

-13.5

0.0

Sub-total transf. (not ELC)

-29.3

0.0

0.0

0.0

-4753.0

-2.0

-211.3

-15.8

0.0

0.0

0.0

-3.3

-326.0

-1623.9

-13.5

0.0

MINES

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

-1.5

-81.4

-2.6

0.0

0.0

OILGASEX

-29.3

0.0

0.0

0.0

-43.8

-1.3

-1.6

-0.2

0.0

0.0

0.0

-0.4

-135.9

-79.2

-5.1

0.0

EPATFUEL

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

-2.9

0.0

0.0

ECOKEOVS

0.0

0.0

0.0

0.0

0.0

0.0

-1.1

0.0

0.0

0.0

0.0

0.0

-0.8

-0.5

0.0

0.0

EGASWKS

0.0

0.0

0.0

0.0

0.0

0.0

-43.2

0.0

0.0

0.0

0.0

0.0

-4.7

-0.3

0.0

0.0

EBKB

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

EREFINER

0.0

0.0

0.0

0.0

-4709.2

-0.7

-164.6

-15.6

0.0

0.0

0.0

-1.1

-102.6

-1423.7

-8.4

0.0

EPOWERPLT

0.0

0.0

0.0

0.0

-0.9

0.0

0.0

-0.5

0.0

0.0

0.0

0.0

-54.6

-25.9

0.0

0.0

EPUMPST

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

ENUC

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

ENONSPEC

0.0

0.0

0.0

0.0

0.0

0.0

-0.7

0.0

0.0

0.0

0.0

-0.3

-0.6

-114.8

0.0

0.0

DISTLOSS

-0.8

0.0

0.0

0.0

-2.8

0.0

-1.4

-0.7

0.0

0.0

-0.1

0.0

-2.6

-2.3

0.0

0.0

TFC

65.7

0.0

0.0

0.0

512.6

1300.0

8673.8

36200.5

65.0

1.8

4643.4

2480.6

41320.3

5731.0

8772.4

237.2

PIPELINE

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

197.9

0.0

0.0

0.0

146

147

304.8

2.0

374.1

0.9

0.0

402.3

0.0

0.0

0.0

0.0

0.0

2193.3

0.2

184211.2

EXPORTS

-649.7

-553.7

-39.7

-891.5

-756.5

0.0

0.0

0.0

0.0

0.0

0.0

0.0

-2209.3

-0.3

-121253.9 -11600.0

147

HYDRO

TOTAL

OTHER

1692.6

0.0

HEAT

WIND

10120.7

0.0

ELECTR

TIDE

30221.8

1002.6

ARTH

SOLARPV,SOL

0.0

1038.4

NUCLEAR

0.0

48.8

ONONSPEC

0.0

401.1

PETCOKE

0.0

421.0

PARWAX

0.0

IMPORTS

BITUMEN

INDPROD

LUBRIC

GEOTHERM

Table 10-9: IEA Energy Balance data used for base-year calibration (continued from table 10-8)

381358.1

BUNKERS

-13.3

0.0

0.0

0.0

-0.4

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

STOCKCHA

19.0

4.1

0.9

-0.3

7.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

-895.2

TPES

-223.0

-148.6

10.0

146.6

252.6

30221.8

10120.7

1692.6

304.8

2.0

374.1

0.9

-15.9

402.2

431820.2

TRANSFER

-29.7

-11.5

-3.6

-2.0

-377.9

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

540.4

STATDIFF

5.5

22.9

1.0

37.4

7.2

0.0

0.0

0.0

0.0

0.0

0.0

0.0

17.4

8.0

-941.6

TOTTRANF

1588.0

3777.9

190.0

2486.7

3097.1

-30221.8

-10120.7

-1535.5

-11.9

-2.0

-374.1

-0.9

62665.8

13209.6

-106188.9

MAINELEC

0.0

0.0

0.0

-283.6

-1.8

-29895.1

-9856.3

-1474.2

-10.9

-2.0

-354.9

-0.2

53770.6

-27.5

-79882.8

AUTOELEC

0.0

-23.4

0.0

-68.7

-19.1

0.0

-264.4

-14.9

-0.9

0.0

-19.2

-0.8

1959.1

0.0

-3233.4

MAINCHP

0.0

0.0

0.0

-37.3

-9.3

-326.7

0.0

-41.0

0.0

0.0

0.0

0.0

5313.9

4875.8

-7482.3

AUTOCHP

0.0

0.0

0.0

-38.5

-43.4

0.0

0.0

-1.3

0.0

0.0

0.0

0.0

1637.7

1401.6

-2216.7

MAINHEAT

0.0

0.0

0.0

-1.0

-2.0

0.0

0.0

-4.0

-0.1

0.0

0.0

0.0

0.0

3308.4

-1008.7

AUTOHEAT

0.0

0.0

0.0

0.0

-0.5

0.0

0.0

-0.1

0.0

0.0

0.0

0.0

0.0

3633.4

-702.6

THEAT

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

-7.0

10.3

3.3

TBOILER

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

-8.4

7.6

-0.8

TPATFUEL

0.0

-0.1

0.0

-0.5

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

103.1

TCOKEOVS

0.0

-4.5

0.0

-60.9

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

-1511.2

TGASWKS

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

-244.6

BLASTFUR

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

-5523.1

PETCHEM

0.0

0.0

0.0

-0.1

-11.3

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

-11.0

TBKB

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

-23.8

TREFINER

1588.1

3805.9

190.0

2977.2

3184.4

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

-1716.0 -1094.4

LIQUEFAC,ELNG

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

-2.8

0.0

TNONSPEC,TCHARCOAL

0.0

0.1

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

129.2

4.2

-1666.2

TOTENGY

-3.1

-21.7

0.0

-834.9

-149.5

0.0

0.0

0.0

0.0

0.0

0.0

0.0

-5476.2

-1372.8

-24473.0

Sub-total transf. (not ELC)

-3.1

-21.7

0.0

-834.2

-149.5

0.0

0.0

0.0

0.0

0.0

0.0

0.0

-2023.8

-1184.0

-19607.3

MINES

0.0

0.0

0.0

0.0

-0.1

0.0

0.0

0.0

0.0

0.0

0.0

0.0

-442.7

-44.9

-1592.3

OILGASEX

0.0

0.0

0.0

-58.8

-3.1

0.0

0.0

0.0

0.0

0.0

0.0

0.0

-656.9

-155.6

-5696.4

EPATFUEL

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

-1.9

0.0

-4.9

TOTAL

HEAT

ELECTR

OTHER

WIND

TIDE

ARTH

SOLARPV,SOL

GEOTHERM

HYDRO

NUCLEAR

ONONSPEC

PETCOKE

PARWAX

BITUMEN

LUBRIC ECOKEOVS

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

-14.4

-13.3

-901.2

EGASWKS

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

-18.9

-5.0

-202.3

EBKB

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

-18.3

-6.4

-36.6

EREFINER

-3.1

-21.7

0.0

-773.0

-129.1

0.0

0.0

0.0

0.0

0.0

0.0

0.0

-642.8

-625.3

-9874.6

EPOWERPLT

0.0

0.0

0.0

-0.7

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

-3347.1

-188.2

-4325.3

EPUMPST

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

-101.1

0.0

-101.1

ENUC

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

-1.4

-0.6

-2.0

ENONSPEC

0.0

0.0

0.0

-2.4

-17.2

0.0

0.0

0.0

0.0

0.0

0.0

0.0

-227.9

-333.6

-1299.1

DISTLOSS

0.0

0.0

0.0

0.0

-1.8

0.0

0.0

-9.0

0.0

0.0

0.0

0.0

-5342.0

-1043.0

-7574.9

TFC

1337.7

3619.0

197.5

1833.8

2827.8

0.0

0.0

148.1

292.9

0.0

0.0

0.0

51849.1

11204.1

293182.3

PIPELINE

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

121.8

0.0

2827.0

148

149 Upstream energy consumption is presented in table 10-10 by sources and fuels in the baseyear 2005 at global level. The IEA data has been aggregated into 8 different fuels for final consumption and are the same as upstream sector fuel technologies presented (commodity out) in table 10-3. Similar table has been used for each region to fill out the regional upstream energy consumption data for the base-year 2005. It is assumed that 10% of CHP plants belong to upstream (refinery). Table 10-11 provides CHP data for refinery at global level. Similar table has been generated for each region for the base-year calibration.

