University College London (UCL). The objective of the Energy System theme is to make a world-class contribution to energy system modelling by showing how ...
i
TIAM-UCL Global Model Documentation Working Paper February 2011: REF UKERC/WP/ESY/2011/001
Gabrial Anandarajah, Steve Pye, William Usher, Fabian Kesicki and Christophe Mcglade University College London
This document has been prepared to enable results of on-going work to be made available rapidly. It has not been subject to review and approval, and does not have the authority of a full Research Report.
UKERC/WP/ESY/2011/001
THE UK ENERGY RESEARCH CENTRE Operating at the cusp of research and policy-making, the UK Energy Research Centre's mission is to be the UK's pre-eminent centre of research, and source of authoritative information and leadership, on sustainable energy systems. The Centre takes a whole systems approach to energy research, incorporating economics, engineering and the physical, environmental and social sciences while developing and maintaining the means to enable cohesive research in energy. To achieve this we have developed the Energy Research Atlas, a comprehensive database of energy research, development and demonstration competences in the UK. We also act as the portal for the UK energy research community to and from both UK stakeholders and the international energy research community. THE ENERGY SYSTEMS (ES) THEME OF UKERC UKERC‘s ES research activities are being undertaken within the UCL Energy Institute at University College London (UCL). The objective of the Energy System theme is to make a world-class contribution to energy system modelling by showing how the UK, in a range of global contexts, could achieve its carbon targets and increase its energy system resilience over the period 2020-2050, and exploring the associated economic and environmental implications. Building on the work and achievements of the Energy Systems and Modelling theme in UKERC I, the Energy Systems (ES) work in UKERC II will encompass a range of qualitative and quantitative methods, but will specialise in formal modelling of the energy system and its relationship with the economy and the environment. ES is focussed on the following three objectives: 1. Decarbonisation pathways: This will involve the construction of a global TIMES model (TIAM-UCL) with a dedicated UK region. Key research questions will include the impact on the UK of global resource flows, international emissions trading, and global technology innovation. 2. Security of oil and gas supplies 3. Energy system uncertainties: Staged optimisation, innovation and vintaging, stochastic hedging strategies, probabilistic inputs i
CONTENTS 1
INTRODUCTION ......................................................................................................... 1 1.1 OVERVIEW .................................................................................................................... 1 1.2 MODEL METHODOLOGY ................................................................................................... 2 1.3 MODEL STRUCTURE ........................................................................................................ 5 1.4 TIAM-UCL GLOBAL MODEL DEVELOPMENT .......................................................................... 6 1.5 TIAM-UCL VINTAGES AND ALTERNATE DATA....................................................................... 8 1.6 REFERENCES.................................................................................................................. 9
2
MODEL STRUCTURE ................................................................................................. 11 2.1 INTRODUCTION ........................................................................................................... 11 2.2 OVERVIEW OF MODEL STRUCTURE ..................................................................................... 11 2.3 DEMANDS AND DRIVERS................................................................................................. 14 2.4 BASE-YEAR TEMPLATES.................................................................................................. 15 2.5 SUBRES ..................................................................................................................... 16 2.6 RESOURCE .................................................................................................................. 17 2.7 TRADE ...................................................................................................................... 17 2.8 SCENARIO MODULE ....................................................................................................... 18 2.9 REFERENCES................................................................................................................ 19
3
DEMAND DRIVERS AND PROJECTION ........................................................................ 21 3.1 INTRODUCTION ........................................................................................................... 21 3.2 DRIVERS AND PROJECTION .............................................................................................. 21
iii
3.2.1
Population ....................................................................................................... 21
3.2.2
GDP ................................................................................................................. 23
3.2.3
Households ...................................................................................................... 25
3.2.4
Sectoral drivers ................................................................................................ 26
3.2.5
Energy services demand ................................................................................... 27
3.3 DRIVER ELASTICITY ....................................................................................................... 28 3.4 REFERENCES ................................................................................................................ 29 4
TRANSPORT SECTOR ................................................................................................ 31 4.1 INTRODUCTION ............................................................................................................ 31 4.2 ENERGY SERVICES DEMAND .............................................................................................. 31 4.3 SECTOR FUELS AND EMISSIONS ......................................................................................... 32 4.4 TECHNOLOGIES ............................................................................................................ 34 4.5 BASE-YEAR CALIBRATION ................................................................................................ 46 4.6 REFERENCES ................................................................................................................ 49
5
INDUSTRY SECTOR ................................................................................................... 51 5.1 INTRODUCTION ............................................................................................................ 51 5.2 ENERGY-SERVICE DEMANDS ............................................................................................. 51 5.3 SECTOR FUELS .............................................................................................................. 53 5.4 TECHNOLOGIES ............................................................................................................ 55 5.5 BASE-YEAR CALIBRATION ................................................................................................ 67 5.6 REFERENCES ................................................................................................................ 70
6
RESIDENTIAL SECTOR ............................................................................................... 71 6.1 INTRODUCTION ............................................................................................................ 71 6.2 ENERGY SERVICE DEMANDS .............................................................................................. 71 6.3 SECTOR FUELS .............................................................................................................. 72 6.4 TECHNOLOGIES ............................................................................................................ 74 iv
6.5 BASE-YEAR CALIBRATION ............................................................................................... 89 6.6 REFERENCES................................................................................................................ 89 7
COMMERCIAL SECTOR ............................................................................................. 91 7.1 INTRODUCTION ........................................................................................................... 91 7.2 ENERGY SERVICES DEMAND ............................................................................................. 91 7.3 SECTOR FUELS ............................................................................................................. 92 7.4 TECHNOLOGIES ........................................................................................................... 94 7.5 BASE-YEAR CALIBRATION ............................................................................................. 118 7.6 REFERENCES.............................................................................................................. 118
8
AGRICULTURE SECTOR ........................................................................................... 119 8.1 INTRODUCTION ......................................................................................................... 119 8.2 ENERGY SERVICES DEMAND ........................................................................................... 119 8.3 SECTOR FUELS ........................................................................................................... 120 8.4 BASE-YEAR CALIBRATION ............................................................................................. 121 8.5 REFERENCES.............................................................................................................. 122
9
ELECTRICITY AND HEAT GENERATION SECTOR........................................................ 123 9.1 INTRODUCTION ......................................................................................................... 123 9.2 BASE YEAR CALIBRATION .............................................................................................. 124 9.3 NEW TECHNOLOGIES ................................................................................................... 126
9.3.1
Key technology options ................................................................................. 126
9.3.2
Sector constraints.......................................................................................... 129
9.3.3
Sequestration technologies ........................................................................... 130
9.4 REPRESENTATION OF GRIDS .......................................................................................... 132 9.5 FUTURE WORK IN THE ELECTRICITY AND HEAT SECTOR ......................................................... 132 v
9.6 REFERENCES ..............................................................................................................132 10
UPSTREAM ............................................................................................................. 133
10.1
INTRODUCTION ......................................................................................................133
10.2
ENERGY RESOURCES ................................................................................................134
10.3
PRIMARY TRANSFORMATION ......................................................................................139
10.4
SECONDARY TRANSFORMATION ..................................................................................140
10.5
OTHERS ................................................................................................................142
10.6
BASE-YEAR CALIBRATION ..........................................................................................143
10.7
REFERENCES ..........................................................................................................150
11
RESOURCE MODULE ............................................................................................... 151
11.1
INTRODUCTION ......................................................................................................151
11.2
COAL ...................................................................................................................151
11.3
OIL .....................................................................................................................152
11.3.1
Resources ...................................................................................................152
11.3.2
Costs ..........................................................................................................154
11.3.3
Resource cost .............................................................................................155
11.3.4
Upgrading oil .............................................................................................158
11.4
GAS.....................................................................................................................159
11.4.1 11.5
Resource costs ...........................................................................................160
OTHER FUELS .........................................................................................................161
11.5.1
Biomass for electricity sector......................................................................161
11.6
URANIUM ..............................................................................................................162
11.7
REFERENCES ..........................................................................................................164
12
CROSS-SECTOR MODULES ...................................................................................... 167 vi
12.1
INTRODUCTION...................................................................................................... 167
12.2
ALTERNATIVE FUEL ................................................................................................. 167
12.3
HYDROGEN ........................................................................................................... 168
12.4
SEQUESTRATION .................................................................................................... 173
12.5
LAND-USE CO2 ..................................................................................................... 173
12.6
NON-CO2 GASES................................................................................................... 174
12.7
CH4 MEASURES ...................................................................................................... 174
12.8
N2O MEASURES ..................................................................................................... 177
12.9
REFERENCES .......................................................................................................... 178
13
13.1
INTRODUCTION...................................................................................................... 179
13.2
ENERGY TRADING ................................................................................................... 179
13.2.1
Coal ........................................................................................................... 180
13.2.2
Gas ............................................................................................................ 180
13.2.3
Oil and oil products ................................................................................... 181
13.3
EMISSION TRADING ................................................................................................. 182
13.4
BIOMASS TRADING .................................................................................................. 182
13.5
REFERENCES .......................................................................................................... 182
14
vii
TRADE MODULE .................................................................................................... 179
CLIMATE MODULE ................................................................................................. 183
14.1
OVERVIEW ............................................................................................................ 183
14.2
CONCENTRATION ................................................................................................... 184
14.2.1
Carbon dioxide .......................................................................................... 184
14.2.2
Methane .................................................................................................... 185
14.2.3
Nitrous oxide............................................................................................. 185
14.3
RADIATIVE FORCING ................................................................................................185
14.3.1
Carbon Dioxide ..........................................................................................186
14.3.2
Methane and Nitrous Oxide ........................................................................186
14.3.3
Exogenous forcing .....................................................................................186
14.3.4
Linear approximation .................................................................................187
14.4
TEMPERATURE INCREASE ...........................................................................................187
14.5
PARAMETERS OF THE CLIMATE MODULE........................................................................188
14.6
REFERENCES ..........................................................................................................188
viii
LIST of FIGURES Figure 1-1: representation of elastic demand version of TIAM-UCL ..................................... 3 Figure 1-2: The TIAM-UCL global model structure ............................................................... 6 Figure 2-1: Simplified Reference Energy System in TIAM Source: Loulou and Labriet (2007b) ........................................................................................................................ 12 Figure 2-2: Simplified representation of the TIAM Source: Loulou and Labriet (2007) ........ 13 Figure 3-1: World population data used in TIAM-UCL ........................................................ 22 Figure 3-2: Annual population growth during 2005-2100 ................................................. 22 Figure 3-3: Global population in TIAM compared to SRES scenarios ................................... 23 Figure 3-4: Per capita GDP in the 21st Century ................................................................... 24 Figure 3-5: GDP growth rate from 2004-2100 ................................................................... 25 Figure 3-6: Growth rate of household numbers during 2005-2100 ................................... 26 Figure 3-7: Growth rate of sectoral outputs (iron & steel and non-ferrous metals. ............ 27 Figure 4-1: Projected energy-service demands in transport sector .................................... 32 Figure 4-2: Technology specific hurdle rate for different regions in TIAM-UCL .................. 36 Figure 5-1: projected industry sector energy-service demands at global level ................... 53 Figure 5-2: Regional specific hurdle rate for industry sector technologies ......................... 56 Figure 6-1: Projected energy-service demands in residential sector .................................. 72 Figure 6-2: Regional specific hurdle rate for residential sector technologies...................... 75 Figure 7-1: Projected energy-service demands in commercial sector ................................. 92 Figure 7-2: Regional specific hurdle rate for end-use technologies ................................... 95 Figure 8-1: Agriculture energy –service demand projection by region .............................. 120 Figure 8-2: Base-year agriculture energy consumption mix by fuel ................................. 122
ix
Figure 9-1: Existing Electricity Generation Capacity by Region in 2005 (Model base year), GW ..............................................................................................................................125 Figure 9-2: Existing Electricity Generation Capacity by Type in 2005 (Model base year), GW ..............................................................................................................................125 Figure 11-1 Supply cost curve for hard and brown coal ....................................................152 Figure 11-2 Depletion cost curves for each category of oil examined ...............................156 Figure 11-3 show an example of 2P reserves in the OPEC African region, of supply cost curve generated ..........................................................................................................157 Figure 11-4 shows the supply cost curve for all oil differentiated by region .....................158 Figure 11-5 shows the supply cost curve for all oil differentiated by oil category .............158 Figure 11-6 shows the natural gas supply cost curve by region ........................................161 Figure 11-7 shows the natural gas supply cost curve by resource type .............................161 Figure 14-1: Illustration of the TIAM climate module ........................................................183
x
LIST of TABLES Table 1-1: List of regions and countries in the 16 region TIAM-UCL model ......................... 7 Table 2-1: Energy-services demand and respective drivers ................................................ 14 Table 2-2: List of templates in the SubRES ......................................................................... 16 Table 2-3: Resources traded in the 16R TIAM-UCL global model ....................................... 18 Table 2-4: Scenario workbooks in TIAM-UCL ..................................................................... 18 Table 3-1: Fraction of energy-service demands ................................................................. 28 Table 3-2: Driver elasticities for the United Kingdom ......................................................... 28 Table 4-1: Energy-service demands in transport sector ..................................................... 31 Table 4-2: Sector fuel technologies-existing ...................................................................... 33 Table 4-3: Sector fuel technologies-new technologies ....................................................... 33 Table 4-4: transport technologies-existing ........................................................................ 34 Table 4-5: transport technologies-existing ........................................................................ 36 Table 4-6: Breakout of transport sector base-year energy consumption by mode and fuel (PJ)......................................................................................................................... 48 Table 5-1: Transport sector energy-services ...................................................................... 51 Table 5-5-2: Elastic demand parameters ........................................................................... 52 Table 5-3: Sector fuel technologies-existing ...................................................................... 53 Table 5-4: Sector fuel technologies-new ............................................................................ 54 Table 5-5: Sector fuel technologies-new ............................................................................ 57 Table 5-6: Base-year industry sector final energy consumption by energy-services and fuel (PJ)......................................................................................................................... 68 Table 6-1: Residential sector energy-services .................................................................... 72 Table 6-2: Residential sector technologies-existing........................................................... 73
xi
Table 6-3: Residential sector fuel technologies-new ........................................................... 74 Table 6-4: Residential sector new end-use technologies .................................................... 76 Table 6-5: Base-year residential sector final energy consumption ...................................... 89 Table 7-1: Energy-services in commercial sector ................................................................ 91 Table 7-2: commercial sector fuel technologies-existing ................................................... 93 Table 7-3: Commercial sector fuel technologies-new ......................................................... 93 Table 7-4: Commercial sector end-use technologies-new .................................................. 96 Table 7-5: Base-year commercial sector final energy consumption (PJ) ............................118 Table 8-1: Agriculture sector fuel technologies-existing ..................................................120 Table 9-1: New technology options for electricity and heat generation .............................126 Table 9-2: Overview of technology characteristics by technology group (for WEU region) .128 Table 9-3: Overview of sequestration technology characteristics ......................................130 Table 9-4: Types of storage technologies .........................................................................131 Table 10-1: Non-renewable primary resources .................................................................135 Table 10-2: Renewable primary resources ........................................................................137 Table 10-3: Technologies to produce upstream sector fuels .............................................137 Table 10-4: Primary transformation technologies .............................................................139 Table 10-5: Secondary transformation technologies .........................................................140 Table 10-6: Existing CHP in refinery sector .......................................................................142 Table 10-7: IEA Energy Balance data used for base-year calibration .................................144 Table 10-8: IEA Energy Balance data used for base-year calibration (continued from table 10-7) .................................................................................................................145 Table 10-9: IEA Energy Balance data used for base-year calibration (continued from table 10-8) .................................................................................................................147
xii
Table 10-10: Upstream energy consumption ................................................................... 149 Table 10-11: CHP in refinery (upstream) .......................................................................... 149 Table 11-1Coal reserves and resource data at regional level ............................................ 151 Table 11-2 shows cost ranges assumed for each category of oil in TIAM-UCL ................. 155 Table 11-3 show details of upgrading technologies for unconventional oils .................... 159 Table 11-4 shows the cost ranges for each type of gas resource ..................................... 160 Table 11-5 Biomass resource availability in 2050 and 2100............................................. 162 Table 11-6 Cumulative Uranium resource availability (PJ)-data used in TIAM-UCL ........... 163 Table 12-1: List of SubRes files in the TIAM-UCL model .................................................. 167 Table 12-2: Alternative fuel technologies ......................................................................... 168 Table 12-3: Hydrogen production and supply technologies ............................................. 169 Table 12-4 Hydrogen technologies in transport sector .................................................... 169 Table 12-5 Hydrogen production technologies in ETSAP-TIAM ........................................ 172 Table 12-6: Non-CO2 emission sources ........................................................................... 174 Table 12-7: Technologies to mitigate CH4 ........................................................................ 175 Table 12-8: Technologies to mitigate CH4 ....................................................................... 175 Table 12-9: Technologies to mitigate N2O ....................................................................... 178 Table 14-1 shows the default values of all parameters of the climate module ................. 188
xiii
1 Introduction 1.1
Overview
The analysis of climate change mitigation and energy security requires a combination of UK and international analysis. The core aim of the Energy Systems research theme in the UKERC II project is developing a global optimisation model to analyse accelerated decarbonisation of the global E3 (energy-environment-economy) system, with a comprehensive investigation of costs and benefits of the different decarbonisation options. This adds to work carried out in UKERC I placing the detailed analysis of the UK in a global context, which was not possible with the UK MARKAL model, the main tool developed under UKERC I. The Energy System research team in the UCL Energy Institute (University College London) developed the 16 Region TIAM-UCL global model (named TIAM-UCL), under the UKERC II research activity by breaking out the UK from the Western Europe (WEU) region in the 15 Region ETSAP (Energy Technology Systems Analysis Program)-TIAM1 model. TIAM is the TIMES Integrated Assessment Model. The UK is an explicit region in the TIAM-UCL with its own energy system. A global model has several advantages:
Energy and climate policies (carbon tax, cap-and-trade) can be applied for a region or a group of regions or at global level
It generates regional marginal CO2 (and GHG) abatement cost (depends on cap-andtrade policy and emission trading schemes)
It implicitly generates regional specific resource prices for fossil fuels such as gas oil and coal.
1
Global Endogenous technology learning
ETSAP-TIAM, originally developed by KanLo (www.kanors.com/DCM/TIAM)
TIAM-UCL also has a Climate module, which quantifies the release of GHG emissions, that can be used to: o
Limit the atmospheric CO2 concentration
o
Limit the temperature change
o
Limit radiative forcing
TIAM-UCL also has disadvantages:
It is very complex as it has 16 regions, each with a huge database of technologies, resources, infrastructure and several modules
It has a less detailed regional energy system compared to a national model (for example, the UK region in TIAM-UCL is less detailed as compared to the UK MARKAL model)
1.2
Model methodology
The TIMES model generator (an acronym for The Integrated MARKAL-EFOM System) is a technology rich bottom–up cost optimisation model. TIMES is the successor to the MARKAL model generator. The main building blocks of a TIMES model are processes (technologies) and commodities, which are connected by commodity flows in a network called a Reference Energy System (RES). The dynamic part of a model is determined by the time horizon and resolution, the evolutionary development of supply and technologies, the growth of the demand for energy services, and policies (e.g., mitigation targets, renewable portfolio standards), complimented by various alternate scenarios. TIAM is the Times Integrated Assessment Model. ETSAP-TIAM is the global multiregional incarnation of the TIMES model generator (Loulou and Labriet, 2007 and Loulou et al., 2009) and it was developed and is maintained by the Energy Technology Systems Analysis Programme (ETSAP). The ETSAP-TIAM model has been applied in various studies (Lechon et al. 2005; Syri et al. 2008; Vaillancourt et al.2008; Ekholm et al. 2010) to analyse different climate change mitigation policies by the international modelling community.
2
TIAM is a whole energy system model covering from energy resources to conversion to infrastructure to end-use sectors. This is a linear programming model that minimises total discounted energy system cost in the standard version and maximises societal welfare (total surplus) in the elastic demand version to compute a partial equilibrium. Linear programming is formulated in the GAMS (General Algebraic Modelling System) language and solved via powerful linear programming optimisers (CPLEX, XPRESS). A simplified representation of energy supply and elastic demands is given in Figure 1-1. The standard TIAM model optimization, when energy service demands are unchanging - i.e. are a straight vertical line on the horizontal axis, is on (discounted) energy systems cost - i.e. the minimum cost of meeting all energy services. With non-changing demands, this is equivalent to the area between the supply curve in the Reference Scenario and the horizontal line from the equilibrium price. In the elastic demand version (which computes a partial equilibrium), energy service demands respond to supply price changes (Loulou and Labriet, 2007), and the objective function maximises total surplus (consumer surplus + producer surplus) by minimising discounted total system cost and cost of demand reduction (as shown in Figure 1-1).
Price
(Max) Total surplus = consumer surplus + producer surplus Supply curve Policy scenarios
Consumer surplus P1 Po
Supply curve Reference scenario
Producer surplus
Demand curve Cost of demand reduction
Total energy system cost D1
Do
Quantity
Figure 1-1: representation of elastic demand version of TIAM-UCL In elastic demand mode, these exogenously defined energy-service demands have been replaced with demand curves (actually implemented in a series of small steps). The TIAM
3
model implicitly constructs demand curves using the supply prices generated in the reference case (in the standard version) and the price elasticity of demand. In the elastic demand version, demand functions determine how each energy-service demand varies as a function of the market price of that energy-service. The demand function has the following functional form:
⁄
( ⁄ )
(1)
Where:
D is a demand for an energy-service in the policy scenario; D0 is the demand in the reference case;
P is the price of each energy-service demand in the policy scenario; P0 is the marginal price of each energy-service demand in the reference case;
E is the (negative) own-price elasticity of the demand. A combination of the change in prices (P/P0) and the elasticity parameter (E) determines the energy-service demand changes. Note that changes in energy-service demand also depend on the availability and costs of technological conservation, efficiency and fuel switching options as they influence the energy-service price. Following calibration to a reference case that exactly matches the standard TIAM reference case, TIAM elastic demand version then has the option of increasing or decreasing demands as final energy costs fall and rise respectively. Thus demand responses combine with supply responses in an alternate scenario (e.g. one with a CO2 constraint). Under fixed energy services demands in the standard TIAM-UCL, CO2 reduction is achieved by shifting to efficient technologies, alternative fuels (low/zero carbon fuels) and sequestration. In addition to shifting to efficient technologies, low carbon fuels and sequestration, demand reduction also plays a role in reducing CO2 emissions in the elastic demand version of the TIAM-UCL model. The elasticities used in the TIAM-UCL model are long-run elasticities and are the same as those used in the ETSAP-TIAM model.
4
There are numerous variants of the model that can be activated to analyse particular attributes of the energy system in question. Most of these are not mutually exclusive, thus it is possible to examine Endogenous Technology Learning while exploring climatic effects with the Climate Module. These are listed below:
1.3
Standard TIAM
Elastic Demand
Endogenous Technology Learning
Climate Module
Discrete Investment
Time Stepped Solution (run in step)
Stochastic TIAM Model Structure
A simplified representation of the TIAM-UCL model structure is presented in Figure 1-2. Each region in the multi-region (16 region) TIAM-UCL model has its own energy system and, if allowed, each region can trade fossil fuel resources (natural gas, LNG, coal, crude oil, oil fractions), biomass (energy crops and solid biomass) or emission permits with other regions or a central market. Base-year energy-service demands are exogenous and are projected for the future using drivers such as GDP, population, household, sector output etc. In TIAM, the base-year final energy consumption is calibrated in the Base-Year templates. Separate BaseYear templates are available for each region for end-use sectors (transport, industry and residential), upstream and power sector. Residential sector templates include (on separate sheets) data for the commercial and agricultural sectors. All existing technologies and resources are included in the Base Year templates. Technologies available for the future years are modelled in a separate module called ‗New Technologies‘ (SubRes_B-NewTech). The future technologies are available to all regions, while transformation templates allow various parameters of the technologies to be modified from region to region. Resource data such as cost, cumulative and annual availability of
5
different resources are modelled in the ‗Resource Module‘ (B-Extraction). The primary energy resources and the petroleum processing sector are further divided in OPEC and nonOPEC sub-regions. The world regions are linked through trade in fossil fuel, biomass and emissions. Regional fossil fuel trade and emission trade are defined in the trade module. The climate module calculates impacts of GHG emissions in the atmosphere (CO2 concentration, temperature changes and radiative forces). The model structure is discussed in detail in Chapter 2 (Model Structure) of the TIAM-UCL global model documentation.
Resource1 Resource 2 Resource 3
Endogenous technology learning Module: New Technologies
Reg. 1
Module: Market for emission trading
Reg. 16
OPEC
Climate Module
Reg. 2
Reg. ....
Reg. ...
Figure 1-2: The TIAM-UCL global model structure 1.4
TIAM-UCL global model development
A list of regions and the countries that comprise these regions in TIAM-UCL are provided in Table 1-1. The TIAM-UCL model development has two phases: the first is breaking out UK from the 15 region ETSAP-TIAM model, calibrating the base year data for final energy consumption and electricity generation and revising resource and trade modules for future 6
years; the second is enhancing TIAM-UCL by revising/adding new drivers and resources for all regions and adding new features. The major task (the first phase) was breaking out UK from the 15 region model and model calibration (calibrating UK and Western Europe regions). As a first step in breaking out the UK from Western Europe (WEU) region, separate Base-Year templates were created for enduse sectors, upstream and power sectors for the UK and calibrated final energy consumption to the actual base year data 2005 for the UK and the WEU regions. The underlying data for the base year calibration in TIAM-UCL is the IEA Extended Energy Balances of OECD and non-OECD countries. This data can be accessed through the online portal www.esds.ac.uk in the UK. A database of the IEA Extended Energy Balances has been developed to import the IEA data into the data tables on the base year templates in the TIAM-UCL with a software application which allows easy aggregation of country data into regions. Energy services demands for different end-use sectors and drivers of projections of them during the model period 2005-2100 are created for the UK region. Besides calibration of resource and trade modules of the UK and the WEU regions, all other scenario files are also updated and calibrated. Once the 16R TIAM-UCL had been successfully calibrated, the model was enhanced (the second phase) through technical improvements such as adding new drivers, new resources, climate change policies (cap-and-trade, carbon tax), supply resource cost curves etc. Development of the database of the IEA Extended Energy Balances helped to recalibrate all 16 regions in the TIAM model to the IEA primary energy production/consumption, final consumption and electricity generation (and heat) data (IEA, 2005). Details of the updates are available in the relevant chapters. Table 1-1: List of regions and countries in the 16 region TIAM-UCL model Region
Countries Algeria, Angola, Benin, Cameroon, Congo, Congo Republic, Egypt,
Africa (AFR)
Ethiopia, Gabon, Ghana, Ivory Coast, Kenya, Libya, Morocco, Mozambique, Nigeria, Other Africa, Senegal, South Africa, Sudan, Tanzania, Tunisia, Zambia, Zimbabwe
7
Australia (AUS)
Australia and New Zealand
Canada (CAN)
Canada
Region
Countries Argentina, Bolivia, Brazil, Chile, Colombia, Costa Rica, Cuba,
Central and South
Dominican Republic, Ecuador, El Salvador, Guatemala, Haiti, Honduras,
America (CSA)
Jamaica, Netherlands Antilles, Nicaragua, Other Latin America, Panama, Paraguay, Peru, Trinidad-Tobago, Uruguay, Venezuela
China (CHI) Eastern Europe (EEU)
China Albania, Bosnia-Herzegovina, Bulgaria, Croatia, Czech Republic, Hungary, Macedonia, Poland, Romania, Slovakia, Slovenia, Yugoslavia Armenia, Azerbaijan, Belarus, Estonia, Georgia, Kazakhstan,
Former Soviet Union
Kyrgyzstan, Latvia, Lithuania, Moldova, Russia, Tajikistan,
(FSU)
Turkmenistan, Ukraine, Uzbekistan
India (IND)
India
Japan (JAP)
Japan
Mexico (MEX)
Mexico Bahrain, Cyprus, Iran, Iraq, Israel, Jordan, Kuwait, Lebanon, Oman,
Middle-east (MEA) Other Developing Asia
Qatar, Saudi Arabia, Syria, Turkey, United Arab Emirates, Yemen Bangladesh, Brunei, Chinese Taipei, Indonesia, North Korea, Malaysia,
(ODA)
Myanmar, Nepal, Other Asia, Pakistan, Philippines, Singapore, Sri Lanka, Thailand, Vietnam
South Korea (SKO)
South Korea
United Kingdom (UK)
United Kingdom
USA (USA)
United States of America Austria, Belgium, Denmark, Finland, France, Germany, Gibraltar,
Western Europe (WEU)
Greece, Greenland, Iceland, Ireland, Italy, Luxembourg, Malta, Netherlands, Norway, Portugal, Spain, Sweden, Switzerland
1.5
TIAM-UCL vintages and alternate data
The TIAM-UCL model and its variants will be applied to a wide range of policy analyses, research collaborations and academic publications from 2010. Major outputs as of today are listed below. Each model run is carried out with one or a range of alternative assumptions and model extensions. The underlying data listed in the documentation is a set of base data and it is updated to the date on the cover page. It is stressed that successive model applications use alternate assumptions and this documentation should hence be viewed as a guide on model structure and not as a definitive data depiction. 1. Anandarajah, G. Kesicki, F. and Pye, S. 2010. Carbon Tax vs. Cap-and-Trade: Implications on Developing Countries Emissions. IAEE International Conference, June 6-9 2010, RIO, Brazil
8
2. Pye, S., Strachan, N. and Anandarajah, G. 2010. The UK energy system in an uncertain world: Insights from different modelling scales. International Energy
Workshop (IEW 2010), June 21-23 2010, Stockholm, Sweden 3. Anandarajah, G. and Kesicki, F. 2010. Global Climate Change Mitigation: What is the role of demand reduction? IAEE Europe conference, August 25-28, Vilnius, Lithuania 4. Usher, W., Anandarajah, G and Strachan, N. 2010. The TIAM-UCL Global Energy Systems Model: Critical Comparison of UK and Global Climate Decarbonisation Trajectories, 8th BIEE Academic Conference, 22-23 2010 September, Oxford, UK. 1.6
References
Ekholm, T., Soimakallioa, S., Moltmannb, S., Höhneb, N., Syria, S. and Savolainena, I. 2010. Effort sharing in ambitious, global climate change mitigation scenarios. Energy Policy, 34, Issue 4, pp. 1797-1810 Lechon Y., Cabal H., Varela M., Saez R., Eherer C., Baumannb, M., Duweke J. Hamacherc, T. and Tosato G. 2005. A global energy model with fusion. Fusion Engineering and Design. 75-79. 1141-1144. Loulou and Labriet (2007). ETSAP-TIAM: the TIMES integrated assessment model Part I: Model structure. DOI 10.1007/s10287-007-0046-z. http://www.springerlink.com/content/j8613681347971q5/fulltext.pdf Loulou, R., Labriet, M. and Kanudia, A. 2009. Deterministic and stochastic analysis of alternative climate targets under differentiated cooperation regimes. Energy Economics, 31, pp. 131-143. Richard Loulou, R., Labriet, M. And Kanudia, A. 2009. Deterministic and stochastic analysis of alternative climate targets under differentiated cooperation regimes. Energy Economics, 31, pp. 131-143. Syri, S., Lehtila, A., Ekholm, T., Savolainen, I., Holttinen, H. and Peltola, E. 2008. Global energy and emissions scenarios for effective climate change mitigation— 9
Deterministic and stochastic scenarios with the TIAM model. International Journal of Greenhouse Gas Control, 2, pp. 274-285. Vaillancourt, K., Labriet, M., Louloua, R., and Waaub, J. 2008. The role of nuclear energy in long-term climate scenarios: An analysis with the World-TIMES model, Energy Policy 36. pp. 2296-2307
10
2 Model Structure 2.1
Introduction
VEDA2 Front-End (VEDA_FE) is one of the two interfaces available for MARKAL and TIMES model. It is used to formulate the TIAM-UCL model database that lay down the basic structure of the model and hold fundamental data and assumptions for processes (technologies) and commodities. This chapter discusses the TIAM-UCL global model structure in details. Following the Introduction; Section 2.2 provides an overview of the model structure; Section 2.3 presents the energy-service demands, drivers and relationship for projection of energy-service demand; Section 2.4 briefs the Base-Year templates, where the base-year data is calibrated; Section 2.5 provides details of SubRES, where process and commodity data for future years are modelled; Section 2.6 briefly discusses the fossil fuels resource module; Section 2.7 discusses trade module, where fossil fuel resource and emission trading are modelled; and Section 2.8 provides other scenario modules. 2.2
Overview of model structure
The main building blocks of a TIMES model are the processes and commodities, which are connected by commodity flows in a network representation called a Reference Energy System (or RES, shown in Figure 2-1). The dynamic part of a model is determined by the time horizon and resolution, the evolutionary development of supply and technologies, the growth of the demand for energy services, and policies (e.g., mitigation targets, renewable portfolio standards), complimented by various alternate scenarios.
2
VEDA is a set of tools geared to facilitate the creation, maintenance, browsing, and modification of
the large data bases required by complex mathematical and economic models. Data and assumptions are fed into VEDA_FE that provides input to the TIMES code. VEDA_FE accepts input from a variety of Excel files with different (flexible) structures that are tailored to work efficiently with data intensive models.
In each region, the TIAM-UCL model describes the entire energy system by all essential current and future energy technologies from the primary energy supply over the processing, conversion, transport, distribution of energy carriers to the end-use sectors and the useful energy demand (Figure 2-1). These demands are linked to exogenous underlying drivers, like population growth or GDP development, via demand elasticities. Each region can trade one or more resources (fossil fuels and biomass) with other regions (Figure 2-2). Regional trade will depend on demand, supply (resource availability) and cost (resource and transportation cost) of the resources.
Figure 2-1: Simplified Reference Energy System in TIAM Source: Loulou and Labriet (2007b) Base-year energy-service demands are exogenous and are projected over 2005-2100 using drivers such as GDP, population, household, sector output etc. The base-year final energy consumption is calibrated in the Base-Year templates. Separate Base-Year templates are available for each region for end-use sectors, upstream and the electricity generation sector. A representation of all existing technologies and resources are included in the BaseYear templates. Technologies available for the future years are modelled in a separate 12
module called ‗New Technologies‘. Any region can access the technology module if it is cost effective to do so. Resource data such as cost, cumulative and annual availability of different resources are modelled in the ‗Resource Module‘. The world regions are linked through the trade in crude oil, hard coal, pipeline gas, LNG (liquefied natural gas), petroleum products (diesel, gasoline, naphtha, heavy fuel oil), biomass (energy crops and solid biomass) and emission permits (CO2, non-CO2 and GHG) via the trade module. There are separate modules available for hydrogen production, carbon sequestration, land-use CO2 emissions, N2O measures, CH4 measures, etc. Climate module calculates impacts of GHG emissions in the Atmosphere (CO2 concentration and temperature changes). Beside these modules, there are several scenario files which are used to apply different policies and constraints. Further details on the TIAM model structure is available in Loulou and Labriet (2007).
CGE model and other studies
Figure 2-2: Simplified representation of the TIAM Source: Loulou and Labriet (2007)
13
2.3
Demands and drivers
Demand drivers (population, GDP, family units, etc.) are obtained externally, via other models or from accepted other sources. Energy-service demands and respective drivers in the TIAM-UCL are presented in Table 2-1. The demands for energy services are linked to the drivers' projections via elasticities. These elasticities of demands are intended to reflect changing patterns in energy service demands in relation to socio-economic growth, such as saturation in some energy end-use demands, increased urbanization, or changes in consumption patterns once the basic needs are satisfied. The energy-service demands for future years are projected using the following relationship:
Where, k is a constant; it is one for most of the energy services demand. The constant k is population and number of households when the driver is GDPP and GDPPHOU respectively. Table 2-1: Energy-services demand and respective drivers Code
Description
Unit
Driver
ICH
Chemicals
PJ
PCHEM
IIS
Iron and Steel
Mt
PISNF
INF
Non-ferrous metals
Mt
PISNF
INM
Non Metals
PJ
POEI
ILP
Pulp and Paper
Mt
POEI
IOI
Other Industries
PJ
POI
I00
Other Industrial consumption
PJ
Constant
NEO
Industrial and Other Non Energy Uses
PJ
GDP
ONO
Other non-specified consumption
PJ
GDP
AGR
Agricultural demand
PJ
PAGR
CC1
Commercial Cooling - Region 1
PJ
PSER
CCK
Commercial Cooking
PJ
PSER
CH1
Commercial Space Heat - Region 1
PJ
PSER
CHW
Commercial Hot Water
PJ
PSER
CLA
Commercial Lighting
PJ
PSER
COE
Commercial Office Equipment
PJ
PSER
CRF
Commercial Refrigeration
PJ
PSER
RC1
Residential Cooling - Region 1
PJ
HOU/GDPPHOU*
RCD
Residential Clothes Drying
PJ
HOU/GDPPHOU*
RCW
Residential Clothes Washing
PJ
HOU/GDPPHOU*
RDW
Residential Dishwashing
PJ
HOU/GDPPHOU*
REA
Residential Other Electric
PJ
HOU/GDPPHOU*
14
Code
Description
Unit
Driver
RH1
Residential Space Heat - Region 1
PJ
HOU
RHW
Residential Hot Water
PJ
POP
RK1
Residential Cooking - Region 1
PJ
POP
RL1
Residential Lighting - Region 1
PJ
GDPP
RRF
Residential Refrigeration
PJ
HOU/GDPPHOU*
NEU
Non Energy Uses
PJ
GDP
TAD
Domestic Aviation
PJ
GDP
TAI
International Aviation
PJ
GDP
TRB
Road Bus Demand
Bv-km
POP
TRC
Road Commercial Trucks Demand
Bv-km
GDP
TRE
Road Three Wheels Demand
Bv-km
POP
TRH
Road Heavy Trucks Demand
Bv-km
GDP
TRL
Road Light Vehicle Demand
Bv-km
GDP
TRM
Road Medium Trucks Demand
Bv-km
GDP
TRT
Road Auto Demand
Bv-km
GDPP
TRW
Road Two Wheels Demand
Bv-km
POP
TTF
Rail-Freight
PJ
GDP
TTP
Rail-Passengers
PJ
POP
TWD
Domestic Internal Navigation
PJ
GDP
TWI
International Navigation
PJ
GDP
*Driver is GDPPHOU for AFR, CHI, CSA, EEU, FSU, IND, MEA, MEX, ODA and SKO 2.4
Base-year templates
Base-Year templates deal with broad sectors of the reference energy system covering primary energy production to conversion to end-use sectors. The base-year data (supply and demand) is calibrated in the Base-Year templates. There are five Base-Year templates available in TIAM model: three for end-use sectors and one each for power sector and upstream. The electricity template (ELC) describes all central electricity and heat production including combined heat and power (CHP). The industrial template (IND) deals with the industrial end-uses, and the industrial electricity and CHP self-production (autogeneration). The residential template (RES) contains the agricultural, the residential and the commercial end-uses. The transportation template (TRA) contains the transport end-uses including international aviation and shipping. The upstream template (UPS) describes fossil fuel extraction, renewable potential, and various fuel transformation processes including petroleum refineries. In summary, the templates contain: 15
The model‘s basic structure (number of end-uses and sub-regions within a region).
The fuel consumption by end-use in the base year.
The energy production by fuel in the base year.
The base-year energy-service demands.
The existing technology stock.
The user constraints (not all constraints).
The static and dynamic emission coefficients by fuel (the model computes technology level coefficients based on the fuel inputs).
Sectoral elastic demand parameters
Other parameters (discount or hurdle rates, transmission efficiency, etc.).