UPNSTM

HEAT/

UPNELC

ELECTRICITY/

UPNREN

RENEWABLES/

UPNRPG

OIL PRO-

DUCTS (gas)/

UPNRPP

PRODUCTS/

OIL

UPNCRD

CRUDE OIL/

UPNCOA

Technologies/Products

COAL/

GAS/ UPNNGA

Table 10-10: Upstream energy consumption

MINES

5.8

1013.3

0.0

85.6

0.0

0.0

442.7

44.9

Hard coal mines

4.9

850.5

0.0

71.9

0.0

0.0

371.6

37.7

Brown coal mines

0.9

162.8

0.0

13.8

0.0

0.0

71.1

7.2

OILGASEX

4257.9

0.0

296.5

282.7

46.7

0.0

656.9

155.6

Gas

2129.0

0.0

148.2

141.3

23.4

0.0

328.5

77.8

Light oil

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

Heavy oil

1774.1

0.0

123.5

117.8

19.5

0.0

273.7

64.8

Oil sands (mined-synth.)

56.9

0.0

4.0

3.8

0.6

0.0

8.8

2.1

Oil sands (very heavy)

0.4

0.0

0.0

0.0

0.0

0.0

0.1

0.0

NGL

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

Shale oil

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

EPATFUEL

0.0

0.0

0.0

2.9

0.0

0.0

1.9

0.0

ECOKEOVS

3.1

868.1

0.0

1.3

1.1

0.0

14.4

13.3

98.0

32.3

0.0

4.9

43.2

0.0

18.9

5.0

0.0

11.9

0.0

0.0

0.0

0.0

18.3

6.4

1493.9

97.9

6.3

2528.9

4893.0

10.9

642.8

625.3

76.8

183.2

0.4

135.2

0.7

341.2

227.9

333.6

EGASWKS EBKB EREFINER ENONSPEC

2506.5

0.0

0.8

198.0

0.0

0.0

121.8

0.0

Oil pipelines

PIPELINE

751.9

0.0

0.2

39.6

0.0

0.0

36.5

0.0

Gas pipelines

1002.6

0.0

0.4

99.0

0.0

0.0

48.7

0.0

Rpp pipelines

751.9

0.0

0.2

59.4

0.0

0.0

36.5

0.0

Table 10-11: CHP in refinery (upstream) Input UPSNGA

247. 5

149

Output

Output

REH

EFF

Output

Input

EFF

(ELC)

(heat)

(ELC/het)

heat

(heat) Total

Total

total

80.6

67.3

0.384

0.8

209.7

509.7

0.569

Input

Output

Output

REH

EFF

Output

Input

EFF

(ELC)

(heat)

(ELC/het)

heat

(heat) Total

Total

total

UPSRPP

53.8

15.5

20.2

0.384

0.8

40.4

104.4

0.536

UPSRPG

20.7

5.6

3.0

0.384

0.8

14.7

39.2

0.521

UPSCOA

95.1

28.6

17.2

0.384

0.8

74.5

188.2

0.548

10.7 References International Energy Agency (IEA), World Energy Balances, 2009, ESDS International, (Mimas) University of Manchester EFDA (2004). EFDA World TIMES Model, Final report, prepared by ORDECSYS, KanORS, HALOA, KUL. www.efda.org

150

11 Resource module 11.1 Introduction This module contains data on resource availability at regional level for the period 20052100. The name of the template is ‗Scen_B_Extraction‘. The module separately characterises OPEC and Non-OPEC resources. The module was originally based upon that provided in ETSAP-TIAM although significant changes have been made to the oil and gas characterisation including: adding Arctic oil and gas, shale gas and separately considering natural bitumen produced by mining and by in situ methods. 11.2 Coal Cost assumptions and resource data is taken from ETSAP-TIAM, which is based on the report by Remme et al. (2007). Coal resources in TIAM are distinguished between hard coal, which includes anthracite, bituminous and sub-bituminous coal, and lignite (soft brown coal). Table 11-1 gives an overview of proved recoverable reserves and additional resources. The data for coal resources and reserves are taken from BGR (2006). Table 11-1Coal reserves and resource data at regional level Hard Coal Region

Brown Coal

Total

Reserves

Resources

Reserves

Resources

Gtoe

Gtoe

Gtoe

Gtoe

Gtoe

AFR_P

0.1

0.2

0.0

0.0

0

AFR_N

28.7

71.2

0.0

0.0

100

AUS

38.3

87.2

8.8

10.2

145

CAN

2.0

28.5

0.7

0.7

32

CHI

54.8

508.1

4.3

20.1

587

CSA_P

0.3

0.7

0.0

0.0

1

CSA_N

8.4

19.5

1.2

4.7

34

EEU

6.5

31.5

6.6

12.9

58

FSU

109.8

1084.6

4.5

45.8

1245

IND

51.5

2.7

8.1

0.0

62

JPN

0.2

92.5

0.0

0.9

94

Hard Coal

Brown Coal

Total

MEA_P

0.2

1.7

0.0

0.5

2

MEA_N

0.6

1.1

0.7

1.3

4

MEX

0.5

1.1

0.1

0.0

2

ODA_P

1.2

0.7

0.7

1.0

4

ODA_N

2.3

123.5

1.4

4.1

131

SKO

0.0

0.0

0.0

0.0

0

UK

0.1

2.9

0.0

0.0

3

USA

142.7

235.6

7.7

91.4

477

WEU

0.7

4.5

2.5

19.3

27

143.4

240.1

10.2

110.7

504

World

Assumptions on production costs for hard coal are based on several, different sources (for more detail see Remme et al. (2003)). The cost estimates range from 5-37 US-$/toe for hard coal and 2-36 US-$/toe for brown coal. Figure 1-1 shows a supply cost curve for hard and brown coal.

Coal supply costs [$2000/boe]

45 40 35 30 25 20

Hard Coal

15

Brown Coal

10 5 0 0

1000

2000

3000

4000

5000

6000

Amount of coal [Gtoe]

Figure 11-1 Supply cost curve for hard and brown coal 11.3 Oil 11.3.1

Resources

Regional oil resources are determined for the following categories: 152

153 

Proved and probable reserves(2P reserves)



reserve growth7



undiscovered oil



Arctic oil



natural bitumen recoverable by surface mining



natural bitumen recoverable by in situ procedures



extra-heavy oil and



oil shale.

The first four of these are collectively referred to as ‗heavy oil‘ for ease of reference in the model, although this nomenclature bares no relationship to the definition of ‗heavy oil‘ as used in the industry (generally oil denser than 20oAPI8). Regional resources for each of these categories were derived using a country level database that provided high, best and low estimates of each. A percentage of each category was assigned to a ‗deepwater resource‘ for relevant countries. This deepwater resource is not reported separately but combined into the appropriate figure; its differentiation is necessary due to its higher production costs (see next section). Natural Gas Liquids (NGL), although contained within the definition of ‗heavy oil‘, are excluded from each country‘s ‗heavy oil‘ resource categories. TIAM-UCL produces NGLs as a by-product of natural gas production and so these were included in the natural gas resources. On an energy basis, the EIA (2009) reports that NGLs have an energy of

7

Reserve growth is the observed phenomenon that volumes of reserves tend to grow after

they are initially discovered and assessed. 8

API gravity is a measure of density, calculated using the formula as shown: . 100 API is the same density as water.

153

3.9GJ/NGLbbl and a conversion of 105m3of natural gas was hence assumed per barrel of NGL. For detailed references of how all of the resource values were determined, see McGlade (2010). The remaining categories, natural bitumen recoverable by surface mining, natural bitumen recoverable by in situ procedures, extra-heavy oil and oil shale, are collectively referred to as unconventional oil. Country level estimates of recoverable volumes were based upon high, best and low data available on the oil originally in place (OOIP) and the fraction of this that is recoverable (the recovery factor). A statistical procedure was employed to combine these values utilising Monte-Carlo simulation: probability distributions were fitted to the OOIP and recovery factor data and, for a large number of repetitions, a random selection of the recovery factor multiplied by a random selection of the OOIP. It was assumed that a high recovery factor in one country would result in a high recovery factor in all other countries due to technology transfer and so a +1 correlation was assumed for the selection of recovery factors in each country. The country level data for both the ‗heavy oils‘ and unconventional oils was finally combined into regional estimates again using Monte-Carlo simulation. This process involved by fitting probability distributions to the data and adding together random selections, this time with a +0.5 correlation, from each country within each region separately for each category of oil. 11.3.2

Costs

The oil price comprises of four external components: 

Resource cost, associated with extraction (in Scenario file Scen_B_Extraction)



VAROM mark-up to establish levels close to oil prices seen in the market (in Scenario file Scen_X_OilOpec5bis)



Other energy costs associated with extraction (particularly for oil sands and shale oil)



Transportation costs for traded oil (see ScenTrade_Trade_Parms)

These costs and the supply / demand balance are used to derive an endogenously calculated marginal cost.