In each sector, the energy production and consumption have been calibrated in the templates to match IEA data for the base-year 2005 for all regions in the TIAM-UCL. 2.5
SubRES
This is a sub reference energy system where all process and commodity data for future years are modelled in different Excel templates. There are templates available for alternative fuels (SubRES_AltFuel), new technologies (SubRes_B-NewTechs), CH4 measures (SubRes_CH4measures), hydrogen (SubRes_Hydrogen), land use CO2 emissions (SUBRES_LUCO2), N2O measures (SubRes-N2O measures), Non-CO2 gases (EusRes_NonCO2gases), sequestration (SubRes_SequestrationB) and nuclear resources (SubRes_NucResources) as shown in Table 2-2. Cost, availability factor, efficiency, lifetime, annual and cumulative availability, discount rate, hurdle rate are modelled for process and commodity. Table 2-2: List of templates in the SubRES Spreadsheet
Description
SubRES_AltFuel
Alternative fuels technologies are modelled here for all regions for the future years.
SubRes_B-NewTechs
All technologies for future years are modelled. New technologies are available from 2006. Regional specific capacity factor (CF) for different technologies and cost (INVCOST, FIXOM, VAROM).
16
Provide fractional share of methanol and gasoline and ethanol and gasoline for methanol and ethanol car respectively. Boundaries and discount rates are also provided SubRes_CH4measures
Provide CH4 abatement options in Upstream in UPS
SubRes_Hydrogen
H2 production and vehicle technologies. Efficiency, cost, availability and discount rates, etc.
SUBRES_LUCO2
Only one technology is available for agriculture land use CO2 emission. Total emissions from land-use for different year are given
SubRes-N2O measures
N2O abatement options
EusRes_NonCO2gases
Nitric acid calculation. CH4 from landfill, manure, bio-burning, waste water, agriculture
SubRes_Sequestration
Electricity generation technologies (include different removal technologies) with CCS. H2 production with CCS. Removal technologies. Different storage options: onshore and offshore. Afforestation is also included. Sequestration potential (cumulative, annual, global, regional)
SubRes_NucResources 2.6
Uranium cost supply curve at regional level is provided
Resource
This module contains detailed data on domestic resource availability (cumulative and annual) at regional level for the modelling period 2005-2100. The name of the template in TIAM-UCL is ‗Scen_B_Extraction‘. It also provides supply cost curves for different resources such as coal, oil, gas and liquefied natural gas (LNG) resources. The primary energy resources are further divided into OPEC and non-OPEC sub-regions. Total global resource availability in the resource module in the base-year 2005 matches the indigenous production, import and export of resources in the Base-Year upstream templates. 2.7
Trade
Regional trade is modelled in the trade module. In the current version of TIAM-UCL, regional trade is allowed for coal, natural gas, LNG, natural gas liquid, uranium oil and oil products such as heavy fuel oil, gasoline, naphtha, diesel, energy crops and solid biomass. Emission trading under cap-and-trade policy is also modelled and the level of trading can be constrained. Trading in the base-year 2005 is calibrated to the actual energy import and
17
export data. Traded fuel and respective TIAM-UCL code is provided in Table 2-3. Base-year energy trade (import and export of fossil resources) for the UK is taken from DUKES (2010). Table 2-3: Resources traded in the 16R TIAM-UCL global model TIAM Code
Resource
OILCRD
Crude oil
COAHCO
Hard coal
GASNGA
Natural gas
OILHFO
Heavy fuel oil
OILNAP
Naphtha
OILGSL
Gasoline
OILNGL
Natural gas liquid
OILDST
Distillates (diesel)
GASLNG
Liquefied natural gas
DMYNUC 2.8
Uranium
Scenario module
There are several scenario templates has been created for modelling energy and environmental policies and constraint as shown in Table 2-4. New scenario sheets can be created for a policy or technical constraint under this module. Table 2-4: Scenario workbooks in TIAM-UCL Spreadsheet
Description
B_BASEextra
Upper activity bounds on oil / gas production; Upper seasonal / annual availability factors (AF) for large hydro; Upper seasonal / annual AFs for wind; Methane emission factor coefficients for upstream sector; FRs in the base year across all energy service demands.
Scen_B_Extraction
Resource data (discussed in section 2.6)
Scen_ClimParameters-
This is the climate module (climate parameters), which calculates
TOCSIN
the impacts of GHG emissions in the atmosphere (N2O, CH4 and CO2 concentration and temperature changes)
Scen_ElastPar
Elasticity values for different energy services demands for when running in elastic demand version
Scen_ELC-UC
Sets MAX and MIN level of nuclear, wind, geothermal and hydro generation. A fill tables takes the minimum share of generation from REN from base year (BY) templates, using hydro technologies as a basis; feeds into Min Ren sheet, which constrains renewable
18
Spreadsheet
Description generation for the minimum share
Scen_ELC-UC-MaxCoal
Provide shares of coal generation in base year, sourced from BY templates using FILL function. Maximum coal share in fossil generation
Scen_EMITAX
CO2 tax policy is applied
Scen_CAP
Cap-and-trade policy is applied. Emission trading can be limited to certain percentage of the target
Scen_Oil-UC-opec_080
Control maximum oil production by OPEC region
Scen_TRA-UC
Constraining transport fuels
Scen_UPS-UC
Constraints (upper and/or lower) are applied for sequestration, heat, CHP, and alternative fuels. Finds values from templates on levels of electricity from CHP in UPS (& fills on upload)
2.9
References
Loulou and Labriet (2007a). ETSAP-TIAM: the TIMES integrated assessment model Part I: Model structure. DOI 10.1007/s10287-007-0046-z. http://www.springerlink.com/content/j8613681347971q5/fulltext.pdf Loulou, R., and Labriet, M. 2007b. The TIMES Integrated Assessment, Model (TIAM): some details on model, and database. TIAM day, Ottawa, March 14, 2007. DUKES. 2010. www.decc.gov.uk/en/content/cms/statistics/publications/dukes/dukes.aspx International Energy Agency (IEA), World Energy Balances, 2009, ESDS International, (Mimas) University of Manchester
19
3 Demand Drivers and Projection 3.1
Introduction
As TIAM is a partial-equilibrium model, the model needs a reference energy-service demand level for all energy services in the model. Table 2-1 lists the 42 energy-service demands for the five different end-use sectors in TIAM. A driver is allocated to each energy service demand to project demand for future years throughout the model horizon (2005 to 2100). The driver is linked to the energy-service demand by a constant and an elasticity (see section 2.3). Demand drivers include population, GDP, number of households, GDP per capita, GDP per household and agricultural, service and industrial drivers. Assumptions on the development of drivers are based on several sources, which are explained in the following subsections. Assumptions on demand drivers have been substantially updated from the ESTAP-TIAM model. 3.2 3.2.1
Drivers and projection Population
Population figures up to 2050 are based on UN estimations (UN, 2009). For the second half of the 21st century, population growth is assumed to follow the pattern of the first half, i.e. that population growth rates decline or become negative. It is assumed that world population will increase from 6.7 billion people in 2005 to 9.3 billion people in 2050, reach the peak in 2090 with 9.8 billion and then decline slightly (Figure 3-1). The biggest population increase over the 21st century is expected to happen in Africa, India, Other Developing Asia and the Middle East (Figure 3-2). Under the given assumptions China, Eastern Europe, Former Soviet Union, Japan, Mexico, South Korea and Western Europe experience negative population growth rates in the second half of the 21st century. Especially for South Korea and Japan, it is assumed that the population will shrink significantly over the course of the 21st century.
Figure 3-1: World population data used in TIAM-UCL
Figure 3-2: Annual population growth during 2005-2100 In comparison to the IPCC's Special Report on Emission Scenarios (SRES) scenarios (Nakicenovic and IPCC 2000), TIAM is situated within the range of the four population scenarios and comes close to scenario B2 (Figure 3-3).
22
Figure 3-3: Global population in TIAM compared to SRES scenarios 3.2.2
GDP
Estimations of future economic growth are much more uncertain than future population growth. Figures for future economic growth are based on an assumption of economic convergence between regions. In detail, this means that per capita income is assumed to converge between different regions (see Figure 3-4), i.e. that low income regions grow faster compared to high income regions. The figure, which has a logarithmic scale, shows this convergence of per capita income among world regions. The GDP per person is calculated as the ratio of GDP and population. The economic convergence is a central point in the assumptions on socio-economic drivers. The effect becomes clear when one compares the GDP per head in different regions. India is the poorest region with a GDP per head of 10% of the world average and the USA is the richest region with 608% of the world average in 2005. In 2100 this picture changes to India still being the poorest country with GDP per head but with 47% of the world average and the USA being the richest country with 303% of the world average.
23
Figure 3-4: Per capita GDP in the 21st Century As assumptions on future GDP are very uncertain, only very few studies exist that forecast GDP up to 2100. Unlike population assumptions, GDP figures are not based on a single source. Economic growth rates have been compared to assumptions made for scenarios in the 4th assessment report of the IPCC (Tsuneyuki 1999) and Clarke et al. (2007). Global GDP is assumed to grow from $49 trillion in 2010 to $148 trillion in 2050 and $337 trillion in 2100. Current figures for 2010 have been taken from the IMF (2009). GDP growth rates are expected to decline over the course of the 21st century, while they remain higher for developing countries than for developed countries (Figure 3-5). Owing to the shrinking population, the growth rates for South Korea and Japan are very low and turn negative at the end of the 21st century. Growth rates for Western Europe, the UK and the United States are assumed to drop from an average of 2.2% to 1.3% p.a. in 2050. The only region that is expected to increase GDP growth rates over the first decades is Africa based on a growing population and its current low income levels.
24
Figure 3-5: GDP growth rate from 2004-2100
In comparison to the SRES scenarios, global economic growth is rather at the lower range of possible scenarios. It is, however, in the middle of the range of all the models used in the EMF-21 study (Weyant et al. 2006). 3.2.3
Households
The growth rate of household numbers during 2005-2100 for different regions are presented in Figure 3-5. The number of households is based on population estimates and occupancy rate. There exists no database for the occupancy rate for each region in the TIAM-UCL model. Therefore, the numbers in this section rely on national statistics. For some countries, there exist forecasts for the near future (up to 2030) concerning the development of the average number of people in a household. These have been used where available in order to determine the household growth for the near future. For the longer term, it is assumed that the occupancy rate will increase in line with historic data to 1.7 to 3 persons per household, depending on the region. The reason for this range is the difference in current average persons per household, e.g. in 2005 the average Indian household
25
consisted of 5.3 persons, while the average Western European household consisted of 2.1 persons per household.
Figure 3-6: Growth rate of household numbers during 2005-2100 In order to simplify the data needed for the calculation, characteristic countries have been chosen for regions that consist of more than two countries. Those are South Africa for Africa, Brazil for Central and South America, Poland for Eastern Europe, Russia for Former Soviet Union, Iran for Middle East, Indonesia for Other Developing Asia and Germany for Western Europe. Numbers for the driver ‗GDP per household‘ have been calculated as the ratio of GDP and number of households for each given region. 3.2.4
Sectoral drivers
There exist no reliable data for the forecast of industrial production, agricultural or service output for the next 90 years. Industrial production is subdivided into chemical industry, iron & steel and non-ferrous metals, pulp & paper and non-metallic minerals, and other industries. Initial numbers are based on number from ETSAP-TIAM published by KANORS (2010). The development of sectoral growth rates are geared to the GDP numbers and imply a shift in GDP composition towards the service sector, so that agriculture and industry will 26
become less important for the whole economy over the 21st century. To this end, the GDP composition of the most important regions has been extracted from national statistics according to the sectoral aggregation in TIAM. In a next step, the sectoral drivers have been calibrated in such a way that they yield a more service orientated economy. In addition, the driver for the iron & steel industry is geared to historical data on steel production obtained from statistics of the World Steel Association. As an example, Figure 3-7 depicts the annual growth rates for one particular industrial driver, iron & steel and non-ferrous metals.
Figure 3-7: Growth rate of sectoral outputs (iron & steel and non-ferrous metals. 3.2.5
Energy services demand
Demand fractions determine the fraction of service demand to be met during a specific period of the day in a given season (or timeslice). The temporal resolution is determined by three seasons, summer, winter and intermediate. Each of the seasons accounts for a third of the whole year or 4 month. These timeslices are again split into night and day, where day represents 16 hours and night 8 hours (Table 3-1).
27
Table 3-1: Fraction of energy-service demands Time slice
Month share
Day share
Fraction
ID
0.333 (4 months)
0.666 (16 hours)
0.223
0.333 (8 hours)
0.111
0.666
0.223
0.333
0.111
0.666
0.221
0.333
0.111
IN SD
0.333
SN WD
0.333
WN 3.3
Driver Elasticity
Driver elasticities determine the sensitivity of changes in energy-service demand to changes in the underlying driver. An elasticity of 1 means that a change of the underlying driver is exactly reflected in the energy-service demand. Energy-service demands with an elasticity below 1 are demand inelastic, while those with an elasticity of one or higher are demand elastic. In general it is assumed that energy-service demands grow slower than the underlying driver, such as GDP, GDP per capita or number of household. This decoupling of energy demand and economic growth is expected to increase during the 21 st century so that all elasticities fall. Residential space heating (RH1), for example, has an elasticity of 0.8 in 2010, which drops to 0.5 in 2100. This means that initially the energy demand for space heating increases at 80% of household number growth, the specific underlying driver, and in the 2nd half of the century at only 50% of the household number growth rate. Table 3-2: Driver elasticities for the United Kingdom Energy-service demand
2010
2020
2030
2040
2050
2100
AGR
0.8
0.8
0.8
0.8
0.8
0.6
CC1
0.8
0.8
0.8
0.8
0.7
0.4
CCK
0.5
0.5
0.5
0.5
0.5
0.4
CH1
0.5
0.5
0.5
0.5
0.5
0.3
CHW
0.5
0.5
0.5
0.5
0.5
0.4
CLA
0.5
0.5
0.5
0.5
0.5
0.4
COE
0.5
0.5
0.5
0.5
0.5
0.4
COT
0.5
0.5
0.5
0.5
0.5
0.4
CRF
0.5
0.5
0.5
0.5
0.5
0.4
I00
0.6
0.6
0.6
0.6
0.6
0.5
ICH
0.8
0.8
0.8
0.8
0.7
0.5
IIS
0.7
0.7
0.7
0.7
0.7
0.5 28
3.4
Energy-service demand
2010
2020
2030
2040
2050
2100
ILP
0.8
0.8
0.8
0.8
0.7
0.5
INF
0.8
0.8
0.8
0.8
0.7
0.5
INM
0.8
0.8
0.8
0.8
0.7
0.5
IOI
0.8
0.8
0.8
0.8
0.8
0.6
NEO
0.6
0.6
0.6
0.6
0.6
0.5
NEU
1
1
1
1
0.9
0.5
ONO
0.6
0.6
0.6
0.6
0.6
0.5
RCD
1
1
1
1
1
0.8
RCW
1
1
1
1
1
0.8
RDW
1
1
1
1
1
0.8
REA
1
1
1
1
1
0.8
RH1
0.8
0.8
0.8
0.8
0.8
0.5
RK1
0.7
0.7
0.7
0.7
0.7
0.5
RL1
1
1
1
1
0.9
0.7
ROT
1
1
1
1
1
0.8
RRF
1
1
1
1
1
0.8
RHW
1
1
1
1
1
0.8
TAD
1.2
1.2
1.1
1.1
0.9
0.1
TAI
1.2
1.2
1.1
1.1
0.9
0.1
TRB
0.7
0.7
0.7
0.7
0.7
0.8
TRC
0.7
0.7
0.7
0.7
0.7
0.4
TRE
0.7
0.7
0.7
0.7
0.7
0.7
TRH
0.7
0.7
0.7
0.7
0.7
0.4
TRL
0.7
0.7
0.7
0.7
0.7
0.4
TRM
0.7
0.7
0.7
0.7
0.7
0.4
TRT
1.2
1.2
1.2
1.2
1
0.5
TRW
0.7
0.7
0.7
0.7
0.7
0.7
TTF
1
1
1
0.8
0.6
0.1
TTP
0.8
0.8
0.8
0.8
0.8
0.7
TWD
0.8
0.8
0.8
0.6
0.5
0.1
TWI
0.8
0.8
0.8
0.6
0.5
0.1
References
Clarke, L., J. Edmonds, H. D. Jacoby, H. Pitcher, J. M. Reilly and R. Richels (2007): Scenarios of Greenhouse Gas Emissions and Atmospheric Concentrations. Sub-report 2.1A of Synthesis and Assessment Product 2.1 by the U.S. Climate Change Science Program and the Subcommittee on Global Change Research. Department of Energy / Office of Biological & Environmental Research. Washington, DC.: 154.
29
IEA (2010): Energy Balances of Non-OECD and OECD countries. Paris. International Monetary Fund (IMF) (2009): World Economic Outlook Database, October 2009 KAnORS (2010): Growth rate of industrial output by region, http://www.kanors.com/Index.asp Morita, Tsuneyuki (1999) Emission Scenario Database prepared for IPCC Special Report on Emission Scenarios convened by Dr. Nebosja Nakicenovic, National Institute for Environmental Studies Centre for Global Environmental Research Nakicenovic, N. and Intergovernmental Panel on Climate Change (2000): Special report on emissions scenarios : a special report of Working Group III of the Intergovernmental Panel on Climate Change. Cambridge ; New York, Cambridge University Press. UN (2009): World Population Prospects: The 2008 Revision, Population Division of the Department of Economic and Social Affairs of the United Nations Secretariat, http://esa.un.org/unpp, February 10, 2010 Weyant, J. P., F. C. de la Chesnaye and G. J. Blanford (2006) : Overview of EMF-21: Multigas Mitigation and Climate Policy. Energy Journal 27 (Multi-Greenhouse Gas Mitigation): 1-32.
30
4 Transport Sector 4.1
Introduction
This chapter discusses set-up of transport sector Base-Year template where transport sector energy-services, transport technologies and commodities are defined. Separate Base-Year template available for each region. The Base-Year templates contains excel sheets for baseyear IEA data input, technology and commodity data. Separate sheets available for each transport sector energy-services such as car, bur, HGV, etc. The Base-year template also contains data for transport sector emissions accounting. 4.2
Energy services demand
The transportation sector is characterized by 14 energy-services plus one non-energy use demand segment (Table 4-1). Six of the energy-services are considered as generic demands: international and domestic aviation (TAI, TAD), freight and passenger rail transportation (TTF, TTP), domestic and international navigation (TWD, TWI). All other energy-services are for road transport. Demand for road transport energy-services is expressed in b-vkm and others are in PJ. Drivers for each energy-service demands are presented and explained in Section 2.3 and Chapter 3 (Demands and Drivers). Projected energy-service demands at global level are resented in Figure 4-1. The model projects energy-services demands for each region. Table 4-1: Energy-service demands in transport sector Code
Energy-service demand
Unit
TAD
Domestic Aviation
PJ
TAI
International Aviation
PJ
TRB
Road Bus Demand
Bv-km
TRC
Road Commercial Trucks Demand
Bv-km
TRE
Road Three Wheels Demand
Bv-km
TRH
Road Heavy Trucks Demand
Bv-km
TRL
Road Light Vehicle Demand
Bv-km
TRM
Road Medium Trucks Demand
Bv-km
TRT
Road Auto Demand
Bv-km
TRW
Road Two Wheels Demand
Bv-km
10
Code
Energy-service demand
Unit
TTF
Rail-Freight
PJ
TTP
Rail-Passengers
PJ
TWD
Domestic Internal Navigation
PJ
TWI
International Navigation
PJ
Projected energy-service demands
TAI
9
Index (2005=1)
TAD TRB
8
TRC
7
TRE TRH
6
TRL
5
TRM TRT
4
TRW
3
TTF
2
TTP
1
TWD
0
TWI
2000 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100
Figure 4-1: Projected energy-service demands in transport sector 4.3
Sector fuels and emissions
The technologies created to produce aggregated transportation fuels (Fuel Tech) are named uniformly using the name of the aggregated fuels as specified in the column Commodity OUT plus three zeros (000 for existing technologies (Table 4-2) and 005 for new technologies from 20063 (Table 4-3). Their description changes according to the fuel (e.g.
3
The previous version of the TIAM model was calibrated to a base-year of 2000 and the
latest version of TIAM is calibrated to a base-year of 2005. That is the reason for 000 for existing technologies and 005 for new technologies.
32
Fuel Tech – Coal (TRA) or Fuel Tech - Natural Gas (TRA). The fractional shares of the disaggregated fuels (Commodity IN) used to produce an aggregated fuel (Commodity OUT) are calculated from their consumption over the total for this category in the base-year, as given in the IEA database. The TRA_Emi sheet contains the emission coefficients for CO2, CH4 and N2O of each transportation aggregated fuel: the Static coefficients and the Dynamic coefficients. The dynamics coefficients are calculated using the static coefficients of the disaggregated fuels. Table 4-2: Sector fuel technologies-existing Tech. Name
Technology Description
Comm.-IN
Comm.OUT
TRACOA000
Fuel Tech - Coal (TRA) - Existing
TRANGA000
Fuel Tech - Natural Gas (TRA) - Existing
TRALPG000
Fuel Tech - Liquified Petroleum Gas (TRA) Existing
TRAGSL000
Fuel Tech - Gasoline (TRA) - Existing
TRAAVG000
Fuel Tech - Aviation Gasoline (TRA) - Existing
TRAJTK000
Fuel Tech - Jet Kerosene (TRA) - Existing
TRADST000
Fuel Tech - Diesel (TRA) - Existing
TRAHFO000
Fuel Tech - Heavy Fuel Oil (TRA) - Existing
TRAELC000
Fuel Tech - Electricity (TRA)
TRAETH005
Fuel Tech - Ethanol (TRA)
COAHCO COABCO
TRACOA
GASNGA
TRANGA
OILLPG
TRALPG
OILGSL
TRAGSL
OILAVG OILJTG OILJTK OILKER OILDST OILHFO OILNSP ELCC ELCD ALCETH
TRAAVG TRAJTK TRADST TRAHFO TRAELC TRAETH
Table 4-3: Sector fuel technologies-new technologies Tech. Name
Technology Description
Comm.-IN
Comm.OUT
TRACOA005
Fuel Tech - Coal (TRA) - New
COAHCO
TRACOA
COABCO TRANGA005
33
Fuel Tech - Natural Gas (TRA) - New
GASNGA
TRANGA
Tech. Name
Technology Description
Comm.-IN
Comm.OUT
TRALPG005
Fuel Tech - Liquefied Petroleum Gas (TRA) -
OILLPG
TRALPG
New TRAGSL005
Fuel Tech - Gasoline (TRA) - New
OILGSL
TRAGSL
TRAAVG005
Fuel Tech - Aviation Gasoline (TRA) - New
OILAVG
TRAAVG
OILJTG TRAJTK005
Fuel Tech - Jet Kerosene (TRA) - New
OILJTK
TRAJTK
OILKER TRADST005
Fuel Tech - Diesel (TRA) - New
OILDST
TRADST
BIODST TRAHFO005
Fuel Tech - Heavy Fuel Oil (TRA) - New
OILHFO
TRAHFO
OILNSP TRAMET005
Fuel Tech - Methanol (TRA)
ALCMET
TRAMET
TRAETH005
Fuel Tech - Ethanol (TRA)
ALCETH
TRAETH
4.4
Technologies
Table 4-4 presents the list of technology to meet the base-year energy-service demand in each transport subsector. Most of the existing technologies are modelled to meet the energy-service demands in the base year. No new investments are allowed for existing technologies. Table 4-4: transport technologies-existing Tech. Name
Technology Description
activity
Fuel
TRAELC000
Fuel Tech - Electricity (TRA)
PJ
electricity
TAD000
Generic Domestic Aircraft-Existing
PJ
Jet fuel
TAI000
Generic International Aircraft-Existing
PJ
Jet fuel
TRBDST000
BUS: .00.CFV.DST.EXISTING.STD.
Bv-km
diesel
TRBELC000
BUS: .00.AFV.ELC.EXISTING.STD.
Bv-km
electricity
TRBETH000
BUS: .00.AFV.ETH.EXISTING.STD.
Bv-km
ethanol
TRBGAS000
BUS: .00.CFV.GAS.EXISTING.STD.
Bv-km
gasoline
TRBLPG000
BUS: .00.AFV.LPG.EXISTING.STD.
Bv-km
LPG
TRBMET000
BUS: .00.AFV.MET.EXISTING.STD.
Bv-km
methanol
TRBNGA000
BUS: .00.AFV.NGA.EXISTING.STD.
Bv-km
natural gas
TRCDST000
COMMERCIAL TRUCK: .00.CFV.DST.EXISTING.STD.
Bv-km
diesel
TRCETH000
COMMERCIAL TRUCK: .00.AFV.ETH.EXISTING.STD.
Bv-km
ethanol
TRCGAS000
COMMERCIAL TRUCK: .00.CFV.GAS.EXISTING.STD.
Bv-km
gasoline
TRCLPG000
COMMERCIAL TRUCK: .00.AFV.LPG.EXISTING.STD.
Bv-km
LPG
34
Tech. Name
Technology Description
activity
Fuel
TRCMET000
COMMERCIAL TRUCK: .00.AFV.MET.EXISTING.STD.
Bv-km
methanol
TRCNGA000
COMMERCIAL TRUCK: .00.AFV.NGA.EXISTING.STD.
Bv-km
natural gas
TREDST000
THREE WHEELS: .00.CFV.DST.
Bv-km
diesel
TREGSL000
THREE WHEELS: .00.CFV.GAS.
Bv-km
gasoline
TRHDST000
HEAVY TRUCK: .00.CFV.DST.EXISTING.STD.
Bv-km
diesel
TRHETH000
HEAVY TRUCK: .00.AFV.ETH.EXISTING.STD.
Bv-km
ethanol
TRHGAS000
HEAVY TRUCK: .00.CFV.GAS.EXISTING.STD.
Bv-km
gasoline
TRHLPG000
HEAVY TRUCK: .00.AFV.LPG.EXISTING.STD.
Bv-km
LPG
TRHMET000
HEAVY TRUCK: .00.AFV.MET.EXISTING.STD.
Bv-km
methanol
TRHNGA000
HEAVY TRUCK: .00.AFV.NGA.EXISTING.STD.
Bv-km
natural gas
TRLDST000
LIGHT TRUCK: .00.CFV.DST.EXISTING.STD.
Bv-km
diesel
TRLELC000
LIGHT TRUCK: .00.AFV.ELC.EXISTING.STD.
Bv-km
electricity
TRLETH000
LIGHT TRUCK: .00.AFV.ETH.EXISTING.STD.
Bv-km
ethanol
TRLGAS000
LIGHT TRUCK: .00.CFV.GAS.EXISTING.STD.
Bv-km
gasoline
TRLLPG000
LIGHT TRUCK: .00.AFV.LPG.EXISTING.STD.
Bv-km
LPG
TRLMET000
LIGHT TRUCK: .00.AFV.MET.EXISTING.STD.
Bv-km
methanol
TRLNGA000
LIGHT TRUCK: .00.AFV.NGA.EXISTING.STD.
Bv-km
natural gas
TRMDST000
MEDIUM TRUCK: .00.CFV.DST.EXISTING.STD.
Bv-km
diesel
TRMETH000
MEDIUM TRUCK: .00.AFV.ETH.EXISTING.STD.
Bv-km
ethanol
TRMGAS000
MEDIUM TRUCK: .00.CFV.GAS.EXISTING.STD.
Bv-km
gasoline
TRMLPG000
MEDIUM TRUCK: .00.AFV.LPG.EXISTING.STD.
Bv-km
LPG
TRMMET000
MEDIUM TRUCK: .00.AFV.MET.EXISTING.STD.
Bv-km
methanol
TRMNGA000
MEDIUM TRUCK: .00.AFV.NGA.EXISTING.STD.
Bv-km
natural gas
TRTDST000
CAR: .00.CFV.DST.EXISTING.STD.
Bv-km
diesel
TRTELC000
CAR: .00.AFV.ELC.EXISTING.STD.
Bv-km
electricity
TRTETH000
CAR: .00.AFV.ETH.EXISTING.STD.
Bv-km
ethanol
TRTGAS000
CAR: .00.CFV.GAS.EXISTING.STD.
Bv-km
gasoline
TRTLPG000
CAR: .00.AFV.LPG.EXISTING.STD.
Bv-km
LPG
TRTMET000
CAR: .00.AFV.MET.EXISTING.STD.
Bv-km
methanol
TRTNGA000
CAR: .00.AFV.NGA.EXISTING.STD.
Bv-km
natural gas
TRWMCG000
MOTOR CYCLE: .00.CFV.GAS.MCG.
Bv-km
gasoline
TRWMPG000
MOTOR PED: .00.CFV.GAS.MPG.
Bv-km
gasoline
TTF000
Generic Freight Train-Existing
PJ
diesel, gasoline
TTP000
Generic Passengers Train-Existing
PJ
electricity, coal
TWD000
Generic Domestic Navigation Ship Existing
PJ
diesel, coal, HFO,
TWI000
Generic International Boat-Existing
PJ
gasoline
New technologies available after the first period (2005) are listed in Table 4-5 with vintages. For each end-use, a number of existing technologies are in competition to satisfy the energy-services demand for future years. Efficiency and cost of these technologies improve over the period with vintages. These technologies progressively replace the existing ones
35
and they are characterized by the same type of parameters such as efficiency, and investment cost. There are many new technologies available for the road transport sector whereas technological detail is very limited in rail, shipping and aviation modes. Investment and O&M costs shown are US dollar reference prices. They are multiplied by regionally specific factors for each region. Technology and regional specific hurdle rate, which are used to annualise the investment cost, are also applied as shown in Figure 4-2. 35%
Hurdle rate
30%
25% 20% 15% 10% 5% 0% Car and light truck
Heavy and m edium truck
Bus
2 & 3 wheeler
AFR AUS CAN CHI CSA EEU FSU IND JPN MEA MEX ODA SKO USA WEU UK
Figure 4-2: Technology specific hurdle rate for different regions in TIAM-UCL Table 4-5: transport technologies-existing Tech. Name
Technology Description
START
LIFE
IN.COST
F.OM
EFF
Car TRTGCA005
CAR: .05.CFV.GAS.CAFE.STD.
2006
12.50
1150
23
0.34
TRTGCA010
CAR: .10.CFV.GAS.CAFE.STD.
2008
12.50
1150
23
0.34
TRTGCA020
CAR: .20.CFV.GAS.CAFE.STD.
2018
12.50
1150
23
0.41
TRTGCA030
CAR: .30.CFV.GAS.CAFE.STD.
2028
12.50
1150
23
0.44
TRTGCA040
CAR: .40.CFV.GAS.CAFE.STD.
2038
12.50
1150
23
0.48
TRTGCA050
CAR: .50.CFV.GAS.CAFE.STD.
2048
12.50
1150
23
0.51
TRTGCB005
CAR: .05.CFV.GAS.CAFE.3.5MPG.
2006
12.50
1210
24
0.39
TRTGCB010
CAR: .10.CFV.GAS.CAFE.3.5MPG.
2008
12.50
1210
24
0.43
TRTGCB020
CAR: .20.CFV.GAS.CAFE.3.5MPG.
2018
12.50
1210
24
0.48
TRTGCB030
CAR: .30.CFV.GAS.CAFE.3.5MPG.
2028
12.50
1210
24
0.53
TRTGCB040
CAR: .40.CFV.GAS.CAFE.3.5MPG.
2038
12.50
1210
24
0.58
TRTGCB050
CAR: .50.CFV.GAS.CAFE.3.5MPG.
2048
12.50
1210
24
0.63
TRTGCC005
CAR: .05.CFV.GAS.CAFE.7.0MPG.
2006
12.50
1225
25
0.44
TRTGCC010
CAR: .10.CFV.GAS.CAFE.7.0MPG.
2008
12.50
1225
25
0.48
TRTGCC020
CAR: .20.CFV.GAS.CAFE.7.0MPG.
2018
12.50
1225
25
0.54
36
Tech. Name
Technology Description
START
LIFE
IN.COST
F.OM
EFF
TRTGCC030
CAR: .30.CFV.GAS.CAFE.7.0MPG.
2028
12.50
1225
25
0.59
TRTGCC040
CAR: .40.CFV.GAS.CAFE.7.0MPG.
2038
12.50
1225
25
0.65
TRTGCC050
CAR: .50.CFV.GAS.CAFE.7.0MPG.
2048
12.50
1225
25
0.70
TRTDCA005
CAR: .05.CFV.DST.CAFE.STD.
2006
12.50
1250
25
0.38
TRTDCA010
CAR: .10.CFV.DST.CAFE.STD.
2008
12.50
1250
25
0.38
TRTDCA020
CAR: .20.CFV.DST.CAFE.STD.
2018
12.50
1250
25
0.46
TRTDCA030
CAR: .30.CFV.DST.CAFE.STD.
2028
12.50
1250
25
0.49
TRTDCA040
CAR: .40.CFV.DST.CAFE.STD.
2038
12.50
1250
25
0.53
TRTDCA050
CAR: .50.CFV.DST.CAFE.STD.
2048
12.50
1250
25
0.57
TRTDCB005
CAR: .05.CFV.DST.CAFE.3.5MPG.
2006
12.50
1275
26
0.43
TRTDCB010
CAR: .10.CFV.DST.CAFE.3.5MPG.
2008
12.50
1275
26
0.47
TRTDCB020
CAR: .20.CFV.DST.CAFE.3.5MPG.
2018
12.50
1275
26
0.53
TRTDCB030
CAR: .30.CFV.DST.CAFE.3.5MPG.
2028
12.50
1275
26
0.58
TRTDCB040
CAR: .40.CFV.DST.CAFE.3.5MPG.
2038
12.50
1275
26
0.63
TRTDCB050
CAR: .50.CFV.DST.CAFE.3.5MPG.
2048
12.50
1275
26
0.69
TRTDCC005
CAR: .05.CFV.DST.CAFE.7.0MPG.
2006
12.50
1300
26
0.48
TRTDCC010
CAR: .10.CFV.DST.CAFE.7.0MPG.
2008
12.50
1300
26
0.53
TRTDCC020
CAR: .20.CFV.DST.CAFE.7.0MPG.
2018
12.50
1300
26
0.59
TRTDCC030
CAR: .30.CFV.DST.CAFE.7.0MPG.
2028
12.50
1300
26
0.65
TRTDCC040
CAR: .40.CFV.DST.CAFE.7.0MPG.
2038
12.50
1300
26
0.71
TRTDCC050
CAR: .50.CFV.DST.CAFE.7.0MPG.
2048
12.50
1300
26
0.77
TRTLPG005
CAR:.05.AFV.LPG.
2006
12.50
1170
23
0.34
TRTLPG010
CAR: .10.AFV.LPG.
2008
12.50
1170
23
0.34
TRTLPG020
CAR: .20.AFV.LPG.
2018
12.50
1170
23
0.41
TRTLPG030
CAR: .30.AFV.LPG.
2028
12.50
1170
23
0.44
TRTLPG040
CAR: .40.AFV.LPG.
2038
12.50
1170
23
0.48
TRTLPG050
CAR: .50.AFV.LPG.
2048
12.50
1170
23
0.51
TRTNGA005
CAR:.05.AFV.NGA.
2006
12.50
1350
27
0.34
TRTNGA010
CAR: .10.AFV.NGA.
2008
12.50
1350
27
0.34
TRTNGA025
CAR: .20.AFV.NGA.
2018
12.50
1350
27
0.41
TRTNGA030
CAR: .30.AFV.NGA.
2028
12.50
1350
27
0.44
TRTNGA040
CAR: .40.AFV.NGA.
2038
12.50
1275
26
0.48
TRTNGA050
CAR: .50.AFV.NGA.
2048
12.50
1275
26
0.51
TRTMET005
CAR: .05.AFV.MET.
2006
12.50
1265
25
0.37
TRTMET010
CAR: .10.AFV.MET.
2008
12.50
1265
25
0.37
TRTMET020
CAR: .20.AFV.MET.
2018
12.50
1265
25
0.45
TRTMET030
CAR: .30.AFV.MET.
2028
12.50
1265
25
0.49
TRTMET040
CAR: .40.AFV.MET.
2038
12.50
1265
25
0.52
TRTMET050
CAR: .50.AFV.MET.
2048
12.50
1265
25
0.56
TRTETH005
CAR: .05.AFV.ETH.
2006
12.50
1265
25
0.34
TRTETH010
CAR: .10.AFV.ETH.
2008
12.50
1265
25
0.34
TRTETH020
CAR: .20.AFV.ETH.
2018
12.50
1265
25
0.41
37
Tech. Name
Technology Description
START
LIFE
IN.COST
F.OM
EFF
TRTETH030
CAR: .30.AFV.ETH.
2028
12.50
1265
25
0.44
TRTETH040
CAR: .40.AFV.ETH.
2038
12.50
1265
25
0.48
TRTETH050
CAR: .50.AFV.ETH.
2048
12.50
1265
25
0.51
TRTETA005
CAR: .05.AFV.ETH.10%MPG
2006
12.50
1265
25
0.39
TRTETA010
CAR: .10.AFV.ETH.10%MPG
2008
12.50
1265
25
0.39
TRTETA020
CAR: .20.AFV.ETH.10%MPG
2018
12.50
1265
25
0.48
TRTETA030
CAR: .30.AFV.ETH.10%MPG
2028
12.50
1265
25
0.53
TRTETA040
CAR: .40.AFV.ETH.10%MPG
2038
12.50
1265
25
0.58
TRTETA050
CAR: .50.AFV.ETH.10%MPG
2048
12.50
1265
25
0.63
TRTETB005
CAR: .05.AFV.ETH.20%MPG
2006
12.50
1265
25
0.44
TRTETB010
CAR: .10.AFV.ETH.20%MPG
2008
12.50
1265
25
0.44
TRTETB020
CAR: .20.AFV.ETH.20%MPG
2018
12.50
1265
25
0.54
TRTETB030
CAR: .30.AFV.ETH.20%MPG
2028
12.50
1265
25
0.59
TRTETB040
CAR: .40.AFV.ETH.20%MPG
2038
12.50
1265
25
0.65
TRTETB050
CAR: .50.AFV.ETH.20%MPG
2048
12.50
1265
25
0.70
TRTELC005
CAR: .05.AFV.ELC.
2006
12.50
1742
35
0.55
TRTELC010
CAR: .10.AFV.ELC.
2008
12.50
1725
35
0.55
TRTELC020
CAR: .20.AFV.ELC.
2018
12.50
1708
34
0.78
TRTELC030
CAR: .30.AFV.ELC.
2028
12.50
1691
34
0.86
TRTELC040
CAR: .40.AFV.ELC.
2038
12.50
1691
34
0.93
TRTELC050
CAR: .50.AFV.ELC.
2048
12.50
1691
34
1.01
TRTHYB005
CAR: .05.AFV.HYB.
2006
12.50
1800
36
0.52
TRTHYB010
CAR: .10.AFV.HYB.
2008
12.50
1600
32
0.52
TRTHYB020
CAR: .20.AFV.HYB.
2018
12.50
1500
30
0.74
TRTHYB030
CAR: .30.AFV.HYB.
2028
12.50
1300
26
0.82
TRTHYB040
CAR: .40.AFV.HYB.
2038
12.50
1250
25
0.88
TRTHYB050
CAR: .50.AFV.HYB.
2048
12.50
1225
25
0.96
TRTFUC010
CAR: .10.AFV.FUC.
2008
12.50
1600
120
0.74
TRTFUC020
CAR: .20.AFV.FUC.
2018
12.50
1500
70.00
0.82
TRTFUC030
CAR: .30.AFV.FUC.
2028
12.50
1300
55.00
0.88
TRTFUC040
CAR: .40.AFV.FUC.
2038
12.50
1250
45.00
0.96
TRTFUC050
CAR: .50.AFV.FUC.
2048
12.50
1225
30.00
0.96
TRTDMG005
CAR: .05.AFV.DMG.MET/GAS.
2006
12.50
1210.00
24.20
0.39
TRTDEG005
CAR: .05.AFV.DEG.ETH/GAS.
2006
12.50
1210.00
24.20
0.39
TRTDMG010
CAR: .10.AFV.DMG.MET/GAS.
2008
12.50
1210.00
24.20
0.43
TRTDMG015
CAR: .15.AFV.DMG.MET/GAS.
2013
12.50
1210.00
24.20
0.46
TRTDMG020
CAR: .20.AFV.DMG.MET/GAS.
2018
12.50
1210.00
24.20
0.48
TRTDEG010
CAR: .10.AFV.DEG.ETH/GAS.
2008
12.50
1210.00
24.20
0.43
TRTDEG015
CAR: .15.AFV.DEG.ETH/GAS.
2013
12.50
1210.00
24.20
0.46
TRTDEG020
CAR: .20.AFV.DEG.ETH/GAS.
2018
12.50
1210.00
24.20
0.48
TRTGHY010
CAR: .10.AFV.HYB.GAS/ELC
2008
12.50
1500.00
30.00
1.50
TRTGHY020
CAR: .20.AFV.HYB.GAS/ELC
2018
12.50
1450.00
29.00
1.50
38
Tech. Name
Technology Description
START
LIFE
IN.COST
F.OM
EFF
TRTGHY030
CAR: .30.AFV.HYB.GAS/ELC
2028
12.50
1400.00
28.00
1.50
TRTGHY040
CAR: .40.AFV.HYB.GAS/ELC
2038
12.50
1300.00
26.00
1.50
TRTGHY050
CAR: .50.AFV.HYB.GAS/ELC
2048
12.50
1300.00
26.00
1.50
Personal light trucks TRLGCA005
Light Truck: .05.CFV.GAS.CAFE.STD.
2006
12.50
1005
20
0.31
TRLGCB005
Light Truck: .05.CFV.GAS.CAFE.2.0MPG.
2006
12.50
1055
21
0.35
TRLGCC005
Light Truck: .05.CFV.GAS.CAFE.4.0MPG.
2006
12.50
1105
22
0.38
TRLDCA005
Light Truck: .05.CFV.DST.CAFE.STD.
2006
12.50
1105
22
0.38
TRLDCB005
Light Truck: .05.CFV.DST.CAFE.2.0MPG.
2006
12.50
1145
23
0.42
TRLDCC005
Light Truck: .05.CFV.DST.CAFE.4.0MPG.
2006
12.50
1185
24
0.46
TRLHYB005
LIGHT TRUCK: .05.AFV.HYB.
2006
12.50
1205
24
0.47
TRLGCA010
Light Truck: .10.CFV.GAS.CAFE.STD.
2008
12.50
1005
20
0.32
TRLGCB010
Light Truck: .10.CFV.GAS.CAFE.2.0MPG.
2008
12.50
1055
21
0.35
TRLGCC010
Light Truck: .10.CFV.GAS.CAFE.4.0MPG.
2008
12.50
1105
22
0.39
TRLGCA015
Light Truck: .15.CFV.GAS.CAFE.STD.
2013
12.50
1005
20
0.32
TRLGCB015
Light Truck: .15.CFV.GAS.CAFE.2.0MPG.
2013
12.50
1050
21
0.35
TRLGCC015
Light Truck: .15.CFV.GAS.CAFE.4.0MPG.
2013
12.50
1080
22
0.39
TRLGCA030
Light Truck: .30.CFV.GAS.FUTURE.STD
2028
12.50
1005
20
0.34
TRLGCB030
Light Truck: .30.CFV.GAS.FUTURE.2.0MPG.
2028
12.50
1050
21
0.37
TRLGCC030
Light Truck: .30.CFV.GAS.FUTURE.4.0MPG
2028
12.50
1070
21
0.41
TRLGCA040
Light Truck: .40.CFV.GAS.FUTURE.STD
2038
12.50
1005
20
0.35
TRLGCB040
Light Truck: .40.CFV.GAS.FUTURE.2.0MPG
2038
12.50
1050
21
0.39
TRLGCC040
Light Truck: .40.CFV.GAS.FUTURE.4.0MPG
2038
12.50
1070
21
0.42
TRLGCA050
Light Truck: .50.CFV.GAS.FUTURE.STD
2048
12.50
1005
20
0.36
TRLGCB050
Light Truck: .50.CFV.GAS.FUTURE.2.0MPG
2048
12.50
1050
21
0.40
TRLGCC050
Light Truck: .50.CFV.GAS.FUTURE.4.0MPG
2048
12.50
1070
21
0.43
TRLDCA010
Light Truck: .10.CFV.DST.CAFE.STD.
2008
12.50
1105
22
0.38
TRLDCB010
Light Truck: .10.CFV.DST.CAFE.2.0MPG.
2008
12.50
1145
23
0.42
TRLDCC010
Light Truck: .10.CFV.DST.CAFE.4.0MPG.
2008
12.50
1175
23
0.46
TRLDCA015
Light Truck: .15.CFV.DST.CAFE.STD.
2013
12.50
1105
22
0.38
TRLDCB015
Light Truck: .15.CFV.DST.CAFE.2.0MPG.
2013
12.50
1140
23
0.42
TRLDCC015
Light Truck: .15.CFV.DST.CAFE.4.0MPG.
2013
12.50
1160
23
0.46
TRLDCA030
Light Truck: .30.CFV.DST.FUTURE.STD
2028
12.50
1105
22
0.40
TRLDCB030
Light Truck: .30.CFV.DST.FUTURE.2.0MPG.
2028
12.50
1140
23
0.44
TRLDCC030
Light Truck: .30.CFV.DST.FUTURE.4.0MPG
2028
12.50
1150
23
0.48
TRLDCA040
Light Truck: .40.CFV.DST.FUTURE.STD
2038
12.50
1105
22
0.42
TRLDCB040
Light Truck: .40.CFV.DST.FUTURE.2.0MPG
2038
12.50
1140
23
0.46
TRLDCC040
Light Truck: .40.CFV.DST.FUTURE.4.0MPG
2038
12.50
1150
23
0.50
TRLDCA050
Light Truck: .50.CFV.DST.FUTURE.STD
2048
12.50
1105
22
0.43
TRLDCB050
Light Truck: .50.CFV.DST.FUTURE.2.0MPG
2048
12.50
1140
23
0.47
TRLDCC050
Light Truck: .50.CFV.DST.FUTURE.4.0MPG
2048
12.50
1150
23
0.51
TRLFUC010
Light Truck: .10.AFV.FUC.
2008
12.50
1811
36
0.62
39
Tech. Name
Technology Description
START
LIFE
IN.COST
F.OM
EFF
TRLFUC020
Light Truck: .20.AFV.FUC.
2018
12.50
1685
34
0.65
TRLFUC030
Light Truck: .30.AFV.FUC.
2028
12.50
1400
30
0.70
TRLFUC040
Light Truck: .40.AFV.FUC.
2038
12.50
1350
28
0.72
TRLFUC050
Light Truck: .50.AFV.FUC.
2048
12.50
1300
25
0.75
TRLDMG005
LIGHT TRUCK: .05.AFV.DMG.MET/GAS.
2006
12.50
1105
22
0.38
TRLDMG010
LIGHT TRUCK: .10.AFV.DMG.MET/GAS.
2008
12.50
1105
22
0.39
TRLDMG015
LIGHT TRUCK: .15.AFV.DMG.MET/GAS.
2013
12.50
1080
22
0.39
TRLDMG030
LIGHT TRUCK: .30.AFV.DMG.MET/GAS.
2028
12.50
1070
21
0.41
TRLDMG040
LIGHT TRUCK: .40.AFV.DMG.MET/GAS.
2038
12.50
1070
21
0.42
TRLDMG050
LIGHT TRUCK: .50.AFV.DMG.MET/GAS.
2048
12.50
1070
21
0.43
TRLDEG005
LIGHT TRUCK: .05.AFV.DEG.ETH/GAS.
2006
12.50
1105
22
0.38
TRLDEG010
LIGHT TRUCK: .10.AFV.DEG.ETH/GAS.
2008
12.50
1105
22
0.39
TRLDEG015
LIGHT TRUCK: .15.AFV.DEG.ETH/GAS.
2013
12.50
1080
22
0.39
TRLDEG030
LIGHT TRUCK: .30.AFV.DEG.ETH/GAS.
2028
12.50
1070
21
0.41
TRLDEG040
LIGHT TRUCK: .40.AFV.DEG.ETH/GAS.
2038
12.50
1070
21
0.42
TRLDEG050
LIGHT TRUCK: .50.AFV.DEG.ETH/GAS.
2048
12.50
1070
21
0.43
TRLELC005
LIGHT TRUCK: .05.AFV.ELC.
2006
12.50
1742
35
0.70
TRLNGA005
LIGHT TRUCK: .05.AFV.NGA.
2006
12.50
1540
31
0.33
TRLNGA010
LIGHT TRUCK: .10.AFV.NGA.
2008
12.50
1550
31
0.34
TRLNGA015
LIGHT TRUCK: .15.AFV.NGA.
2013
12.50
1560
31
0.34
TRLNGA020
LIGHT TRUCK: .20.AFV.NGA.
2018
12.50
1570
31
0.34
TRLETH010
LIGHT TRUCK: .10.AFV.ETH.
2008
12.50
1105
22
0.39
TRLETH015
LIGHT TRUCK: .15.AFV.ETH.
2013
12.50
1080
22
0.39
TRLETH020
LIGHT TRUCK: .20.AFV.ETH.
2018
12.50
1080
22
0.39
TRLETH030
LIGHT TRUCK: .30.AFV.ETH.
2028
12.50
1080
22
0.41
TRLETH040
LIGHT TRUCK: .40.AFV.ETH.
2038
12.50
1080
22
0.42
TRLETH050
LIGHT TRUCK: .50.AFV.ETH.
2048
12.50
1080
22
0.42
TRLMET010
LIGHT TRUCK: .10.AFV.MET.
2008
12.50
1105
22
0.39
TRLMET015
LIGHT TRUCK: .15.AFV.MET.
2013
12.50
1080
22
0.39
TRLMET020
LIGHT TRUCK: .20.AFV.MET.
2018
12.50
1080
22
0.39
TRLMET050
LIGHT TRUCK: .50.AFV.MET.
2048
12.50
1070
21
0.42
TRLLPG005
LIGHT TRUCK: .05.AFV.LPG.
2006
12.50
1550
31
0.33
TRLLPG010
LIGHT TRUCK: .10.AFV.LPG.
2008
12.50
1550
31
0.34
TRLLPG015
LIGHT TRUCK: .15.AFV.LPG.
2013
12.50
1560
31
0.34
TRLLPG020
LIGHT TRUCK: .20.AFV.LPG.
2018
12.50
1570
31
0.34
TRLELC010
LIGHT TRUCK: .10.AFV.ELC.
2008
12.50
1930
39
0.61
TRLELC015
LIGHT TRUCK: .15.AFV.ELC.
2013
12.50
1940
39
0.62
TRLELC020
LIGHT TRUCK: .20.AFV.ELC.
2018
12.50
1960
39
0.63
TRLHYB015
LIGHT TRUCK: .15.AFV.HYB.
2013
12.50
1560
31
0.58
TRLHYB020
LIGHT TRUCK: .20.AFV.HYB.
2018
12.50
1460
29
0.58
TRLHYB030
LIGHT TRUCK: .30.AFV.HYB.
2028
12.50
1400
28
0.62
TRLHYB040
LIGHT TRUCK: .40.AFV.HYB.
2038
12.50
1375
28
0.63
40
Tech. Name
Technology Description
START
LIFE
IN.COST
F.OM
EFF
TRLHYB050
LIGHT TRUCK: .50.AFV.HYB.
2048
12.50
1350
27
0.63
Heavy duty trucks TRHDST005
HEAVY TRUCK: .05.CFV.DST.STD.
2006
15.00
967
19
0.08
TRHDST010
HEAVY TRUCK: .10.CFV.DST.STD.
2008
15.00
967
19
0.08
TRHDST020
HEAVY TRUCK: .20.CFV.DST.STD.
2018
15.00
967
19
0.09
TRHDST030
HEAVY TRUCK: .30.CFV.DST.STD.
2028
15.00
967
19
0.10
TRHDST040
HEAVY TRUCK: .40.CFV.DST.STD.
2038
15.00
967
19
0.10
TRHDST050
HEAVY TRUCK: .50.CFV.DST.STD.
2048
15.00
967
19
0.11
TRHDSA005
HEAVY TRUCK: .05.CFV.DST.10%MPG.
2006
15.00
1217
24
0.10
TRHDSA010
HEAVY TRUCK: .10.CFV.DST.10%MPG.
2008
15.00
1217
24
0.10
TRHDSA020
HEAVY TRUCK: .20.CFV.DST.10%MPG.
2018
15.00
1217
24
0.11
TRHDSA030
HEAVY TRUCK: .30.CFV.DST.10%MPG.
2028
15.00
1217
24
0.12
TRHDSA040
HEAVY TRUCK: .40.CFV.DST.10%MPG.
2038
15.00
1217
24
0.12
TRHDSA050
HEAVY TRUCK: .50.CFV.DST.10%MPG.
2048
15.00
1217
24
0.13
TRHDSB005
HEAVY TRUCK: .05.CFV.DST.20%MPG.
2006
15.00
1367
27
0.12
TRHDSB010
HEAVY TRUCK: .10.CFV.DST.20%MPG.
2008
15.00
1367
27
0.12
TRHDSB020
HEAVY TRUCK: .20.CFV.DST.20%MPG.
2018
15.00
1367
27
0.13
TRHDSB030
HEAVY TRUCK: .30.CFV.DST.20%MPG.
2028
15.00
1367
27
0.14
TRHDSB040
HEAVY TRUCK: .40.CFV.DST.20%MPG.
2038
15.00
1367
27
0.14
TRHDSB050
HEAVY TRUCK: .50.CFV.DST.20%MPG.
2048
15.00
1367
27
0.15
TRHGAS005
HEAVY TRUCK: .05.CFV.GAS.STD.
2006
15.00
964
19
0.06
TRHGAS010
HEAVY TRUCK: .10.CFV.GAS.STD.
2008
15.00
964
19
0.06
TRHGAS020
HEAVY TRUCK: .20.CFV.GAS.STD.
2018
15.00
964
19
0.08
TRHGAS030
HEAVY TRUCK: .30.CFV.GAS.STD.
2028
15.00
964
19
0.09
TRHGAS040
HEAVY TRUCK: .40.CFV.GAS.STD.
2038
15.00
964
19
0.09
TRHGAS050
HEAVY TRUCK: .50.CFV.GAS.STD.
2048
15.00
964
19
0.09
TRHNGA005
HEAVY TRUCK: .05.AFV.NGA.
2006
15.00
1305
26
0.06
TRHNGA010
HEAVY TRUCK: .10.AFV.NGA.
2008
15.00
1305
26
0.06
TRHNGA020
HEAVY TRUCK: .20.AFV.NGA.
2018
15.00
1305
26
0.06
TRHNGA030
HEAVY TRUCK: .30.AFV.NGA.
2028
15.00
1305
26
0.07
TRHNGA040
HEAVY TRUCK: .40.AFV.NGA.
2038
15.00
1305
26
0.07
TRHNGA050
HEAVY TRUCK: .50.AFV.NGA.
2048
15.00
1305
26
0.07
TRHETH005
HEAVY TRUCK: .05.AFV.ETH.
2006
15.00
1160
23
0.08
TRHETH010
HEAVY TRUCK: .10.AFV.ETH.
2008
15.00
1160
23
0.08
TRHETH020
HEAVY TRUCK: .20.AFV.ETH.
2018
15.00
1160
23
0.09
TRHETH030
HEAVY TRUCK: .30.AFV.ETH.
2028
15.00
1160
23
0.09
TRHETH040
HEAVY TRUCK: .40.AFV.ETH.
2038
15.00
1160
23
0.09
TRHETH050
HEAVY TRUCK: .50.AFV.ETH.
2048
15.00
1160
23
0.09
TRHMET005
HEAVY TRUCK: .05.AFV.MET.
2006
15.00
1319
26
0.08
TRHMET010
HEAVY TRUCK: .10.AFV.MET.
2008
15.00
1319
26
0.08
TRHMET020
HEAVY TRUCK: .20.AFV.MET.
2018
15.00
1319
26
0.10
TRHMET030
HEAVY TRUCK: .30.AFV.MET.
2028
15.00
1319
26
0.10
41
Tech. Name
Technology Description
START
LIFE
IN.COST
F.OM
EFF
TRHMET040
HEAVY TRUCK: .40.AFV.MET.
2038
15.00
1319
26
0.11
TRHMET050
HEAVY TRUCK: .50.AFV.MET.
2048
15.00
1319
26
0.12
TRHLPG005
HEAVY TRUCK: .05.AFV.LPG.
2006
15.00
1063
21
0.05
TRHLPG010
HEAVY TRUCK: .10.AFV.LPG.
2008
15.00
1063
21
0.05
TRHLPG020
HEAVY TRUCK: .20.AFV.LPG.
2018
15.00
1063
21
0.06
TRHLPG030
HEAVY TRUCK: .30.AFV.LPG.
2028
15.00
1063
21
0.06
TRHLPG040
HEAVY TRUCK: .40.AFV.LPG.
2038
15.00
1063
21
0.06
TRHLPG050
HEAVY TRUCK: .50.AFV.LPG.
2048
15.00
1063
21
0.07
TRHHYDFC30
Heavy Truck: HYD Fuel Cell 2030
2030
15.00
1500
50
0.10
TRHHYDFC50
Heavy Truck: HYD Fuel Cell 2050
2050
15.00
1300
45
0.10
Buses TRBGAS005
BUS: .05.CFV.GAS.STD.
2006
15.00
4971
99
0.09
TRBGAS010
BUS: .10.CFV.GAS.STD.
2008
15.00
4971
99
0.09
TRBGAS020
BUS: .20.CFV.GAS.STD.
2013
15.00
4971
99
0.11
TRBGAS030
BUS: .30.CFV.GAS.STD.
2028
15.00
4971
99
0.11
TRBGAS040
BUS: .40.CFV.GAS.STD.
2038
15.00
4971
99
0.12
TRBGAS050
BUS: .50.CFV.GAS.STD.
2048
15.00
4971
99
0.12
TRBDST005
BUS: .05.CFV.DST.STD.
2006
15.00
4971
99
0.09
TRBDST010
BUS: .10.CFV.DST.STD.
2008
15.00
4971
99
0.09
TRBDST020
BUS: .20.CFV.DST.STD.
2013
15.00
4971
99
0.11
TRBDST030
BUS: .30.CFV.DST.STD.
2028
15.00
4971
99
0.11
TRBDST040
BUS: .40.CFV.DST.STD.
2038
15.00
4971
99
0.12
TRBDST050
BUS: .50.CFV.DST.STD.
2048
15.00
4971
99
0.12
TRBNGA005
BUS: .05.AFV.NGA.
2006
15.00
6421
128
0.09
TRBNGA010
BUS: .10.AFV.NGA.
2008
15.00
6549
131
0.09
TRBNGA020
BUS: .20.AFV.NGA.
2013
15.00
6678
134
0.09
TRBNGA030
BUS: .30.AFV.NGA.
2028
15.00
6806
136
0.09
TRBNGA040
BUS: .40.AFV.NGA.
2038
15.00
6935
139
0.08
TRBNGA050
BUS: .50.AFV.NGA.
2048
15.00
5779
116
0.10
TRBLPG005
BUS: .05.AFV.LPG.
2006
15.00
5696
114
0.08
TRBLPG010
BUS: .10.AFV.LPG.
2008
15.00
5696
114
0.08
TRBLPG020
BUS: .20.AFV.LPG.
2013
15.00
5696
114
0.08
TRBLPG030
BUS: .30.AFV.LPG.
2028
15.00
5696
114
0.09
TRBLPG040
BUS: .40.AFV.LPG.
2038
15.00
5696
114
0.09
TRBLPG050
BUS: .50.AFV.LPG.
2048
15.00
5696
114
0.10
TRBELC005
BUS: .05.AFV.ELC.
2006
15.00
8699
174
0.15
TRBELC010
BUS: .10.AFV.ELC.
2008
15.00
8699
174
0.15
TRBELC020
BUS: .20.AFV.ELC.
2013
15.00
8699
174
0.15
TRBELC030
BUS: .30.AFV.ELC.
2028
15.00
8699
174
0.15
TRBELC040
BUS: .40.AFV.ELC.
2038
15.00
8699
174
0.15
TRBELC050
BUS: .50.AFV.ELC.
2048
15.00
8699
174
0.15
TRBHYB005
BUS: .05.AFV.HYB.
2006
15.00
8699
174
0.15
42
Tech. Name
Technology Description
START
LIFE
IN.COST
F.OM
EFF
TRBHYB010
BUS: .10.AFV.HYB.
2008
15.00
8699
174
0.15
TRBHYB020
BUS: .20.AFV.HYB.
2013
15.00
8699
174
0.17
TRBHYB030
BUS: .30.AFV.HYB.
2028
15.00
8699
174
0.18
TRBHYB040
BUS: .40.AFV.HYB.
2038
15.00
8699
174
0.19
TRBHYB050
BUS: .50.AFV.HYB.
2048
15.00
8699
174
0.20
TRBMET005
BUS: .05.AFV.MET.
2006
15.00
7249
145
0.09
TRBMET010
BUS: .10.AFV.MET.
2008
15.00
7249
145
0.09
TRBMET020
BUS: .20.AFV.MET.
2013
15.00
7249
145
0.11
TRBMET030
BUS: .30.AFV.MET.
2028
15.00
7249
145
0.11
TRBMET040
BUS: .40.AFV.MET.
2038
15.00
7249
145
0.12
TRBMET050
BUS: .50.AFV.MET.
2048
15.00
7249
145
0.12
TRBETH005
BUS: .05.AFV.ETH.
2006
15.00
5468
109
0.09
TRBETH010
BUS: .10.AFV.ETH.
2008
15.00
5468
109
0.09
TRBETH020
BUS: .20.AFV.ETH.
2013
15.00
5468
109
0.11
TRBETH030
BUS: .30.AFV.ETH.
2028
15.00
5468
109
0.11
TRBETH040
BUS: .40.AFV.ETH.
2038
15.00
5468
109
0.12
TRBETH050
BUS: .50.AFV.ETH.
2048
15.00
5468
109
0.12
TRBFUE010
BUS, FUEL CELL
2008
15.00
12427
249
0.16
TRBFUE020
BUS, FUEL CELL
2013
15.00
12000
240
0.16
TRBFUE030
BUS, FUEL CELL
2028
15.00
11000
220
0.18
TRBFUE040
BUS, FUEL CELL
2038
15.00
10000
200
0.19
TRBFUE050
BUS, FUEL CELL
2048
15.00
9000
180
0.20
TRBHYDFC30
BUS, HYD Fuel Cell 2030
2030
15.00
14000
300
0.20
TRBHYDFC50
BUS, HYD Fuel Cell 2050
2050
15.00
13000
275
0.21
Commercial trucks TRCDST005
COMMERCIAL TRUCK: .05.CFV.DST.STD.
2006
15.00
1280
26
0.18
TRCDST0010
COMMERCIAL TRUCK: .10.CFV.DST.STD.
2008
15.00
1275
26
0.18
TRCDST020
COMMERCIAL TRUCK: .20.CFV.DST.STD.
2013
15.00
1270
25
0.19
TRCDST030
COMMERCIAL TRUCK: .30.CFV.DST.STD.
2028
15.00
1265
25
0.20
TRCDST040
COMMERCIAL TRUCK: .40.CFV.DST.STD.
2038
15.00
1260
25
0.21
TRCDST050
COMMERCIAL TRUCK: .50.CFV.DST.STD.
2048
15.00
1255
25
0.22
TRCDSA005
COMMERCIAL TRUCK: .05.CFV.DST.10%MPG.
2006
15.00
1360
27
0.21
TRCDSA0010
COMMERCIAL TRUCK: .10.CFV.DST.10%MPG.
2008
15.00
1355
27
0.21
TRCDSA020
COMMERCIAL TRUCK: .20.CFV.DST.10%MPG.
2013
15.00
1350
27
0.22
TRCDSA030
COMMERCIAL TRUCK: .30.CFV.DST.10%MPG.
2028
15.00
1345
27
0.23
TRCDSA040
COMMERCIAL TRUCK: .40.CFV.DST.10%MPG.
2038
15.00
1340
27
0.24
TRCDSA050
COMMERCIAL TRUCK: .50.CFV.DST.10%MPG.
2048
15.00
1335
27
0.25
TRCDSB005
COMMERCIAL TRUCK: .05.CFV.DST.20%MPG.
2006
15.00
1440
29
0.24
TRCDSB0010
COMMERCIAL TRUCK: .10.CFV.DST.20%MPG.
2008
15.00
1435
29
0.24
TRCDSB020
COMMERCIAL TRUCK: .20.CFV.DST.20%MPG.
2013
15.00
1430
29
0.25
TRCDSB030
COMMERCIAL TRUCK: .30.CFV.DST.20%MPG.
2028
15.00
1425
29
0.26
TRCDSB040
COMMERCIAL TRUCK: .40.CFV.DST.20%MPG.
2038
15.00
1420
28
0.27
43
Tech. Name
Technology Description
START
LIFE
IN.COST
F.OM
EFF
TRCDSB050
COMMERCIAL TRUCK: .50.CFV.DST.20%MPG.
2048
15.00
1415
28
0.28
TRCGAS005
COMMERCIAL TRUCK: .05.CFV.GAS.STD.
2006
15.00
1250
25
0.16
TRCGAS0010
COMMERCIAL TRUCK: .10.CFV.GAS.STD.
2008
15.00
1250
25
0.16
TRCGAS020
COMMERCIAL TRUCK: .20.CFV.GAS.STD.
2013
15.00
1250
25
0.18
TRCGAS030
COMMERCIAL TRUCK: .30.CFV.GAS.STD.
2028
15.00
1250
25
0.19
TRCGAS040
COMMERCIAL TRUCK: .40.CFV.GAS.STD.
2038
15.00
1250
25
0.20
TRCGAS050
COMMERCIAL TRUCK: .50.CFV.GAS.STD.
2048
15.00
1250
25
0.21
TRCLPG005
COMMERCIAL TRUCK: .05.AFV.LPG.
2006
15.00
1400
28
0.18
TRCLPG010
COMMERCIAL TRUCK: .10.AFV.LPG.
2008
15.00
1400
28
0.18
TRCLPG020
COMMERCIAL TRUCK: .20.AFV.LPG.
2013
15.00
1400
28
0.20
TRCLPG030
COMMERCIAL TRUCK: .30.AFV.LPG.
2028
15.00
1400
28
0.21
TRCLPG040
COMMERCIAL TRUCK: .40.AFV.LPG.
2038
15.00
1400
28
0.22
TRCLPG050
COMMERCIAL TRUCK: .05.AFV.LPG.
2048
15.00
1400
28
0.23
TRCMET005
COMMERCIAL TRUCK: .05.AFV.MET.
2006
15.00
1400
28
0.16
TRCMET010
COMMERCIAL TRUCK: .10.AFV.MET.
2008
15.00
1400
28
0.16
TRCMET020
COMMERCIAL TRUCK: .20.AFV.MET.
2013
15.00
1400
28
0.18
TRCMET030
COMMERCIAL TRUCK: .30.AFV.MET.
2028
15.00
1400
28
0.19
TRCMET040
COMMERCIAL TRUCK: .40.AFV.MET.
2038
15.00
1400
28
0.20
TRCMET050
COMMERCIAL TRUCK: .05.AFV.MET.
2048
15.00
1400
28
0.21
TRCETH005
COMMERCIAL TRUCK: .05.AFV.ETH.
2006
15.00
1450
29
0.16
TRCETH010
COMMERCIAL TRUCK: .10.AFV.ETH.
2008
15.00
1450
29
0.16
TRCETH020
COMMERCIAL TRUCK: .20.AFV.ETH.
2013
15.00
1450
29
0.18
TRCETH030
COMMERCIAL TRUCK: .30.AFV.ETH.
2028
15.00
1450
29
0.19
TRCETH040
COMMERCIAL TRUCK: .40.AFV.ETH.
2038
15.00
1450
29
0.20
TRCETH050
COMMERCIAL TRUCK: .05.AFV.ETH.
2048
15.00
1450
29
0.21
TRCETA005
COMMERCIAL TRUCK: .05.AFV.ETH.10%MPG
2006
15.00
1490
30
0.18
TRCETA010
COMMERCIAL TRUCK: .10.AFV.ETH.10%MPG
2008
15.00
1490
30
0.18
TRCETA020
COMMERCIAL TRUCK: .20.AFV.ETH.10%MPG
2013
15.00
1490
30
0.20
TRCETA030
COMMERCIAL TRUCK: .30.AFV.ETH.10%MPG
2028
15.00
1490
30
0.21
TRCETA040
COMMERCIAL TRUCK: .40.AFV.ETH.10%MPG
2038
15.00
1490
30
0.22
TRCETA050
COMMERCIAL TRUCK: .05.AFV.ETH.10%MPG
2048
15.00
1490
30
0.23
TRCETB005
COMMERCIAL TRUCK: .05.AFV.ETH.20%MPG
2006
15.00
1530
31
0.20
TRCETB010
COMMERCIAL TRUCK: .10.AFV.ETH.20%MPG
2008
15.00
1530
31
0.20
TRCETB020
COMMERCIAL TRUCK: .20.AFV.ETH.20%MPG
2013
15.00
1530
31
0.22
TRCETB030
COMMERCIAL TRUCK: .30.AFV.ETH.20%MPG
2028
15.00
1530
31
0.23
TRCETB040
COMMERCIAL TRUCK: .40.AFV.ETH.20%MPG
2038
15.00
1530
31
0.24
TRCETB050
COMMERCIAL TRUCK: .05.AFV.ETH.20%MPG
2048
15.00
1530
31
0.25
TRCNGA005
COMMERCIAL TRUCK: .05.AFV.NGA.
2006
15.00
1400
28
0.16
TRCNGA010
COMMERCIAL TRUCK: .10.AFV.NGA.
2008
15.00
1400
28
0.16
TRCNGA020
COMMERCIAL TRUCK: .20.AFV.NGA.
2013
15.00
1400
28
0.18
TRCNGA030
COMMERCIAL TRUCK: .30.AFV.NGA.
2028
15.00
1400
28
0.19
TRCNGA040
COMMERCIAL TRUCK: .40.AFV.NGA.
2038
15.00
1400
28
0.20
44
Tech. Name
Technology Description
START
LIFE
IN.COST
F.OM
EFF
TRCNGA050
COMMERCIAL TRUCK: .05.AFV.NGA.
2048
15.00
1400
28
0.21
Medium trucks TRMDST005
MEDIUM TRUCK: .05.CFV.DST.STD.
2006
15.00
1300
26
0.12
TRMDST010
MEDIUM TRUCK: .10.CFV.DST.STD.
2008
15.00
1300
26
0.12
TRMDST020
MEDIUM TRUCK: .20.CFV.DST.STD.
2013
15.00
1300
26
0.13
TRMDST030
MEDIUM TRUCK: .30.CFV.DST.STD.
2028
15.00
1300
26
0.13
TRMDST040
MEDIUM TRUCK: .40.CFV.DST.STD.
2038
15.00
1300
26
0.14
TRMDST050
MEDIUM TRUCK: .50.CFV.DST.STD.
2048
15.00
1300
26
0.15
TRMDSA005
MEDIUM TRUCK: .05.CFV.DST.10%MPG.
2006
15.00
1380
28
0.13
TRMDSA010
MEDIUM TRUCK: .10.CFV.DST.10%MPG.
2008
15.00
1380
28
0.13
TRMDSA020
MEDIUM TRUCK: .20.CFV.DST.10%MPG.
2013
15.00
1380
28
0.14
TRMDSA030
MEDIUM TRUCK: .30.CFV.DST.10%MPG.
2028
15.00
1380
28
0.15
TRMDSA040
MEDIUM TRUCK: .40.CFV.DST.10%MPG.
2038
15.00
1380
28
0.15
TRMDSA050
MEDIUM TRUCK: .50.CFV.DST.10%MPG.
2048
15.00
1380
28
0.16
TRMDSB005
MEDIUM TRUCK: .05.CFV.DST.20%MPG.
2006
15.00
1460
29
0.15
TRMDSB010
MEDIUM TRUCK: .10.CFV.DST.20%MPG.
2008
15.00
1460
29
0.15
TRMDSB020
MEDIUM TRUCK: .20.CFV.DST.20%MPG.
2013
15.00
1460
29
0.16
TRMDSB030
MEDIUM TRUCK: .30.CFV.DST.20%MPG.
2028
15.00
1460
29
0.16
TRMDSB040
MEDIUM TRUCK: .40.CFV.DST.20%MPG.
2038
15.00
1460
29
0.17
TRMDSB050
MEDIUM TRUCK: .50.CFV.DST.20%MPG.
2048
15.00
1460
29
0.18
TRMGAS005
MEDIUM TRUCK: .05.CFV.GAS.STD.
2006
15.00
1250
25
0.10
TRMGAS010
MEDIUM TRUCK: .10.CFV.GAS.STD.
2008
15.00
1250
25
0.10
TRMGAS020
MEDIUM TRUCK: .20.CFV.GAS.STD.
2013
15.00
1250
25
0.11
TRMGAS030
MEDIUM TRUCK: .30.CFV.GAS.STD.
2028
15.00
1250
25
0.12
TRMGAS040
MEDIUM TRUCK: .40.CFV.GAS.STD.
2038
15.00
1250
25
0.12
TRMGAS050
MEDIUM TRUCK: .50.CFV.GAS.STD.
2048
15.00
1250
25
0.13
TRMLPG005
MEDIUM TRUCK: .05.AFV.LPG.
2006
15.00
1400
28
0.13
TRMLPG010
MEDIUM TRUCK: .10.AFV.LPG.
2008
15.00
1400
28
0.13
TRMLPG020
MEDIUM TRUCK: .20.AFV.LPG.
2013
15.00
1400
28
0.14
TRMLPG030
MEDIUM TRUCK: .30.AFV.LPG.
2028
15.00
1400
28
0.15
TRMLPG040
MEDIUM TRUCK: .40.AFV.LPG.
2038
15.00
1400
28
0.15
TRMLPG050
MEDIUM TRUCK: .50.AFV.LPG.
2048
15.00
1400
28
0.16
TRMMET005
MEDIUM TRUCK: .05.AFV.MET.
2006
15.00
1400
28
0.10
TRMMET010
MEDIUM TRUCK: .10.AFV.MET.
2008
15.00
1400
28
0.10
TRMMET020
MEDIUM TRUCK: .20.AFV.MET.
2013
15.00
1400
28
0.11
TRMMET030
MEDIUM TRUCK: .30.AFV.MET.
2028
15.00
1400
28
0.12
TRMMET040
MEDIUM TRUCK: .40.AFV.MET.
2038
15.00
1400
28
0.12
TRMMET050
MEDIUM TRUCK: .50.AFV.MET.
2048
15.00
1400
28
0.13
TRMETH005
MEDIUM TRUCK: .05.AFV.ETH.
2006
15.00
1550
31
0.10
TRMETH010
MEDIUM TRUCK: .10.AFV.ETH.
2008
15.00
1550
31
0.10
TRMETH020
MEDIUM TRUCK: .20.AFV.ETH.
2013
15.00
1550
31
0.11
TRMETH030
MEDIUM TRUCK: .30.AFV.ETH.
2028
15.00
1550
31
0.12
45
Tech. Name
Technology Description
START
LIFE
IN.COST
F.OM
EFF
TRMETH040
MEDIUM TRUCK: .40.AFV.ETH.
2038
15.00
1550
31
0.12
TRMETH050
MEDIUM TRUCK: .50.AFV.ETH.
2048
15.00
1550
31
0.13
TRMETA005
MEDIUM TRUCK: .05.AFV.ETH.10%MPG
2006
15.00
1630
33
0.13
TRMETA010
MEDIUM TRUCK: .10.AFV.ETH.10%MPG
2008
15.00
1630
33
0.13
TRMETA020
MEDIUM TRUCK: .20.AFV.ETH.10%MPG
2013
15.00
1630
33
0.14
TRMETA030
MEDIUM TRUCK: .30.AFV.ETH.10%MPG
2028
15.00
1630
33
0.15
TRMETA040
MEDIUM TRUCK: .40.AFV.ETH.10%MPG
2038
15.00
1630
33
0.15
TRMETA050
MEDIUM TRUCK: .50.AFV.ETH.10%MPG
2048
15.00
1630
33
0.16
TRMETB005
MEDIUM TRUCK: .05.AFV.ETH.20%MPG
2006
15.00
1710
34
0.10
TRMETB010
MEDIUM TRUCK: .10.AFV.ETH.20%MPG
2008
15.00
1710
34
0.10
TRMETB020
MEDIUM TRUCK: .20.AFV.ETH.20%MPG
2013
15.00
1710
34
0.11
TRMETB030
MEDIUM TRUCK: .30.AFV.ETH.20%MPG
2028
15.00
1710
34
0.12
TRMETB040
MEDIUM TRUCK: .40.AFV.ETH.20%MPG
2038
15.00
1710
34
0.12
TRMETB050
MEDIUM TRUCK: .50.AFV.ETH.20%MPG
2048
15.00
1710
34
0.13
TRMNGA005
MEDIUM TRUCK: .05.AFV.NGA.
2006
15.00
1400
28
0.10
TRMNGA010
MEDIUM TRUCK: .10.AFV.NGA.
2008
15.00
1400
28
0.10
TRMNGA020
MEDIUM TRUCK: .20.AFV.NGA.
2013
15.00
1400
28
0.11
TRMNGA030
MEDIUM TRUCK: .30.AFV.NGA.
2028
15.00
1400
28
0.12
TRMNGA040
MEDIUM TRUCK: .40.AFV.NGA.
2038
15.00
1400
28
0.12
TRMNGA050
MEDIUM TRUCK: .50.AFV.NGA.
2048
15.00
1400
28
0.13
Two-three-wheeler TRWMPG005
MOTOR PED: .05.CFV.GAS.MPG.
2006
10.00
600
20
1.00
TRWMCG005
MOTOR CYCLE: .05.CFV.GAS.MCG.
2006
10.00
800
30
0.70
TREGSL005
THREE WHEELS: .05.CFV.GAS.
2006
10.00
1200
40
0.50
TREDST005
THREE WHEELS: .05.CFV.DST.
2006
10.00
1200
60
0.40
Aviation TAI005
alternate generic plane long dist
2040
25
100
2.64
TAD005
alternate generic plane domestic
2040
25
100
2.64
Freight rail TTF005
alternate generic freight train
2040
40
20
1.00
TTP005
alternate generic passenger train
2040
40
20
1.00
Water transport TWD005
alternate generic domestic ship
2040
40
80
2.640
TWI005
alternate generic international ship
2040
40
80
2.640
4.5
Base-year calibration
Base-year transport sector final energy consumption is modelled in the Base-Year template for each region. It is calibrated to IEA extended energy balance data for each region. The IEA database provides energy consumption estimates for the main transportation modes (road, rail, international and domestic aviation, international and internal navigation), but is not
46
assigned to different types of road vehicles or trains. The modeller (based on expert judgment and/or specific regional information) provides share estimates to split fuel consumption between road modes and rail modes. For road energy use, fuel consumption (IEA data) is disaggregated first between light-duty vehicles and other road vehicles and second between the different vehicles inside each category: autos (cars), light trucks and two-three wheels on one hand and buses, medium trucks, commercial trucks and heavy trucks. Similarly, rail energy consumption needed the shares to split fuel consumption between freight and passengers rail transportation. Table 4-6 provides split of transport sector energy consumption by modes and fuels at global level. Similar tables are generated for each region based on the IEA energy balance data and assumed split fuel consumption by modes. Fuels in Table 4-6 are the same as the commodity out in Table 4-2, where sector fuel technologies are defined. Calibration means the sum of fuel consumption by all endsectors should match the total final energy consumption data in the upstream sector by fuels besides matching transport sector fuel consumption by modes and fuel in the baseyear.