154

155 11.3.3

Resource cost

The resource costs for each of the oils contains two components: the first to extract the native oil from the ground, and the second, if necessary, to upgrade this into a usable crude oil. The upgrading component is necessary for all of the unconventional oils. The resource costs for the first component are derived using data provided by the IEA (2008 pg 218). This is modified in a number of ways so that each country could be assigned a high and low cost for each of the ‗heavy oils‘ and unconventional oils that it possesses. The modifications that were necessary included: splitting the data by countries and/or regions, separating between production costs of reserves and undiscovered oil and between costs bitumen by any means and extra-heavy oil, separating between extraction costs of the unconventional oils and upgrading costs, and accounting for how the costs vary as the resource is depleted. See McGlade (2011) for a more detailed account of how these costs were derived for each country. Table 11-2 gives cost ranges assumed for each category, these represent only the absolute maximum and minimum for all countries, each individual country is assigned its own range and magnitude. Table 11-2 shows cost ranges assumed for each category of oil in TIAM-UCL Category of oil

Minimum cost

Maximum cost

(2005$/bbl)

(2005$/bbl)

Reserves

8

34

Reserve growth

17

70

Undiscovered oil

10

74

Deepwater reserves

36

65

Deepwater reserve growth

45

83

Deepwater undiscovered

42

89

Arctic oil

36

58

Natural bitumen – mining

35

44

Natural bitumen – in situ

29

37

Extra-heavy oil

29

37

Oil shale

39

83

The variation of cost as the resource was depleted was derived using depletion costs curves. Derived using empirical evidence, these curves displayed below demonstrate how the cost of 155

each resource in each country increases as more of it is used. They represent the percentage increase in the cost range for each incremental percentage of the resource that is produced. 100% 90%

Reserves & Reserve growth

% of price range

80% 70%

Undiscovered

60% 50% 40%

Deepwater (Reserve & YTF)

30%

Arctic

20% 10%

Unconventionals

0%

0%

20%

40% 60% % of resource depleted

80%

100%

Figure 11-2 Depletion cost curves for each category of oil examined In order to derive the inputs for TIAM-UCL, each country‘s cost data was applied to that country‘s resource probability distributions. An overall supply cost curve that represented the resource variability could then be derived. An example for reserves in African OPEC countries is presented below. Blue and green figures represent the 65th and 35th percentiles and the 95th and 5th percentiles respectively. As discussed above, any

156

157 deepwater reserves, which appear at higher costs, are included in this figure.

Figure 11-3 show an example of 2P reserves in the OPEC African region, of supply cost curve generated The mode value from this curve was then separated and the curve differentiated into three steps so that the number of inputs in the resource module was kept at a reasonable level. These three steps were the first 50% of the resource, the next 30% and the final 20%. The overall oil global supply cost curve that represents all of the resource and cost data i.e. the data used as inputs to TIAM-UCL is presented below. It is important to recognise that all of the categories of all are not equivalent. Some require (potentially major) upgrading which has additional costs and needs. If these costs were taken into account, the unconventional oils would tend be shifted upwards and further to the right of this curve. Oil was converted to energy using 1bbl = 6.1GJ.

157

80 AFR_P

Supply Curve/ Resource availability by Region 70

AFR_N

AUS CAN

60

Price (2005)$/bbl

CHI

CSA_P

50

CSA_N EEU

40

FSU IND JPN

30

MEA_P MEA_N 20

MEX

ODA SKO

10

UK

USA 0 0

250

500

750

1000

1250

1500

1750

2000

2250

2500

2750

3000

3250

3500

3750

WEU

Remaining resources /Gb

Figure 11-4 shows the supply cost curve for all oil differentiated by region

80

Supply Cost curve/ Resource availability by resource type 70 Reserves Reserve Growth

60

Cost (2005)$/bbl

Undiscovered 50

Arctic oil 40

Mined natural bitumen In situ natural bitumen

30

Extra-heavy

20 Oil shale 10

0 0

250

500

750

1,000

1,250

1,500

1,750

2,000

2,250

2,500

2,750

3,000

3,250

3,500

3,750

Resource availability / Gb

Figure 11-5 shows the supply cost curve for all oil differentiated by oil category 11.3.4

Upgrading oil

As mentioned, an additional cost was necessary for the unconventional oils to upgrade them into an oil that is equivalent to ‗heavy oil‘. These additional costs included both investment

158

159 costs as well as heat and electricity. These inputs varied depending on the unconventional oil in question and are summarised in the table below; these are assumed for all regions. The data was derived using a number of sources; see McGlade (2011) for more details. Currently, heat is entirely provided and electricity primarily provided by natural gas. This will not always necessarily be the case and these are hence reported as heat and electricity input instead of natural gas. In the Reference case, the model is constrained to limit OPEC production to a maximum 80% of total production (see Scen_Oil-UC-opec_080). Table 11-3 show details of upgrading technologies for unconventional oils Category of oil

Investment cost

Heat input

Electricity input

($2005/bbl)

(MJ/bbl)

(MJ/bbl)

Natural bitumen – mining

23

500

100

Natural bitumen – in situ

5

1000

250

Extra-heavy oil

5

1000

250

Oil shale

1

1000

0

11.4 Gas Natural gas has been separated into conventional gas consisting of reserves, reserve growth, undiscovered and Arctic gas, and unconventional gas consisting of tight gas, coal bed methane and shale gas. Since all gas produced from the above categories is similar, there was no need to add an extra upgrading stage as was necessary for oil. As discussed above, Natural Gas Liquids are produced as a by-product of natural gas production with approximately 0.3PJ NGL produced for every 1PJ of natural gas produced. NGL resources were added to the natural gas reserves with a conversion of 105m3of natural gas assumed per barrel of NGL. A similar methodology for natural gas was used as was employed for oil. Regional resources for each of the above categories were again derived using a country level database that provided high, best and low estimates of each, which were combined using Monte-Carlo simulation. Similar to the procedure for dealing with deepwater oil, the percentages of conventional gas that were either in deepwater or were sour (with high concentrations of H2S) were derived using data from the MMS (2006), USGS (2000) and Rojey (1997) and, after 159

cost data was applied, recombined back into the relevant category and so are not reported separately. Primary sources for the conventional data included: for reserves: BGR (2008), Campbell (2009) and USGS (2000) and for the unconventional sources: Kuuskraa (2010) and IEA (2009). 11.4.1

Resource costs

Again a similar procedure to that used for oil was employed to associate the gas resources with costs of production. The cost data was based upon information from IEA (2009 pg 416) and modified for natural gas costs in each country using data provided by Observatoire Mediterraneen de l'Energie (2001) and Lochner (2009) . A table of natural gas costs is presented below, again with the minimum and maximum cost from any country within each gas category. Gas was converted to barrels of boil equivalent (boe) using 160m3 = 1boe = 6.1GJ. These cost data were again applied to the resource data using depletion cost curves. Table 11-4 shows the cost ranges for each type of gas resource Category of oil

Minimum cost

Maximum cost

(2005$/boe)

(2005$/boe)

Reserves

3

25

Reserve growth

7

45

Undiscovered oil

8

36

Deepwater reserves

28

52

Deepwater reserve growth

32

59

Deepwater undiscovered

43

68

Sour reserves

18

44

Sour reserve growth

22

52

Sour undiscovered

22

55

Arctic oil

23

69

Tight gas

15

45

Coal bed methane

17

50

Shale gas

17

45

The gas supply cost curve demonstrating the inputs to TIAM-UCL are presented in Figure 11-6 and Figure 11-7.

160

161 50 AFR_P

Supply Curve/ Resource availability by Region

45

AFR_N

AUS

40

CAN CHI

35

Price (2005)$/boe

CSA_P CSA_N

30

EEU

25

FSU IND

20

JPN

MEA_P 15

MEA_N MEX

10

ODA SKO

5

UK

USA 0 0

500

1000

1500

2000

2500

3000

WEU

3500

Remaining resources /Gboe

Figure 11-6 shows the natural gas supply cost curve by region 50

Supply Curve/ Resource availability by resource type 45

Reserves 40 Reserve Growth

Price (2005)$/ boe

35

Undiscovered

30

25

Undiscovered Arctic

20

Tight Gas

15

CBM

10

Shale Gas

5 0 0

250

500

750

1,000

1,250

1,500

1,750

2,000

2,250

2,500

2,750

3,000

3,250

3,500

Resource availability / Gb

Figure 11-7 shows the natural gas supply cost curve by resource type 11.5 Other fuels 11.5.1

Biomass for electricity sector

Biomass used in the electricity sector is provided by two different commodities - ELCSLD (from BIOSLD) and ELCCRP (from BIOCRP). Both originate from domestic (MIN) processes: 161

MINBIOCRP0 (producing BIOCRP) and MINBIOSLD1,2 and 3 (producing BIOSLD). In this module biomass availability is modelled for energy crops and solid biomass (Table 11-5). Energy crops and solid biomass availability data is taken from TIAM-WORLD (www.kanors.com) and some adjustment made to match the regions in the TIAM-UCL. These two biomass resources are traded, transportation cost is presented in trade module. The domestic production bounds for 2005 can be found in the BY UPS templates. Concerning costs, all regions have the same COST for the three tranches of BIOSLD (at 0.63, 1.88 and 3.13). For BIOCRP, resource costs differ between regions although the basis for this differential is not clear. They range between 1.38 in India to 3.65 in ODA. All costs remain the same over the time horizon. Table 11-5 Biomass resource availability in 2050 and 2100

Biomass

MINBIOSLD1

MINBIOSLD2

MINBIOSLD3

MINBIOCRP0

Yr

2050

2100

2050

2100

2050

2100

2050

2100

AFR

9650

9650

7720

7720

1930

1930

9000

15000

AUS

1386

1386

567

567

147

147

13000

16600

CAN

1980

1980

810

810

210

210

6000

9000

CHI

7437

7437

3330

3330

333

333

5000

6000

CSA

13350

13350

3738

3738

712

712

17000

22000

EEU

971

971

747

747

149

149

167

167

FSU

1519

1519

1333

1333

248

248

55000

56700

IND

8170

8170

1235

1235

95

95

5000

7000

JPN

0

0

0

0

0

0

100

100

MEA

204

204

87

87

9

9

1000

1500

MEX

1258

1258

374

374

68

68

2000

3000

ODA

1407

1407

588

588

105

105

6000

6500

SKO

67

67

30

30

3

3

100

100

UK

93

93

78

78

15

15

17

17

USA

3276

3276

1612

1612

312

312

16400

22000

WEU

1773

1773

1490

1490

284

284

317

317

11.6 Uranium Uranium resource is modelled in the ―SubRES_Nucresource‖. The resource availability data is taken from IER report (IER; 2007). This includes reasonable assured resources (RAR), inferred resources (IR), prognosticated resources, Prognosticated Resources (PR) and 162

163 speculative resources (SR). Reasonable assured resources (RAR) are uranium deposits, which are proven to exist with a high degree of certainty and which can be extracted with known mining technologies. Inferred resources (IR) refers to uranium that is inferred to occur due to direct geological evidence, but due to missing further exact information cannot be included in the RAR category. Prognosticated resources (PR) describe uranium deposits that are assumed to exist mainly based on indirect evidence, e.g. due to the existence of other minerals typically occurring together with uranium. Furthermore, the location of the deposit is exactly known. Speculative resources (SR) are quantities that are thought to exist based on indirect evidence or geological extrapolations. Only the rough location of these deposits in a region is known, but not the exact position Depending on the extraction costs, these uranium resources are specified in the three categories less 40 $/kg U, 40-80 $/kg U and 80-130 $/kg U extraction costs (Table 11-6). It is assumed based on IER report that, One kg of Uranium can generate 61 MWh of electricity in a nuclear plant with the thermal efficiency of 37% and nuclear fuel is reprocessed once. Data presented in the table is equivalent of electricity generation. It is also assumed in the model that any region can import or export uranium. Table 11-6 Cumulative Uranium resource availability (PJ)-data used in TIAM-UCL Region

163

Cost ranges RAR+IR+PR+SR US$/PJ 8.784

US$/PJ 17.568

US$/PJ 28.548

(US$40/kg)

(US$80/kg)

(US$130/kg)

Total

AFR

96491

175741

238902

511133

AUS

229262

235850

251003

716116

CAN

81647

108438

284118

474204

CHI

6957

13906

14806

35669

CSA

32400

120675

188432

341507

EEU

728

4194

15395

20317

FSU

134500

296078

631056

1061634

IND

0

0

16896

16896

JPN

0

0

1449

1449

MEA

17343

27202

29420

73964

MEX

0

0

1054

1054

ODA

3558

13674

345227

362458

SKO

0

0

0

0

Total

603105

1208784

2595464

4407353

Region

Cost ranges RAR+IR+PR+SR US$/PJ 8.784

US$/PJ 17.568

US$/PJ 28.548

(US$40/kg)

(US$80/kg)

(US$130/kg)

Total

USA

0

206644

543071

749714

WEU

220

6382

34635

41236

11.7 References BGR (Federal Institute for Geosciences and Natural Resources): Reserves, Resources and Availability of Energy Resources 2004, Brief Study, Hannover, 2006 BGR (2008) – Reserves, resources and availability of Energy Resources, Hannover Campbell (2009) – Atlas of oil and gas depletion. Campbell C. And Heapes S. EIA (2009) – Energy Information Agency table A2 available at: http://search.usa.gov/search?affiliate=eia.doe.gov&locale=en&m=false&query=tabl e+A2 IEA (2008) - World Energy Outlook 2008 International Energy Agency IEA (2009) - World Energy Outlook 2009 International Energy Agency Kuuskraa (2010) - From Fears of Shortages to Expectations of Plenty: The Paradigm Shift in Natural Gas Supplies. Kuuskraa V.A. Presentation at 29thUSAEE/IAEE North American Conference, Calgary, October 2010. Lochner (2009) - The development of natural gas supply costs to Europe, the United States and Japan in a globalizing gas market—Model-based analysis until 2030. Energy Policy 37 (2009) 1518–1528 McGlade (2010) - Uncertainties in estimating remaining recoverable resources of conventional oil – conference paper 29th USAEE/IAEE North American Conference, Calgary, October 2009 McGlade (2011) - Uncertainties in the long term availability of crude oil– conference paper 34th IAEE International Conference, Stockholm, June 2011 (in press) 164

165 MMS (2006) - Outer Continental Shelf Oil & Gas Assessment 2006, Mineral Management Service, available at http://www.boemre.gov/revaldiv/RedNatAssessment.htm Observatoire Mediterraneen de l'Energie (2001) - Assessment of internal and external gas supply options for the EU, evaluation of the supply costs of new natural gas supply projects to the EU and an investigation of related financial requirements and tools. Remme, Uwe, Blesl, Markus, Fahl, Ulrich (2007): ―Global resources and energy trade: An overview for coal, natural gas, oil and uranium‖, Band 101, IER Universitaet Stuttgart Rojey (1997) - Natural gas: production, processing, transport USGS (2000) – USGS World Petroleum Assessment 2000, Ahlbrandt et. al, available at http://pubs.usgs.gov/dds/dds-060/ Uwe Remme, Markus Blesl and Ulrich Fahl, 2007. Global resources and energy trade: an overview for coal, natural gas, oil and uranium. IER, University of Stuugart.

165

12 Cross-sector modules 12.1 Introduction There are a range of SubRes files in the model which characterise technologies not found in the BY templates i.e. options for investment post-2005. All are described in this section, with the exception of B-NewTechs, which is described in the relevant sector chapters. B-

Newtechs is the main SubRes file, listing the key technology options that can be invested in future years. The SubRes files described in this section are listed in Table 12-1 below. Table 12-1: List of SubRes files in the TIAM-UCL model SubRes file

Included in current

Description

Reference Scenario? Alternative fuel

Yes

New alternative fuel technologies such as coal-to-liquids

Hydrogen

Yes

Hydrogen technologies, including production and transport technologies

Sequestration

Yes

Capture and storage technologies included, plus forestry sinks

Land-use CO2

No

(LUCO2) Non-CO2 gases

Accounting of emission of methane and CO2 from land use

No

Accounting of emission of methane and N2O from agriculture, residential and industry sectors

CH4 measures

No

CH4 mitigation measures

N2O measures

No

N2O mitigation measures

NucResource

Yes

12.2 Alternative fuel This SubRes file contains technologies for the production of alternative fuels. The technologies are splits into two groups: 1) Ethanol and methanol production, either from coal or biomass and 2) Fischer-Tropsch processes, producing oil products from coal, gas and biomass.