47
Table 4-6: Breakout of transport sector base-year energy consumption by mode and fuel (PJ) Mode
Coal
Ethanol
Nat Gas
LPG
Motor Gas
Aviation Gas
Kerosene
DST (diesel)
HFO
Electricity
Total
INTL. AVIATION
0.0
0.0
0.0
0.0
0.0
20.9
5473.0
0.1
0.0
0.0
5493.9
DOMESAIR
0.0
0.0
0.0
0.0
0.7
66.9
4610.9
0.2
1.0
0.0
4679.8
ROAD Auto
0.0
327.9
45.7
319.3
13543.6
0.0
0.0
1305.5
0.0
0.0
15542.0
Light Trucks
0.0
327.9
45.7
136.8
6771.8
0.0
0.0
1305.5
0.0
0.0
8587.7
Three Wheels
0.0
0.0
0.0
0.0
1354.4
0.0
0.0
0.0
0.0
0.0
1354.4
Bus
0.0
0.0
219.5
91.2
4063.1
0.0
0.0
8224.9
0.0
0.0
12598.7
Heavy Trucks
0.0
0.0
0.0
91.2
580.4
0.0
0.0
8224.9
0.0
0.0
8896.6
Medium Trucks
0.0
0.0
0.0
121.6
4643.5
0.0
0.0
2350.0
0.0
0.0
7115.1
Commercial Trucks
0.0
0.0
54.9
0.0
2321.8
0.0
0.0
4700.0
0.0
0.0
7076.6
Two Wheels
0.0
0.0
0.0
0.0
4063.1
0.0
0.0
0.0
0.0
0.0
4063.1
RAIL Freight
140.1
0.0
0.0
0.0
0.0
0.0
0.0
1039.7
0.0
241.8
1421.6
Passengers
35.0
0.0
0.0
0.0
0.0
0.0
0.0
445.6
0.0
564.2
1044.8
INTLWATER
3.9
0.0
0.0
0.4
181.5
0.0
0.0
871.3
544.9
0.0
1602.0
OTHERS
0.1
0.0
11.0
16.4
0.0
0.0
0.0
93.1
26.8
129.2
276.6
BUNKERS
0.0
0.0
0.0
0.0
0.0
0.0
0.0
1071.9
6081.0
0.0
7152.8
179.1
655.7
376.8
777.0
37523.8
87.8
10084.0
29632.6
6653.8
935.1
86905.6
Total
48
4.6
References
International Energy Agency (IEA), World Energy Balances, 2009, ESDS International, (Mimas) University of Manchester EFDA (2004). EFDA World TIMES Model, Final report, prepared by ORDECSYS, KanORS, HALOA, KUL. www.efda.org
49
5 Industry Sector 5.1
Introduction
Industry sector Base-Year templates are used to calibrate base-year final energy consumption to IEA data and to account existing technologies and sector fuels in the baseyear. Industry sector also covers industrial production and auto-production of electricity, heat and cogeneration (CHP). Industry sector energy and non-energy related emissions are also captured in the Base-Year templates. Industry process emissions are currently not modelled in TIAM-UCL. The Base-year template for the industry sector has 49 worksheets for modelling input data, modelling sector fuel information and modelling industry sector technologies. 5.2
Energy-service demands
The industrial sector is characterized by 6 energy-services, each representing either the physical output of the industry or the total energy requirement (Table 5-1). There are also one demand for ―Other non-specified energy consumption (ONO)‖, one for ―Industrial and Other non-energy uses (NEO)‖ and one for ‗Very Other industries (I00)‘, which are considered as a generic demands. The last one (I00) has been added for minor calibration purposes and is generally not used. There are different technologies and fuels modelled for supplying steam, process heat, machine drives and electro-chemical process for each energy-service demand in the Base-year templates. Elastic demand parameters for energyservice demand are presented in Table 5-2. Table 5-1: Transport sector energy-services Code
Energy-service demand
Unit
I00
Other Industrial consumption
PJ
ICH
Chemicals
PJ
IIS
Iron and Steel
Mt
ILP
Pulp and Paper
Mt
INF
Non-ferrous metals
Mt
INM
Non Metals
PJ
IOI
Other Industries
PJ
Code
Energy-service demand
Unit
NEO
Industrial and Other Non Energy Uses
PJ
ONO
Other non-specified consumption
PJ
Table 5-2: Elastic demand parameters Code
Energy-
STEP~UP
STEP~LO
10
10
VAR~UP
VAR~LO
ELAST~UP
ELAST~LO
0.15
0.15
-0.1
-0.1
service INF
Non-ferrous metals
IIS
Iron and Steel
10
10
0.15
0.15
-0.1
-0.1
ICH
Chemicals
10
10
0.15
0.15
-0.1
-0.1
INM
Non Metals
10
10
0.15
0.15
-0.1
-0.1
ILP
Pulp and
10
10
0.15
0.15
-0.1
-0.1
10
10
0.15
0.15
-0.1
-0.1
Paper IOI
Other Industries
Energy service demands are projected to 2100 using general economic and demographic drivers (population, GDP, GDP per capita and sectoral output). Section 2.3 and Chapter 3 provide details of drivers for each and every energy-service demand and assumptions. To develop projections of future energy service demands, estimates of drivers are used in conjunction with user assumptions on the topic of service demand sensitivity to these drivers. Projected industry sector energy-service demands at a global level are presented in Figure 5-1. Similar tables have been generated for each region. Industry sector has relatively high growth in China as compared to other regions.
52
9
Projected energy-service demands
8
IIS
7
Index (2005=1)
ICH
ILP
6
INF
5
INM
4
IOI
3
NEO
2
NEU
1
ONO 0 2000 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100
Figure 5-1: projected industry sector energy-service demands at global level 5.3
Sector fuels
Industry sector fuel technologies are modelled in the sheet IND_Fuels in Industry sector Base-Year templates. The technologies created to produce aggregated industrial fuels (Fuel Tech) are named uniformly using the name of the aggregated fuels as specified in the column Commodity OUT plus three zero (000 for existing technologies). Their description changes according to the fuel (e.g. Fuel Tech - Coal (IND) or Fuel Tech - Natural Gas (IND). The fractional shares of the disaggregated fuels (Commodity IN) used to produce an aggregated fuel (Commodity OUT) are calculated from their consumption over the total for this category, as given in the IEA database. Table 5-3 and Table 5-4 present existing and new technologies respectively for sector fuels. Table 5-3: Sector fuel technologies-existing Tech. Name
Technology Description
Comm.-IN
Comm.OUT
INDNGA000
Fuel Tech - Natural Gas Mix (IND)
GASNGA GASGWG
INDCO2N INDCH4N INDN2ON INDNGA
INDLPG000
Fuel Tech - Liquefied Petroleum Gases (IND)
53
OILLPG
INDLPG
Tech. Name
Technology Description
Comm.-IN
Comm.OUT
INDNGL000
Fuel Tech - Natural Gas Liquids (IND)
OILNGL
INDNGL
INDCOA000
Fuel Tech - Coal (IND)
COAHCO
INDCOA
COABCO INDCOK000
Fuel Tech – Oven coke (IND)
COAOVC
INDCOK
INDCOG000
Fuel Tech - Coke Oven Gas (IND)
GASCOG
INDCOG
INDBFG000
Fuel Tech - Blast Furnace Gas (IND)
GASBFG
INDBFG
COAGSC INDOXY000
Fuel Tech - Oxygen Steel Furnace Gas
GASOXY
INDOXY
OILHFO
INDHFO
(IND) INDHFO000
Fuel Tech - Heavy Fuel Oil (IND)
OILCRD OILNSP INDOIL000
Fuel Tech - Refined Petroleum Products
OILDST
(IND)
OILKER
INDOIL
OILGSL OILJTK INDETH000
Fuel Tech - Ethane (IND)
GASETH
INDETH
GASRFG INDNAP000
Fuel Tech - Naphta (IND)
OILNAP
INDNAP
INDPTC000
Fuel Tech - Petroleum Coke (IND)
OILPTC
INDPTC
INDBIO000
Fuel Tech - Biofuels (IND)
BIOBSL
INDBIO
BIOCHR BIOGAS BIOBMU BIOBIN INDGEO000
Fuel Tech - Geothermal (IND)
INDELC000
Fuel Tech - Electricity (IND)
GEO
INDGEO
ELCC
INDELC
ELCD INDHET000
Fuel Tech - Heat (IND)
HET
INDHET
Table 5-4: Sector fuel technologies-new Tech. Name
Technology Description
Comm.-IN
Comm.-OUT
INDNGA005
Fuel Tech - Natural Gas Mix (IND) - New
GASNGA
INDCO2N
GASGWG
INDCH4N INDN2ON INDNGA 54
Tech. Name
Technology Description
Comm.-IN
Comm.-OUT
INDLPG005
Fuel Tech - Liquefied Petroleum Gases (IND)
OILLPG
INDLPG
- New INDNGL005
Fuel Tech - Natural Gas Liquids (IND) - New
OILNGL
INDNGL
INDCOA005
Fuel Tech - Coal (IND) - New
COAHCO
INDCOA
COABCO INDCOK005
Fuel Tech – Oven coke (IND) - New
COAOVC
INDCOK
INDCOG005
Fuel Tech - Coke Oven Gas (IND) - New
GASCOG
INDCOG
INDBFG005
Fuel Tech - Blast Furnace Gas (IND) - New
GASBFG
INDBFG
COAGSC INDOXY005
Fuel Tech - Oxygen Steel Furnace Gas (IND)
GASOXY
INDOXY
OILHFO
INDHFO
- New INDHFO005
Fuel Tech - Heavy Fuel Oil (IND) - New
OILCRD OILNSP INDOIL005
Fuel Tech - Refined Petroleum Products
OILDST
(IND) - New
OILKER
INDOIL
OILGSL OILJTK INDETH005
Fuel Tech - Ethane (IND) - New
GASETH
INDETH
GASRFG INDNAP005
Fuel Tech - Naphta (IND) - New
OILNAP
INDNAP
INDPTC005
Fuel Tech - Petroleum Coke (IND) - New
OILPTC
INDPTC
INDBIO005
Fuel Tech - Biofuels (IND) - New
BIOBSL
INDBIO
BIOCHR BIOGAS BIOBMU BIOBIN INDGEO005
Fuel Tech - Geothermal (IND) - New
GEO
INDGEO
INDGEO105
Fuel Tech - Geothermal (IND) - New
GEO
INDGEO
INDGEO205
Fuel Tech - Geothermal (IND) - New
GEO
INDGEO
INDHET005
Fuel Tech - Heat - New (IND)
HET
INDHET
5.4
Technologies
There are hundreds of technologies modelled in the industry sector to meet the energyservice demands. For each energy-services of each industry, a number of existing technologies are in competition to satisfy energy-service demand. They are characterized by an efficiency, an annual utilization factor, a lifetime, operation costs, and six seasonal share coefficients (summer-day, summer-night, intermediary day, intermediary-night, winter-day, 55
winter-night). The technologies included in the Base-Year template are the existing technologies to meet the base-year demand and the residual capacities can be used till end of their life period. No new investments are allowed in the existing technologies in any sector. Since the list is very long only new technologies, which are modelled in new technology sheet, are listed in Table 5-5. These technologies progressively replace the existing ones and they are characterized by the same type of parameters such as efficiency, and investment cost. Regional specific hurdle rates are applies to industry sector new technologies as shown in Figure 5-2. It varies from 10% (developed countries) to 20% (least developed countries). 25%
Hurdle rate f or industry sector technologies
20%
15%
10%
5%
0% AFR AUS CAN CHI CSA EEU FSU IND JPN MEA MEX ODA SKO USA WEU UK
Figure 5-2: Regional specific hurdle rate for industry sector technologies
56
Table 5-5: Sector fuel technologies-new Tech. Name
Technology Description
Comm.Out
START
LIFE
INVCOST
FIXOM
VAROM
EFF
AF
ISNFHFO005
Steam Non-ferrous metals Heavy Oil New
ISNF
2006
30
1.237
0.221
0.212
0.89
0.8
ISNFDST005
Steam Non-ferrous metals Distillate Oil New
ISNF
2006
30
1.172
0.301
0.212
0.89
0.8
ISNFDST105
Steam Non-ferrous metals Distillate Oil Imp
ISNF
2006
30
1.499
0.301
0.212
0.94
0.8
ISNFNGA005
Steam Non-ferrous met Natural Gas New
ISNF
2006
30
0.868
0.221
0.212
0.90
0.8
ISNFNGA105
Steam Non-ferrous met Natural Gas Imp
ISNF
2006
30
1.066
0.221
0.212
0.95
0.8
ISNFNGA205
Steam Non-ferrous met Natural Gas Cond
ISNF
2006
30
1.378
0.221
0.212
1.00
0.8
ISNFCOA005
Steam Non-ferrous metals Coal New
ISNF
2006
30
30.000
1.332
0.81
0.8
IPNFHFO005
Process Heat N-ferrous met Heavy Fuel New
IPNF
2006
30
1.237
0.221
0.212
0.89
0.8
IPNFDST005
Process Heat N-ferrous met Distillate Fuel New
IPNF
2006
30
1.172
0.301
0.212
0.89
0.8
IPNFDST105
Process Heat N-ferrous met Distillate Fuel Imp
IPNF
2006
30
1.499
0.301
0.212
0.94
0.8
IPNFNGA005
Process Heat N-ferrous met Natural Gas New
IPNF
2006
30
0.868
0.221
0.212
0.90
0.8
IPNFNGA105
Process Heat N-ferrous met Natural Gas Imp
IPNF
2006
30
1.066
0.221
0.212
0.95
0.8
IPNFNGA205
Process Heat N-ferrous met Natural Gas Cond
IPNF
2006
30
1.378
0.221
0.212
1.00
0.8
IPNFCOA005
Process Heat N-ferrous met Coal New
IPNF
2006
30
235.276
23.528
0.81
0.8
IPNFCOK005
Process Heat N-ferrous met Coke New
IPNF
2006
30
235.276
23.528
0.81
0.8
IPNFELC005
Process Heat N-ferrous met Electric New
IPNF
2006
30
0.982
0.044
0.205
0.98
0.8
IPNFLPG005
Process Heat N-ferrous met LPG New
IPNF
2006
30
0.868
0.221
0.212
0.90
0.8
IMNFDST005
Machine Drive N-ferrous met Distillate Oil New
IMNF
2006
20
25.641
2.564
0.30
0.25
IMNFLPG005
Machine Drive N-ferrous met LPG New
IMNF
2006
20
25.641
2.564
0.40
0.25
IMNFNGA005
Machine Drive N-ferrous met Natural Gas New
IMNF
2006
20
28.490
2.849
0.40
0.25
IMNFELC005
Machine Drive N-ferrous met Electric New
IMNF
2006
20
1.825
0.182
0.90
0.25
IMNFELI005
Machine Drive N-ferrous met Electric Imp eff
IMNF
2006
20
2.189
0.219
0.93
0.25
IMNFELH005
Machine Drive N-ferrous met Electric High eff.
IMNF
2006
20
2.463
0.246
0.94
0.25
IENFELC005
Elec-Chemical Process N-ferrous met Electric
IENF
2006
30
81.475
5.280
1.00
0.8
57
Tech. Name
Technology Description
Comm.Out
START
LIFE
INVCOST
FIXOM
VAROM
EFF
AF
New IONFHFO005
Other N-ferrous met Heavy Oil New
IONF
2006
30
3.086
0.309
1.00
0.8
IONFDST005
Other N-ferrous met Distillate Oil New
IONF
2006
30
2.939
0.294
1.00
0.8
IONFNGA005
Other N-ferrous met Natural Gas New
IONF
2006
30
2.659
0.266
1.00
0.8
IONFELC005
Other N-ferrous met Electric New
IONF
2006
30
3.704
0.370
1.00
0.8
IONFCOA005
Other N-ferrous met Coal New
IONF
2006
30
3.086
0.309
1.00
0.8
IONFCOK005
Other N-ferrous met Coke New
IONF
2006
30
3.086
0.309
1.00
0.8
ISISHFO005
Steam Iron and Steel Heavy Oil New
ISIS
2006
30
1.237
0.221
0.212
0.89
0.8
ISISDST005
Steam Iron and Steel Distillate Oil New
ISIS
2006
30
1.172
0.301
0.212
0.89
0.8
ISISDST105
Steam Iron and Steel Distillate Oil Imp
ISIS
2006
30
1.499
0.301
0.212
0.94
0.8
ISISNGA005
Steam Iron and Steel Natural Gas New
ISIS
2006
30
0.868
0.221
0.212
0.90
0.8
ISISNGA105
Steam Iron and Steel Natural Gas Imp
ISIS
2006
30
1.066
0.221
0.212
0.95
0.8
ISISNGA205
Steam Iron and Steel Natural Gas Cond
ISIS
2006
30
1.378
0.221
0.212
1.02
0.8
ISISCOA005
Steam Iron and Steel Coal New
ISIS
2006
30
30.000
1.332
0.81
0.8
ISISBIO005
Steam Iron and Steel Bio New
ISIS
2006
30
6.000
0.550
0.81
0.8
ISISCOG005
Steam Iron and Steel Cokeoven Gas New
ISIS
2006
30
3.907
1.332
0.81
0.8
ISISBFG005
Steam Iron and Steel Blast Furnace gas New
ISIS
2006
30
3.907
1.332
0.81
0.8
IPISHFO005
Process Heat Iron and Steel Heavy Fuel New
IPIS
2006
30
1.237
0.221
0.212
0.89
0.8
IPISDST005
Process Heat Iron and Steel Distillate Fuel New
IPIS
2006
30
1.172
0.301
0.212
0.89
0.8
IPISDST105
Process Heat Iron and Steel Distillate Fuel Imp
IPIS
2006
30
1.499
0.301
0.212
0.94
0.8
IPISNGA005
Process Heat Iron and Steel Natural Gas New
IPIS
2006
30
0.868
0.221
0.212
0.90
0.8
IPISNGA105
Process Heat Iron and Steel Natural Gas Imp
IPIS
2006
30
1.066
0.221
0.212
0.95
0.8
IPISNGA205
Process Heat Iron and Steel Natural Gas Cond
IPIS
2006
30
1.378
0.221
0.212
1.00
0.8
IPISCOA005
Process Heat Iron and Steel Coal New
IPIS
2006
30
3.704
1.332
0.81
0.8
IPISELC005
Process Heat Iron and Steel Electric New
IPIS
2006
30
1.237
0.221
0.89
0.8
IPISCOG005
Process Heat Iron and Steel Cokeoven Gas New
IPIS
2006
30
20.951
2.638
0.81
0.8
0.212
58
Tech. Name
Technology Description
Comm.Out
START
LIFE
INVCOST
FIXOM
IPISBFG005
Process Heat Iron and Steel Blast Furnace Gas
IPIS
2006
30
20.951
IPIS
2006
30
VAROM
EFF
AF
2.638
0.81
0.8
20.951
2.638
0.81
0.8
0.90
0.8
New IPISOXY005
Process Heat Iron and Steel Oxygen Furnace Gas New
IPSLPG005
Process Heat Iron and Steel LPG New
IPIS
2006
30
0.868
0.221
0.212
IMISDST005
Machine Drive Iron and Steel Distillate Oil New
IMIS
2006
20
25.641
2.564
0.30
0.25
IMISNGA005
Machine Drive Iron and Steel Natural Gas New
IMIS
2006
20
28.490
2.849
0.40
0.25
IMISELC005
Machine Drive Iron and Steel Electric New
IMIS
2006
20
1.825
0.182
0.90
0.25
IMISELI005
Machine Drive Iron and Steel Electric Imp eff.
IMIS
2006
20
1.825
0.182
0.93
0.25
IMISELH005
Machine Drive Iron and Steel Electric High eff.
IMIS
2006
20
2.093
0.209
0.96
0.25
IEISELC005
Elec-Chemical Process Iron and Steel Electric
IEIS
2006
30
144.727
17.805
1.00
0.8
New IOISHFO005
Other Iron and Steel Heavy Oil New
IOIS
2006
30
3.256
0.533
1.00
0.8
IOISDST005
Other Iron and Steel Distillate Oil New
IOIS
2006
30
3.256
0.533
1.00
0.8
IOISNGA005
Other Iron and Steel Natural Gas New
IOIS
2006
30
3.101
0.533
1.00
0.8
IOISCOA005
Other Iron and Steel Coal New
IOIS
2006
30
3.256
0.533
1.00
0.8
IOISCOG005
Other Iron and Steel Cokeoven Gas New
IOIS
2006
30
3.256
0.533
1.00
0.8
IOISBFG005
Other Iron and Steel Blast Furnace Gas New
IOIS
2006
30
3.256
0.533
1.00
0.8
IOISOXY005
Other Iron and Steel Oxygen Furnace Gas New
IOIS
2006
30
3.256
0.533
1.00
0.8
IOISELC005
Other Iron and Steel Electric New
IOIS
2006
30
2.805
0.480
1.00
0.8
ISCHHFO005
Steam Chemicals Heavy Oil New
ISCH
2006
30
1.237
0.221
0.212
0.89
0.8
ISCHDST005
Steam Chemicals Distillate Oil New
ISCH
2006
30
1.172
0.301
0.212
0.89
0.8
ISCHDST105
Steam Chemicals Distillate Oil Imp
ISCH
2006
30
1.499
0.301
0.212
0.94
0.8
ISCHNGA005
Steam Chemicals Natural Gas New
ISCH
2006
30
0.868
0.221
0.212
0.90
0.8
ISCHNGA105
Steam Chemicals Natural Gas Imp
ISCH
2006
30
1.066
0.221
0.212
0.95
0.8
ISCHNGA205
Steam Chemicals Natural Gas Adv
ISCH
2006
30
1.378
0.221
0.212
1.00
0.8
59
Tech. Name
Technology Description
Comm.Out
START
LIFE
INVCOST
FIXOM
ISCHCOA005
Steam Chemicals Coal New
ISCH
2006
30
30.000
ISCHBIO005
Steam Chemicals Biomass New
ISCH
2006
30
ISCHELC005
Steam Chemicals Electric New
ISCH
2006
IPCHHFO005
Process Heat Chemicals Heavy Fuel New
IPCH
IPCHDST005
Process Heat Chemicals Distillate Fuel New
IPCHDST105
VAROM
EFF
AF
0.550
0.81
0.8
6.000
0.550
0.81
0.8
30
0.982
0.044
0.205
0.90
0.8
2006
30
1.237
0.221
0.212
0.89
0.8
IPCH
2006
30
1.172
0.301
0.212
0.89
0.8
Process Heat Chemicals Distillate Fuel Imp
IPCH
2006
30
1.499
0.301
0.212
0.94
0.8
IPCHNGA005
Process Heat Chemicals Natural Gas New
IPCH
2006
30
0.868
0.221
0.212
0.90
0.8
IPCHNGA105
Process Heat Chemicals Natural Gas Imp
IPCH
2006
30
1.066
0.221
0.212
0.95
0.8
IPCHNGA205
Process Heat Chemicals Natural Gas Cond
IPCH
2006
30
1.378
0.221
0.212
1.00
0.8
IPCHCOA005
Process Heat Chemicals Coal New
IPCH
2006
30
3.439
0.550
0.81
0.8
IPCHCOK005
Process Heat Chemicals Coke New
IPCH
2006
30
3.439
0.550
0.81
0.8
IPCHELC005
Process Heat Chemicals Electric New
IPCH
2006
30
0.982
0.044
0.98
0.8
IPCHLPG005
Process Heat Chemicals LPG New
IPCH
2006
30
2.947
0.550
0.81
0.8
IMCHDST005
Machine Drive Chemicals Distillate Oil New
IMCH
2006
20
25.641
0.550
0.30
0.25
IMCHNGA005
Machine Drive Chemicals Natural Gas New
IMCH
2006
20
28.490
2.849
0.40
0.25
IMCHELC005
Machine Drive Chemicals Electric New
IMCH
2006
20
1.825
0.182
0.90
0.25
IMCHELI005
Machine Drive Chemicals Electric Improved eff.
IMCH
2006
20
2.093
0.209
0.93
0.25
IMCHELH005
Machine Drive Chemicals Electric High eff.
IMCH
2006
20
2.252
0.225
0.96
0.25
IECHELC005
Elec-Chemical Process Chemicals Electric New
IECH
2006
30
10.000
1.000
1.00
0.8
IOCHHFO005
Other Chemicals Heavy Oil New
IOCH
2006
30
3.086
0.533
1.00
0.8
IOCHDST005
Other Chemicals Distillate Oil New
IOCH
2006
30
2.939
0.533
1.00
0.8
IOCHNGA005
Other Chemicals Natural Gas New
IOCH
2006
30
2.659
0.480
1.00
0.8
IOCHCOA005
Other Chemicals Coal New
IOCH
2006
30
3.086
0.533
1.00
0.8
IOCHCOK005
Other Chemicals Coke New
IOCH
2006
30
3.086
0.533
1.00
0.8
IOCHETH005
Other Chemicals Ethane New
IOCH
2006
30
3.086
0.533
1.00
0.8
IOCHNAP005
Other Chemicals Naphtha New
IOCH
2006
30
3.086
0.533
1.00
0.8
0.205
60
Tech. Name
Technology Description
Comm.Out
START
LIFE
INVCOST
FIXOM
IOCHELC005
Other Chemicals Electric New
IOCH
2006
30
2.778
IOCHLPG005
Other Chemicals LPG New
IOCH
2006
30
2.659
IFCHNGA005
Natural Gas to non-energy petrochemical feeds
IFCH
2006
IFCHLPG005
LPG to non-energy petrochemical feedstocks
IFCH
IFCHNGL005
NGL to non-energy petrochemical feedstocks
IFCHCOA005
VAROM
EFF
AF
0.436
1.00
0.8
0.436
1.00
0.8
30
1.00
0.8
2006
30
1.00
0.8
IFCH
2006
30
1.00
0.8
Coal to non-energy petrochemical feedstocks
IFCH
2006
30
1.00
0.8
IFCHHFO005
Distillate Oil to non-energy petrochemical feeds
IFCH
2006
30
1.00
0.8
IFCHDST005
Heavy Oil to non-energy petrochemical
IFCH
2006
30
1.00
0.8
feedstocks IFCHETH005
Ethane to non-energy petrochemical feedstocks
IFCH
2006
30
1.00
0.8
IFCHNAP005
Naphtha to non-energy petrochemical
IFCH
2006
30
1.00
0.8
feedstocks ISNMHFO005
Steam Non-metals Heavy Oil New
ISNM
2006
30
1.237
0.221
0.212
0.89
0.8
ISNMDST005
Steam Non-metals Distillate Oil New
ISNM
2006
30
1.172
0.301
0.212
0.89
0.8
ISNMDST105
Steam Non-metals Distillate Oil Imp
ISNM
2006
30
1.499
0.301
0.212
0.94
0.8
ISNMNGA005
Steam Non-metals Natural Gas New
ISNM
2006
30
0.868
0.221
0.212
0.90
0.8
ISNMNGA105
Steam Non-metals Natural Gas Imp
ISNM
2006
30
1.066
0.221
0.212
0.95
0.8
ISNMNGA205
Steam Non-metals Natural Gas Cond
ISNM
2006
30
1.378
0.221
0.212
1.00
0.8
ISNMCOA005
Steam Non-metals Coal New
ISNM
2006
30
30.000
1.332
0.81
0.8
ISNMELC005
Steam Non-metals Electric New
ISNM
2006
30
0.982
0.044
0.205
0.98
0.8
IPNMHFO005
Process Heat Non-metals Heavy Fuel New
IPNM
2006
30
1.237
0.221
0.212
0.89
0.8
IPNMDST005
Process Heat Non-metals Distillate Fuel New
IPNM
2006
30
1.172
0.301
0.212
0.89
0.8
IPNMDST105
Process Heat Non-metals Distillate Fuel Imp
IPNM
2006
30
1.499
0.301
0.212
0.94
0.8
IPNMNGA005
Process Heat Non-metals Natural Gas New
IPNM
2006
30
0.868
0.221
0.212
0.90
0.8
IPNMNGA105
Process Heat Non-metals Natural Gas Imp
IPNM
2006
30
1.066
0.221
0.212
0.95
0.8
IPNMNGA205
Process Heat Non-metals Natural Gas Cond
IPNM
2006
30
1.378
0.221
0.212
1.00
0.8
61
Tech. Name
Technology Description
Comm.Out
START
LIFE
INVCOST
FIXOM
IPNMCOA005
Process Heat Non-metals Coal New
IPNM
2006
30
37.360
IPNMCOK005
Process Heat Non-metals Coke New
IPNM
2006
30
IPNMPTC005
Process Heat Non-metals PetCoke New
IPNM
2006
IPNMELC005
Process Heat Non-metals Electric New
IPNM
IPNMLPG005
Process Heat Non-metals LPG New
IMNMDST005
VAROM
EFF
AF
3.362
0.81
0.8
37.360
3.362
0.81
0.8
30
37.360
3.362
0.81
0.8
2006
30
0.982
0.044
0.205
0.98
0.8
IPNM
2006
30
0.868
0.221
0.212
0.90
0.8
Machine Drive Non-metals Distillate Oil New
IMNM
2006
20
25.641
2.564
0.30
0.25
IMNMNGA005
Machine Drive Non-metals Natural Gas New
IMNM
2006
20
28.490
2.849
0.40
0.25
IMNMELC005
Machine Drive Non-metals Electric New
IMNM
2006
20
1.825
0.182
0.90
0.25
IMNMELI005
Machine Drive Non-metals Electric Imp eff.
IMNM
2006
20
2.093
0.209
0.93
0.25
IMNMELH005
Machine Drive Non-metals Electric High eff.
IMNM
2006
20
2.252
0.225
0.96
0.25
IENMELC005
Elec-Chemical Process Non-metals Electric New
IENM
2006
30
0.000
0.000
1.00
0.8
IONMHFO005
Other Non-metals Heavy Oil New
IONM
2006
30
3.708
0.533
1.00
0.8
IONMDST005
Other Non-metals Distillate Oil New
IONM
2006
30
3.532
0.533
1.00
0.8
IONMNGA005
Other Non-metals Natural Gas New
IONM
2006
30
3.205
0.480
1.00
0.8
IONMCOA005
Other Non-metals Coal New
IONM
2006
30
3.708
0.533
1.00
0.8
IONMCOK005
Other Non-metals Coke New
IONM
2006
30
3.708
0.533
1.00
0.8
IONMELC005
Other Non-metals Electric New
IONM
2006
30
2.914
0.437
1.00
0.8
IONMLPG005
Other Non-metals LPG New
IONM
2006
30
3.205
0.480
1.00
0.8
ISLPHFO005
Steam Pulp and Paper Heavy Oil New
ISLP
2006
30
1.237
0.221
0.212
0.89
0.8
ISLPDST005
Steam Pulp and Paper Distillate Oil New
ISLP
2006
30
1.172
0.301
0.212
0.89
0.8
ISLPDST105
Steam Pulp and Paper Distillate Oil Imp
ISLP
2006
30
1.499
0.301
0.212
0.94
0.8
ISLPNGA005
Steam Pulp and Paper Natural Gas New
ISLP
2006
30
0.868
0.221
0.212
0.90
0.8
ISLPNGA105
Steam Pulp and Paper Natural Gas Imp
ISLP
2006
30
1.066
0.221
0.212
0.95
0.8
ISLPNGA205
Steam Pulp and Paper Natural Gas Cond
ISLP
2006
30
1.378
0.221
0.212
1.00
0.8
ISLPCOA005
Steam Pulp and Paper Coal New
ISLP
2006
30
30.000
1.332
0.81
0.8
ISLPELC005
Steam Pulp and Paper Electric New
ISLP
2006
30
0.982
0.044
0.98
0.8
0.205
62
Tech. Name
Technology Description
Comm.Out
START
LIFE
INVCOST
FIXOM
VAROM
EFF
AF
ISLPBIO005
Steam Pulp and Paper Biomass New
ISLP
2006
30
3.294
0.251
0.209
0.75
0.8
IPLPHFO005
Process Heat Pulp and Paper Heavy Fuel New
IPLP
2006
30
1.237
0.221
0.212
0.89
0.8
IPLPDST005
Process Heat Pulp and Paper Distillate Fuel New
IPLP
2006
30
1.172
0.301
0.212
0.89
0.8
IPLPDST105
Process Heat Pulp and Paper Distillate Fuel Imp
IPLP
2006
30
1.499
0.301
0.212
0.94
0.8
IPLPNGA005
Process Heat Pulp and Paper Natural Gas New
IPLP
2006
30
0.868
0.221
0.212
0.90
0.8
IPLPNGA105
Process Heat Pulp and Paper Natural Gas Imp
IPLP
2006
30
1.066
0.221
0.212
0.95
0.8
IPLPNGA205
Process Heat Pulp and Paper Natural Gas Cond
IPLP
2006
30
1.378
0.221
0.212
1.00
0.8
IPLPCOA005
Process Heat Pulp and Paper Coal New
IPLP
2006
30
122.990
5.426
0.81
0.8
IPLPELC005
Process Heat Pulp and Paper Electric New
IPLP
2006
30
0.982
0.044
0.205
0.98
0.8
IPLPLPG005
Process Heat Pulp and Paper LPG New
IPLP
2006
30
0.868
0.221
0.212
0.90
0.8
IPLPBIO005
Process Heat Pulp and Paper Biomass New
IPLP
2006
30
3.294
0.251
0.209
0.75
0.8
IMLPDST005
Machine Drive Pulp and Paper Distillate Oil New
IMLP
2006
20
25.641
2.564
0.30
0.25
IMLPNGA005
Machine Drive Pulp and Paper Natural Gas New
IMLP
2006
20
28.490
2.849
0.40
0.25
IMLPELC005
Machine Drive Pulp and Paper Electric New
IMLP
2006
20
1.825
0.182
0.90
0.25
IMLPELI005
Machine Drive Pulp and Paper Electric Imp eff.
IMLP
2006
20
2.093
0.209
0.93
0.25
IMLPELH005
Machine Drive Pulp and Paper Electric High eff
IMLP
2006
20
2.252
0.225
0.96
0.25
IOLPHFO005
Other Pulp and Paper Heavy Oil New
IOLP
2006
30
2.931
0.533
1.00
0.8
IOLPDST005
Other Pulp and Paper Distillate Oil New
IOLP
2006
30
2.792
0.533
1.00
0.8
IOLPNGA005
Other Pulp and Paper Natural Gas New
IOLP
2006
30
2.522
0.480
1.00
0.8
IOLPELC005
Other Pulp and Paper Electric New
IOLP
2006
30
2.293
0.344
1.00
0.8
IOLPLPG005
Other Pulp and Paper LPG New
IOLP
2006
30
2.522
0.480
1.00
0.8
IOLPCOA005
Other Pulp and Paper Coal New
IOLP
2006
30
3.517
1.332
1.00
0.8
IOLPCOK005
Other Pulp and Paper Coke New
IOLP
2006
30
3.517
1.332
1.00
0.8
IOLPBIO005
Other Pulp and Paper Biomass New
IOLP
2006
30
3.517
1.332
1.00
0.8
IELPELC005
Elec-Chemical Process Pulp and Paper Electric
IELP
2006
30
0.000
0.000
1.00
0.8
New 63
Tech. Name
Technology Description
Comm.Out
START
LIFE
INVCOST
FIXOM
VAROM
EFF
AF
ISOIHFO005
Steam Other Industry Heavy Oil New
ISOI
2006
30
1.237
0.221
0.212
0.89
0.8
ISOIDST005
Steam Other Industry Distillate Oil New
ISOI
2006
30
1.172
0.301
0.212
0.89
0.8
ISOIDST105
Steam Other Industry Distillate Oil Imp
ISOI
2006
30
1.499
0.301
0.212
0.94
0.8
ISOINGA005
Steam Other Industry Natural Gas New
ISOI
2006
30
0.868
0.221
0.212
0.90
0.8
ISOINGA105
Steam Other Industry Natural Gas Imp
ISOI
2006
30
1.066
0.221
0.212
0.95
0.8
ISOINGA205
Steam Other Industry Natural Gas Cond
ISOI
2006
30
1.378
0.221
0.212
1.00
0.8
ISOICOA005
Steam Other Industry Coal New
ISOI
2006
30
30.000
1.332
0.81
0.8
ISOIBIO005
Steam Other Industry Bio New
ISOI
2006
30
6.000
1.332
0.81
0.8
ISOIELC005
Steam Other Industry Electric New
ISOI
2006
30
0.982
0.044
0.205
0.98
0.8
ISOILPG005
Steam Other Industry LPG New
ISOI
2006
30
1.172
0.301
0.212
0.89
0.8
IPOIHFO005
Process Heat Other Industry Heavy Fuel New
IPOI
2006
30
1.237
0.221
0.212
0.89
0.8
IPOIDST005
Process Heat Other Industry Distillate Fuel New
IPOI
2006
30
1.172
0.301
0.212
0.89
0.8
IPOIDST105
Process Heat Other Industry Distillate Fuel Imp
IPOI
2006
30
1.499
0.301
0.212
0.94
0.8
IPOINGA005
Process Heat Other Industry Natural Gas New
IPOI
2006
30
0.868
0.221
0.212
0.90
0.8
IPOINGA105
Process Heat Other Industry Natural Gas Imp
IPOI
2006
30
1.066
0.221
0.212
0.95
0.8
IPOINGA205
Process Heat Other Industry Natural Gas Cond
IPOI
2006
30
1.378
0.221
0.212
1.00
0.8
IPOICOA005
Process Heat Other Industry Coal New
IPOI
2006
30
22.100
2.230
0.81
0.8
IPOICOK005
Process Heat Other Industry Coke New
IPOI
2006
30
22.100
2.230
0.81
0.8
IPOIELC005
Process Heat Other Industry Electric New
IPOI
2006
30
0.982
0.044
0.205
0.98
0.8
IPOILPG005
Process Heat Other Industry LPG New
IPOI
2006
30
0.868
0.221
0.212
0.90
0.8
IMOIDST005
Machine Drive Other Industry Distillate Oil New
IMOI
2006
20
25.641
2.564
0.81
0.25
IMOINGA005
Machine Drive Other Industry Natural Gas New
IMOI
2006
20
28.490
2.849
0.81
0.25
IMOIELC005
Machine Drive Other Industry Electric New
IMOI
2006
20
1.825
0.182
0.85
0.25
IMOIELI005
Machine Drive Other Industry Electric Imp eff.
IMOI
2006
20
2.093
0.209
0.90
0.25
IMOIELH005
Machine Drive Other Industry Electric High eff.