Table 12-2: Alternative fuel technologies Model Technology Name

Model Technology Description

UBIOETH100

Ethanol from biomass

UETHCRP100

Cellulose ethanol plant

UMETBIO100

Methanol from Bioliquids

UMETCOA100

Methanol from coal

UMETCOAS100

Methanol from coal with CO2 capture

UMETGAS100

Prod of Methanol from natural gas

UFTSYNBSLD

FT Diesel Solid biomass

UFTSYNBSLDH

Synth Diesel Hydrothermal upgrading

UFTSYNCOA

FT Diesel Coal

UFTSYNCOACCS

FT Diesel Coal with CO2 capture

UFTSYNNGA

FT Diesel Natural gas

UFTSYNJTKCCS

Prod of JTK from coal FT

UFTSYNHFOCCS

Prod of HFO from coal FT

As noted in the template, further work is needed to develop the cost information currently being used. All regions use the same assumptions with no additional information provided in the Trans file. 12.3 Hydrogen SubRes technologies include those used for hydrogen production and demand technologies in the transport sector that consume hydrogen. Production technologies (name starting 'H') are generic in nature and are defined by the type of fuel used - coal, natural gas, electricity and biomass. There are also technologies, available from 2020, that allow for mixing of hydrogen into the natural gas supply to different sectors (name starting 'UP'). This mix is fixed at 15% hydrogen / 85% natural gas. A single distribution technology allows for hydrogen transport, with costs developed on the basis of unit of energy transported (using VAROM).

168

169 Table 12-3: Hydrogen production and supply technologies Model Technology Name

Model Technology Description

HBCO105

Hydrogen from Brown coal

HHCO105

Hydrogen from Hard coal

HLYSI05

Electrolysis

HNGA105

Hydrogen from NGA

HNGAD105

Hydrogen from NGA - Decentralized

HBIO105

Hydrogen from biomass gasification

UPCGAHH00

Mix of Gas and Hydrogen - For COM

UPIGAHH00

Mix of Gas and Hydrogen - For IND

UPRGAHH00

Mix of Gas and Hydrogen - For RES

UDISTHH200

Distribution of hydrogen

Hydrogen technologies for cars and light duty trucks are included in the model, with different types based on the use of combustion, hybrid or fuel cell technology. The associated Trans file puts different hurdle rates on these technologies, assuming 15% for developed regions and 30% for developing regions such as Africa. The Trans file is also used to adjust efficiencies and costs across all regions, for both transport and production technologies. Table 12-4 Hydrogen technologies in transport sector Tech. Name

Technology Description

Year

LIFE

INVCOST

FIXOM

EFF

TRTHHA005

CAR:

2006

12.5

2000

80

0.372

2008

12.5

1750

80

0.393

2015

12.5

1600

80

0.404

2020

12.5

1528

80

0.415

2020

12.5

1929

80

0.446

2006

12.5

2500

80

0.496

.05.AFV.HH2.Combustion.Liq sto. TRTHHA010

CAR: .10.AFV.HH2.Combustion.Liq sto.

TRTHHA015

CAR: .15.AFV.HH2.Combustion.Liq sto.

TRTHHA020

CAR: .20.AFV.HH2.Combustion.Liq sto.

TRTHHB020

CAR: .20.AFV.HH2.Combustion.Car bon sto.

TRTHHC005

CAR: .05.AFV.HH2.Hybrid.Liq sto.

169

Tech. Name

Technology Description

Year

LIFE

INVCOST

FIXOM

EFF

TRTHHC010

CAR: .10.AFV.HH2.Hybrid.Liq

2008

12.5

2000

80

0.498

2015

12.5

1750

80

0.511

2020

12.5

1674

80

0.525

2020

12.5

2074

80

0.594

2006

12.5

5000

80

0.685

2008

12.5

2500

80

0.688

2015

12.5

2200

80

0.707

2020

12.5

1892

80

0.726

2020

12.5

2293

80

0.780

2006

12.5

2500

80

0.737

2008

12.5

2000

80

0.740

2015

12.5

1800

80

0.760

2020

12.5

1608

80

0.780

2006

15

2000

75

0.248

2008

15

1750

75

0.262

2015

15

1600

75

0.269

2020

15

1528

75

0.276

2020

15

1929

75

0.030

sto. TRTHHC015

CAR: .15.AFV.HH2.Hybrid.Liq sto.

TRTHHC020

CAR: .20.AFV.HH2.Hybrid.Liq sto.

TRTHHD020

CAR: .20.AFV.HH2.Hybrid.Carbon sto.

TRTHHE005

CAR: .05.AFV.HH2.Fuel cell.Liq sto.

TRTHHE010

CAR: .10.AFV.HH2.Fuel cell.Liq sto.

TRTHHE015

CAR: .15.AFV.HH2.Fuel cell.Liq sto.

TRTHHE020

CAR: .20.AFV.HH2.Fuel cell.Liq sto.

TRTHHF020

CAR: .20.AFV.HH2.Fuel cell.Carbon sto.

TRTHHG005

CAR: .05.AFV.HH2.Fuel cell.Gas sto.

TRTHHG010

CAR: .10.AFV.HH2.Fuel cell.Gas sto.

TRTHHG015

CAR: .15.AFV.HH2.Fuel cell.Gas sto.

TRTHHG020

CAR: .20.AFV.HH2.Fuel cell.Gas sto.

TRLHHA005

LIGHT TRUCK: .05.AFV.HH2.Combustion.Liq sto.

TRLHHA010

LIGHT TRUCK: .10.AFV.HH2.Combustion.Liq sto.

TRLHHA015

LIGHT TRUCK: .15.AFV.HH2.Combustion.Liq sto.

TRLHHA020

LIGHT TRUCK: .20.AFV.HH2.Combustion.Liq sto.

TRLHHB020

LIGHT TRUCK: .20.AFV.HH2.Combustion.Car bon sto.

170

171 Tech. Name

Technology Description

Year

LIFE

INVCOST

FIXOM

EFF

TRLHHC005

LIGHT TRUCK:

2006

15

2500

75

0.331

2008

15

2000

75

0.332

2015

15

1750

75

0.341

2020

15

1674

75

0.350

2020

15

2074

75

0.396

2006

15

5000

75

0.457

2008

15

2500

75

0.459

2015

15

2200

75

0.471

2020

15

1892

75

0.484

2020

15

2293

75

0.520

2006

15

2500

75

0.491

2008

15

2000

75

0.493

2015

15

1800

75

0.507

2020

15

1608

75

0.520

.05.AFV.HH2.Hybrid.Liq sto. TRLHHC010

LIGHT TRUCK: .10.AFV.HH2.Hybrid.Liq sto.

TRLHHC015

LIGHT TRUCK: .15.AFV.HH2.Hybrid.Liq sto.

TRLHHC020

LIGHT TRUCK: .20.AFV.HH2.Hybrid.Liq sto.

TRLHHD020

LIGHT TRUCK: .20.AFV.HH2.Hybrid.Carbon sto.

TRLHHE005

LIGHT TRUCK: .05.AFV.HH2.Fuel cell.Liq sto.

TRLHHE010

LIGHT TRUCK: .10.AFV.HH2.Fuel cell.Liq sto.

TRLHHE015

LIGHT TRUCK: .15.AFV.HH2.Fuel cell.Liq sto.

TRLHHE020

LIGHT TRUCK: .20.AFV.HH2.Fuel cell.Liq sto.

TRLHHF020

LIGHT TRUCK: .20.AFV.HH2.Fuel cell.Carbon sto.

TRLHHG005

LIGHT TRUCK: .05.AFV.HH2.Fuel cell.Gas sto.

TRLHHG010

LIGHT TRUCK: .10.AFV.HH2.Fuel cell.Gas sto.

TRLHHG015

LIGHT TRUCK: .15.AFV.HH2.Fuel cell.Gas sto.

TRLHHG020

LIGHT TRUCK: .20.AFV.HH2.Fuel cell.Gas sto.

171

Table 12-5 Hydrogen production technologies in ETSAP-TIAM Tech. Name

Technology description

Com.-IN

Com.-OUT

Input

LIFE

DISCRAT

INVCOS

FIXO

VARO

E

T

M

M

AF

T

HLYSI05

Electrolysis

ELCC

SYNHY0

1.25

30

0.1

30

0.95

0.85

HNGA105

Hydrogen from NGA

GASNGA

SYNHY0

1.23

20

0.1

10

0.56

0.95

HHCO105

HBCO105

Hydrogen from Hardcoal

Hydrogen from

COAHCO

COABCO

ENV_AC

UPNCO2N

56.10

UPNCH4N

0.13

UPNN2ON

0.62

SYNHY0

1.59

20

0.1

33.5

1.5

0.2

0.95

UPNCO2N

98.30

UPNCH4N

0.54

UPNN2ON

1.81

SYNHY0

1.59

20

0.1

33.5

1.5

0.2

0.95

Browncoal

HNGAD105

Hydrogen from NGA -

GASNGA

UPNCO2N

101.20

UPNCH4N

0.54

UPNN2ON

1.81

TRAHH2

1.33

20

0.1

10

0.56

2.0

0.95

Decentralized

HBIO105

Hydrogen from biomass

BIOBSL

TRACO2N

56.10

TRACH4N

0.13

TRAN2ON

0.62

SYNHY0

1.59

25

0.1

100

1.08

0.85

gasification

172

173

12.4 Sequestration Sequestration technologies and storage options mainly relate to the electricity sector, and are described in the relevant sector chapter of this report. There are two technologies that allow for the capture of CO2 emissions (process-based) in the upstream sector. The costs of such 'dummy' capture technologies are modelled simply, using variable costs of 0.001 (equivalent to $1/tCO2). Another set of important technologies for integrated climate modelling are those that relate to emissions and removals by the forestry sector. Labelled SINKAF*. The levels of emissions and removals and the associated costs are controlled by the Trans file and are based on assumptions used in the EMF analysis. Finally, atmospheric CO2 may be partly absorbed and fixed by biological sinks such as forests; the model has six options for forestation and avoided deforestation, as described in Sathaye et al. (2005) and adopted by the Energy Modelling Forum, EMF-21 and 22 groups. 12.5 Land-use CO2 The SubRes file LUCO2 defines a single technology that emits fixed levels of emissions by region each period. It is net CO2 emissions from deforestation and forest degradation. It does not include emissions from land use. The levels are calculated in the associated Trans file. The global emission level in 2005 is estimated at 2.7 GtCO2 per year, which decreases to 0.1 GtCO2 by 2100.9 Allocation by region is based on distribution of agricultural managed land. It is assumed that LULUCF emissions for UK is zero and therefore, WEU region‘s LULUCF emission has not been changed. There are scenarios in the model with reduced emissions from deforestation based on the EMF 21 study scenarios.

9

A note in the template states that the total emissions are from the MIR paper

173

12.6 Non-CO2 gases TIAM includes energy related CO2, land-use (and forestry) CO2, and non-CO2 gases CH4 and N2O. CH4 from upstream, landfills, manure, rice paddies, enteric fermentation, wastewater is based on EMF-22 data and WEO-2008. N2O from industry and agriculture is based on WEO2008. CO2 from land-use is based on the Reference scenario of the United States Climate Change Science Program (MIT) presented in Prinn et al. (2008). UK data for Non-CO2 gases are taken from UK greenhouse gas inventory national system (www.ghgi.org.uk). Some other greenhouse gases (CFC‘s, HFC‘s, SF6, etc.) and chemically active gases such as NOX, CO, VOC‘s are not explicitly modelled, but their radiative forcing is represented as an exogenous extra term in the Forcing expression (this is only for climate module). When aggregate non-CO2 emissions (CH4 and N2O) to CO2 equivalent, the model uses a factor of 0.025 for CH4 and 0.298 for N2O. This SubRes does the emissions accounting for non-CO2 emission sources, which are listed Table 12-6 below. These emission sources are important to include when running climate targets taking account of all GHGs. Emission levels are fixed in the Trans file, and appear to have been calculated using EMF data. Table 12-6: Non-CO2 emission sources Sector

Emission source

GHG

Industry

Adipic Acid Production

N2O

Industry

Nitric Acid Production

N2O

Agriculture

Manure

CH4

Agriculture

Other e.g. residue burning

CH4

Agriculture

Other

N2O

Residential

Landfill

CH4

Residential

Other e.g. wastewater

CH4

12.7 CH4 measures CH4 mitigation measures in the model are reasonably extensive with 50 measures relating to the UPS sector and 20 measures relating to waste and agriculture sector emissions. CH4 mitigation options were provided by the Energy Modeling Forum, EMF-21 group. CH4 removal is modelled by being 'consumed' by these mitigation technologies. 174

175 The Trans file is used to update fixed O&M costs of upstream sector mitigation measures. Table 12-5 and 12-6 present technologies for CH4 mitigation in residential and upstream sectors. CO2 emissions from residential CH4 mitigation technologies are captured and allocated to residential process emissions (RESCO2P). Similar CO2 emissions from upstream CH4 mitigation technologies are captured and allocated to upstream process emissions (UPCO2P). Table 12-7: Technologies to mitigate CH4 Technology

Description

ACH4MANE3

CH4 option - Manure - Production of elec and heat

ACH4MANE4

CH4 option - Manure - Production of elec and heat

RCH4WLFE4

CH4- Heat Production - Power

RCH4WLFE2

CH4- Anaerobic digestion 2 - Power

RCH4WLFE8

CH4- Electricity Generation - Power

ACH4MAN01

CH4- Farm Scale Digesters-A (cool climate)

ACH4MAN02

CH4- Farm Scale Digesters-A (warm climate)

ACH4MAN03

CH4- Farm Scale Digesters-B (cool climate)

ACH4MAN04

CH4- Farm Scale Digesters-B (warm climate)

RCH4WLF01

CH4- Anaerobic digestion 1 (AD1)

RCH4WLF02

CH4- Anaerobic digestion 2 (AD2)

RCH4WLF03

CH4- Composting (C1)

RCH4WLF04

CH4- Mechanical Biological Treatment

RCH4WLF05

CH4- Heat Production

RCH4WLF06

CH4- Increased Oxidation

RCH4WLF07

CH4- Direct Gas Use (profitable at base price)

RCH4WLF08

CH4- Electricity Generation

RCH4WLF09

CH4- Direct Gas Use (profitable above base price)

RCH4WLF10

CH4- Flaring

RCH4WLF11

CH4- Composting (C2) Table 12-8: Technologies to mitigate CH4

Technology

Description

UNCH4COAE5

CH4 option - Production of elec and heat

UNCH4COAE6

CH4 option - Production of elec and heat

UNCH4COAE7

CH4 option - Production of elec and heat

UPCH4COAE5

CH4 option - Production of elec and heat

UPCH4COAE6

CH4 option - Production of elec and heat

175

Technology

Description

UPCH4COAE7

CH4 option - Production of elec and heat

UNCH4COA08

CH4- Catalytic Oxidation (EU)

UNCH4COAE3

CH4 option - Production of elec

UNCH4COAE8

CH4 option - Production of elec

UPCH4COA08

CH4- Catalytic Oxidation (EU)

UPCH4COAE3

CH4 option - Production of elec

UPCH4COAE8

CH4 option - Production of elec

UNCH4COA01

CH4- Degasification and Pipeline Injection

UNCH4COA02

CH4- Enhanced Degasification_ Gas Enrichment_ and Pipeline Injection

UNCH4COA03

CH4- Catalytic Oxidation (US)

UNCH4COA04

CH4- Flaring

UNCH4COA05

CH4- Degasification and Power Production – A

UNCH4COA06

CH4- Degasification and Power Production – B

UNCH4COA07

CH4- Degasification and Power Production – C

UNCH4GAS01

CH4- P&T - Use gas turbines instead of reciprocating engines

UNCH4GAS02

CH4- Prod-D I&M (Pipeline Leaks)

UNCH4GAS03

CH4- Installation of Flash Tank Separators (Production)

UNCH4GAS04

CH4- Replace high-bleed pneumatic devices with compressed air systems (Production)

UNCH4GAS05

CH4- Replace high-bleed pneumatic devices with low-bleed pneumatic devices (Production)

UNCH4GAS06

CH4- Dry Seals on Centrifugal Compressors (P&T)

UNCH4GAS07

CH4- Catalytic Converter (P&T)

UNCH4GAS08

CH4- Portable Evacuation Compressor for Pipeline Venting (P&T)

UNCH4GAS09

CH4- Replace High-bleed pneumatic devices with compressed air systems (P&T)

UNCH4GAS10

CH4- Replace high-bleed pneumatic devices with low-bleed pneumatic devices (P&T)

UNCH4GAS11

CH4- D-D I&M (Distribution)

UNCH4GAS12

CH4- D-D I&M (Enhanced: Distribution)

UNCH4GAS13

CH4- Electronic Monitoring at Large Surface Facilities (D)

UNCH4GAS14

CH4- Replacement of Cast Iron_Unprotected Steel Pipeline (D)

UNCH4OIL01

CH4- Flaring instead of Venting (Offshore)

UNCH4OIL02

CH4- Flaring instead of Venting (Onshore)

UNCH4OIL03

CH4- Associated Gas (vented) Mix with Other Options

UNCH4OIL04

CH4- Associated Gas (flared) Mix with Other Options

UPCH4COA01

CH4- Degasification and Pipeline Injection

176

177 Technology

Description

UPCH4COA02

CH4- Enhanced Degasification_ Gas Enrichment_ and Pipeline Injection

UPCH4COA03

CH4- Catalytic Oxidation (US)

UPCH4COA04

CH4- Flaring

UPCH4COA05

CH4- Degasification and Power Production – A

UPCH4COA06

CH4- Degasification and Power Production – B

UPCH4COA07

CH4- Degasification and Power Production – C

UPCH4GAS01

CH4- P&T - Use gas turbines instead of reciprocating engines

UPCH4GAS02

CH4- Prod-D I&M (Pipeline Leaks)