IMOI
2006
20
2.252
0.225
0.93
0.25
IOOIHFO005
Other All Other Industry Heavy Oil New
IOOI
2006
30
3.086
0.533
1.00
0.8 64
Tech. Name
Technology Description
Comm.Out
START
LIFE
INVCOST
FIXOM
IOOIDST005
Other All Other Industry Distillate Oil New
IOOI
2006
30
2.939
IOOINGA005
Other All Other Industry Natural Gas New
IOOI
2006
30
IOOICOA005
Other All Other Industry Coal New
IOOI
2006
IOOICOK005
Other All Other Industry Coke New
IOOI
IOOICOG005
Other All Other Industry Cokeoven Gas New
IOOIPTC005
VAROM
EFF
AF
0.533
1.00
0.8
2.659
0.480
1.00
0.8
30
3.704
1.332
1.00
0.8
2006
30
3.704
1.332
1.00
0.8
IOOI
2006
30
3.704
1.332
1.00
0.8
Other All Other Industry Petroleum Coke New
IOOI
2006
30
3.704
1.332
1.00
0.8
IOOIELC005
Other All Other Industry Electric New
IOOI
2006
30
2.932
0.506
1.00
0.8
IOOIGEO005
Other All Other Industry Geothermal New
IOOI
2006
30
3.858
0.666
1.00
0.8
IOOILPG005
Other All Other Industry LPG New
IOOI
2006
30
2.659
0.480
1.00
0.8
IEOIELC005
Elec-Chemical Process Other Industry Electric
IEOI
2006
30
0.000
0.000
1.00
0.8
New IOOIBIO005
Other All Other Industry BIO New
IOOI
2006
30
3.086
0.533
1.00
0.8
IOISBIO005
Other Iron and Steel Industry BIO New
IOOI
2006
30
3.086
0.533
1.00
0.8
IOCHBIO005
Other Chemical Industry BIO New
IOCH
2006
30
3.086
0.533
1.00
0.8
IONFBIO005
Other Non-ferrous Industry BIO New
IONF
2006
30
3.086
0.533
1.00
0.8
IONMBIO005
Other Non-metal Industry BIO New
IONM
2006
30
3.086
0.533
1.00
0.8
IMLPHFO005
Machine Drive Pulp and Paper HFO Oil New
IMLP
2006
20
10.000
1.000
0.30
0.25
IMISHFO005
Machine Drive Iron and Steel HFO New
IMIS
2006
20
10.000
1.000
0.30
0.25
IMNMHFO005
Machine Drive Non Metals HFO New
IMNM
2006
20
10.000
1.000
0.30
0.25
IMNFHFO005
Machine Drive Non Ferrous HFO New
IMNM
2006
20
10.000
1.000
0.30
0.25
IMOIHFO005
Machine Drive Other Industries HFO New
IMOI
2006
20
10.000
1.000
0.30
0.25
IMCHHFO005
Machine Drive Chemicals HFO New
IMCH
2006
20
10.000
1.000
0.30
0.25
IMISLPG005
Machine Drive Iron and Steel LPG New
IMIS
2006
20
10.000
1.000
0.40
0.25
IMCHLPG005
Machine Drive Chemicals LPG New
IMCH
2006
20
10.000
1.000
0.40
0.25
IMOILPG005
Machine Drive Other Industries LPG New
IMOI
2006
20
10.000
1.000
0.40
0.25
IPISLPG005
Process Heat Iron and Steel LPG New
IPIS
2006
30
0.868
0.221
0.90
0.8
65
0.212
Tech. Name
Technology Description
Comm.Out
START
LIFE
INVCOST
FIXOM
ESTMNGA005
Auto CHP with NGA New
INDELC/INDHET
2006
25
1000.000
ESTMLPG005
Auto CHP with LPG New
INDELC/INDHET
2006
25
ESTMNGL005
Auto CHP with NGL New
INDELC/INDHET
2006
ESTMCOA005
Auto CHP with COA New
INDELC/INDHET
ESTMCOK005
Auto CHP with COK New
ESTMCOG005
VAROM
EFF
AF
50.000
0.44
0.7
1000.000
50.000
0.44
0.7
25
1000.000
50.000
0.44
0.7
2006
25
1600.000
80.000
0.35
0.7
INDELC/INDHET
2006
25
1600.000
80.000
0.35
0.7
Auto CHP with COG New
INDELC/INDHET
2006
25
1600.000
80.000
0.35
0.7
ESTMBFG005
Auto CHP with BFG New
INDELC/INDHET
2006
25
1000.000
50.000
0.44
0.7
ESTMOXY005
Auto CHP with OXY New
INDELC/INDHET
2006
25
1000.000
50.000
0.44
0.7
ESTMHFO005
Auto CHP with HFO New
INDELC/INDHET
2006
25
1000.000
50.000
0.44
0.7
ESTMOIL005
Auto CHP with OIL New
INDELC/INDHET
2006
25
1000.000
50.000
0.44
0.7
ESTMETH005
Auto CHP with ETH New
INDELC/INDHET
2006
25
1000.000
50.000
0.44
0.7
ESTMNAP005
Auto CHP with NAP New
INDELC/INDHET
2006
25
1000.000
50.000
0.44
0.7
ESTMPTC005
Auto CHP with PTC New
INDELC/INDHET
2006
25
1600.000
80.000
0.35
0.7
ESTMBIO005
Auto CHP with BIO New
INDELC/INDHET
2006
25
1600.000
80.000
0.35
0.7
ESTMGEO005
Auto CHP with GEO New
INDELC/INDHET
2006
25
1000.000
10.000
0.57
0.7
66
5.5
Base-year calibration
The IEA energy balance data has been used to calibrate the final energy consumption and it is modelled in the Base-Year industry sector template. As the IEA database only provides total energy consumption by fuel for the main industries, fractional share numbers were needed to split fuel consumption between specific energy-services within each industry. According to the regions, the need for expert assumptions depended on the level of detail of the national data sources. The non-specified energy consumption (ONO) and the nonenergy uses (NEO) are also provided by the IEA database. The IEA data has been disaggregated into different technologies in each energy-service by fuel types. Table 5-6 provides technology details and fuel consumption in 2005 at a global level. Similar tables have been generated for each region. Share of different technologies such as steam boilers, process heat, machine drive, electro-chemical process, feedstock and others are assumed to be identical for each region. Industry sector fuels (commodities) presented in Table 5-6 are the same as the commodities that are defined in the sector fuel technologies table (Table 5-3). Industry sector final consumption has been calibrated by energy-services and fuels. Further, sum of all end-use sector fuel consumption also matches total final consumption in the upstream sector by fuels.
67
INDPTC
INDBIO
INDGEO
0
0
0
0
0
0
59
30
0
0
0
0
0
502
1061
TOTAL
INDNAP
7
INDHET
INDETH
463
INDOIL
INDOXY
INDHFO
INDBFG
INDCOG
INDNGL
INDCOK
INDCOA
INDLPG
INDNGA
0
INDELC
Description
Demand
Identifier
Service
Table 5-6: Base-year industry sector final energy consumption by energy-services and fuel (PJ)
Iron and Steel ISIS
Steam Boiler
IPIS
Process Heat
IMIS
Machine Drive
IEIS
Electro-Chemical Process
IFIS
Feed stocks
IOIS
Other
Subtotal
0
2621
42
0
2100
0
1169
2582
64
333
170
0
0
0
0
0
0
9081
2593
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
2593
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0 2132
0
0
0
0
0
2084
0
0
0
0
0
0
2
46
0
0
0
288
0
0
0
0
0
0
0
0
0
0
0
0
0
269
0
0
557
2881
3083
50
0
2100
2084
1169
2582
64
392
200
0
2
46
269
0
502
15423
Non-ferrous Metals ISNF
Steam Boiler
0
138
0
0
85
0
12
1
0
54
18
0
0
0
5
0
87
401
IPNF
Process Heat
0
1171
14
0
255
0
0
0
0
163
53
0
0
0
0
0
0
1656
IMNF
Machine Drive
IENF
Electro-Chemical Process
n.a.
Feed stocks
IONF
Other
Subtotal
120
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
120
2152
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
2152
0
0
0
0
0
128
0
0
0
0
0
0
1
23
0
0
0
151
120
69
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
188
2391
1377
14
0
340
128
12
1
0
217
70
0
1
23
5
0
87
4667
Chemicals and Petrochemicals ISCH
Steam Boiler
0
0
0
0
320
0
28
1
0
686
282
0
0
0
0
0
1478
2796
IPCH
Process Heat
0
602
0
0
0
0
0
0
0
294
121
0
0
0
0
0
0
1017
IMCH
Machine Drive
2506
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
2506
IECH
Electro-Chemical Process
IFCH
Feed stocks
IOCH
Other
Subtotal
716
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
716
0
5416
293
0
1280
171
0
0
0
0
0
390
425
41
0
0
0
8015
358
0
0
0
0
0
0
0
0
0
0
0
0
0
86
0
0
444
3580
6018
293
0
1600
171
28
1
0
980
403
390
425
41
86
0
1478
15493
Paper, Pulp and Printing ISLP
Steam Boiler
0
1208
17
0
791
0
1
0
0
427
87
0
0
0
2052
6
355
4943
IPLP
Process Heat
176
345
5
0
0
0
0
0
0
75
25
0
0
0
0
0
0
626
68
Description
INDCOG
INDBFG
INDOXY
INDHFO
INDOIL
INDETH
INDNAP
INDPTC
INDBIO
INDGEO
INDHET
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1406
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
n.a.
Feed stocks
0
0
0
0
0
1
0
0
0
0
0
0
0
3
0
0
0
4
IOLP
Other
Subtotal
TOTAL
INDCOK
0
0
INDCOA
INDNGL
0
0
INDNGA
1406
Electro-Chemical Process
INDELC
INDLPG
Demand
Identifier
Machine Drive
IELP
Service
IMLP
176
173
2
0
0
0
0
0
0
0
12
0
0
0
0
0
0
363
1757
1726
24
0
791
1
1
0
0
502
125
0
0
3
2052
6
355
7342
Non-Metallic minerals (SCG) ISNM
Steam Boiler
0
139
0
0
0
0
17
1
2
114
146
0
0
0
212
0
105
735
IPNM
Process Heat
270
2504
80
0
5555
0
0
0
0
456
195
0
0
483
0
0
0
9544
IMNM
Machine Drive
946
0
0
0
0
0
0
0
0
0
33
0
0
0
0
0
0
980
IENM
Electro-Chemical Process
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
n.a.
Feed stocks
0
0
0
0
0
89
0
0
0
0
0
0
0
0
0
0
0
89
IONM
Other
135
139
9
0
0
0
0
0
0
0
42
0
0
0
0
0
0
325
1352
2782
89
0
5555
89
17
1
2
570
416
0
0
483
212
0
105
11672
Subtotal
Other Industrial ISOI
Steam Boiler
0
281
51
0
1486
0
0
0
0
894
951
0
0
0
4804
7
2292
10766
IPOI
Process Heat
3095
2533
457
0
2759
0
173
93
14
2086
3328
0
0
0
0
0
0
14538
IMOI
Machine Drive
5158
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
5158
IEOI
Electro-Chemical Process
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
n.a.
Feed stocks
0
0
0
0
0
431
0
0
0
0
0
110
36
307
0
0
0
884
IOOI
69
2063
0
0
0
0
0
0
0
0
0
475
0
0
0
0
0
0
2539
Subtotal
Other
10316
2814
508
0
4245
431
173
93
14
2980
4755
110
36
307
4804
7
2292
33885
Total
22277
17801
978
0
14631
2903
1401
2678
80
5642
5969
500
464
901
7427
12
4819
88483
5.6
References
International Energy Agency (IEA), World Energy Balances, 2009, ESDS International, (Mimas) University of Manchester EFDA (2004). EFDA World TIMES Model, Final report, prepared by ORDECSYS, KanORS, HALOA, KUL. www.efda.org
70
6 Residential Sector 6.1
Introduction
Base-year residential sector final energy consumption calibration is modelled in the BaseYear template for residential, commercial and agriculture sectors. The template has IEA residential sector final consumption data for the base-year 2005. It also includes details for residential sector fuels and all existing technologies in residential sector. The template also captures residential sector emissions. All new technologies that are available after the first year (base-year) are modelled in the new technology sheet ―SubRes_B-NewTechs‖. Selected energy-services in residential sector are also has demand data at sub region level for selected regions in order to have different growth rate at sun-region level for those energyservices. 6.2
Energy service demands
The residential sector includes 11 energy-services as presented in Table 6-1. All energyservice demands are in PJ. In the residential sector, some segments are identified using more than one code, which means that the demand can be disaggregated in four or less sub-regions. Currently, USA and CAN have four and three geographic regions, respectively, while AFR, CHI, IND, MEA and MEX each have two ‗sub-regions‘, corresponding to rural and urban areas. When no sub-regions have been defined, the codes for sub-region 1 are used by default (RH1, CH1, RL1, RK1, CH1, CC1). Energy service demands are projected to 2100 using general economic and demographic drivers (population, GDP and GDP per capita). To develop projections of future energy-service demands, estimates of drivers are used in conjunction with user assumptions on the topic of service demand sensitivity to these drivers (see Section 2.3 and Chapter 3 on demand projections and drivers). Projected energy-service demands during 2005-2100 are presented in Figure 6-1 at a global level. Growth rates for residential lighting are relatively high in selected sub-regions in the developing world. Thisis because of very low level of electrification at present (base-year) in these sub-regions.
Table 6-1: Residential sector energy-services Energy-Service
Unit
Code
Residential Cooling
PJ
RC1, RC2, RC3, RC4
Residential Clothes Drying
PJ
RCD
Residential Clothes Washing
PJ
RCW
Residential Dishwashing
PJ
RDW
Residential Other Electric
PJ
REA
Residential Space Heat
PJ
RH1, RH2, RH3, RH4
Residential Hot Water
PJ
RWH
Residential Cooking - Region 1
PJ
RK1, RK2, RK3, RK4
Residential Lighting - Region 1
PJ
RL1, RL2, RL3, RL4
Residential Refrigeration
PJ
RRF
Residential Others
PJ
ROH
Projected energy-service demands
30
Index (2005=1)
25 20 15 10 5 0 2000 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100
RC1 RC2 RC3 RC4 RCD RCW RDW REA RH1 RH2 RH3 RH4 RHW RK1 RK2 RK3 RL1 RL2 RL3 ROT RRF
Figure 6-1: Projected energy-service demands in residential sector 6.3
Sector fuels
The RES_Fuels sheet in the Base-Year template contains the technologies that are created to produce aggregated residential fuels including residential electricity (including geothermal and solar) and heat. Residential sector existing fuels are presented in Table 6-2. These technologies are named uniformly using the name of the aggregated fuels as specified in 72
73 the column ‗Commodity OUT‘ plus three zero (000 for existing technologies in the baseyear). Their description changes according to the fuel (e.g. Fuel Tech - Coal (RES) or Fuel Tech - Natural Gas (RES), etc.). The fractional shares of the disaggregated fuels (Commodity IN) used to produce an aggregated fuel (Commodity OUT) are calculated from their consumption over the total for this category, as given in the IEA Data sheet. Fuels are also named uniformly across sectors. New technologies for residential sector fuels are presented in Table 6-3. These new technologies are for the future periods. Table 6-2: Residential sector technologies-existing Tech. Name
Technology Description
Comm.-IN
Comm.-OUT
RESNGA000
Fuel Tech - Natural Gas Mix (RES) - Existing
GASNGA
RESNGA
GASGWG GASCOG RESDST000
Fuel Tech - Diesel (RES) - Existing
OILDST
RESDST
OILGSL OILNSP RESHFO000
Fuel Tech - Heavy Fuel Oil (RES) - Existing
OILHFO
RESHFO
OILCRD RESKER000
Fuel Tech - Kerosene (RES) - Existing
OILKER
RESKER
RESCOA000
Fuel Tech - Coal (RES) - Existing
COAHCO
RESCOA
COABCO COAOVC RESLPG000
Fuel Tech - Liquefied Petroleum Gases (RES)
OILLPG
RESLPG
BIOBSL
RESBIO
- Existing RESBIO000
Fuel Tech – Bio-fuels (RES) - Existing
BIOCHR BIOGAS BIOBMU BIOBIN RESGEO000
Fuel Tech - Geothermal (RES) - Existing
GEO
RESGEO
RESSOL000
Fuel Tech - Solar (RES) - Existing
SOL
RESSOL
RESELC000
Fuel Tech - Electricity (RES)
ELCC
RESELC
ELCD RESHET000
73
Fuel Tech - Heat (RES)
HET
RESHET
Table 6-3: Residential sector fuel technologies-new Tech. Name
Technology Description
Comm.-IN
Comm.-OUT
RESNGA005
Fuel Tech - Natural Gas Mix (RES) - New
GASNGA
RESNGA
GASGWG GASCOG RESDST005
Fuel Tech - Diesel (RES) - New
OILDST
RESDST
OILGSL OILNSP RESHFO005
Fuel Tech - Heavy Fuel Oil (RES) - New
OILHFO
RESHFO
OILCRD RESKER005
Fuel Tech - Kerosene (RES) - New
OILKER
RESKER
RESCOA005
Fuel Tech - Coal (RES) - New
COAHCO
RESCOA
COABCO COAOVC RESLPG005
Fuel Tech - Liquefied Petroleum Gases (RES) -
OILLPG
RESLPG
BIOBSL
RESBIO
New RESBIO005
Fuel Tech – Bio-fuels (RES) - New
BIOCHR BIOGAS BIOBMU BIOBIN RESSOL005
Fuel Tech - Solar (RES) - New
SOL
RESSOL
RESGEO005
Fuel Tech - Geothermal (RES) - New
GEO
RESGEO
RESGEO105
Fuel Tech - Geothermal (RES) - New
GEO
RESGEO
RESGEO205
Fuel Tech - Geothermal (RES) - New
GEO
RESGEO
RESHET005
Fuel Tech - Heat (RES) - New
HET
RESHET
6.4
Technologies
Residential sector existing end-use technologies are modelled in the Base-Year templates. No investment can be made in existing technologies. The new technologies for the future years are modelled in the new technologies templates ―SubRes_B-NewTech‖. Due to long list of end-use technologies available for residential sector in the TIAM-UCL only new technologies and their characteristics are presented in Table 6-4. These technologies progressively replace the existing ones as they reach the end of their technology life
74
75 assumptions. For each end-use energy-service, a number of existing technologies are in competition to satisfy the demand. They are characterized by an efficiency, an annual utilization factor, a lifetime, operation costs, and six seasonal share coefficients (summerday, summer-night, intermediary-day, intermediary-night, winter-day, winter-night). The sum product of the final energy consumption and the efficiency of technologies give the base-year demand value. Region specific hurdle rates, which are used to annualise investment cost of the residential end-use technologies, has been applied to residential sector technologies (Figure 6-2). 35%
Hurdle rate f or residential sector technologies
30%
25% 20% 15%
10% 5% 0%
AFR AUS CAN CHI CSA EEU FSU IND JPN MEA MEX ODA SKO USA WEU UK
Figure 6-2: Regional specific hurdle rate for residential sector technologies
75
Table 6-4: Residential sector new end-use technologies Tech. Name
Technology Description
Comm.-IN
YEAR
LIFE
INVCOST
FIXOM
EFF
RESELC
2006
15
374.64
3.744
1
RESELC
2010
15
374.64
3.744
1.227
RESELC
2020
15
374.64
3.744
1.363
RESELC
2006
15
406.93
4.071
1.5
RESELC
2010
15
366.24
3.663
1.5
RESELC
2020
15
325.55
3.256
1.5
RESELC
2006
15
620.96
6.205
1.672
RESELC
2010
15
558.86
5.585
1.672
RESELC
2020
15
496.77
4.964
1.672
RESELC
2006
15
34.909
0.963
0.9
RESELC
2010
15
34.909
0.963
0.92
RESELC
2020
15
34.909
0.963
0.94
RESELC
2006
15
140.76
13.21
1.77
RESELC
2010
15
126.68
11.30
1.8
RESELC
2020
15
112.61
9.536
2
RESELC
2006
15
222.87
5.197
0.88
RESELC
2010
15
200.59
4.677
0.88
RESELC
2020
15
178.30
4.157
0.88
RESDST
2006
15
18.111
0.175
0.58
RESDST
2010
15
16.300
0.157
0.58
RESDST
2020
15
14.489
0.140
0.58
RESHFO
2006
15
18.111
0.175
0.58
Refrigerators RRFEXS005
RRFIMP005
RRFGLD005
RES: .05.ELC.REFRIGERATORS.STD.
RES: .05.ELC.REFRIGERATORS.IMP.
RES: .05.ELC.REFRIGERATORS.GOLDEN CARROT.
Water heating RHWELC005
RHWELA005
RHWELS005
RHWDST005
RHWHFO005
RES: .05.ELC.WATER HEATER.RESISTANCE.STD.
RES: .05.ELC.WATER HEATER.HEAT PUMP.
RES: .05.ELC.WATER HEATER.SOLAR.
RES: .05.DST.WATER HEATER.STD.
RES: .05.HFO.WATER HEATER.STD.
76
77 Tech. Name
RHWLPG005
RHWDSO005
RHWLPS005
RHWNGA005
RHWNGS005
RHWSOL005 RHWHET005
RHWGEO005
RHWELB005 77
Technology Description
RES: .05.LPG.WATER HEATER.STD.
RES: .05.DST.WATER HEATER.SOLAR.
RES: .05.LPG.WATER HEATER.SOLAR.
RES: .05.NGA.WATER HEATER.STD.
RES: .05.NGA.WATER HEATER.SOLAR.
RES: .05.SOL.WATER HEATER.STD. RES: .05.HET.WATER HEATER.STD.
RES: .05.GEO.WATER HEATER.STD.
RES: .05.ELC.WATER HEATER.RESISTANCE.NEW.
Comm.-IN
YEAR
LIFE
INVCOST
FIXOM
EFF
RESHFO
2010
15
16.300
0.157
0.58
RESHFO
2020
15
14.489
0.140
0.58
RESLPG
2006
15
18.111
0.301
0.54
RESLPG
2010
15
16.300
0.271
0.54
RESLPG
2020
15
14.489
0.241
0.54
RESDST
2006
15
222.87
4.457
0.54
RESDST
2010
15
200.59
4.011
0.54
RESDST
2020
15
178.30
3.565
0.54
RESLPG
2006
15
222.87
4.457
0.54
RESLPG
2010
15
200.59
4.011
0.54
RESLPG
2020
15
178.30
3.565
0.54
RESNGA
2006
15
18.111
0.181
0.65
RESNGA
2010
15
16.300
0.163
0.65
RESNGA
2020
15
14.489
0.144
0.65
RESNGA
2006
15
222.87
4.457
0.54
RESNGA
2010
15
200.59
4.011
0.54
RESNGA
2020
15
178.30
3.565
0.54
RESSOL
2006
20
222.87
4.457
1
RESSOL
2010
20
200.59
4.011
1
RESHET
2006
20
222.87
4.457
1
RESHET
2010
20
200.59
4.011
1
RESHET
2020
20
178.30
3.565
1
RESGEO
2006
20
222.87
4.457
1
RESGEO
2010
20
200.59
4.011
1
RESGEO
2020
20
178.30
3.565
1
RESELC
2006
20
34.909
0.701
0.96
Tech. Name
RHWNGB005
RHWNGA010
RHWBIO005
Technology Description
RES: .05.NGA.WATER HEATER.NEW.
RES: .10.NGA.WATER HEATER.ADV.
Comm.-IN
YEAR
LIFE
INVCOST
FIXOM
EFF
RESELC
2010
20
31.418
0.631
0.96
RESELC
2020
20
27.927
0.561
0.96
RESNGA
2006
20
30.217
0.761
0.7
RESNGA
2010
20
27.195
0.645
0.7
RESNGA
2020
20
24.174
0.486
0.7
RESNGA
2010
20
30.217
0.614
0.86
RESNGA
2010
20
27.195
0.553
0.86
RESNGA
2020
20
24.174
0.491
0.86
RESBIO
2006
20
40
1
0.5
RESBIO
2010
40
1
0.5
RESBIO
2020
40
1
0.5
RES: .05.BIO.WATER HEATER.STD.
RHWKER005
RES: .05.KER.WATER HEATER.STD.
RESKER
2006
20
70
0.188
0.58
RHWCOA005
RES: .05.COA.WATER HEATER.STD.
RESCOA
2006
20
60
0.277
0.5
Cloth washing machines RCWELC305
RES: .05.ELC.CLOTH WASHING.REDUCED WATER.
RESELC
2006
15
238.13
4.762
3
RCWELC405
RES: .05.ELC.CLOTH WASHING.ULTRA SOUND.
RESELC
2006
15
318.28
4.243
4
Cloth driers RCDELC005
RES: .05.ELC.CLOTH DRIERS.STD.
RESELC
2006
15
155.05
4.134
1
RCDELC005
RES: .05.ELC.CLOTH DRIERS.IMP.
RESELC
2006
15
227.85
4.340
1.25
RCDNGA005
RES: .05.NGA.CLOTH DRIERS.STD.
RESNGA
2006
15
265.48
5.530
1
Dish washer RDWELC005
RES: .05.ELC.DISH WASHER.STD.
RESELC
2006
10
173.76
7.898
1
RDWELC105
RES: .05.ELC.DISH WASHER.IMP.
RESELC
2006
10
257.96
5.862
1.3
RDWELC210
RES: .10.ELC.DISH WASHER.ADV.
RESELC
2010
10
362.18
3.165946
2
RESNGA
2006
17
183.97
4.599
1
Cooking RK1NGA005
RES.COOK.R1: .05.NGA.
78
79 Tech. Name
Technology Description
Comm.-IN
YEAR
LIFE
INVCOST
FIXOM
EFF
RK1KER005
RES.COOK.R1: .05.KER.
RESKER
2006
17
148.89
3.722
1
RK1DST005
RES.COOK.R1: .05.DST.
RESDST
2006
17
148.89
3.722
1
RK1COA005
RES.COOK.R1: .05.COA.
RESCOA
2006
17
66.176
9.926
1
RK1LPG005
RES.COOK.R1: .05.LPG.
RESLPG
2006
17
183.97
4.599
1
RK1ELC005
RES.COOK.R1: .05.ELC.
RESELC
2006
17
183.97
4.599
1
RK1BIO005
RES.COOK.R1: .05.BIO.
RESBIO
2006
17
66.176
4.963
1
RK1SOL005
RES.COOK.R1: .05.SOL.
RESSOL
2006
17
164.11
2.735
1
RK2NGA005
RES.COOK.R2: .05.NGA.
RESNGA
2006
17
183.97
4.599
1
RK2KER005
RES.COOK.R2: .05.KER.
RESKER
2006
17
148.89
3.722
1
RK2DST005
RES.COOK.R2: .05.DST.
RESDST
2006
17
148.89
3.722
1
RK2COA005
RES.COOK.R2: .05.COA.
RESCOA
2006
17
66.176
9.926
1
RK2LPG005
RES.COOK.R2: .05.LPG.
RESLPG
2006
17
183.97
4.599
1
RK2ELC005
RES.COOK.R2: .05.ELC.
RESELC
2006
17
183.97
4.599
1
RK2BIO005
RES.COOK.R2: .05.BIO.
RESBIO
2006
17
66.176
4.963
1
RK2SOL005
RES.COOK.R2: .05.SOL.
RESSOL
2006
17
164.11
2.735
1
RK3NGA005
RES.COOK.R3: .05.NGA.
RESNGA
2006
17
183.97
4.599
1
RK3KER005
RES.COOK.R3: .05.KER.
RESKER
2006
17
148.89
3.722
1
RK3DST005
RES.COOK.R3: .05.DST.
RESDST
2006
17
148.89
3.722
1
RK3COA005
RES.COOK.R3: .05.COA.
RESCOA
2006
17
66.176
9.926
1
RK3LPG005
RES.COOK.R3: .05.LPG.
RESLPG
2006
17
183.97
4.599
1
RK3ELC005
RES.COOK.R3: .05.ELC.
RESELC
2006
17
183.97
4.599
1
RK3BIO005
RES.COOK.R3: .05.BIO.
RESBIO
2006
17
66.176
4.963
1
RK3SOL005
RES.COOK.R3: .05.SOL.
RESSOL
2006
17
164.11
2.735
1
RK4NGA005
RES.COOK.R4: .05.NGA.
RESNGA
2006
17
183.97
4.599
1
RK4KER005
RES.COOK.R4: .05.KER.
RESKER
2006
17
148.89
3.722
1
RK4DST005
RES.COOK.R4: .05.DST.
RESDST
2006
17
148.89
3.722
1
79
Tech. Name
Technology Description
Comm.-IN
YEAR
LIFE
INVCOST
FIXOM
EFF
RK4COA005
RES.COOK.R4: .05.COA.
RESCOA
2006
17
66.176
9.926
1
RK4LPG005
RES.COOK.R4: .05.LPG.
RESLPG
2006
17
183.97
4.599
1
RK4ELC005
RES.COOK.R4: .05.ELC.
RESELC
2006
17
183.97
4.599
1
RK4BIO005
RES.COOK.R4: .05.BIO.
RESBIO
2006
17
66.176
4.963
1
RESELC
2006
15
1.6647
5.163
1
RESELC
2010
15
1.4982
4.646
1
RESELC
2020
15
1.3318
4.130
1
RESELC
2006
15
1.6647
5.163
1
RESELC
2010
15
1.4982
4.646
1
RESELC
2020
15
1.3318
4.130
1
RESELC
2006
15
1.6647
5.163
1
RESELC
2010
15
1.4982
4.646
1
RESELC
2020
15
1.3318
4.130
1
RESELC
2006
15
1.6647
5.163
1
RESELC
2010
15
1.4982
4.646
1
RESELC
2020
15
1.3318
4.130
1
RESELC
2006
15
47.881
2.630
4.6
RESELC
2010
15
43.093
2.367
4.6
RESELC
2020
15
38.305
2.104
4.6
RESELC
2006
15
47.881
2.630
4.6
RESELC
2010
15
43.093
2.367
4.6
RESELC
2020
15
38.305
2.104
4.6
RESELC
2006
15
47.881
2.630
4.6
RESELC
2010
15
43.093
2.367
4.6
RESELC
2020
15
38.305
2.104
4.6
Lighting RL1ICE005
RL2ICE005
RL3ICE005
RL4ICE005
RL1FLE005
RL2FLE005
RL3FLE005
RES.LIGH.R1: .05.ELC.INCANDESCENT.STD.
RES.LIGH.R2: .05.ELC.INCANDESCENT.STD.
RES.LIGH.R3: .05.ELC.INCANDESCENT.STD.
RES.LIGH.R4: .05.ELC.INCANDESCENT.STD.
RES.LIGH.R1: .05.ELC.FLUORESCENT.BASELINE.
RES.LIGH.R2: .05.ELC.FLUORESCENT.BASELINE.
RES.LIGH.R3: .05.ELC.FLUORESCENT.BASELINE.
80
81 Tech. Name
Technology Description
Comm.-IN
YEAR
LIFE
INVCOST
FIXOM
EFF
RL4FLE005
RES.LIGH.R4: .05.ELC.FLUORESCENT.BASELINE.
RESELC
2006
15
47.881
2.630
4.6
RESELC
2010
15
43.093
2.367
4.6
RESELC
2020
15
38.305
2.104
4.6
RESELC
2006
15
61.501
2.607
6.642
RESELC
2010
15
55.351
2.346
7.571
RESELC
2020
15
49.200
2.085
7.571
RESELC
2006
15
61.501
2.607
6.642
RESELC
2010
15
55.351
2.346
7.571
RESELC
2020
15
49.200
2.085
7.571
RESELC
2006
15
61.501
2.607
6.642
RESELC
2010
15
55.351
2.346
7.571
RESELC
2020
15
49.200
2.085
7.571
RESELC
2006
15
61.501
2.607
6.642
RESELC
2010
15
55.351
2.346
7.571
RESELC
2020
15
49.200
2.085
7.571
RESELC
2010
15
22.196
24.02
5.164
RESELC
2010
15
19.977
20.62
5.164
RESELC
2020
15
17.757
17.26
5.164
RESELC
2010
15
22.196
24.02
5.164
RESELC
2010
15
19.977
20.62
5.164
RESELC
2020
15
17.757
17.26
5.164
RESELC
2010
15
22.196
24.02
5.164
RESELC
2010
15
19.977
20.62
5.164
RESELC
2020
15
17.757
17.26
5.164
RESELC
2010
15
22.196
24.02
5.164
RESELC
2010
15
19.977
20.62
5.164
RL1FLA005
RL2FLA005
RL3FLA005
RL4FLA005
RL1ICA010
RL2ICA010
RL3ICA010
RL4ICA010
81
RES.LIGH.R1: .05.ELC.FLUORESCENT.RAPIDSTART.
RES.LIGH.R2: .05.ELC.FLUORESCENT.RAPIDSTART.
RES.LIGH.R3: .05.ELC.FLUORESCENT.RAPIDSTART.
RES.LIGH.R4: .05.ELC.FLUORESCENT.RAPIDSTART.
RES.LIGH.R1: .10.ELC.INCANDESCENT.ADV.
RES.LIGH.R2: .10.ELC.INCANDESCENT.ADV.
RES.LIGH.R3: .10.ELC.INCANDESCENT.ADV.
RES.LIGH.R4: .10.ELC.INCANDESCENT.ADV.
Tech. Name
Technology Description
Comm.-IN
YEAR
LIFE
INVCOST
FIXOM
EFF
RESELC
2020
15
17.757
17.26
5.164
RL1HAE005
RES.LIGH.R1: .05.ELC.HALOGEN.
RESELC
2006
15
6.2468
12.49
2.8
RL2HAE005
RES.LIGH.R2: .05.ELC.HALOGEN.
RESELC
2006
15
6.2468
12.49
2.8
RL3HAE005
RES.LIGH.R3: .05.ELC.HALOGEN.
RESELC
2006
15
6.2468
12.49
2.8
RL4HAE005
RES.LIGH.R4: .05.ELC.HALOGEN.
RESELC
2006
15
6.2468
12.49
2.8
RL1CFL005
RES.LIGH.R1: .05.ELC.FLUO.LAMP.COMPACT.
RESELC
2006
15
14.237
0.943
4
RL2CFL005
RES.LIGH.R2: .05.ELC.FLUO.LAMP.COMPACT.
RESELC
2006
15
14.237
0.943
4
RL3CFL005
RES.LIGH.R3: .05.ELC.FLUO.LAMP.COMPACT.
RESELC
2006
15
14.237
0.943
4
RL4CFL005
RES.LIGH.R4: .05.ELC.FLUO.LAMP.COMPACT.
RESELC
2006
15
14.237
0.943
4
RL1KER005
RES.LIGH.R1: .05.KER.LAMP.
RESKER
2006
10
20
1.388
0.5
RL2KER005
RES.LIGH.R2: .05.KER.LAMP.
RESKER
2006
10
20
1.388
0.5
RL3KER005
RES.LIGH.R3: .05.KER.LAMP.
RESKER
2006
10
20
1.388
0.5
RL4KER005
RES.LIGH.R4: .05.KER.LAMP.
RESKER
2006
10
20
1.388
0.5
Space heating RH1ERS005
RES.HEAT.R1: .05.ELC.INS-REG.RESISTANCE.
RESELC
2006
20
55.360
1.335
1
RH2ERS005
RES.HEAT.R2: .05.ELC.INS-REG.RESISTANCE.
RESELC
2006
20
55.360
1.335
1
RH3ERS005
RES.HEAT.R3: .05.ELC.INS-REG.RESISTANCE.
RESELC
2006
20
55.360
1.335
1
RH4ERS005
RES.HEAT.R4: .05.ELC.INS-REG.RESISTANCE.
RESELC
2006
20
55.360
1.335
1
RH1EHP005
RES.HEAT.R1: .05.ELC.INS-REG.HEAT PUMP.AIR.STD.
RESELC
2006
15
98.042
4.932
2.17
RH2EHP005
RES.HEAT.R2: .05.ELC.INS-REG.HEAT PUMP.AIR.STD.
RESELC
2006
15
98.042
4.932
2.17
RH3EHP005
RES.HEAT.R3: .05.ELC.INS-REG.HEAT PUMP.AIR.STD.
RESELC
2006
15
98.042
4.932
2.17
RH4EHP005
RES.HEAT.R4: .05.ELC.INS-REG.HEAT PUMP.AIR.STD.
RESELC
2006
15
98.042
4.932
2.17
RH1ELB005
RES.HEAT.R1: .05.ELC.INS-REG.HEAT PUMP.AIR.IMP.
RESELC
2006
15
125.53
5.647
3.52
RH2ELB005
RES.HEAT.R2: .05.ELC.INS-REG.HEAT PUMP.AIR.IMP.
RESELC
2006
15
125.53
5.647
3.52
RH3ELB005
RES.HEAT.R3: .05.ELC.INS-REG.HEAT PUMP.AIR.IMP.
RESELC
2006
15
125.53
5.647
3.52
RH4ELB005
RES.HEAT.R4: .05.ELC.INS-REG.HEAT PUMP.AIR.IMP.
RESELC
2006
15
125.53
5.647
3.52 82
83 Tech. Name
Technology Description
Comm.-IN
YEAR
LIFE
INVCOST
FIXOM
EFF
RH1ELD005
RES.HEAT.R1: .05.ELC.INS-REG.HEAT PUMP.AIR.ADV.
RESELC
2006
15
156.91
6.429
4.31
RH2ELD005
RES.HEAT.R2: .05.ELC.INS-REG.HEAT PUMP.AIR.ADV.
RESELC
2006
15
156.91
6.429
4.31
RH3ELD005
RES.HEAT.R3: .05.ELC.INS-REG.HEAT PUMP.AIR.ADV.
RESELC
2006
15
156.91
6.429
4.31
RH4ELD005
RES.HEAT.R4: .05.ELC.INS-REG.HEAT PUMP.AIR.ADV.
RESELC
2006
15
156.91
6.429
4.31
RH1ELF005
RES.HEAT.R1: .05.GEO.INS-REG.HEAT PUMP.GROUND.STD.
RESELC
2006
15
188.30
7.477
4.1
RH2ELF005
RES.HEAT.R2: .05.GEO.INS-REG.HEAT PUMP.GROUND.STD.
RESELC
2006
15
188.30
7.477
4.1
RH3ELF005
RES.HEAT.R3: .05.GEO.INS-REG.HEAT PUMP.GROUND.STD.
RESELC
2006
15
188.30
7.477
4.1
RH4ELF005
RES.HEAT.R4: .05.GEO.INS-REG.HEAT PUMP.GROUND.STD.
RESELC
2006
15
188.30
7.477
4.1
RH1ELS005
RES.HEAT.R1: .05.ELC.INS-REG.SOLAR.
RESELC
2006
20
1403.8
70.09
1
RH2ELS005
RES.HEAT.R2: .05.ELC.INS-REG.SOLAR.
RESELC
2006
20
1403.8
70.09
1
RH3ELS005
RES.HEAT.R3: .05.ELC.INS-REG.SOLAR.
RESELC
2006
20
1403.8
70.09
1
RH4ELS005
RES.HEAT.R4: .05.ELC.INS-REG.SOLAR.
RESELC
2006
20
1403.8
70.09
1
RH1DST005
RES.HEAT.R1: .05.DST.INS-REG.BURNER.STD.
RESDST
2006
20
55.360
2.738
0.78
RH2DST005
RES.HEAT.R2: .05.DST.INS-REG.BURNER.STD.
RESDST
2006
20
55.360
2.738
0.78
RH3DST005
RES.HEAT.R3: .05.DST.INS-REG.BURNER.STD.
RESDST
2006
20
55.360
2.738
0.78
RH4DST005
RES.HEAT.R4: .05.DST.INS-REG.BURNER.STD.
RESDST
2006
20
55.360
2.738
0.78
RH1LPG005
RES.HEAT.R1: .05.LPG.INS-REG.BURNER.
RESLPG
2006
20
55.360
1.214
0.72
RH2LPG005
RES.HEAT.R2: .05.LPG.INS-REG.BURNER.
RESLPG
2006
20
55.360
1.214
0.72
RH3LPG005
RES.HEAT.R3: .05.LPG.INS-REG.BURNER.
RESLPG
2006
20
55.360
1.214
0.72
RH4LPG005
RES.HEAT.R4: .05.LPG.INS-REG.BURNER.
RESLPG
2006
20
55.360
1.214
0.72
RH1KER005
RES.HEAT.R1: .05.KER.INS-REG.BURNER.
RESKER
2006
10
55.360
1.214
0.72
RH2KER005
RES.HEAT.R2: .05.KER.INS-REG.BURNER.
RESKER
2006
10
55.360
1.214
0.72
RH3KER005
RES.HEAT.R3: .05.KER.INS-REG.BURNER.
RESKER
2006
10
55.360
1.214
0.72
RH4KER005
RES.HEAT.R4: .05.KER.INS-REG.BURNER.
RESKER
2006
10
55.360
1.214
0.72
RH1DSA005
RES.HEAT.R1: .05.DST.INS-REG.BURNER.IMP.
RESDST
2006
20
71.969
2.944
0.95
RH2DSA005
RES.HEAT.R2: .05.DST.INS-REG.BURNER.IMP.
RESDST
2006
20
71.969
2.944
0.95
83
Tech. Name
Technology Description
Comm.-IN
YEAR
LIFE
INVCOST
FIXOM
EFF
RH3DSA005
RES.HEAT.R3: .05.DST.INS-REG.BURNER.IMP.
RESDST
2006
20
71.969
2.944
0.95
RH4DSA005
RES.HEAT.R4: .05.DST.INS-REG.BURNER.IMP.
RESDST
2006
20
71.969
2.944
0.95
RH1DSO005
RES.HEAT.R1: .05.DST.INS-REG.SOLAR.