UPCH4GAS03

CH4- Installation of Flash Tank Separators (Production)

UPCH4GAS04

CH4- Replace high-bleed pneumatic devices with compressed air systems (Production)

UPCH4GAS05

CH4- Replace high-bleed pneumatic devices with low-bleed pneumatic devices (Production)

UPCH4GAS06

CH4- Dry Seals on Centrifugal Compressors (P&T)

UPCH4GAS07

CH4- Catalytic Converter (P&T)

UPCH4GAS08

CH4- Portable Evacuation Compressor for Pipeline Venting (P&T)

UPCH4GAS09

CH4- Replace High-bleed pneumatic devices with compressed air systems (P&T)

UPCH4GAS10

CH4- Replace high-bleed pneumatic devices with low-bleed pneumatic devices (P&T)

UPCH4GAS11

CH4- D-D I&M (Distribution)

UPCH4GAS12

CH4- D-D I&M (Enhanced: Distribution)

UPCH4GAS13

CH4- Electronic Monitoring at Large Surface Facilities (D)

UPCH4GAS14

CH4- Replacement of Cast Iron_Unprotected Steel Pipeline (D)

UPCH4OIL01

CH4- Flaring instead of Venting (Offshore)

UPCH4OIL02

CH4- Flaring instead of Venting (Onshore)

UPCH4OIL03

CH4- Associated Gas (vented) Mix with Other Options

UPCH4OIL04

CH4- Associated Gas (flared) Mix with Other Options

12.8 N2O measures N2O abatement measures are provided for the nitric and adipic acid industries. Costs by region are differentiated in the Trans file. Table 12.7 provides list of technologies for N2O mitigation. N2O mitigation options were provided by the Energy Modeling Forum, EMF-21 group.

177

Table 12-9: Technologies to mitigate N2O Technology

Description

IN2OADI01

N2O option - Thermal Destruction

IN2ONIT01

N2O option - Grand Paroisse - High Temperature Catalytic Reduction Method

IN2ONIT02

N2O option - BASF - High Temperature Catalytic Reduction Method

IN2ONIT03

N2O option - Norsk Hydro - High Temperature Catalytic Reduction Method

IN2ONIT04

N2O option - HITK – High Temperature Catalytic Reduction Method

IN2ONIT05

N2O option - Krupp Uhde - Low Temperature Catalytic Reduction Method

IN2ONIT06

N2O option - ECN - Low temperature selective catalytic reduction with propane addition

IN2ONIT07

N2O option - Non-Selective Catalytic Reduction (NSCR)

12.9 References Prinn R., S. Paltsev, A. Sokolov, M. Sarofim, J. Reilly, and H. Jacoby (2008). The Influence on Climate Change of Differing Scenarios for Future Development Analyzed Using the MIT Integrated Global System Model. Report nº163, MIT Joint Program on the Science and Policy of Global Change, 32 p. www.ghgi.org.uk (for UK non-CO2 gases) Sathaye J., Makundi W., Dale L., Chan P., and Andrasko K. (2005). Estimating Global Forestry GHG Mitigation Potential and Costs: A Dynamic Partial Equilibrium Approach. LBNL – 55743.

178

13 Trade Module 13.1 Introduction A key strength of the model is the characterisation of energy and emission commodity trading. Based on the costs of resource extraction and production, and transportation, regions 'decide' whether to import or export. This includes, for example, whether to import crude for refining, which can then be used domestically or exported, or simply import refined petroleum products. Therefore, the amount and price of each of these traded commodities is endogenously computed as part of the partial equilibrium solution. Endogenously modeled trade is available for coal (COAHCO), natural gas (GASNGA), liquefied natural gas (GASLNG), crude oil (OILCRD), distillates (OILDST), gasoline (OILGSL), heavy fuel oil (OILHFO), naphta (OILNAP), and Natural Gas Liquids (OINNGL). The TIAM-UCL version also includes trade in uranium (DMYNUC) and biomass (energy crops and solid biomass). Emission commodities can also be traded, representing a market for emissions trading (CO2 and GHG). This allows for analyses of global carbon prices, based on whether regions choose to abate domestically or buy credits to meet mitigation targets. 13.2 Energy trading The characterisation of energy trading in the model is primarily based on work undertaken by IER (2007). To set up trading in the model, trade links first have to be defined (as set-up in the file ScenTrade__Trade_Links). These reflect the linkages between regions that allow for the flows of different commodities. In the model, all are defined as unilateral links (i.e. from exporter to importer), and are primarily based on current patterns of trading. (Further consideration should be given to expanding trade links, as there is no reason why two regions cannot start trading in future years, particularly if the trade is via shipping). Costs and limits on trade levels for each trade link are provided in file

ScenTrade_Trade_Parms. This includes setting lower limits on trade in 2005 to ensure calibration. Limits on trade levels reflect capacity limits on transport, including in relation to pipelines, rail infrastructure and shipping routes (e.g. narrow channels in maritime

transport, such as the Strait of Hormuz leading out of the Persian Gulf and the Strait of Malacca linking the Indian Ocean (and oil coming from the Middle East) with the Pacific Ocean (and major consuming markets in Asia) (IER 2007)). 13.2.1

Coal

Trade links for coal are shown below. From this graphic (for which there is an equivalent for each traded commodities), the UK is able to import hard coal from 10 other regions, or of course produce domestically.

Currently, major coal exporters are Africa, Australia, China and the USA whilst major importing regions are Japan, South Korea and Western Europe. 13% of coal consumed in 2005 was traded, and consisted primarily of steam coal (74%), the remainder being coking coal (IER 2007). Transport costs are a function of typical coal tanker or train capacity and distance between regions. The costs range is illustrated by the following two examples with very different distances for trade: the China-Japan link incurs costs of 0.03 $/GJ while the Australia-WEU links incurs costs of 0.4 $/GJ. 13.2.2

Gas

Natural gas can be either transported at high pressure via pipeline or as liquefied natural gas (LNG) by tanker. IER (2007) put global trade in 2005 at 19 EJ or 18 % of global gas consumption. Just over 60% was via pipelines, while the rest was as LNG, via shipping. Most 180

181 of the pipeline capacity is between Russia and Europe, between Western and Eastern Europe. the Middle East and Russia, and Canada and the USA. These linkages are shown in the matrix below.

The capacity can be expanded but incurs investment costs as a result, and associated fixed O&M costs. The linkages for LNG are of course greater due to the use of shipping, although constraints in the near terms are significant, dictated by liquefaction and re-gasification plants (in import and export countries). The current Reference case (using UCL-TIAM-16R-VER_3-0-1) produces the following export-import, and production / consumption patterns by region. Those countries with the largest resources - Russia and Iran / Middle East - are the biggest exporters, while the rapidly growing economies of China, India and other developing countries (where gas resources are limited) become the largest importers over time. 13.2.3

Oil and oil products

Regional trade is allowed to crude oil and oil products such as diesel, gasoline and heavy fuel oil. Trade flows bounded to ensure reasonable constraints on transportation (pipeline and shipping). Transportation costs added based on distance of trade. Transportation plus extraction costs provide the exogenous inputs into endogenously derived oil price (hotelling rent is also added to the price as we have cumulative bounds on reserve categories). For all commodities, trade links easily amended using type of matrix provided below (showing OILCRD links). Trade link is based on existing import/export trade link.

181

13.3 Emission trading CO2 and other non-CO2 GHGs can also be traded (as TOTCO2 / NONCO2). Trading links across all regions via the GBL region (which acts as the central trading body) allow for CO2 credits to be sold from one region to the next, to reduce the costs of a global emission target or regional targets. Such trading links allow for the lowest cost mix of mitigation measures to be found, resulting in the lowest marginal cost of mitigation. GHG emissions are traded via a global market (global region) where regions can sell or buy credits. Net trade (export-import) of the global market should be zero in a year—no facility for stock transfer. 13.4 Biomass trading The framework has been set-up in the trade module for biomass trade. Currently trading is allowed only to energy crops (BIOCRP) and solid biomass (BIOSLD). Transportation cost is taken from international maritime transportation (http://stats.oecd.org/Index.aspx?datasetcode=MTC). Regional availability of biomass resources are taken from TIAM-WORLD (www.kanors.com/dcm). 13.5 References IER (2007), Global resources and energy trade: An overview for coal, natural gas, oil and uranium, Authored by Uwe Remme, Markus Blesl, and Ulrich Fahl, July 2007

182

14 Climate Module This chapter presents the climate module, which enables the analyst to translate greenhouse gas emissions from the energy system into atmospheric concentrations, radiative forcing and temperature change. This in turn permits one to run scenarios with upper bounds on atmospheric concentration, radiative forcing and temperature change. This chapter is mainly based on the ETSAP documentation of the climate module (Loulou et al. 2010). 14.1 Overview The climate module uses emissions that are endogenously calculated in TIAM as an input. These are carbon dioxide (CO2), methane (CH4) and nitrous oxide (N20). Successively, it calculates changes in the concentration of CO2, CH4 and N2O, change in radiative forcing over pre-industrial times from all three gases plus an exogenously defined additional forcing and finally the temperature change over pre-industrial times for the atmosphere and the deep ocean. Figure 14-1 gives a graphical overview of the module‘s structure.