RESDST
2006
20
1403.8
70.01
0.72
RH2DSO005
RES.HEAT.R2: .05.DST.INS-REG.SOLAR.
RESDST
2006
20
1403.8
70.01
0.72
RH3DSO005
RES.HEAT.R3: .05.DST.INS-REG.SOLAR.
RESDST
2006
20
1403.8
70.01
0.72
RH4DSO005
RES.HEAT.R4: .05.DST.INS-REG.SOLAR.
RESDST
2006
20
1403.8
70.01
0.72
RH1NGA005
RES.HEAT.R1: .05.NGA.INS-REG.BURNER.STD.
RESNGA
2006
20
55.360
4.606
0.8
RH2NGA005
RES.HEAT.R2: .05.NGA.INS-REG.BURNER.STD.
RESNGA
2006
20
55.360
4.606
0.8
RH3NGA005
RES.HEAT.R3: .05.NGA.INS-REG.BURNER.STD.
RESNGA
2006
20
55.360
4.606
0.8
RH4NGA005
RES.HEAT.R4: .05.NGA.INS-REG.BURNER.STD.
RESNGA
2006
20
55.360
4.606
0.8
RH1NHP005
RES.HEAT.R1: .05.NGA.INS-REG.HEAT PUMP.AIR.STD.
RESNGA
2006
15
125.53
6.288
2
RH2NHP005
RES.HEAT.R2: .05.NGA.INS-REG.HEAT PUMP.AIR.STD.
RESNGA
2006
15
125.53
6.288
2
RH3NHP005
RES.HEAT.R3: .05.NGA.INS-REG.HEAT PUMP.AIR.STD.
RESNGA
2006
15
125.53
6.288
2
RH4NHP005
RES.HEAT.R4: .05.NGA.INS-REG.HEAT PUMP.AIR.STD.
RESNGA
2006
15
125.53
6.288
2
RH1NGC005
RES.HEAT.R1: .05.NGA.INS-REG.HEAT PUMP.AIR.HICOOL.
RESNGA
2006
15
225.96
11.26
2
RH2NGC005
RES.HEAT.R2: .05.NGA.INS-REG.HEAT PUMP.AIR.HICOOL.
RESNGA
2006
15
225.96
11.26
2
RH3NGC005
RES.HEAT.R3: .05.NGA.INS-REG.HEAT PUMP.AIR.HICOOL.
RESNGA
2006
15
225.96
11.26
2
RH4NGC005
RES.HEAT.R4: .05.NGA.INS-REG.HEAT PUMP.AIR.HICOOL.
RESNGA
2006
15
225.96
11.26
2
RH1NGD005
RES.HEAT.R1: .05.NGA.INS-REG.BURNER.IMP.
RESNGA
2006
20
98.858
7.318
0.963
RH2NGD005
RES.HEAT.R2: .05.NGA.INS-REG.BURNER.IMP.
RESNGA
2006
20
98.858
7.318
0.963
RH3NGD005
RES.HEAT.R3: .05.NGA.INS-REG.BURNER.IMP.
RESNGA
2006
20
98.858
7.318
0.963
RH4NGD005
RES.HEAT.R4: .05.NGA.INS-REG.BURNER.IMP.
RESNGA
2006
20
98.858
7.318
0.963
RH1NGS005
RES.HEAT.R1: .05.NGA.INS-REG.SOLAR
RESNGA
2006
20
1403.8
70.25
0.72
RH2NGS005
RES.HEAT.R2: .05.NGA.INS-REG.SOLAR
RESNGA
2006
20
1403.8
70.25
0.72
RH3NGS005
RES.HEAT.R3: .05.NGA.INS-REG.SOLAR
RESNGA
2006
20
1403.8
70.25
0.72
RH4NGS005
RES.HEAT.R4: .05.NGA.INS-REG.SOLAR
RESNGA
2006
20
1403.8
70.25
0.72 84
85 Tech. Name
Technology Description
Comm.-IN
YEAR
LIFE
INVCOST
FIXOM
EFF
RH1HET005
RES.HEAT.R1: .05.HET.INS-REG.EXCHANGER.
RESHET
2006
30
540.11
26.88
0.93
RH2HET005
RES.HEAT.R2: .05.HET.INS-REG.EXCHANGER.
RESHET
2006
30
540.11
26.88
0.93
RH3HET005
RES.HEAT.R3: .05.HET.INS-REG.EXCHANGER.
RESHET
2006
30
540.11
26.88
0.93
RH4HET005
RES.HEAT.R4: .05.HET.INS-REG.EXCHANGER.
RESHET
2006
30
540.11
26.88
0.93
RH1DSB005
RES.HEAT.R1: .05.DST.INS-REG.BURNER.NEW.
RESDST
2006
20
98.858
4.483
0.87
RH2DSB005
RES.HEAT.R2: .05.DST.INS-REG.BURNER.NEW.
RESDST
2006
20
98.858
4.483
0.87
RH3DSB005
RES.HEAT.R3: .05.DST.INS-REG.BURNER.NEW.
RESDST
2006
20
98.858
4.483
0.87
RH4DSB005
RES.HEAT.R4: .05.DST.INS-REG.BURNER.NEW.
RESDST
2006
20
98.858
4.483
0.87
RH1NGE005
RES.HEAT.R1: .05.NGA.INS-REG.BURNER.NEW.
RESNGA
2006
20
98.858
6.694
0.88
RH2NGE005
RES.HEAT.R2: .05.NGA.INS-REG.BURNER.NEW.
RESNGA
2006
20
98.858
6.694
0.88
RH3NGE005
RES.HEAT.R3: .05.NGA.INS-REG.BURNER.NEW.
RESNGA
2006
20
98.858
6.694
0.88
RH4NGE005
RES.HEAT.R4: .05.NGA.INS-REG.BURNER.NEW.
RESNGA
2006
20
98.858
6.694
0.88
RH1BIO005
RES.HEAT.R1: .05.BIO.INS-REG.WOODSTOVES.
RESBIO
2006
30
94.779
1.008
0.25
RH2BIO005
RES.HEAT.R2: .05.BIO.INS-REG.WOODSTOVES.
RESBIO
2006
30
94.779
1.008
0.25
RH3BIO005
RES.HEAT.R3: .05.BIO.INS-REG.WOODSTOVES.
RESBIO
2006
30
94.779
1.008
0.25
RH4BIO005
RES.HEAT.R4: .05.BIO.INS-REG.WOODSTOVES.
RESBIO
2006
30
94.779
1.008
0.25
RH1COA005
RES.HEAT.R1: .05.COA.INS-REG.BURNER.
RESCOA
2006
20
98.858
4.954
0.6
RH2COA005
RES.HEAT.R2: .05.COA.INS-REG.BURNER.
RESCOA
2006
20
98.858
4.954
0.6
RH3COA005
RES.HEAT.R3: .05.COA.INS-REG.BURNER.
RESCOA
2006
20
98.858
4.954
0.6
RH4COA005
RES.HEAT.R4: .05.COA.INS-REG.BURNER.
RESCOA
2006
20
98.858
4.954
0.6
RH1GEO005
RES.HEAT.R1: .05.GEO.INS-REG.EXCHANGER.
RESGEO
2006
30
14.077
0.194
0.93
RH2GEO005
RES.HEAT.R2: .05.GEO.INS-REG.EXCHANGER.
RESGEO
2006
30
14.077
0.194
0.93
RH3GEO005
RES.HEAT.R3: .05.GEO.INS-REG.EXCHANGER.
RESGEO
2006
30
14.077
0.194
0.93
RH4GEO005
RES.HEAT.R4: .05.GEO.INS-REG.EXCHANGER.
RESGEO
2006
30
14.077
0.194
0.93
RH1HFO005
RES.HEAT.R1: .05.HFO.INS-REG.BURNER.
RESHFO
2006
20
48
0.694
0.75
RH2HFO005
RES.HEAT.R2: .05.HFO.INS-REG.BURNER.
RESHFO
2006
20
48
0.694
0.75
85
Tech. Name
Technology Description
Comm.-IN
YEAR
LIFE
INVCOST
FIXOM
EFF
RH3HFO005
RES.HEAT.R3: .05.HFO.INS-REG.BURNER.
RESHFO
2006
20
48
0.694
0.75
RH4HFO005
RES.HEAT.R4: .05.HFO.INS-REG.BURNER.
RESHFO
2006
20
48
0.694
0.75
Space cooling RC1ELC005
RES.COOL.R1: .05.ELC.INS-REG.CENTRAL.STD.
RESELC
2006
15
372.85
7.408
2.93
RC2ELC005
RES.COOL.R2: .05.ELC.INS-REG.CENTRAL.STD.
RESELC
2006
15
372.85
7.408
2.93
RC3ELC005
RES.COOL.R3: .05.ELC.INS-REG.CENTRAL.STD.
RESELC
2006
15
372.85
7.408
2.93
RC4ELC005
RES.COOL.R4: .05.ELC.INS-REG.CENTRAL.STD.
RESELC
2006
15
372.85
7.408
2.93
RC1ELA005
RES.COOL.R1: .05.ELC.INS-REG.HEAT PUMP.AIR.STD.
RESELC
2006
15
242.66
4.853
2.75
RC2ELA005
RES.COOL.R2: .05.ELC.INS-REG.HEAT PUMP.AIR.STD.
RESELC
2006
15
242.66
4.853
2.75
RC3ELA005
RES.COOL.R3: .05.ELC.INS-REG.HEAT PUMP.AIR.STD.
RESELC
2006
15
242.66
4.853
2.75
RC4ELA005
RES.COOL.R4: .05.ELC.INS-REG.HEAT PUMP.AIR.STD.
RESELC
2006
15
242.66
4.853
2.75
RC1ELB005
RES.COOL.R1: .05.ELC.INS-REG.HEAT PUMP.AIR.IMP.
RESELC
2006
15
310.71
5.649
3.52
RC2ELB005
RES.COOL.R2: .05.ELC.INS-REG.HEAT PUMP.AIR.IMP.
RESELC
2006
15
310.71
5.649
3.52
RC3ELB005
RES.COOL.R3: .05.ELC.INS-REG.HEAT PUMP.AIR.IMP.
RESELC
2006
15
310.71
5.649
3.52
RC4ELB005
RES.COOL.R4: .05.ELC.INS-REG.HEAT PUMP.AIR.IMP.
RESELC
2006
15
310.71
5.649
3.52
RC1ELD005
RES.COOL.R1: .05.ELC.INS-REG.ROOM.STD.
RESELC
2006
15
90.417
1.806
3.43
RC2ELD005
RES.COOL.R2: .05.ELC.INS-REG.ROOM.STD.
RESELC
2006
15
90.417
1.806
3.43
RC3ELD005
RES.COOL.R3: .05.ELC.INS-REG.ROOM.STD.
RESELC
2006
15
90.417
1.806
3.43
RC4ELD005
RES.COOL.R4: .05.ELC.INS-REG.ROOM.STD.
RESELC
2006
15
90.417
1.806
3.43
RC1ELE005
RES.COOL.R1: .05.ELC.INS-REG.HEAT PUMP.AIR.ADV.
RESELC
2006
15
388.39
7.767
4.31
RC2ELE005
RES.COOL.R2: .05.ELC.INS-REG.HEAT PUMP.AIR.ADV.
RESELC
2006
15
388.39
7.767
4.31
RC3ELE005
RES.COOL.R3: .05.ELC.INS-REG.HEAT PUMP.AIR.ADV.
RESELC
2006
15
388.39
7.767
4.31
RC4ELE005
RES.COOL.R4: .05.ELC.INS-REG.HEAT PUMP.AIR.ADV.
RESELC
2006
15
388.39
7.767
4.31
RC1ELF005
RES.COOL.R1: .05.GEO.INS-REG.HEAT PUMP.GROUND.STD.
RESELC
2006
15
466.07
8.604
4.1
RC2ELF005
RES.COOL.R2: .05.GEO.INS-REG.HEAT PUMP.GROUND.STD.
RESELC
2006
15
466.07
8.604
4.1
RC3ELF005
RES.COOL.R3: .05.GEO.INS-REG.HEAT PUMP.GROUND.STD.
RESELC
2006
15
466.07
8.604
4.1 86
87 Tech. Name
Technology Description
Comm.-IN
YEAR
LIFE
INVCOST
FIXOM
EFF
RC4ELF005
RES.COOL.R4: .05.GEO.INS-REG.HEAT PUMP.GROUND.STD.
RESELC
2006
15
466.07
8.604
4.1
RC1NGA005
RES.COOL.R1: .05.NGA.INS-REG.HEAT PUMP.AIR.STD.
RESNGA
2006
15
310.71
6.214
1.05
RC2NGA005
RES.COOL.R2: .05.NGA.INS-REG.HEAT PUMP.AIR.STD.
RESNGA
2006
15
310.71
6.214
1.05
RC3NGA005
RES.COOL.R3: .05.NGA.INS-REG.HEAT PUMP.AIR.STD.
RESNGA
2006
15
310.71
6.214
1.05
RC4NGA005
RES.COOL.R4: .05.NGA.INS-REG.HEAT PUMP.AIR.STD.
RESNGA
2006
15
310.71
6.214
1.05
RC1NGB005
RES.COOL.R1: .05.NGA.INS-REG.CENTRAL.NEW.
RESNGA
2006
15
419.46
9.990
4.41
RC2NGB005
RES.COOL.R2: .05.NGA.INS-REG.CENTRAL.NEW.
RESNGA
2006
15
419.46
9.990
4.41
RC3NGB005
RES.COOL.R3: .05.NGA.INS-REG.CENTRAL.NEW.
RESNGA
2006
15
419.46
9.990
4.41
RC4NGB005
RES.COOL.R4: .05.NGA.INS-REG.CENTRAL.NEW.
RESNGA
2006
15
419.46
9.990
4.41
RC1ELG005
RES.COOL.R1: .05.ELC.INS-REG.ROOM.NEW.
RESELC
2006
15
110.61
2.236
3.52
RC2ELG005
RES.COOL.R2: .05.ELC.INS-REG.ROOM.NEW.
RESELC
2006
15
110.61
2.236
3.52
RC3ELG005
RES.COOL.R3: .05.ELC.INS-REG.ROOM.NEW.
RESELC
2006
15
110.61
2.236
3.52
RC4ELG005
RES.COOL.R4: .05.ELC.INS-REG.ROOM.NEW.
RESELC
2006
15
110.61
2.236
3.52
RC1NGC015
RES.COOL.R1: .15.NGA.INS-REG.HEAT
RESNGA
2015
15
466.07
9.846
1.2
RESNGA
2015
15
466.07
9.846
1.2
RESNGA
2015
15
466.07
9.846
1.2
RESNGA
2015
15
466.07
9.846
1.2
PUMP.AIR.HICOOL.NEW. RC2NGC015
RES.COOL.R2: .15.NGA.INS-REG.HEAT PUMP.AIR.HICOOL.NEW.
RC3NGC015
RES.COOL.R3: .15.NGA.INS-REG.HEAT PUMP.AIR.HICOOL.NEW.
RC4NGC015
RES.COOL.R4: .15.NGA.INS-REG.HEAT PUMP.AIR.HICOOL.NEW.
RC1GEO005
RES.COOL.R1: .05.GEO.INS-REG.HEAT PUMP.IMP.
RESGEO
2006
15
350
2.777
4.2
RC2GEO005
RES.COOL.R2: .05.GEO.INS-REG.HEAT PUMP.IMP.
RESGEO
2006
15
350
2.777
4.2
RC3GEO005
RES.COOL.R3: .05.GEO.INS-REG.HEAT PUMP.IMP.
RESGEO
2006
15
350
2.777
4.2
RC4GEO005
RES.COOL.R4: .05.GEO.INS-REG.HEAT PUMP.IMP.
RESGEO
2006
15
350
2.777
4.2
87
Tech. Name
Technology Description
Comm.-IN
YEAR
LIFE
INVCOST
FIXOM
EFF
RESELC
2006
10
0.1
1.944
1
Miscellaneous all electric equipment, REA REAELC005
RES: .05.ELC.EQUIPMENT.MISCELLANEOUS. Residential Other
ROTDST005
Other Residential Distillate equipment New
RESDST
2006
10
0.2
2
1
ROTHFO005
Other Residential Heavy Fuel Oil equipment New
RESHFO
2006
10
0.2
2
1
ROTKER005
Other Residential Kerosene equipment New
RESKER
2006
10
0.2
2
1
ROTCOA005
Other Residential Coal equipment New
RESCOA
2006
10
0.2
2
1
ROTGEO005
Other Residential Geothermal equipment New
RESGEO
2006
10
0.2
2
1
ROTSOL005
Other Residential Solar equipment New
RESSOL
2006
10
0.2
2
1
ROTBIO005
Other Residential Biomass equipment New
RESBIO
2006
10
0.2
2
1
ROTHET005
Other District Heat New
RESHET
2006
10
0.2
2
1
ROTLPG005
Other Residential LPG equipment New
RESLPG
2006
10
0.2
2
1
ROTNGA005
Other Residential Natural Gas equipment New
RESNGA
2006
10
0.2
2
1
88
89 6.5
Base-year calibration
Residential sector final consumption by fuel has been calibrated to IEA extended energy balance 2005 data. Because neither the IEA Energy Balances nor any other comprehensive database provides data at the energy service level, expert judgment is used to define the split of fuel consumption between end-use energy service demands. Table 6-5 provides the split of residential fuel consumptions at a global level. Similar tables have been generated for each region to split fuel consumption for various energy-services. Fuels presented in Table 6-5 are the same as the commodities (commodity out) in the sector fuel technology table (Table 6-2), which defines the sector fuel technologies. The base-year residential sector final consumption by fuel has been calibrated.
Natural Gas
Total
Lighting
Electric Energy
Miscellaneous
Other Energy
Residential
Washers Dishwasher
Clothes
Cooking
Residential
Clothes Drying
and Freezers
Refrigerators
Water Heating
Space Heating
Space Cooling
Table 6-5: Base-year residential sector final energy consumption
1702
0
5105
0
0
10209
0
0
0
0
0
17015
952
0
2221
0
0
0
0
0
0
0
0
3173
57
0
0
0
0
0
0
0
0
0
0
57
0
0
0
0
0
115
0
0
0
0
2180
2295
Coal
568
0
853
0
0
1421
0
0
0
0
0
2842
LPG
214
0
643
0
0
3428
0
0
0
0
0
4285
3120
0
6241
0
0
21842
0
0
0
0
0
31204
151
302
756
1512
15
302
121
15
0
2117
9831
15125
3972
0
0
0
0
0
0
0
0
0
0
3972
87
0
0
0
0
0
0
0
0
0
0
87
Solar
153
0
0
0
0
0
0
0
0
0
0
153
Total
10976
302
15818
1512
15
37318
121
15
0
2117
12011
80206
Distillate Heavy Kerosene
Biomass Electricity Heat Geothermal
6.6
References
International Energy Agency (IEA), World Energy Balances, 2009, ESDS International, (Mimas) University of Manchester
89
EFDA (2004). EFDA World TIMES Model, Final report, prepared by ORDECSYS, KanORS, HALOA, KUL. www.efda.org
90
7 Commercial Sector 7.1
Introduction
Commercial sector base-year final energy consumption is calibrated in the residential sector Base-Year template, which has separate sheets for commercial sector IEA data, sector fuel data, end-use technology data and emissions data. There are separate sheets available for technology data for each energy-service demand. 7.2
Energy services demand
The commercial sector includes eight energy service demands for each region as presented in Table 7-1. Some segments of the commercial sector energy-services are identified using more than one code, which means that the demand can be disaggregated in four or less sub-regions. Currently, USA and CAN have four and three geographic regions, respectively, while AFR, CHI, IND, MEA and MEX each have two ‗sub-regions‘, corresponding to rural and urban areas. When no sub-regions have been defined, the codes for sub-region 1 are used by default (CH1, CH1, CC1). The energy-service demands for the future period (2005-2100) are projected using appropriate drivers and elasticity. Details of drivers and elasticities are presented in Section 2.3 and Chapter 3. Projected energy-service demands are presented in Figure 7-1. Table 7-1: Energy-services in commercial sector Energy-service
Unit
Code
Commercial Cooling
PJ
CC1, CC2, CC3, CC4
Commercial Cooking
PJ
CCK
Commercial Space Heat
PJ
CH1, CH2, CH3, CH4
Commercial Hot Water
PJ
CHW
Commercial Lighting
PJ
CLA
Energy-service
Unit
Code
Commercial Office
PJ
COE
PJ
CRF
Equipment Commercial Refrigeration
Projected energy-service demands
7
CC1 CC2 CC3
6
Index (2005=1)
CC4 5
CCK CH1
4
CH2 CH3
3
CH4 CHW
2
CLA COE
1
COT CRF
0 2000 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100
Figure 7-1: Projected energy-service demands in commercial sector 7.3
Sector fuels
The COM_Fuels sheet in the Base-Year template contains the technologies created to produce aggregated residential fuels including electricity and heat. The technologies created to produce aggregated fuels (Fuel Tech) are named uniformly using the name of the aggregated fuels as specified in the column Commodity OUT plus three zero (000 for existing technology in the base-year). Their description changes according to the fuel (e.g. Fuel Tech - Coal (RES) or Fuel Tech - Natural Gas (RES). The Base-Year template contains details of existing fuel technologies (Table 7-2) s as well as new fuel technologies (Table 7-3) for commercial sector. Commercial sector emissions factor to capture commercial sector emissions are also included in the Base-Year template.
92
93 Table 7-2: commercial sector fuel technologies-existing Tech. Name
Technology Description
Com.-IN
Com.-OUT
COMNGA000
Fuel Tech - Natural Gas Mix (COM) - Existing
GASNGA
COMNGA
GASGWG GASCOG COMDST000
Fuel Tech - Diesel (COM) - Existing
OILDST
COMDST
OILGSL OILNSP COMHFO000
Fuel Tech - Heavy Fuel Oil (COM) - Existing
OILHFO
COMHFO
OILCRD COMKER000
Fuel Tech - Kerosene (COM) - Existing
OILKER
COMKER
COMCOA000
Fuel Tech - Coal (COM) - Existing
COAHCO
COMCOA
COABCO COAOVC COMLPG000
Fuel Tech - Liquefied Petroleum Gases (COM) -
OILLPG
COMLPG
BIOBSL
COMBIO
Existing COMBIO000
Fuel Tech - Biofuels (COM) - Existing
BIOCHR BIOGAS BIOBMU BIOBIN COMGEO000
Fuel Tech - Geothermal (COM) - Existing
GEO
COMGEO
COMSOL000
Fuel Tech - Solar (COM) - Existing
SOL
COMSOL
COMELC000
Fuel Tech - Electricity (COM)
ELCC
COMELC
ELCD COMHET000
Fuel Tech - Heat (COM)
HET
COMHET
Table 7-3: Commercial sector fuel technologies-new Tech. Name
Technology Description
Com.-IN
Com.-OUT
COMNGA005
Fuel Tech - Natural Gas Mix (COM) - New
GASNGA
COMNGA
GASGWG GASCOG COMDST005
Fuel Tech - Diesel (COM) - New
OILDST
COMDST
OILGSL OILNSP COMHFO005
Fuel Tech - Heavy Fuel Oil (COM) - New
OILHFO
COMHFO
OILCRD COMKER005
93
Fuel Tech - Kerosene (COM) - New
OILKER
COMKER
Tech. Name
Technology Description
Com.-IN
Com.-OUT
COMCOA005
Fuel Tech - Coal (COM) - New
COAHCO
COMCOA
COABCO COAOVC COMLPG005
Fuel Tech - Liquefied Petroleum Gases (COM) -
OILLPG
COMLPG
BIOBSL
COMBIO
New COMBIO005
Fuel Tech - Biofuels (COM) - New
BIOCHR BIOGAS BIOBMU BIOBIN COMSOL005
Fuel Tech - Solar (COM) - New
SOL
COMSOL
COMGEO005
Fuel Tech - Geothermal (COM) - New
GEO
COMGEO
COMGEO105
Fuel Tech - Geothermal (COM) - New
GEO
COMGEO
COMGEO205
Fuel Tech - Geothermal (COM) - New
GEO
COMGEO
COMHET005
Fuel Tech - Heat (COM) - New
HET
COMHET
7.4
Technologies
There are a number of existing technologies modelled for each energy service demand in the Base-Year template for each region and sub-region. For each energy service demand, a number of technologies are in competition to satisfy the demand. They are characterized by an efficiency, an annual utilization factor, a lifetime, operation costs, and six seasonal share coefficients (summer-day, summer-night, intermediary-day, intermediary-night, winterday, winter-night). No future investment is allowed in the existing technologies. A list of new technologies are modelled in new technology sheet ―SubRes_B-NewTech‖. These technologies (listed in Table 7-4) are available after the first period (base-year) and progressively replace the existing ones as they reach the end of their technology life assumptions. In addition to parameters specified for existing technologies, new technology descriptions include information such as technology cost. Technologies are always identified with a nine-character code (e.g. CH1DST005): the first three letters refer to the end-use (e.g. CH1 for commercial space heating); the next three letters for the fuel consumed by the technology (e.g. DST for diesel). When there is more than one technology that consumes the same fuel, some variants are used to avoid repeated codes (e.g. DSA or any code beginning with D* for diesel). The last three digits for the year of the technology‘s first availability (e.g. 94
95 006 for 2006). The parameters such as cost, efficiency, etc., can improve over the years with vintages. Regional specific hurdle rates, which is used to annualised the investment cost, are used for commercial end-use technologies (Figure 7-2). 35%
Hurdle rate f or commercial sector technologies
30%
25% 20% 15%
10% 5% 0%
AFR AUS CAN CHI CSA EEU FSU IND JPN MEA MEX ODA SKO USA WEU UK
Figure 7-2: Regional specific hurdle rate for end-use technologies
95
Table 7-4: Commercial sector end-use technologies-new Tech. Name
Technology Description
Com.-IN
YEAR
LIFE
INVCOST
FIXOM
EFF
Commercial Lighting CLAFLE005
COM.LIGH: .05.ELC.FLUORESCENT.BASELINE.
COMELC
2006
15
66.737
10.010
4.5
CLAICE005
COM.LIGH: .05.ELC.INCANDESCENT.
COMELC
2006
15
7.7344
15.468
1
CLAHID005
COM.LIGH: .05.ELC.MERCURY.
COMELC
2006
15
88.393
4.9107
7
CLAHAE005
COM.LIGH: .05.ELC.HALOGEN.
COMELC
2006
15
4.3533
0.8706
2
CLACFL005
COM.LIGH: .05.ELC.FLUO.LAMP.COMPACT.
COMELC
2006
15
9.9222
2.6459
4
CLAFLA005
COM.LIGH: .05.ELC.FLUORESCENT.RAPIDSTART.
COMELC
2006
15
85.719
14.286
6
CLAFLB010
COM.LIGH: .05.ELC.FLUORESCENT.ELECTRODELESS.
COMELC
2008
15
27.623
1.3811
8
CLASUL005
COM.LIGH: .05.ELC.SULFER.
COMELC
2006
15
99.443
6.2151
7
CLAKER005
COM.LIGH: .05.KER.LAMP.
COMKER
2006
10
20
1.3888
0.5
Commercial water heating CHWELD005
COM: .05.ELC.WATER HEATER.RESISTANCE.STD.
COMELC
2006
15
18
0
0.9
CHWELC005
COM: .05.ELC.WATER HEATER.RESISTANCE.IMP.
COMELC
2006
15
21
0
0.93
2008
15
21
0
0.944
2018
15
21
0
0.958
2028
15
21
0
0.972
2038
15
21
0
0.986
2048
15
21
0
1
2006
15
45
0
1.86
2008
15
45
0
1.888
2018
15
45
0
1.916
2028
15
45
0
1.944
2038
15
45
0
1.972
CHWELA005
COM: .05.ELC.WATER HEATER.HEAT PUMP.STD.
COMELC
96
97 Tech. Name CHWELB005
Technology Description COM: .05.ELC.WATER HEATER.HEAT PUMP.ADV.
Com.-IN COMELC
YEAR
LIFE
INVCOST
FIXOM
EFF
2048
15
45
0
2
2006
15
60
0
2.5
2008
15
60
0
2.6
2018
15
60
0
2.7
2028
15
60
0
2.8
2038
15
60
0
2.9
2048
15
60
0
3
CHWDST005
COM: .05.DST.WATER HEATER.STD.
COMDST
2006
15
35
0
0.6
CHWDSA005
COM: .05.DST.WATER HEATER.IMP.
COMDST
2006
15
45
0
0.78
CHWKER005
COM: .05.KER.WATER HEATER.STD.
COMKER
2006
15
35.740
0
0.6
CHWHFO005
COM: .05.HFO.WATER HEATER.STD.
COMHFO
2006
15
35
0
0.6
CHWCOA005
COM: .05.COA.WATER HEATER.STD.
COMCOA
2006
15
60
0
0.55
CHWLPG005
COM: .05.LPG.WATER HEATER.STD.
COMLPG
2006
15
35
0
0.6
CHWNGA005
COM: .05.NGA.WATER HEATER.STD.
COMNGA
2006
15
28
0
0.86
2008
28
0
0.886
2018
28
0
0.912
2028
28
0
0.938
2038
28
0
0.964
2048
28
0
0.99
33
0
0.9
2008
33
0
0.92
2018
33
0
0.94
2028
33
0
0.96
2038
33
0
0.98
2048
33
0
1
3
0
0.95
CHWNGB005
CHWHET005 97
COM: .05.NGA.WATER HEATER.IMP.
COM: .05.HET.WATER HEATER.STD.
COMNGA
COMHET
2006
2006
15
15
Tech. Name
Technology Description
Com.-IN
YEAR
LIFE
INVCOST
FIXOM
EFF
CHWGEO005
COM: .05.GEO.WATER HEATER.STD.
COMGEO
2006
15
600
0
1
CHWSOL005
COM: .05.SOL.WATER HEATER.STD.
COMSOL
2006
15
100
0
1
2008
90
0
1
2018
80
0
1
2028
70
0
1
2038
60
0
1
2048
50
0
1
CHWSOD005
COM: .05.SOL.WATER HEATER.DST.
COMDST
2008
15
250
0
0.54
CHWBIO005
COM: .05.BIO.WATER HEATER.STD.
COMBIO
2006
20
60
0
0.5
Commercial space heating CH1ERS005
COM.HEAT.R1: .05.ELC.RESISTANCE.
COMELC
2006
20
50
0.98
CH2ERS005
COM.HEAT.R2: .05.ELC.RESISTANCE.
COMELC
2006
20
50
0.98
CH3ERS005
COM.HEAT.R3: .05.ELC.RESISTANCE.
COMELC
2006
20
50
0.98
CH4ERS005
COM.HEAT.R4: .05.ELC.RESISTANCE.
COMELC
2006
20
50
0.98
CH1EHP005
COM.HEAT.R1: .05.ELC.HEAT PUMP.AIR.STD.
COMELC
2006
15
80
2.7
2008
76.8
2.88
2018
73.6
3.06
2028
70.4
3.24
2038
67.2
3.42
2048
64
3.6
80
2.7
2008
76.8
2.88
2018
73.6
3.06
2028
70.4
3.24
2038
67.2
3.42
2048
64
3.6
CH2EHP005
COM.HEAT.R2: .05.ELC.HEAT PUMP.AIR.STD.
COMELC
2006
15
98
99 Tech. Name
Technology Description
Com.-IN
YEAR
LIFE
INVCOST
CH3EHP005
COM.HEAT.R3: .05.ELC.HEAT PUMP.AIR.STD.
COMELC
2006
15
80
2.7
2008
76.8
2.88
2018
73.6
3.06
2028
70.4
3.24
2038
67.2
3.42
2048
64
3.6
80
2.7
2008
76.8
2.88
2018
73.6
3.06
2028
70.4
3.24
2038
67.2
3.42
2048
64
3.6
85
3
2008
81.6
3.24
2018
78.2
3.48
2028
74.8
3.72
2038
71.4
3.96
2048
68
4.2
85
3
2008
81.6
3.24
2018
78.2
3.48
2028
74.8
3.72
2038
71.4
3.96
2048
68
4.2
85
3
81.6
3.24
CH4EHP005
CH1ELB005
CH2ELB005
CH3ELB005
COM.HEAT.R4: .05.ELC.HEAT PUMP.AIR.STD.
COM.HEAT.R1: .05.ELC.HEAT PUMP.AIR.IMP.
COM.HEAT.R2: .05.ELC.HEAT PUMP.AIR.IMP.
COM.HEAT.R3: .05.ELC.HEAT PUMP.AIR.IMP.
COMELC
COMELC
COMELC
COMELC
2006
2006
2006
2006 2008
99
15
15
15
15
FIXOM
EFF
Tech. Name
CH4ELB005
CH1ELD005
CH2ELD005
CH3ELD005
Technology Description
COM.HEAT.R4: .05.ELC.HEAT PUMP.AIR.IMP.
COM.HEAT.R1: .05.GEO.HEAT PUMP.GROUND.IMP.
COM.HEAT.R2: .05.GEO.HEAT PUMP.GROUND.IMP.
COM.HEAT.R3: .05.GEO.HEAT PUMP.GROUND.IMP.
Com.-IN
COMELC
COMELC
COMELC
COMELC
YEAR
LIFE
INVCOST
FIXOM
EFF
2018
78.2
3.48
2028
74.8
3.72
2038
71.4
3.96
2048
68
4.2
85
3
2008
81.6
3.24
2018
78.2
3.48
2028
74.8
3.72
2038
71.4
3.96
2048
68
4.2
90
4.1
2008
86.4
4.48
2018
82.8
4.86
2028
79.2
5.24
2038
75.6
5.62
2048
72
6
90
4.1
2008
86.4
4.48
2018
82.8
4.86
2028
79.2
5.24
2038
75.6
5.62
2048
72
6
90
4.1
2008
86.4
4.48
2018
82.8
4.86
2028
79.2
5.24
2006
2006
2006
2006
15
15
15
15
100
101 Tech. Name
CH4ELD005
CH1ELE010
CH2ELE010
CH3ELE010
CH4ELE010
101
Technology Description
COM.HEAT.R4: .05.GEO.HEAT PUMP.GROUND.IMP.
COM.HEAT.R1: .10.GEO.HEAT PUMP.GROUND.ADV.
COM.HEAT.R2: .10.GEO.HEAT PUMP.GROUND.ADV.
COM.HEAT.R3: .10.GEO.HEAT PUMP.GROUND.ADV.
COM.HEAT.R4: .10.GEO.HEAT PUMP.GROUND.ADV.
Com.-IN
COMELC
COMELC
COMEL
COMELC
COMELC
YEAR
LIFE
INVCOST
FIXOM
EFF
2038
75.6
5.62
2048
72
6
90
4.1
2008
86.4
4.48
2018
82.8
4.86
2028
79.2
5.24
2038
75.6
5.62
2048
72
6
95
5
2018
90.25
5.5
2028
85.5
6
2038
80.75
6.5
2048
76
7
95
5
2018
90.25
5.5
2028
85.5
6
2038
80.75
6.5
2048
76
7
95
5
2018
90.25
5.5
2028
85.5
6
2038
80.75
6.5
2048
76
7
95
5
2018
90.25
5.5
2028
85.5
6
2006
2008
2008
2008
2008
15
20
20
20
20
Tech. Name
CH1DSB010
CH2DSB010
CH3DSB010
CH4DSB010
CH1DSA005
Technology Description
COM.HEAT.R1: .10.DST.BURNER.ADV.
COM.HEAT.R2: .10.DST.BURNER.ADV.
COM.HEAT.R3: .10.DST.BURNER.ADV.
COM.HEAT.R4: .10.DST.BURNER.ADV.
COM.HEAT.R1: .05.DST.BURNER.NEW.
Com.-IN
COMDST
COMDST
COMDST
COMDST
COMDST
YEAR
LIFE
INVCOST
FIXOM
EFF
2038
80.75
6.5
2048
76
7
105
0.92
2018
99.75
0.935
2028
94.5
0.95
2038
89.25
0.965
2048
84
0.98
105
0.92
2018
99.75
0.935
2028
94.5
0.95
2038
89.25
0.965
2048
84
0.98
105
0.92
2018
99.75
0.935
2028
94.5
0.95
2038
89.25
0.965
2048
84
0.98
105
0.92
2018
99.75
0.935
2028
94.5
0.95
2038
89.25
0.965
2048
84
0.98
90
0.85
2008
89.1
0.868
2018
88.2
0.886
2028
87.3
0.904
2008
2008
2008
2008
2006
20
20
20
20
20
102
103 Tech. Name
CH2DSA005
CH3DSA005
CH4DSA005
CH1DST005
103
Technology Description
COM.HEAT.R2: .05.DST.BURNER.NEW.
COM.HEAT.R3: .05.DST.BURNER.NEW.
COM.HEAT.R4: .05.DST.BURNER.NEW.
COM.HEAT.R1: .05.DST.BURNER.STD.
Com.-IN
COMDST
COMDST
COMDST
COMDST
YEAR
LIFE
INVCOST
FIXOM
EFF
2038
86.4
0.922
2048
85.5
0.94
90
0.85
2008
89.1
0.868
2018
88.2
0.886
2028
87.3
0.904
2038
86.4
0.922
2048
85.5
0.94
90
0.85
2008
89.1
0.868
2018
88.2
0.886
2028
87.3
0.904
2038
86.4
0.922
2048
85.5
0.94
90
0.85
2008
89.1
0.868
2018
88.2
0.886
2028
87.3
0.904
2038
86.4
0.922
2048
85.5
0.94
80
0.78
2008
79.2
0.81
2018
78.4
0.84
2028
77.6
0.87
2038
76.8
0.9
2048
76
0.93
2006
2006
2006
2006
20
20
20
20
Tech. Name
Technology Description
Com.-IN
YEAR
LIFE
INVCOST
CH2DST005
COM.HEAT.R2: .05.DST.BURNER.STD.
COMDST
2006
20
80
0.78
2008
79.2
0.81
2018
78.4
0.84
2028
77.6
0.87
2038
76.8
0.9
2048
76
0.93
80
0.78
2008
79.2
0.81
2018
78.4
0.84
2028
77.6
0.87
2038
76.8
0.9
2048
76
0.93
80
0.78
2008
79.2
0.81
2018
78.4
0.84
2028
77.6
0.87
2038
76.8
0.9
2048
76
0.93
100
0.89
2008
99
0.904
2018
98
0.918
2028
97
0.932
2038
96
0.946
2048
95
0.96
100
0.89
99
0.904
CH3DST005
CH4DST005
CH1DSD005
CH2DSD005
COM.HEAT.R3: .05.DST.BURNER.STD.
COM.HEAT.R4: .05.DST.BURNER.STD.
COM.HEAT.R1: .05.DST.BURNER.IMP.
COM.HEAT.R2: .05.DST.BURNER.IMP.
COMDST
COMDST
COMDST
COMDST
2006
2006
2006
2006 2008
20
20
20
20
FIXOM
EFF
104
105 Tech. Name
CH3DSD005
CH4DSD005
CH1LPG005
CH2LPG005
105
Technology Description
COM.HEAT.R3: .05.DST.BURNER.IMP.
COM.HEAT.R4: .05.DST.BURNER.IMP.
COM.HEAT.R1: .05.LPG.
COM.HEAT.R2: .05.LPG.
Com.-IN
COMDST
COMDST
COMLPG
COMLPG
YEAR
LIFE
INVCOST
FIXOM
EFF
2018
98
0.918
2028
97
0.932
2038
96
0.946
2048
95
0.96
100
0.89
2008
99
0.904
2018
98
0.918
2028
97
0.932
2038
96
0.946
2048
95
0.96
100
0.89
2008
99
0.904
2018
98
0.918
2028
97
0.932
2038
96
0.946
2048
95
0.96
80
0.78
2008
79.2
0.81
2018
78.4
0.84
2028
77.6
0.87
2038
76.8
0.9
2048
76
0.93
80
0.78
2008
79.2
0.81
2018
78.4
0.84
2028
77.6
0.87
2006
2006
2006
2006
20
20
20
20
Tech. Name
CH3LPG005
CH4LPG005
CH1KER005
CH2KER005
Technology Description
COM.HEAT.R3: .05.LPG.
COM.HEAT.R4: .05.LPG.
COM.HEAT.R1: .05.KER.
COM.HEAT.R2: .05.KER.
Com.-IN
COMLPG
COMLPG
COMKER
COMKER
YEAR
LIFE
INVCOST
FIXOM
EFF
2038
76.8
0.9
2048
76
0.93
80
0.78
2008
79.2
0.81
2018
78.4
0.84
2028
77.6
0.87
2038
76.8
0.9
2048
76
0.93
80
0.78
2008
79.2
0.81
2018
78.4
0.84
2028
77.6
0.87
2038
76.8
0.9
2048
76
0.93
80
0.78
2008
79.2
0.81
2018
78.4
0.84
2028
77.6
0.87
2038
76.8
0.9
2048
76
0.93
80
0.78
2008
79.2
0.81
2018
78.4
0.84
2028
77.6
0.87
2038
76.8
0.9
2048
76
0.93
2006
2006
2006
2006
20
20
20
20
106
107 Tech. Name
Technology Description
Com.-IN
YEAR
LIFE
INVCOST
CH3KER005
COM.HEAT.R3: .05.KER.
COMKER
2006
20
80
0.78
2008
79.2
0.81
2018
78.4
0.84
2028
77.6
0.87
2038
76.8
0.9
2048
76
0.93
80
0.78
2008
79.2
0.81
2018
78.4
0.84
2028
77.6
0.87
2038
76.8
0.9
2048
76
0.93
80
0.78
2008
79.2
0.81
2018
78.4
0.84
2028
77.6
0.87
2038
76.8
0.9
2048
76
0.93
80
0.78
2010
79.2
0.81
2020
78.4
0.84
2030
77.6
0.87
2040
76.8
0.9
2050
76
0.93
80
0.78
79.2
0.81
CH4KER005
CH1HFO005
CH2HFO005
CH3HFO005
COM.HEAT.R4: .05.KER.
COM.HEAT.R1: .05.HFO.BOILER.STD.
COM.HEAT.R2: .05.HFO.BOILER.STD.
COM.HEAT.R3: .05.HFO.BOILER.STD.
COMKER
COMHFO
COMHFO
COMHFO
2006
2006
2006
2006 2008
107
20
20
20
20
FIXOM
EFF
Tech. Name
CH4HFO005
CH1HFA005
CH2HFA005
CH3HFA005
CH4HFA005
Technology Description
COM.HEAT.R4: .05.HFO.BOILER.STD.
COM.HEAT.R1: .05.HFO.BURNER.ADV.
COM.HEAT.R2: .05.HFO.BURNER.ADV.
COM.HEAT.R3: .05.HFO.BURNER.ADV.
COM.HEAT.R4: .05.HFO.BURNER.ADV.
Com.-IN
COMHFO
COMHFO
COMHFO
COMHFO
COMHFO
YEAR
LIFE
INVCOST
FIXOM
EFF
2018
78.4
0.84
2028
77.6
0.87
2038
76.8
0.9
2048
76
0.93
80
0.78
2008
79.2
0.81
2018
78.4
0.84
2028
77.6
0.87
2038
76.8
0.9
2048
76
0.93
105
0.92
2008
99.75
0.935
2018
94.5
0.95
2028
89.25
0.965
2038
84
0.98
105
0.92
2018
99.75
0.935
2028
94.5
0.95
2038
89.25
0.965
2048
84
0.98
105
0.92
2018
99.75
0.935
2028
94.5
0.95
2038
89.25
0.965
2048
84
0.98
105
0.92
2006
2006
2008
2008
2008
20
20
20
20
20
108
109 Tech. Name
CH1HFB005
CH2HFB005
CH3HFB005
CH4HFB005
109
Technology Description
COM.HEAT.R1: .05.HFO.BURNER.IMP.
COM.HEAT.R2: .05.HFO.BURNER.IMP.
COM.HEAT.R3: .05.HFO.BURNER.IMP.
COM.HEAT.R4: .05.HFO.BURNER.IMP.
Com.-IN
COMHFO
COMHFO
COMHFO
COMHFO
YEAR
LIFE
INVCOST
FIXOM
EFF
2018
99.75
0.935
2028
94.5
0.95
2038
89.25
0.965
2048
84
0.98
100
0.89
2008
99
0.904
2018
98
0.918
2028
97
0.932
2038
96
0.946
2048
95
0.96
100
0.89
2008
99
0.904
2018
98
0.918
2028
97
0.932
2038
96
0.946
2048
95
0.96
100
0.89
2008
99
0.904
2018
98
0.918
2028
97
0.932
2038
96
0.946
2048
95
0.96
100
0.89
2008
99
0.904
2018
98
0.918
2028
97
0.932
2006
2006
2006
2006
20
20
20
20
Tech. Name
CH1NGB005
CH2NGB005
CH3NGB005
CH4NGB005
Technology Description
COM.HEAT.R1: .05.NGA.BURNER.IMP.
COM.HEAT.R2: .05.NGA.BURNER.IMP.
COM.HEAT.R3: .05.NGA.BURNER.IMP.
COM.HEAT.R4: .05.NGA.BURNER.IMP.
Com.-IN
COMNGA
COMNGA
COMNGA
COMNGA
YEAR
LIFE
INVCOST
FIXOM
EFF
2038
96
0.946
2048
95
0.96
70
0.88
2008
69.3
0.902
2018
68.6
0.924
2028
67.9
0.946
2038
67.2
0.968
2048
66.5
0.99
70
0.88
2008
69.3
0.902
2018
68.6
0.924
2028
67.9
0.946
2038
67.2
0.968
2048
66.5
0.99
70
0.88
2008
69.3
0.902
2018
68.6
0.924
2028
67.9
0.946
2038
67.2
0.968
2048
66.5
0.99
70
0.88
2008
69.3
0.902
2018
68.6
0.924
2028
67.9
0.946
2038
67.2
0.968
2048
66.5
0.99
2006
2006
2006
2006
20
20
20
20
110
111 Tech. Name
Technology Description
Com.-IN
YEAR
LIFE
INVCOST
CH1NGA005
COM.HEAT.R1: .05.NGA.BURNER.STD.
COMNGA
2006
20
60
0.8
2008
59.4
0.834
2018
58.8
0.868
2028
58.2
0.902
2038
57.6
0.936
2048
57
0.97
60
0.8
2008
59.4
0.834
2018
58.8
0.868
2028
58.2
0.902
2038
57.6
0.936
2048
57
0.97
60
0.8
2008
59.4
0.834
2018
58.8
0.868
2028
58.2
0.902
2038
57.6
0.936
2048
57
0.97
60
0.8
2008
59.4
0.834
2018
58.8
0.868
2028
58.2
0.902
2038
57.6
0.936
2048
57
0.97
80
0.963
79.2
0.974
CH2NGA005
CH3NGA005
CH4NGA005
CH1NGC005
COM.HEAT.R2: .05.NGA.BURNER.STD.
COM.HEAT.R3: .05.NGA.BURNER.STD.
COM.HEAT.R4: .05.NGA.BURNER.STD.
COM.HEAT.R1: .05.NGA.BURNER.ADV.
COMNGA
COMNGA
COMNGA
COMNGA
2006
2006
2006
2006 2008
111
20
20
20
20
FIXOM
EFF
Tech. Name
CH2NGC005
CH3NGC005
CH4NGC005
Technology Description
COM.HEAT.R2: .05.NGA.BURNER.ADV.
COM.HEAT.R3: .05.NGA.BURNER.ADV.
COM.HEAT.R4: .05.NGA.BURNER.ADV.
Com.-IN
COMNGA
COMNGA
COMNGA
YEAR
LIFE
INVCOST
FIXOM
EFF
2018
78.4
0.985
2028
77.6
0.997
2038
76.8
1.008
2048
76
1.02
80
0.963
2008
79.2
0.974
2018
78.4
0.985
2028
77.6
0.997
2038
76.8
1.008
2048
76
1.02
80
0.963
2008
79.2
0.974
2018
78.4
0.985
2028
77.6
0.997
2038
76.8
1.008
2048
76
1.02
80
0.963
2008
79.2
0.974
2018
78.4
0.985
2028
77.6
0.997
2038
76.8
1.008
2048
76
1.02
2006
2006
2006
20
20
20
CH1HET005
COM.HEAT.R1: .05.HET.EXCHANGER.
COMHET
2006
20
20
40.908
0.93
CH2HET005
COM.HEAT.R2: .05.HET.EXCHANGER.
COMHET
2006
20
20
40.908
0.93
CH3HET005
COM.HEAT.R3: .05.HET.EXCHANGER.
COMHET
2006
20
20
40.908
0.93
CH4HET005
COM.HEAT.R4: .05.HET.EXCHANGER.
COMHET
2006
20
20
40.908
0.93 112
113 Tech. Name
Technology Description
Com.-IN
YEAR
LIFE
INVCOST
FIXOM
EFF
CH1DSO005
COM.HEAT.R1: .05.DST.SOLAR.
COMDST
2006
20
900
0.72
CH2DSO005
COM.HEAT.R2: .05.DST.SOLAR.
COMDST
2006
20
900
0.72
CH3DSO005
COM.HEAT.R3: .05.DST.SOLAR.
COMDST
2006
20
900
0.72
CH4DSO005
COM.HEAT.R4: .05.DST.SOLAR.
COMDST
2006
20
900
0.72
CH1COA005
COM.HEAT.R1: .05.COA.BURNER.
COMCOA
2006
20
100
0.6
CH2COA005
COM.HEAT.R2: .05.COA.BURNER.
COMCOA
2006
20
100
0.6
CH3COA005
COM.HEAT.R3: .05.COA.BURNER.
COMCOA
2006
20
100
0.6
CH4COA005
COM.HEAT.R4: .05.COA.BURNER.
COMCOA
2006
20
100
0.6
CH1BIO005
COM.HEAT.R1: .05.BIO.BURNER.
COMBIO
2006
20
100
0.6
CH2BIO005
COM.HEAT.R2: .05.BIO.BURNER.
COMBIO
2006
20
100
0.6
CH3BIO005
COM.HEAT.R3: .05.BIO.BURNER.
COMBIO
2006
20
100
0.6
CH4BIO005
COM.HEAT.R4: .05.BIO.BURNER.
COMBIO
2006
20
100
0.6
CH1GEO005
COM.HEAT.R1: .05.GEO.EXCHANGER.
COMGEO
2006
30
2800
0.75
CH2GEO005
COM.HEAT.R2: .05.GEO.EXCHANGER.
COMGEO
2006
30
2800
0.75
CH3GEO005
COM.HEAT.R3: .05.GEO.EXCHANGER.
COMGEO
2006
30
2800
0.75
CH4GEO005
COM.HEAT.R4: .05.GEO.EXCHANGER.
COMGEO
2006
30
2800
0.75
CH1NHP005
COM.HEAT.R1: .05.NGA.HEAT PUMP.STD.
COMNGA
2006
20
125.53
2
CH2NHP005
COM.HEAT.R2: .05.NGA.HEAT PUMP.STD.
COMNGA
2006
20
125.53
2
CH3NHP005
COM.HEAT.R3: .05.NGA.HEAT PUMP.STD.
COMNGA
2006
20
125.53
2
CH4NHP005
COM.HEAT.R4: .05.NGA.HEAT PUMP.STD.
COMNGA
2006
20
125.53
2
Commercial space cooling CC1ELC005
COM.COOL.R1: .05.ELC.CHILLER.ROOFTOP.STD.
COMELC
2006
15
80.857
4.8226
3.1
CC2ELC005
COM.COOL.R2: .05.ELC.CHILLER.ROOFTOP.STD.
COMELC
2006
15
80.857
4.8226
3.1
CC3ELC005
COM.COOL.R3: .05.ELC.CHILLER.ROOFTOP.STD.
COMELC
2006
15
80.857
4.8226
3.1
CC4ELC005
COM.COOL.R4: .05.ELC.CHILLER.ROOFTOP.STD.
COMELC
2006
15
80.857
4.8226
3.1
CC1ELA005
COM.COOL.R1: .05.ELC.HEAT PUMP.AIR.STD.
COMELC
2006
15
154.21
7.7105
2.9
113
Tech. Name
Technology Description
Com.-IN
YEAR
LIFE
INVCOST
FIXOM
EFF
CC2ELA005
COM.COOL.R2: .05.ELC.HEAT PUMP.AIR.STD.
COMELC
2006
15
154.21
7.7105
2.9
CC3ELA005
COM.COOL.R3: .05.ELC.HEAT PUMP.AIR.STD.
COMELC
2006
15
154.21
7.7105
2.9
CC4ELA005
COM.COOL.R4: .05.ELC.HEAT PUMP.AIR.STD.
COMELC
2006
15
154.21
7.7105
2.9
CC1ELB005
COM.COOL.R1: .05.ELC.HEAT PUMP.AIR.IMP.
COMELC
2006
15
246.81
9.8726
5.28
CC2ELB005
COM.COOL.R2: .05.ELC.HEAT PUMP.AIR.IMP.
COMELC
2006
15
246.81
9.8726
5.28
CC3ELB005
COM.COOL.R3: .05.ELC.HEAT PUMP.AIR.IMP.
COMELC
2006
15
246.81
9.8726
5.28
CC4ELB005
COM.COOL.R4: .05.ELC.HEAT PUMP.AIR.IMP.
COMELC
2006
15
246.81
9.8726
5.28
CC1ELD005
COM.COOL.R1: .05.GEO.HEAT PUMP.GROUND.IMP.
COMELC
2006
15
296.18
9.8726
3.96
CC2ELD005
COM.COOL.R2: .05.GEO.HEAT PUMP.GROUND.IMP.
COMELC
2006
15
296.18
9.8726
3.96
CC3ELD005
COM.COOL.R3: .05.GEO.HEAT PUMP.GROUND.IMP.
COMELC
2006
15
296.18
9.8726
3.96
CC4ELD005
COM.COOL.R4: .05.GEO.HEAT PUMP.GROUND.IMP.
COMELC
2006
15
296.18
9.8726
3.96
CC1ELE010
COM.COOL.R1: .10.GEO.HEAT PUMP.GROUND.ADV.
COMELC
2008
15
296.18
8.4623
6.15
CC2ELE010
COM.COOL.R2: .10.GEO.HEAT PUMP.GROUND.ADV.
COMELC
2008
15
296.18
8.4623
6.15
CC3ELE010
COM.COOL.R3: .10.GEO.HEAT PUMP.GROUND.ADV.
COMELC
2008
15
296.18
8.4623
6.15
CC4ELE010
COM.COOL.R4: .10.GEO.HEAT PUMP.GROUND.ADV.
COMELC
2008
15
296.18
8.4623
6.15
CC1ELF005
COM.COOL.R1: .05.ELC.CHILLER.ROOFTOP.NEW.
COMELC
2006
20
76.217
3.6722
3.4
CC2ELF005
COM.COOL.R2: .05.ELC.CHILLER.ROOFTOP.NEW.
COMELC
2006
20
76.217
3.6722
3.4
CC3ELF005
COM.COOL.R3: .05.ELC.CHILLER.ROOFTOP.NEW.
COMELC
2006
20
76.217
3.6722
3.4
CC4ELF005
COM.COOL.R4: .05.ELC.CHILLER.ROOFTOP.NEW.
COMELC
2006
20
76.217
3.6722
3.4
CC1ELG005
COM.COOL.R1: .05.ELC.CHILLER.RECIPROCATING.NEW.
COMELC
2006
20
147.00
2.4877
3.6
CC2ELG005
COM.COOL.R2: .05.ELC.CHILLER.RECIPROCATING.NEW.
COMELC
2006
20
147.00
2.4877
3.6
CC3ELG005
COM.COOL.R3: .05.ELC.CHILLER.RECIPROCATING.NEW.
COMELC
2006
20
147.00
2.4877
3.6
CC4ELG005
COM.COOL.R4: .05.ELC.CHILLER.RECIPROCATING.NEW.
COMELC
2006
20
147.00
2.4877
3.6
CC1ELH005
COM.COOL.R1: .10.ELC.CHILLER.RECIPROCATING.IMP.
COMELC
2008
20
167.83
2.4615
3.8
CC2ELH005
COM.COOL.R2: .10.ELC.CHILLER.RECIPROCATING.IMP.
COMELC
2008
20
167.83
2.4615
3.8
CC3ELH005
COM.COOL.R3: .10.ELC.CHILLER.RECIPROCATING.IMP.
COMELC
2008
20
167.83
2.4615
3.8 114
115 Tech. Name
Technology Description
Com.-IN
YEAR
LIFE
INVCOST
FIXOM
EFF
CC4ELH005
COM.COOL.R4: .10.ELC.CHILLER.RECIPROCATING.IMP.
COMELC
2008
20
167.83
2.4615
3.8
CC1ELI005
COM.COOL.R1: .05.ELC.CHILLER.CENTRIFUGAL.NEW.
COMELC
2006
20
97.056
0.8237
6.4
CC2ELI005
COM.COOL.R2: .05.ELC.CHILLER.CENTRIFUGAL.NEW.
COMELC
2006
20
97.056
0.8237
6.4
CC3ELI005
COM.COOL.R3: .05.ELC.CHILLER.CENTRIFUGAL.NEW.
COMELC
2006
20
97.056
0.8237
6.4
CC4ELI005
COM.COOL.R4: .05.ELC.CHILLER.CENTRIFUGAL.NEW.
COMELC
2006
20
97.056
0.8237
6.4
CC1ELJ005
COM.COOL.R1: .15.ELC.CHILLER.CENTRIFUGAL.IMP.
COMELC
2013
20
107.08
0.8262
7.3
CC2ELJ005
COM.COOL.R2: .15.ELC.CHILLER.CENTRIFUGAL.IMP.
COMELC
2013
20
107.08
0.8262
7.3
CC3ELJ005
COM.COOL.R3: .15.ELC.CHILLER.CENTRIFUGAL.IMP.
COMELC
2013
20
107.08
0.8262
7.3
CC4ELJ005
COM.COOL.R4: .15.ELC.CHILLER.CENTRIFUGAL.IMP.
COMELC
2013
20
107.08
0.8262
7.3
CC1DST015
COM.COOL.R1: .15.DST.CHILLER.
COMDST
2013
20
180.74
2.5422
0.75
CC2DST015
COM.COOL.R2: .15.DST.CHILLER.
COMDST
2013
20
180.74
2.5422
0.75
CC3DST015
COM.COOL.R3: .15.DST.CHILLER.
COMDST
2013
20
180.74
2.5422
0.75
CC4DST015
COM.COOL.R4: .15.DST.CHILLER.
COMDST
2013
20
180.74
2.5422
0.75
CC1NGA005
COM.COOL.R1: .05.NGA.CHILLER.ABSORPTION.
COMNGA
2006
20
180.74
1.2200
1
CC2NGA005
COM.COOL.R2: .05.NGA.CHILLER.ABSORPTION.
COMNGA
2006
20
180.74
1.2200
1
CC3NGA005
COM.COOL.R3: .05.NGA.CHILLER.ABSORPTION.
COMNGA
2006
20
180.74
1.2200
1
CC4NGA005
COM.COOL.R4: .05.NGA.CHILLER.ABSORPTION.
COMNGA
2006
20
180.74
1.2200
1
CC1NGB005
COM.COOL.R1: .05.NGA.CHILLER.ENGINE.STD.
COMNGA
2006
20
273.39
2.3694
2
CC2NGB005
COM.COOL.R2: .05.NGA.CHILLER.ENGINE.STD.
COMNGA
2006
20
273.39
2.3694
2
CC3NGB005
COM.COOL.R3: .05.NGA.CHILLER.ENGINE.STD.
COMNGA
2006
20
273.39
2.3694
2
CC4NGB005
COM.COOL.R4: .05.NGA.CHILLER.ENGINE.STD.
COMNGA
2008
20
273.39
2.3694
2
CC1NGC005
COM.COOL.R1: .10.NGA.CHILLER.ENGINE.IMP.
COMNGA
2008
20
303.77
2.3933
2.2
CC2NGC005
COM.COOL.R2: .10.NGA.CHILLER.ENGINE.IMP.
COMNGA
2008
20
303.77
2.3933
2.2
CC3NGC005
COM.COOL.R3: .10.NGA.CHILLER.ENGINE.IMP.
COMNGA
2008
20
303.77
2.3933
2.2
CC4NGC005
COM.COOL.R4: .10.NGA.CHILLER.ENGINE.IMP.
COMNGA
2008
20
303.77
2.3933
2.2
CC1GEO005
COM.COOL.R1: .05.GEO.HEAT PUMP.IMP.
COMGEO
2006
15
350
2.7777
4.2
115
Tech. Name
Technology Description
Com.-IN
YEAR
LIFE
INVCOST
FIXOM
EFF
CC2GEO005
COM.COOL.R2: .05.GEO.HEAT PUMP.IMP.
COMGEO
2006
15
350
2.7777
4.2
CC3GEO005
COM.COOL.R3: .05.GEO.HEAT PUMP.IMP.
COMGEO
2006
15
350
2.7777
4.2
CC4GEO005
COM.COOL.R4: .05.GEO.HEAT PUMP.IMP.
COMGEO
2006
15
350
2.7777
4.2
CC1ELK005
COM.COOL.R1: .05.ELC.CENTRAL.
COMELC
2006
15
200
2.0169
2.93
CC2ELK005
COM.COOL.R2: .05.ELC.CENTRAL.
COMELC
2006
15
200
2.0169
2.93
CC3ELK005
COM.COOL.R3: .05.ELC.CENTRAL.
COMELC
2006
15
200
2.0169
2.93
CC4ELK005
COM.COOL.R4: .05.ELC.CENTRAL.
COMELC
2006
15
200
2.0169
2.93
CC1ELR005
COM.COOL.R1: .05.ELC.ROOM.
COMELC
2006
15
250
2.2055
3.43
CC2ELR005
COM.COOL.R2: .05.ELC.ROOM.
COMELC
2006
15
250
2.2055
3.43
CC3ELR005
COM.COOL.R3: .05.ELC.ROOM.
COMELC
2006
15
250
2.2055
3.43
CC4ELR005
COM.COOL.R4: .05.ELC.ROOM.
COMELC
2006
15
250
2.2055
3.43
CC1DST005
COM.COOL.R1: .05.DST.CHILLER.
COMDST
2006
20
300
3.5162
0.7
CC2DST005
COM.COOL.R2: .05.DST.CHILLER.
COMDST
2006
20
300
3.5162
0.7
CC3DST005
COM.COOL.R3: .05.DST.CHILLER.
COMDST
2006
20
300
3.5162
0.7
CC4DST005
COM.COOL.R4: .05.DST.CHILLER.
COMDST
2006
20
300
3.5162
0.7
CCKNGA005
COM: .05.NGA.COOKING.
COMNGA
2006
15
190
2.7777
0.8
CCKKER005
COM: .05.KER.COOKING.
COMKER
2006
15
200
3.3333
0.55
CCKLPG005
COM: .05.LPG.COOKING.
COMLPG
2006
15
200
3.5
0.8
CCKDST005
COM: .05.DST.COOKING.
COMDST
2006
15
200
3.5
0.55
CCKCOA005
COM: .05.COA.COOKING.
COMCOA
2006
15
220
3.8888
0.2
CCKELC005
COM: .05.ELC.COOKING.
COMELC
2006
15
180
2.2222
0.7
CCKSOL005
COM: .05.SOL.COOKING.
COMSOL
2006
15
180
2.2222
1
CCKBIO005
COM: .05.BIO.COOKING.
COMBIO
2006
17
200
4.1666
0.17
2006
10
0.4
4.1111
1
Commercial Electric Office Equipment COEELC005
COM: .05.ELC.EQUIPMENT.MISCELLANEOUS.
COMELC
Commercial Other 116
117 Tech. Name
Technology Description
Com.-IN
YEAR
LIFE
INVCOST
FIXOM
EFF
COTELC005
COM: .05.ELC.EQUIPMENT.OTHERS.
COMELC
2006
10
0.5
4.1666
1
COTDST005
COM: .05.DST.EQUIPMENT.OTHERS.
COMDST
2006
10
0.5
4.1666
1
COTNGA005
COM: .05.NGA.EQUIPMENT.OTHERS.
COMNGA
2006
10
0.5
4.1666
1
2006
15
0.6
3.6666
1
Commercial Refrigeration CRFELC005
117
COM: .05.ELC.REFRIGERATORS.
COMELC
7.5
Base-year calibration
Since IEA energy balance provides data on commercial sector energy consumption by fuel type at an aggregated level, there is a need to assign fuel consumption to different energyservices. Table 7-5 presents commercial sector final energy consumption by energyservices and fuels. Similar tables have been generated for each region for the base-year calibration. Actually, IEA Energy balance provides more detailed data by having larger number of fuels than listed in the Table 7-5. The fuels are aggregated into 11 categories and aggregation is the same as presented in Table 7-2, which defines the sector fuel technologies.
Total
Other
Commercial
Equipment
Electric Office
Refrigeration
Cooking
Lighting
Water Heating
Space Heating
Space Cooling
Table 7-5: Base-year commercial sector final energy consumption (PJ)
Natural Gas
661
0
1322
0
4628
0
0
0
6611
Distillate
957
0
2234
0
0
0
0
0
3191
Heavy Oil
476
0
0
0
0
0
0
0
476
Kerosene
0
0
0
596
31
0
0
0
627
140
0
280
0
280
0
0
0
700
LPG
59
0
117
0
410
0
0
0
586
Biomass
61
0
122
0
429
0
0
0
612
129
386
643
5915
643
1929
3214
0
12858
1180
0
0
0
0
0
0
0
1180
33
0
0
0
0
0
0
0
33
Solar
0
0
9
0
0
0
0
0
9
Total
3695
386
4727
6510
6421
1929
3214
0
26882
Coal-Commercial
Electricity Heat Geothermal
7.6
References
International Energy Agency (IEA), World Energy Balances, 2009, ESDS International, (Mimas) University of Manchester EFDA (2004). EFDA World TIMES Model, Final report, prepared by ORDECSYS, KanORS, HALOA, KUL. www.efda.org
118
8 Agriculture Sector 8.1
Introduction
Agriculture sector base-year calibration is modelled in the residential sector Base-Year template along with the commercial sector. There are separate sheets for IEA data, sector fuel data and emission factors. Agriculture sector is modelled with single energy-service and the energy-service demand can be met by different fuels, mix of which is fixed. There is no technology choice and fuel choice allowed in agriculture sector and no new technology sheets available. Agriculture sector is poorly modelled in TIAM-UCL. Note that the agricultural sector only covers energy use in the agricultural sector. 8.2
Energy services demand
Agriculture sector energy-service demand (single segment) is projected using the driver ‗agricultural sector output‘ for each region. Figure 8-1 presents the projected energyservice demand by region. Note that there are no new technologies associated with the generic demand (AGR: Agriculture). In this sector, it is assumed that increases in agricultural output result in proportionate increases in fuel input.
30
Projected energy-service demand
AFR AUS
25
CAN CHI CSA
Index (2005=1)
20
EEU FSU
15
IND JPN MEA
10
MEX ODA
5
SKO UK USA
0 2000
2010
2020
2030
2040
2050
2060
2070
2080
2090
WEU
2100
Figure 8-1: Agriculture energy –service demand projection by region 8.3
Sector fuels
Sectoral fuel technologies are modelled in the sheet AGR_Fuels in the residential Base-Year template as shown in Table 8-1. The fuels are aggregated into 12 categories consumed in the agriculture sector. Aggregation ratios are based on data provided by the IEA database. The technologies created to produce aggregated fuels (Fuel Tech) are named uniformly using the name of the aggregated fuels as specified in the column Commodity OUT plus three zero (000 for existing technology in the base-year). Their description changes according to the fuel (e.g. Fuel Tech - Coal (AGR) or Fuel Tech - Natural Gas (AGR). The fractional shares of the disaggregated fuels (Commodity IN) used to produce an aggregated fuel (Commodity OUT) are calculated from their consumption over the total for this category, as given in the IEA database. Table 8-1: Agriculture sector fuel technologies-existing Tech. Name
Technology Description
AGRNGA000
Fuel Tech - Natural Gas Mix (AGR)
Com.-IN
Com.-OUT
GASNGA
AGRNGA
GASGWG GASCOG AGRNGA111
Fuel Tech - Natural Gas (AGR)
GASNGA
AGRNGA
120
121 Tech. Name
Technology Description
Com.-IN
Com.-OUT
AGRDST000
Fuel Tech - Diesel (AGR)
OILDST
AGRDST
OILNSP AGRGSL000
Fuel Tech - Gasoline (AGR)
OILGSL
AGRGSL
AGRHFO000
Fuel Tech - Heavy Fuel Oil (AGR)
OILHFO
AGRHFO
OILCRD AGRKER000
Fuel Tech - Kerosene (AGR)
OILKER
AGRKER
AGRCOA000
Fuel Tech - Coal (AGR)
COAHCO
AGRCOA
COABCO COAOVC AGRLPG000
Fuel Tech - Liquified Petroleum Gases (AGR)
AGRBIO000
Fuel Tech - Biofuels (AGR)
OILLPG
AGRLPG
BIOBSL
AGRBIO
BIOCHR BIOGAS BIOBMU BIOBIN AGRGEO000
Fuel Tech - Geothermal (AGR)
GEO
AGRGEO
AGRSOL000
Fuel Tech - Solar (AGR)
SOL
AGRSOL
AGRELC000
Fuel Tech - Electricity (AGR)
ELCC
AGRELC
ELCD AGRHET000 8.4
Fuel Tech - Heat (AGR)
HET
AGRHET
Base-year calibration
IEA energy balance provides agriculture energy consumption by fuels. Since agriculture sector is defined with a single energy-service, there is no need for that split of fuel consumptions into different sub-sector as we did for other end-use sector. Fuels in the IEA energy balance has been aggregated into 13 fuels (commodity) as defined in the sector fuel table (Table 8-1). Base-year global agriculture final energy consumption is 7,283 PJ, mix of which is presented in Figure 8-2 at a global level.
121
Diesel 54%
Natural Gas 4%
Gasoline 4%
Solar 0%
Heavy 3%
Geothermal 0%
Heat 2%
Electricity 19%
LPG Biomass 2% 4%
Coal 8%
Kerosene 0%
Figure 8-2: Base-year agriculture energy consumption mix by fuel 8.5
References
International Energy Agency (IEA), World Energy Balances, 2009, ESDS International, (Mimas) University of Manchester EFDA (2004). EFDA World TIMES Model, Final report, prepared by ORDECSYS, KanORS, HALOA, KUL. www.efda.org
122
9 Electricity and Heat Generation Sector 9.1
Introduction
The electricity and heat generation sector represents many different technology types, using a wide range of fossil-based and renewables sources. The existing system is represented in generic terms whilst the options for future investments are characterised in more detail. Electricity and heat supply is temporally disaggregated across six periods (or time slices), based on three season and two diurnal periods (Day / night) to represent changes in load based on sector demand profiles. This sector is divided in the following technology types (as represented in the IEA statistics):
Electricity generation plant, providing electricity to the grid
Public CHP plant, providing electricity to the grid and heat to local networks
Sector CHP plant (autoproducers), providing electricity and heat to specific industries. Further information on these plants can be found in Chapters 5 and 10 on industry and upstream sectors.
Public heat generation plant (heat only plants), providing heat to local networks
Electricity generation plant are additionally categorised as providing electricity to the centralised or decentralised grid. Decentralised producers tend to be small scale, connected to the distribution network or serving local grids, and produce the commodity ELCD in the model. Centralised producers, connected to transmission network, produce the commodity ELCC. The electricity sector Base-Year template is used to calibrate the base-year electricity and heat generation. In the Base-Year template (providing information on existing plant), characterisation of plants is fairly generic, with all production of electricity categorised as ELCC. Off-grid production (via micro-generation technologies) is not explicitly captured in the model, with small-scale generation represented in the decentralised producer group.
9.2
Base year calibration
Base year calibration for the power sector for each region is based on IEA extended energy balance statistics for 2005. These data and process of calibration can be seen in the sector base-year templates (labelled VT_XXX_ELC_V1p1, where XXX is the region code) and are structured as follows:
IEA Data: Contains the IEA statistics (IEA, 2009) for 2005, used to calibrate the model4
ELC_FUELS: Contains technologies that produce electricity sector fuels, primarily for tracking fuel use in this sector. These technologies also define the shares of individual commodities that contribute to electricity sector fuels.
ELC_New: Lists the technologies that produce electricity in the base year. Note these are fairly generic technology types, adequate for calibration and representing base year stock. For electricity, the main technology categories include gas, oil, coal, biomass, hydro, nuclear, geothermal and wind. For CHP and heat plant, these are categorised as oil, gas, coal and biomass. Retirement of stock is based on annual retirement factors (typically around 2-5% depending on the technology).
4
ELC_EMI: Emission factors for power sector, including new technologies
~Processes / COMM: Define electricity sector technologies and commodities
Disaggregation of WEU and UK regions for the ELC sector has been done in XLS UK-IEA ELC 05(v2). Checks on BY
calibration have been done in XLS CalibResults_151009.
124
125 800 700
WIND
600
TIDAL SOLAR
500 GW
OIL 400
NUCLEAR
300
HYDRO
GEOTHERMAL
200
GAS 100
COAL
0
WEU
USA
UK
SKO
ODA
MEX
MEA
JPN
IND
FSU
EEU
CSA
CHI
CAN
AFR
AUS
BIOMASS
Figure 9-1: Existing Electricity Generation Capacity by Region in 2005 (Model base year), GW SOLAR, 0.8
TIDAL, 0.3
WIND, 53.9
BIOMASS, 56.2
OIL, 401.6
NUCLEAR, 395.9
COAL, 1171.3
HYDRO, 738.6
GAS, 607.6 GEOTHERMAL, 32.0
Figure 9-2: Existing Electricity Generation Capacity by Type in 2005 (Model base year), GW
125
9.3
New technologies
9.3.1
Key technology options
New electricity generation technologies are characterised in the template ―SubRes_BNewTechs/ELC‖, and are listed in Table 9-1. Further work is required to include new CHP technologies, which are not available for public system or industry investment. Table 9-1: New technology options for electricity and heat generation Technology
Model Technology
Group
Name
Coal
ECOAAFB105
EPLT:G1.05.ADV.COA.Atmospheric Fl Bed.
ECOACCA105
EPLT: .G1.05.ADV.COA.Air Blown IGCC.
ECOACCO105
EPLT: .G1.05.ADV.COA.Oxygen Blown IGCC.
ECOAPFB105
EPLT:G1.05.ADV.COA.Pressurized Fl Bed.
ECOAPUL105
EPLT: .G1.05.CON.COA.Pulverized Coal.
EGASSTE105
EPLT: .G1.05.CON.NGA.Gas Steam.
EGASFCE105
EPLT: .G1.05.ADV.NGA.Fuel Cells.
EGOICCA105
EPLT: .G1.05.ADV.GOI.Gas_Oil Comb Cycle.
EGOITUA105
EPLT: .G1.05.ADV.GOI.Advanced Gas_Oil Turbine.
EOILSTE105
EPLT: .G1.05.CON.OIL.Oil Steam.
EOILGBL105
EPLT: .G1.05.CON.OIL.Generic Dist Gen for Base
Gas Dual gas / oil Oil
Model Technology Description
Load. EOILGPL105
EPLT: .G1.05.CON.OIL.Generic Dist Gen for Peak Load.
Nuclear
Hydro*
Biomass
ENUCADV105
EPLT: .G1.05.ADV.NUC.Advanced Nuclear.
ENUCFUS110
EPLT: .G1.05.ADV.NUC.Fusion Nuclear.
ENUCLWR105
EPLT: .G1.05.ADV.NUC.Advanced Nuclear LWR.
ENUCPBM110
EPLT: .G1.10.ADV.NUC.Advanced Nuclear PBMR.
EHYDDAM105
EPLT: .G1.05.CON.HYD.Generic Impoundment Hydro.
EHYDDAM205
EPLT: .G2.05.CON.HYD.Generic Impoundment Hydro.
EHYDDAM305
EPLT: .G3.05.CON.HYD.Generic Impoundment Hydro.
EHYDDAM405
EPLT: .G4.05.CON.HYD.Generic Impoundment Hydro.
EHYDDAM505
EPLT: .G5.05.CON.HYD.Generic Impoundment Hydro.
EHYDRUN105
EPLT: .G1.05.CON.HYD.Generic ROR Hydro.
EBIOCRC105
EPLT: .G1.05.CON.BIO.Crop Direct Combustion.
EBIOCRG105
EPLT: .G1.05.CON.BIO.Crop Gasification.
EBIOGAW105
EPLT: .G1.05.CON.BIO.Biogas from Waste.
EBIOMSW105
EPLT: .G1.05.CON.BIO.MSW Direct Combustion.
EBIOSLC105
EPLT: .G1.05.CON.BIO.Sld Biomass Direct Combustion. 126
127 Technology
Model Technology
Group
Name
Model Technology Description
EBIOSLG105
EPLT: .G1.05.CON.BIO.Sld Biomass Gasification.
EBIOSLCD05
EPLT: .G1.05.CON.BIO.Sld Biomass Direct Combustion.Decentralized
EBIOSLGD05
EPLT: .G1.05.CON.BIO.Sld Biomass Gasification.Decentralized
Geothermal
EGEOT105
EPLT: .G1.05.CON.GEO.CEN.Shallow.
EGEOT205
EPLT: .G1.05.CON.GEO.CEN.Deep.
EGEOT305
EPLT: .G1.05.CON.GEO.CEN.Very deep.
ESOPV0105
EPLT: .G1.03.CON.SOL.CEN.PV.T0
ESOPV105
EPLT: .G1.03.CON.SOL.CEN.PV.
ESOPV1105
EPLT: .G1.03.CON.SOL.CEN.PV.T1
ESOPV2105
EPLT: .G1.03.CON.SOL.CEN.PV.T2
ESOPV3105
EPLT: .G1.03.CON.SOL.CEN.PV.T3
ESOPV4105
EPLT: .G1.03.CON.SOL.CEN.PV.T4
ESOPV5105
EPLT: .G1.03.CON.SOL.CEN.PV.T5
ESOPVD0105
EPLT: .G1.05.CON.SOL.DCN.PV.T0
ESOPVD105
EPLT: .G1.05.CON.SOL.DCN.PV.
ESOPVD1105
EPLT: .G1.05.CON.SOL.DCN.PV.T1
ESOPVD2105
EPLT: .G1.05.CON.SOL.DCN.PV.T2
ESOPVD3105
EPLT: .G1.05.CON.SOL.DCN.PV.T3
ESOPVD4105
EPLT: .G1.05.CON.SOL.DCN.PV.T4
ESOPVD5105
EPLT: .G1.05.CON.SOL.DCN.PV.T5
Solar thermal
ESOTH105
EPLT: .G1.04.CON.SOL.CEN.Thermal.
Wind*
EWIND105
EPLT: .G1.04.CON.WIN.CEN.
EWIND205
EPLT: .G1.10.CON.WIN.CEN.Offshore.
EWIND305
EPLT: .G1.00.CON.WIN.DCN.Onshore.
EWIND405
EPLT: .G1.10.CON.WIN.DCN.Onshore.
HETBIOP105
HPLT: .05.CON.BIO.
HETCOAP105
HPLT: .05.CON.COA.
HETGASP105
HPLT: .05.CON.NGA.
HETGEO105
HPLT: .05.CON.GEO.CEN.Shallow.
HETGEOP105
HPLT: .05.CON.GEO.
HETOILP105
HPLT: .05.CON.OIL.
Solar PV*
Heat generation
* Different tranches of renewable technologies represent differences in the cost of resources (hydro) or quality of the resource (wind, solar).