Figure 14-1: Illustration of the TIAM climate module

The underlying mathematical structure of the module is based on a linear recursive approach from Nordhaus and Boyer (1999). This is a well-documented, albeit simple approach, which gives a good approximation of more complex climate models (Loulou et al. 2010, p. 3). Instead of converting non-CO2 greenhouse gases into CO2-equivalents and calculating concentrations and radiative forcing on this basis, the module models the life cycle of each endogenous emission separately. 14.2 Concentration 14.2.1

Carbon dioxide

The mass concentration of CO2 is calculated with a three-reservoir model for the carbon cycle, including the atmosphere (ATM) , the biosphere and upper ocean (UP) , and the deep ocean (LO). CO2 flows are modelled in both directions between adjacent reservoirs. The reservoirs are represented by the following equations, where the step of recursion is one year, y, and not a model period:

( (

(

)

(1)

)

(2)

)

(3)

where Matm(y), Mup(y), Mlo(y) are the masses of carbon (not carbon dioxide) in the atmosphere, the quickly mixing reservoir of the biosphere and upper ocean, and in the deep ocean in year y. All masses are given in Gigatons (Gt) of carbon (C). This can be converted into a relative concentration in parts per million (ppm) by using the conversion factor of 2.13 ppmv/Gt C. E(y-1) are the CO2 emissions in the previous year in GtC. Finally φi,j is the transport rate from reservoir i to reservoir j from year y-1 to y.

184

185 14.2.2

Methane

The mass concentration of methane is represented in a simplified single-box model, where the atmospheric concentration is calculated in the following way assuming a constant annual decay rate:

(4) where CH4atm(y) is the atmospheric concentration in Mt CH4, and EACH4(y) represents anthropogenic emissions of CH4 in year y in Mt/year. ΦCH4 is the one-year retention rate of CH4 in the atmosphere. Atmospheric mass concentration can be expressed in ppb by using the conversion factor of 2.84 ppbv/Mt CH4. 14.2.3

Nitrous oxide

The mass concentration of nitrous oxide is calculated in the same way as for methane. Equally, a single-box is used where atmospheric N2O mass concentration is calculated in the following way:

(5) where N2Oatm(y) is the atmospheric concentration in Mt N2O, and EAN2O(y) represents anthropogenic emissions of N2O in year y in Mt/year. ΦN2O is the one-year retention rate of N2O in the atmosphere. Atmospheric mass concentration can expressed in ppb by using the conversion factor of 7.81 ppbv/Mt N2O. 14.3 Radiative forcing Radiative forcing in the TIAM climate module is assumed to be additive for the various gases, as is usually assumed in science (Forster et al. 2007, p. 197):

(6) The calculation of the single summands in the above equations are explained in more detail below.

185

14.3.1

Carbon Dioxide

Radiative forcing caused by the accumulation of carbon dioxide in the atmosphere is derived from a widely used linear relationship (Ramaswamy et al. 2001, p. 358):

(7) Where M0 is the pre-industrial (circa 1750) reference atmospheric concentration of CO 2 of 596.4 GtC. γ is the radiative forcing sensitivity to atmospheric CO2 concentration doubling, which is usually assumed to be 3.7 W/m2 (Ramaswamy et al. 2001, p. 356). 14.3.2

Methane and Nitrous Oxide

The radiative forcing due to accumulation of CH4 in the atmosphere is based on an equation given in Ramaswamy et al. (2001, p. 358). This considers interactions between CH 4 and N2O:

(√



)

[ (

)

]

(8)

Similarly to methane, the radiative forcing equation for nitrous oxide looks as follows:

(√



)

[ (

)

]

(9)

where:

[

]

(10)

N2O and CH4 represent the mass concentration of nitrous oxide and methane respectively in Mt, while the subscript 0 indicates pre-industrial times (1750). CH40 is 1988 Mt CH4 and

N2O0 is 2101 Mt N2O. 14.3.3

Exogenous forcing

EXOFOR(y) stands for the increase in total radiative forcing in year y in comparison to preindustrial levels due to gases that are not taken into account in the model. TIAM accounts for CO2, N2O and CH4, but does not cover other Kyoto gases, Montreal gases, ozone, water vapour, and aerosols. Therefore, it is the analyst‘s responsibility to adjust EXOFOR(y) to the extent that it represents additional radiative forcing that is not captured within TIAM. 186

187 14.3.4

Linear approximation

As TIAM does only use linear equations, each of the three forcing expressions is replaced by a linear approximation. Two linear functions are used to approximate the concave functions, one is the chord from below and the other one is the tangent from above. Finally, the arithmetic average of both linear functions is used to approximate the original non-linear radiative forcing function. In order to keep the approximation accurate, an interval of concentration has to be specified by the analyst. 14.4 Temperature increase An increase of the global mean surface temperature is a widely used figure to quantify climate change. The climate module in TIAM uses a two-reservoir model to represent global warming. Radiative forcing heats up the atmosphere and is then transmitted to the quickly mixing upper ocean. Both, the upper ocean and the atmosphere form one reservoir. The upper ocean then slowly warms the deeper layers of the ocean, which forms the second reservoir. An increase in the global mean temperature is described by the influence of radiative forcing and the exchange processes as follows:

[

{ [

]} ]

(11) (12)

where ΔTup is the global mean surface temperature increase above pre-industrial levels and

ΔTlow is the deep-ocean mean temperature increase above pre-industrial levels. σ1 is the one-year speed of adjustment parameter for atmospheric temperature (lag parameter), σ2 is the coefficient of heat loss from atmosphere to deep oceans, and σ3 represents the oneyear coefficient of heat gain by deep oceans. λ is the feedback parameter; it is defined as the ratio λ=γ/CS, where CS is the climate sensitivity parameter, defined as the change in equilibrium atmospheric temperature provoked by a doubling of the atmospheric CO2 concentration. In contrast to most other parameters, CS is highly uncertain with a possible range from 1°C to 10°C.

187

14.5 Parameters of the Climate Module Table 14-1 shows the default values of all parameters of the climate module Parameter

Year

Default

Unit

value CO2-ATM

2005

807.27

Gt Carbon

CO2-UP

2005

793

Gt Carbon

CO2-LO

2005

19217

Gt Carbon

ΔUP

2005

0.74

°C

ΔLO

2005

0.06

°C

CH4atm

2005

3050

Mt CH4

N2Oatm

2005

390

Mt N2O

3.7

W/m2

up-atm

0.0453

-

atm-up

0.0495

-

lo-up

0.00053

-

up-lo

0.0146

-

λ

1.28

(W/m2)/°C

CS

2.9

°C

σ1

0.024

σ2

0.44

σ3

0.002

φCH4

0.09158

-

φN2O

0.008803

-

γ

14.6 References Forster, P., V. Ramaswamy, P. Artaxo, T. Berntsen, R. Betts, D.W. Fahey, J. Haywood, J. Lean, D.C. Lowe, G. Myhre, J. Nganga, R. Prinn, G. Raga, M. Schulz and R. Van Dorland, 2007: Changes in Atmospheric Constituents and in Radiative Forcing. In: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change [Solomon, S., D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M.Tignor and H.L. Miller (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA. Loulour, R., Lehtila, A., Labriet, M. (2010): ―TIMES Climate Module (Nov. 2010)‖, ETSAP, http://www.etsap.org/documentation.asp 188

189 Nordhaus, W.D., Boyer, J. (1999): ―Roll the DICE Again: Economic Models of Global Warming‖, Yale University, manuscript edition. Ramaswamy, V., Boucher, O., Haigh, J., Hauglustaine, D., Haywood, J., Myhre, G., Nakajima, T., Shi, G.W., Solomon, S. 2007: Radiative Forcing of Climate Change. In: Climate Change 2001: The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change [Houghton, J.T., Ding, Y., Griggs, D.J., Noguer, M., van der Linden, P.J., Dai, X., Maskell, K., Johnson, C.A. (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.

189

Suggest Documents