127
The other important file is the transformation (_Trans) file, which allows for regional differences to be introduced without having to duplicate technologies. For the electricity sector, the following parameters are controlled, and varied by region:
Costs parameters (INVCOST, FIXOM and VAROM) - see worksheet
Param_transformation. Operation and maintenance costs tend to be lower in developing regions, as do investment cost where those regions have a technology manufacturing base e.g. China.
Technology discount rate set to 10%, except for solar technologies, where the rate is higher for some regions - see worksheet Param_transformation (2). Higher rates are typically used for developing regions.
Seasonal AFs are set by region for solar technologies, accounting for different insolation values.
Construction time (defined by NCAP_ILED)5 is provided for hydro and nuclear technologies - 10 years for nuclear and hydro (dam) and 5 years for hydro (run-ofriver). No differentiation is made between regions.
An overview of the key parameters for the different technology groups is shown in below. Table 9-2: Overview of technology characteristics by technology group (for WEU region) Technology
Efficiency % (range)
Group
Gas / Dual
Comment
(range) 2005
Coal
Investment cost $/kW
40-49 37-57
2050 40-49 37-57
2005
2050
1430-
1265-
1870
1662
360-1000
300-
Lower cost and higher efficiency
1000
values represent combined cycle technology
5
Where this parameter is used, the time of investment is reflected in the model results.
However, the capacity does not become available until investment year + ILED length. 128
129 Technology
Efficiency % (range)
Investment cost $/kW
Group Oil
Comment
(range) 31-35
31-35
660-1045
6601045
Nuclear Hydro
1760-
1760-
Fusion costs set at 3300 $/kW
1870
1870
1650-
1540-
Five dam-based technologies
6050
5400
reflecting different cost of resource
Biomass
33-34
33-34
Geothermal
1870-
1870-
MSW plant significantly higher at
2200
2200
3850 $/kW
1925-
1650-
Three geothermal technologies
2780
2310
reflecting different cost of resource
Solar PV
7150-
1485-
Low cost is centralised plant and
11000
3025
high cost decentralised plant. Technology resource tranched on basis of AFs
Solar
13321
13321
thermal
Single technology with no evolution on costs
Wind
1065-
880-
One offshore (CEN) and 2
1650
1310
onshore (DCN) technologies. Offshore tech. represents the high costs.
9.3.2
Sector constraints
There are a range of constraints used to control the uptake of technologies in this sector. Two key scenario files are used:
Scen_ELC-UC
This constraint sets maximum (SU_MAXNUC) and minimum (SL_MINNUC) shares of nuclear generation by region. Shares of nuclear (based on 2006 level) are controlled as investment is not governed only by economics but by a range of different factors. In the near term, the share levels take account of the installed capacity in the base year.
There are a set of UC controls that ensure the maximum levels of different tranches of renewable potential by region. This includes constraints on geothermal, wind and hydro technologies.
129
The Min_Ren worksheet sets minimum share of electricity from renewable generation for centralised ELC, deriving near term shares based on levels in the base year. This reflects ongoing renewable policy across different regions.
Scen_ELC-UC-MaxCoal
This constraint sets a maximum share on the level of coal generation over the time horizon, to ensure coal does not wholly dominate the reference picture. For the UK, the limits are 50% in 2010, rising to 90% by 2100.
Another scenario file, Scen_B_BASEextra, is used to define seasonal and annual AFs6 for wind and hydro technologies by region, in the base and future years (see worksheet BASEextra). 9.3.3
Sequestration technologies
For low carbon analyses, sequestration technologies in the electricity generation sector are very important. In this model, these are characterised in SUBRES_SequestrationB/ELC. Table 9-3: Overview of sequestration technology characteristics Model
Model Technology Description
Technology
Investment
Efficiency
cost ($/kW)
(%)
Name EZCCGO1XX
NGCC+Oxyfueling
950-1250
48-55
EZCCGT1XX
NGCC+CO2 removal from flue gas
800-1000
49-57
EZIGC11XX
IGCC+CO2 removal from input gas
1800-2300
40-48
EZOCOA1XX
Conventional Pulverized Coal+Oxyfueling
1900-2400
37-44
EZPCOA1XX
Conventional Pulverized Coal+CO2 removal
1850-2250
38-44
from flue gas EZSOFCOA35
SOFC (COAL) +CO2 removal - 2030
2200
48
EZSOFGAS30
SOFC (GAS) +CO2 removal - 2020
1600
58
EZBIOCRCC105
EPLT: .G1.05.CON.BIO.Crop Direct
2125
33
2500
34
Combustion. With CCS EZBIOCRGC105
6
EPLT: .G1.05.CON.BIO.Crop
Annual AF control annual availability; however seasonal AFs allow for higher or lower operation in a given season.
The sum of season operation can't be higher than the annual AF
130
131 Model
Model Technology Description
Technology
Investment
Efficiency
cost ($/kW)
(%)
Name Gasification.with CCS EZBIOSLCC105
EPLT: .G1.05.CON.BIO.Sld Biomass Direct
1700
33
2420
34
Combustion.with CCS EZBIOSLGC105
EPLT: .G1.05.CON.BIO.Sld Biomass Gasification.with CCS
* The first five technologies listed have vintages for 2010, 2020 and 2030.
The fossil-based plants produce SNKELCCO2, a 'dummy' commodity which then goes to the different storage technologies. Biomass plants with sequestration produce SNKTOTCO2, differentiated as technologies that capture CO2 from the atmosphere (negative emissions). The range of storage technologies in the model are listed below. Table 9-4: Types of storage technologies Model Technology
Model Technology Description
Name SINKCB1
Removal by Enhanced Coalbed Meth recov 1000 m
SINKDGF
Removal by Depl gas fields (offshore)
SINKDGO
Removal by Depl gas fields (onshore)
SINKDOC
Removal by Storage in the deep ocean
SINKDOF
Removal by Depl oil fields (offshore)
SINKDOO
Removal by Depl oil fields (onshore)
SINKDSA
Removal by Deep saline aquifers
SINKEOR
Removal by Enhanced Oil Recovery
SINKMIN
Mineralization for CO2 storage
* Technologies listed above capture SNKELCCO2. A '1' added to the technology name reflects those storage options that capture SNKTOTCO2.
The SUBRES_SequestrationB _Trans file provides information on the annual and cumulative storage potentials by region, and costs (see worksheet Param_transformation). These storage levels have been checked against those in the IPCC Special Report on Carbon Dioxide Capture and Storage.
131
9.4
Representation of grids
Electricity grids are not explicitly modelled, with no capacity limits or investment requirements for system infrastructure. Two commodities are produced to represent generation from centralised (ELCC) and decentralised (ELCD) technologies. Distribution losses are modelled by commodity efficiency for ELCC (using parameter COM_IE). They reflect regional differences in the base year but by 2100 are the same across all regions. Electricity supply is tracked at a DAYNITE timeslice resolution. This allows for simplistic modelling of the load curve, representing when consumers demand electricity (see section 3 on demand drivers for more information). DAYNITE time-slices total 6 periods, representing day and night in the three (equal length) seasons (summer, winter, intermediate). 9.5
Future work in the electricity and heat sector
Finally, an important point of note is that electricity is not traded between regions. This is probably not a major limitation as most electricity trade will be intra-region (between countries). However, it is important for some regions (e.g. USA / Canada) so is being considered for development in the model. Similarly there is no real representation of heat (HET) in the model. This is produced by CHP and dedicated heating plant, and is used directly in end use sector, with no distribution losses assigned. Heat is tracked seasonally in the model, reflecting varying demands at different times of the year. 9.6
References
International Energy Agency (IEA), World Energy Balances, 2009, ESDS International, (Mimas) University of Manchester
132
10 Upstream 10.1 Introduction The upstream Base-Year template in TIAM is used to calibrate the primary energy production, trade, conversion/transformation and total final energy consumption in the base-year 2005 and to account reserves and existing upstream technologies. No new technologies exist in upstream sector/template; investments are allowed in existing technologies to expand production capacity. New technologies are included in the new technology module ―B_NewTech‖ in SubRes_Templ. Annual and cumulative availability resources are modelled in a separate scenario file called ―Scen_B_Extraction‖ (Resource module) and fossil fuels and biomass trading is modelled in a scenario file called ―Scen_Trade‖. The upstream sector mainly covers reserves (fossil fuels, uranium), biomass and renewable potential, mining technologies, primary and secondary transformation process, emission coefficients for fossil fuels, endogenous trade parameters and climate parameters. Fossil fuels includes conventional as well as unconventional resources. Mining technologies (primary production) transform the reserve into fuels (primary fuels) while secondary transformation process transform primary fuels (coal, oil, gas) into secondary fuels such oil products, coke oven gas, blast furnace gas, etc. Endogenous trade parameters are included to avoid an infeasible solution if a resource is unable to meet demand, the model will choose endogenous trade and the trade result will be dummy import. Climate parameters section aggregate emissions (CO2 and Non CO2 gases) into billion tons of carbon equivalent (CO2GtC). Global warming potential is also modelled in the upstream sector. In the upstream and downstream sectors, a distinction is made between OPEC/Non-OPEC countries. Data related to fossil energy production, trade, and downstream use (coal mining, oil drilling, etc.) are separated for Non-OPEC countries and OPEC countries. OPEC and Non-OPEC energy commodities are merged to meet energy-service demand in different region.
The upstream template has several worksheets such as IEA data sheet (base-year data for calibration), MIN (non-renewable resources are modelled), RNW (renewable resource are modelled), UPS_Fuels (upstream fuel consumption) PRIM_PRD (primary production), SCND_TRF (secondary transformation), Transf_stock_stat (stock transfer), TRADE_templ (endogenous trade—dummy import), UPS_Emi (upstream emissions), Emissions (global warming potential is modelled) and Climate (aggregating emissions to CO2GtC). All commodities and process that are included in the upstream are also defined in separate sheets in the upstream template. The remaining sections in this chapter discuss the data that is used in these templates. 10.2 Energy Resources Fossil reserves and mining technologies are presented in Table 10-1. The first three letters are for mining (MIN). The next six or three letters refer to the energy carrier reserves or potentials (e.g. OINHEA for heavy oil, WIN for wind (Table 10-2), etc.). The last digit refers to the steps of the fossil fuel supply curves (e.g. 1, 2, etc.).The last digit is always 0 for the renewable technologies (Table 10-2). Sixth letter ―N‖ represents non-OPEC and it will be ―O‖ for OPEC countries. These reserves are mainly categorised into three: located reserves and producing pools; enhanced discovery (reserve growth); and new discovery. Four different types of oil reserves are modelled: light oil, heavy oil, oil sand and shale oil. A three-step supply curve for each type oil and gas source is defined. Each step is characterized by the cost of the resource and the amount of energy (annual) available at this cost (these are given in the scenario file ―Scen_B_Extraction‖). Unconventional and non-connected gas reserve is also modelled. It includes coal bed methane and tight gas. The uranium reserve is modelled as dummy reserves with the fossil fuel supply in the upstream. But cumulative uranium reserves by region is modelled in a different module called ―SubRes_NucResource‖ in SubRes_templ, which is discussed in Chapter 12. The model allows investment in the existing technologies and no new technologies are associated with the upstream sector. The technologies of the upstream template do not have a residual capacity (RESID) and there is no vintage information embedded in the naming convention of technologies. 134
135 Table 10-1: Non-renewable primary resources Technology
Technology Description
Name
Commodity out
Located reserves and producing pools MINOINLIG1
Light oil (ground) - Located reserves - Step 1 - Nopec
OINLIG
MINOINLIG2
Light oil (ground) - Located reserves - Step 2 - Nopec
OINLIG
MINOINLIG3
Light oil (ground) - Located reserves - Step 3 - Nopec
OINLIG
MINOINHEA1
Heavy oil (ground) - Located reserves - Step 1 - Nopec
OINHEA
MINOINHEA2
Heavy oil (ground) - Located reserves - Step 2 - Nopec
OINHEA
MINOINHEA3
Heavy oil (ground) - Located reserves - Step 3 - Nopec
OINHEA
MINOINSAN0
Oil sands (mined - synth) - Located reserves - Nopec
OINSAN
MINOINOBI1
Oil sands (in situ - ultra hvy) - Located reserves - Step 1
OINOBI
- Nopec MINOINOBI2
Oil sands (in situ - ultra hvy) - Located reserves - Step
OINOBI
2 - Nopec MINOINOBI3
Oil sands (in situ - ultra hvy) - Located reserves - Step 3
OINOBI
- Nopec MINOINOSH1
Shale oil (ground) - Located reserves - Step 1 - Nopec
OINOSH
MINOINOSH2
Shale oil (ground) - Located reserves - Step 2 - Nopec
OINOSH
MINOINOSH3
Shale oil (ground) - Located reserves - Step 3 - Nopec
OINOSH
MINGANNAT1
Natural gas (ground) - Located reserves - Step 1 -
GANNAT
Nopec MINGANNAT2
Natural gas (ground) - Located reserves - Step 2 -
GANNAT
Nopec MINGANNAT3
Natural gas (ground) - Located reserves - Step 3 -
GANNAT
Nopec MINCONBRO0
Brown coal (ground) - Located reserves - Nopec
CONBRO
MINCONHAR0
Hard coal (ground) - Located reserves - Nopec
CONHAR
Enhanced recovery : Reserves growth MINOINLIG4
Light oil (ground) - Reserves growth - Step 1 - Nopec
OINLIG
MINOINLIG5
Light oil (ground) - Reserves growth - Step 2 - Nopec
OINLIG
MINOINLIG6
Light oil (ground) - Reserves growth - Step 3 - Nopec
OINLIG
MINOINHEA4
Heavy oil (ground) - Reserves growth - Step 1 - Nopec
OINHEA
MINOINHEA5
Heavy oil (ground) - Reserves growth - Step 2 - Nopec
OINHEA
MINOINHEA6
Heavy oil (ground) - Reserves growth - Step 3 - Nopec
OINHEA
MINGANNAT4
Natural gas (ground) - Reserves growth - Step 1 -
GANNAT
Nopec MINGANNAT5
Natural gas (ground) - Reserves growth - Step 2 -
GANNAT
Nopec MINGANNAT6
Natural gas (ground) - Reserves growth - Step 3 -
GANNAT
Nopec MINOINSAN1 135
Oil sands (mined bitumen) - Enhanced recovery - Nopec
OINSAN
Technology
Technology Description
Name MINOINOBI4
Commodity out
Oil sands (in-situ - ultra hvy) - Enhanced recovery -
OINOBI
Step 1 - Nopec MINOINOBI5
Oil sands (in-situ - ultra hvy) - Enhanced recovery -
OINOBI
Step 2 - Nopec MINOINOBI6
Oil sands (in-situ - ultra hvy) - Enhanced recovery -
OINOBI
Step 3 - Nopec New discovery MINOINLIG7
Light oil (ground) - New discovery - Step 1 - Nopec
OINLIG
MINOINLIG8
Light oil (ground) - New discovery - Step 2 - Nopec
OINLIG
MINOINLIG9
Light oil (ground) - New discovery - Step 3 - Nopec
OINLIG
MINOINHEA7
Heavy oil (ground) - New discovery - Step 1 - Nopec
OINHEA
MINOINHEA8
Heavy oil (ground) - New discovery - Step 2 - Nopec
OINHEA
MINOINHEA9
Heavy oil (ground) - New discovery - Step 3 - Nopec
OINHEA
MINOINSAN2
Oil sands (mined bitumen) - New discovery - I - Nopec
OINSAN
MINGANNAT7
Natural gas (ground) - New discovery - Step 1 - Nopec
GANNAT
MINGANNAT8
Natural gas (ground) - New discovery - Step 2 - Nopec
GANNAT
MINGANNAT9
Natural gas (ground) - New discovery - Step 3 - Nopec
GANNAT
MINCONBRO1
Brown coal (ground) - New discovery - Nopec
CONBRO
MINCONHAR1
Hard coal (ground) - New discovery - Nopec
CONHAR
Unconventional and not-connected gas MINGANNATU
Natural gas (ground) - Unconventional - Nopec
GANNAT
MINGANCBM1
Natural gas (ground) - Coal bed methane - Step 1 -
GANNAT
Opec MINGANCBM2
Natural gas (ground) - Coal bed methane - Step 2 -
GANNAT
Opec MINGANCBM3
Natural gas (ground) - Coal bed methane - Step 3 -
GANNAT
Opec MINGANTIG1
Natural gas (ground) - Tight gas - Step 1 - Opec
GANNAT
MINGANTIG2
Natural gas (ground) - Tight gas - Step 2 - Opec
GANNAT
MINGANTIG3
Natural gas (ground) - Tight gas - Step 3 - Opec
GANNAT
Uranium MINDMYNUC0
Uranium (dummy) - Reserves
DMYNUC
Table 10-2 presents mining technology and commodity out for renewable resources that are modelled in the TIAM-UCL. Renewable electricity resources such as hydro, geothermal, solar, tidal and wave are modelled. Solid biomass, energy crops, municipal waste and landfill gas are also modelled. Biomass technologies compete directly at energy service demand level with fossil fuel technologies. No distinction is made between OPEC and Non-OPEC countries for primary and secondary biomass production. Annual availability of renewable 136
137 resources are controlled in different scenario files ―Scen_B_Extraction‖ and ―Scen_ELC_UC‖ (constraint on electricity generation by technology). Table 10-2: Renewable primary resources Technology
Technology Description
Commodity
Commodity
out
description
Name MINHYD0
Hydro potential
HYD
Hydro energy
MINGEO0
Geothermal potential
GEO
Geothermal energy
MINSOL0
Solar potential
SOL
Solar energy
MINTDL0
Tide potential
TDL
Tide energy
MINWIN0
Wind potential
WIN
Wind energy
MINBIOSLD1
Prod of Solid biomass - low price
BIOSLD
Solid Biomass
MINBIOSLD2
Prod of Solid biomass - med price
BIOSLD
MINBIOSLD3
Prod of Solid biomass - high price
BIOSLD
MINBIOBIN0
Prod of Industrial wastes
BIOBIN
Industrial wastes
MINBIOBMU0
Prod of Municipal wastes
BIOBMU
Municipal wastes
MINBIOGAS0
Prod of Gas from biomass (landfill
BIOGAS
Biogas (landfill)
BIOCRP
Energy crop
gas) MINBIOCRP0
Prod of Energy crop
Table 10-3 presents details of technologies that produces upstream fuels. The sheet UPS_FUELS accounts upstream sector fuel consumptions. It provides input fuel requirements for the commodity out. Amount of input from different fuels varies across the regions. Heat and electricity are also input fuel for the upstream sector and heat is produced by auto producers and CHP plants (as shown in Base-Year calibration section in this chapter). Table 10-3: Technologies to produce upstream sector fuels Technology
Technology Description
Name UPNNGA000
Fuel Tech - Natural Gas Mix (UPS) - Nopec
Commodity
Commodity
in
out
GANNGA
UPNNGA
GANGWG UPNNGA111
Fuel Tech - Natural Gas (UPS) - Nopec
GANNGA
UPNNGA
UPNCOA000
Fuel Tech - Coal Mix (UPS) - Nopec
CONHCO
UPNCOA
CONBCO CONOVC CONGSC GANCOG GANBFG 137
Technology
Technology Description
Name
Commodity
Commodity
in
out
GANOXY
UPNCOAH11
Fuel Tech - Hard coal (UPS) - Nopec
CONHCO
UPNCOA
UPNCOAB11
Fuel Tech - Brown coal (UPS) - Nopec
CONBCO
UPNCOA
UPNCRD000
Fuel Tech - Crude oil (UPS) - Nopec
OINCRL
UPNCRD
OINCRH OINNGL OINFEE OINADD OINNCR UPNCRD111
Fuel Tech - Crude oil (UPS) - Nopec
OINCRD
UPNCRD
UPNRPP000
Fuel Tech - Refined Pet Products-Liq (UPS) -
OINGSL
UPNRPP
Nopec
OINAVG OINJTG OINJTK OINKER OINDST OINHFO OINNAP OINWSP OINLUB OINASP OINWAX OINNSP OINPTC
UPNRPG00
Fuel Tech - Refined Pet Products-Gas (UPS)
GANRFG
- Nopec
GANETH
UPNRPG
OINLPG UPNREN000
Fuel Tech - Biofuels (UPS) - Nopec
BIOCHR
UPNREN
BIOBSL BIOBIN BIOBMU BIOGAS BIOLIQ UPNELC000
Fuel Tech - Electricity (UPS) - Nopec
ELCC
UPNELC
138
139 Technology
Technology Description
Name UPNSTM000
Fuel Tech - Heat (UPS) - Nopec
UNHESTM00
Converting UNNHET into UNNSTM - Nopec
Commodity
Commodity
in
out
HET
UPNHET
UPNHET
Steam (UPS)
UPNSTM 10.3 Primary transformation Primary transformation sheet contains technologies that transform resources to primary energy such as transforming light crude, heavy crude and oil sand to crude oils. Primary production technologies, including energy consumption, flaring and venting (Table 10-4 presents only energy consuming technologies). Table 10-4: Primary transformation technologies Technology
Description
Comm. in
Comm. out
UPRNOL100
Prod of Light Oil - Step 1 - Exist - Nopec
OINLIG
OINCRL
UPN*
OINCRLLOS GANFVL GANNAT
UPRNOH100
Prod of Heavy Oil - Step 1 - Exist - Nopec
OINHEA
OINCRH
UPN*
OINCRHLOS GANFVH GANNAT
UPRNOS100
Prod of Synth Oil (mined) - Step 1 - Exist
OINSAN
OINNCR
- Nopec
UPN*
OINNCRLOS GANFVS GANNAT
UPRNUH100 UPRNSH100
Prod of Ultra Hvy Oil - Step 1 - Exist -
OINOBI
Nopec
UPN*
Prod of Shale Oil - Step 1 - Exist - Nopec
OINOSH
OINUHV OINSHA
UPN* UCRN_SHA00
Mix OILSHA to OILCRD - Nopec
OINSHA
OINCRD
UCRN_NCR00
Mix OILNCR to OILCRD - Nopec
OINNCR
OINCRD
UCRN_CRL00
Mix OILCRL to OILCRD - Nopec
OINCRL
OINCRD
UCRN_CRH00
Mix OILCRH to OILCRD - Nopec
OINCRH
OINCRD
UCRN_UHV00
Mix OILUHV to OILCRD - Nopec
OINUHV
OINCRD
UPRNG100
Field + Gas Plant - Step 1 - Exist - Nopec
GANNAT
GANNGA
UPN*
GANNGALOS OINNGL GANFVG
139
Technology
Description
Comm. in
Comm. out
UPRNG2L100
Gas to LNG - Nopec
GANNGA
GANLNG
UPN* UPRNL2G100
LNG to Gas - Nopec
GANLNG
GANNGA
UPN* UPRNCH100
CONHAR
CONHCO
UPN*
CONHCOLOS
Prod of Browncoal - Step 1 - Exist -
CONBRO
CONBCO
Nopec
UPN*
CONBCOLOS
UPRNOADD00
Prod of Additives - Exist - Nopec
DMNADD
OINADD
UOGPIPN00
Existing oil and gas pipelines - Nopec
UPNNGA
DUMM2T
UPRNCB100
Prod of Hardcoal - Step 1 - Exist - Nopec
UPNELC * All these technologies and fuels exist also for OPEC countries. The letter P replaces the letter N (e.g. MINOINLIG1 becomes MINOIPLIG1 and OINLIG becomes OIPLIG). And for each technology that is presented as Step 1, there are associated technologies for Step 2 and Step3.
10.4 Secondary transformation Secondary transformation contains the information related to the secondary transformation processes such as refineries or technologies for production of coke, town gas, blast furnace gas, petrochemical, etc. (Table 10-5). CHP technology for refinery also included in the secondary transformation sheet (Table 10-6). In this example, a single flexible refinery represents the oil-refining sector: each output may reach a proportion of 0.5, but the sum of outputs is limited to one. The refinery converts crude oil (and possibly other inputs such as natural gas liquid, feedstocks, additives, etc.) into refined petroleum products (e.g. gasoline, diesel, heavy oil, etc.) for the electricity and end-use sectors. Table 10-5: Secondary transformation technologies Techn. Name
Technology Description
Comm-IN
CommOUT
UTRNCKOV00
TCOKEOVS- Pd coke and coke-oven-
COAHCO
CONOVC
gas - Nopec
OINPTC
GANCOG
UPN*
140
141 Techn. Name
Technology Description
Comm-IN
CommOUT
UTRNGWKS00
TGASWKS- Prod of town gas - Nopec
COAHCO
CONGSC
CONBCO
GANGWG
CONOVC GANCOG GANNGA OINNGL GANRFG OINLPG OINHFO OINDST UPN* UTRNBLSFU0
BLASTFUR- Blast furnace - Nopec
COAHCO
GANBFG
CONOVC
GANOXY
GANCOG
UPNCO2N
GANNGA OINLPG OINDST OINHFO OINPTC UTRNPETC00
PETCHEM- Petrochemicals/Refinery -
GANRFG
OINFEE
Nopec
GANETH
OINFEELO
OINLPG
S
OINGSL OINKER OINDST OINHFO OINNAP OINPTC OINNSP UTRNLIQU00
LIQUEFAC,ELNG- Liquef processes -
CONHCO
OINNCR
Nopec
GANNGA
GANETH GASLNG OINKER OINDST OINASP
UTRNNSPC00
TNONSPEC,TCHARCOAL- Transfo non
BIOBSL
BIOCHR
spec - Nopec
GANNGA
OINNCR
OINLPG OINHFO UPN* UTRNHEAT00
141
THEAT- Heatpumps - Nopec
ELCC
UPNHET
Techn. Name
Technology Description
Comm-IN
CommOUT
UTRNBOIL00
TBOILER- Electric boilers - Nopec
ELCC
UPNSTM
UTRNREFX00
Existing flexible refinery - Nopec
BIOLIQ
GANRFG
GANNGA
GANETH
OINCRD
OINLPG
OINFEE
OINGSL
OINADD
OINAVG
OINNGL
OINJTG OINJTK OINKER OINDST OINHFO OINNAP OINWSP OINLUB OINASP OINWAX OINPTC OINNSP
Table 10-6: Existing CHP in refinery sector Technology
Technology Description
Comm-IN
Comm-OUT
Cogen - Refinery sector - RPP - Nopec
UPNRPP
UPNELC
Name UCHPNRPP00
UPNHET UCHPNRPG00
Cogen - Refinery sector - RPG - Nopec
UPNRPG
UPNELC UPNHET
UCHPNNGA00
Cogen - Refinery sector - NGA - Nopec
UPNNGA
UPNELC UPNHET
UCHPNCOA00
Cogen - Refinery sector - COA - Nopec
UPNCOA
UPNELC UPNHET
10.5 Others Upstream sector emissions are tracked in the UPS_Emis sheet in the Upstream Base-Year template. The sheet contains unit and the Global warming potential (GWP) for each sector emission commodity to calculate total greenhouse gas emissions (GHG) and total CO2 emissions (TOTCO2). These coefficients allows conversion from kilo tonnes of CO2, kilo
142
143 tonnes of CH4 and kilo tonnes of N2O into millions tonnes of CO2-equivalent (GHG). The GWP of 25 and 298 is used for CH4 and N2O respectively. 10.6 Base-year calibration The TIAM-UCL is calibrated to the IEA extended energy balance data for 2005 from primary energy production to transformation/conversion to final energy consumption by end-use sectors. Input data (aggregated energy balance) that was used in the upstream Base-Year template is provided in Table 10-7, Table 10-8 and Table 10-9 at global level. The first column in the table is aggregation of anthracite, other bituminous coal, coking coal, heat output from non-specified combustion and patent fuel. The second column is aggregation of peat briquettes, lignite/brown coal, Peat and sub-bituminous coal. Other columns are straight forward. Actual input data for each region is taken from the IEA energy balance in the similar format as given in Table 10-7, Table 10-8 and Table 10-9. Calibration includes primary energy production, transformation/conversion and total final energy consumption (available to end-use sectors) for each region. For example base-year electricity and heat production in electricity sector should match the corresponding data in the upstream sector. Similarly, sum of final energy consumption by end-use sector should also match the total final consumption in the upstream sector for each fuel at regional level.
143
CRUDEOIL
NATGAS
OBIOLIQ
GBIOMASS
UNWASTER
MUNWASTEN,M
INDWASTE
SBIOMASS
CHARCOAL
OXYSTGS
BLFURGS
COKEOVGS
GASWKSGS
GASCOKE
OVENCOKE
NITE
N,SUBCOAL,LIG
PEAT,BKB,BROW
BITCOAL
FUEL,ANTCOAL,
HARDCOAL,PAT
Table 10-7: IEA Energy Balance data used for base-year calibration
INDPROD
98877.2
18921.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
38608.9
417.2
897.6
525.2
713.1
81973.8
IMPORTS
20158.8
554.5
808.3
0.0
0.0
0.0
0.0
0.0
6.4
101.8
0.0
0.0
0.0
26.4
29274.8
92115.6
EXPORTS
-17482.4
-294.6
-827.8
0.0
0.0
0.0
0.0
0.0
-14.0
-50.6
0.0
0.0
0.0
-56.1
-24028.0
-42053.2
BUNKERS STOCKCHA TPES
88743.8
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
-712.3
324.4
-478.5
0.0
-0.8
0.7
-0.9
0.0
-0.2
-2.9
-1.0
0.0
0.0
15.8
181.9
-228.1 138578.0
100841.3
19505.4
-497.9
0.0
-0.8
0.7
-0.9
0.0
-7.8
38657.2
416.2
897.6
525.2
699.3
87402.5
TRANSFER
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
STATDIFF
-218.2
94.8
-109.1
0.0
-40.1
7.1
3.2
0.0
1.7
2.3
-0.1
-0.1
0.0
-0.1
-119.7
-358.4
TOTTRANF
-79871.8
-18509.7
4166.8
90.1
330.9
1908.3
2756.6
79.8
1043.1
-4836.6
-204.3
-819.4
-274.3
-33.4
-34067.1
-137447
MAINELEC
-52083.3
-15523.8
0.0
0.0
-1.3
-59.1
-235.1
-11.5
0.0
-305.3
-14.9
-293.1
-86.9
-14.7
-16692.6
-415.0
AUTOELEC
-1069.7
-65.4
-0.6
0.0
-0.2
-170.0
-413.4
-25.1
0.0
-574.6
-14.3
-186.1
-91.2
-0.1
-1045.0
-11.6
MAINCHP
-4050.2
-2317.4
-2.3
0.0
-1.6
-23.8
-90.5
-3.7
0.0
-265.8
-9.2
-178.5
-62.4
-2.6
-9710.2
0.0
AUTOCHP
-670.4
-193.0
-0.5
0.0
-13.3
-68.2
-302.0
-19.4
0.0
-516.7
-115.2
-109.5
-25.4
-13.6
-2461.7
-0.2
MAINHEAT
-3010.9
-20.2
-0.3
0.0
-0.3
-0.2
-1.6
0.0
0.0
-94.5
-0.9
-21.3
-8.2
-2.3
-979.6
0.0
AUTOHEAT
-461.1
-217.6
-0.4
0.0
0.0
-52.1
-85.0
0.0
0.0
-87.1
-49.8
-31.0
-0.2
0.0
-2907.7
-32.0
THEAT
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
TBOILER
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
TPATFUEL
103.7
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
TCOKEOVS
-16601.9
-1.7
12877.1
0.0
0.0
2283.2
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
-2.3
0.0
TGASWKS
-480.4
-108.8
-61.2
90.1
394.9
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
-14.2
0.0
BLASTFUR
-817.2
-17.4
-8645.0
0.0
0.0
0.0
3886.1
139.5
0.0
0.0
0.0
0.0
0.0
0.0
-7.5
0.0
PETCHEM
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
TBKB
-0.3
-23.3
0.0
0.0
0.0
0.0
0.0
0.0
0.0
-0.2
0.0
0.0
0.0
0.0
0.0
0.0
TREFINER
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
-23.7
-136988
-730.2
-20.7
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
-702.5
0.0
0.1
0.0
0.0
0.0
0.0
0.0
0.0
0.0
1043.1
-2990.1
0.0
0.0
0.0
0.0
6.9
0.0
TOTENGY
-1950.8
-19.8
-45.9
0.0
-9.3
-461.6
-242.9
-11.3
0.0
-338.8
-11.2
0.0
-3.7
0.0
-6184.9
-274.4
Sub-total transf. (not
-1353.1
-15.2
-43.9
0.0
-9.3
-452.8
-237.2
-11.3
0.0
-337.5
-11.1
0.0
-3.6
0.0
-5663.9
-273.8
-996.8
-3.3
-10.2
0.0
0.0
-2.9
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
-5.8
0.0
LIQUEFAC,ELNG TNONSPEC,TCHARCOAL
ELC) MINES
144
CRUDEOIL
NATGAS
OBIOLIQ
GBIOMASS
UNWASTER
MUNWASTEN,M
INDWASTE
SBIOMASS
CHARCOAL
OXYSTGS
BLFURGS
COKEOVGS
GASWKSGS
GASCOKE
OVENCOKE
NITE
N,SUBCOAL,LIG
PEAT,BKB,BROW
BITCOAL
FUEL,ANTCOAL,
HARDCOAL,PAT
145
OILGASEX
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
-4257.9
-267.1
EPATFUEL
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
ECOKEOVS
-305.8
0.0
-28.1
0.0
0.0
-382.8
-140.1
-11.3
0.0
0.0
0.0
0.0
0.0
0.0
-3.1
0.0
-17.1
0.0
-1.5
0.0
-9.3
-13.7
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
-88.6
0.0
EBKB
0.0
-11.9
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
EREFINER
0.0
0.0
0.0
0.0
0.0
-4.8
0.0
0.0
0.0
0.0
-10.9
0.0
0.0
0.0
-1231.6
-6.3
EGASWKS
EPOWERPLT
-597.7
-4.6
-2.0
0.0
0.0
-8.8
-5.8
0.0
0.0
-1.3
-0.2
0.0
0.0
0.0
-86.4
-0.6
EPUMPST
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
ENUC
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
-33.4
-0.1
-4.1
0.0
0.0
-48.6
-97.0
0.0
0.0
-337.4
-0.1
0.0
-3.6
0.0
-76.8
-0.4
ENONSPEC DISTLOSS TFC
-42.7
-6.6
-2.9
0.0
-0.2
-6.0
-36.3
-4.9
-9.1
0.0
0.0
0.0
-0.5
0.0
-897.7
-161.4
18757.8
1064.1
3510.9
90.1
280.5
1448.3
2479.7
63.6
1027.9
33484.1
200.7
78.2
246.8
665.8
46133.2
336.2
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
2506.5
0.8
PIPELINE
0.0
129.9
0.0
0.0
0.0
2511.9
409.6
8706.5
7801.2
3958.7
149.3
WHITESP
0.0
1.2
NAPHTHA
0.0
21.7
RESFUEL
0.0
5790.7
GASDIES
0.0
2896.9
OTHKERO
0.0
21.8
JETKERO
0.0
0.0
JETGAS
0.0
68.8
AVGAS
872.2
102.6
LPG
220.1
2391.1
ETHANE
NONCRUDE
0.0
1227.3
REFINGAS
ADDITIVE
7338.7
IMPORTS
REFFEEDS
INDPROD
NGL
145
MOTORGAS
Table 10-8: IEA Energy Balance data used for base-year calibration (continued from table 10-7)
EXPORTS
-1256.0
-341.9
-47.8
-261.0
0.0
-14.8
-1238.3
-6455.5
-6.7
-0.2
-1948.1
-401.0
-8908.3
-8485.4
-1886.0
-95.5
BUNKERS
0.0
0.0
0.0
0.0
0.0
0.0
0.0
-1.0
-20.7
0.0
-5029.7
-31.0
-1060.3
-5443.7
0.0
0.0
STOCKCHA
-5.1
-51.4
5.1
2.1
0.0
-9.7
-25.1
136.6
-0.9
0.0
-9.8
-8.4
-265.6
207.0
-0.5
1.6
TPES
7304.9
1997.8
280.1
682.0
0.0
-2.8
1633.4
-529.2
-6.7
1.0
-4475.7
-30.8
-1397.7
-5921.0
2072.2
55.4
TRANSFER
-4372.0
2066.7
-66.4
-14.0
45.3
1282.8
2859.7
5.3
9.0
-0.6
-10.4
-248.0
-80.1
-113.7
-390.2
-8.4
STATDIFF
33.5
-58.4
2.0
-23.7
-22.4
-8.1
-24.5
-62.7
-0.8
0.0
-95.9
-5.4
-1.7
51.1
-84.5
-2.9
TOTTRANF
-2870.5
-4006.1
-215.7
-644.4
5246.3
30.1
4417.9
36804.2
63.4
1.4
9225.6
2768.2
43183.0
13366.7
7188.4
193.1
MAINELEC
-1.2
0.0
0.0
-28.9
0.0
0.0
-18.1
-3.3
0.0
0.0
-4.2
-24.7
-799.2
-5097.0
-34.1
0.0
AUTOELEC
0.0
0.0
0.0
-32.5
-105.3
0.0
-12.9
0.0
0.0
0.0
0.0
-4.3
-467.9
-481.6
-9.5
0.0
MAINCHP
0.0
0.0
0.0
-2.4
-7.2
0.0
-0.7
0.0
0.0
0.0
-0.2
-0.2
-14.1
-514.7
0.0
0.0
WHITESP
NAPHTHA
RESFUEL
GASDIES
OTHKERO
JETKERO
JETGAS
AVGAS
MOTORGAS
LPG
ETHANE
REFINGAS
NONCRUDE
ADDITIVE
REFFEEDS
NGL AUTOCHP
0.0
0.0
0.0
0.0
-203.1
-0.4
-4.0
0.0
0.0
0.0
0.0
0.0
-43.9
-349.9
-62.3
0.0
MAINHEAT
0.0
0.0
0.0
0.0
0.0
0.0
-0.4
0.0
0.0
0.0
0.0
-1.2
-14.7
-153.3
0.0
0.0
AUTOHEAT
0.0
0.0
0.0
0.0
-83.9
0.0
-6.2
0.0
0.0
0.0
0.0
0.0
-17.0
-304.2
0.0
0.0
THEAT
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
TBOILER
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
TPATFUEL
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
TCOKEOVS
0.0
0.0
0.0
1.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
-0.1
-0.9
0.0
0.0
TGASWKS
0.0
0.0
0.0
0.0
0.0
0.0
-4.0
0.0
0.0
0.0
0.0
0.0
0.0
-6.0
-55.3
0.0
BLASTFUR
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
-61.5
0.0
0.0
PETCHEM
0.0
1093.8
0.0
0.0
-27.6
-0.9
-111.9
-6.9
0.0
0.0
0.0
-3.6
-36.8
-50.7
-853.5
-1.4
TBKB
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
TREFINER
-2869.4
-5099.9
-216.2
-948.0
5683.2
31.4
4690.0
36814.4
63.4
1.4
9230.0
2802.4
44576.8
20393.7
8203.1
194.5
LIQUEFAC,ELNG
0.0
0.0
0.5
361.3
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
TNONSPEC,TCHARCOAL
0.0
0.0
0.0
0.0
0.0
0.0
16.4
0.6
0.0
0.0
2.9
0.5
93.1
26.8
0.0
0.0
TOTENGY
-29.3
0.0
0.0
0.0
-4753.9
-2.0
-211.3
-16.3
0.0
0.0
0.0
-3.3
-380.6
-1649.8
-13.5
0.0
Sub-total transf. (not ELC)
-29.3
0.0
0.0
0.0
-4753.0
-2.0
-211.3
-15.8
0.0
0.0
0.0
-3.3
-326.0
-1623.9
-13.5
0.0
MINES
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
-1.5
-81.4
-2.6
0.0
0.0
OILGASEX
-29.3
0.0
0.0
0.0
-43.8
-1.3
-1.6
-0.2
0.0
0.0
0.0
-0.4
-135.9
-79.2
-5.1
0.0
EPATFUEL
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
-2.9
0.0
0.0
ECOKEOVS
0.0
0.0
0.0
0.0
0.0
0.0
-1.1
0.0
0.0
0.0
0.0
0.0
-0.8
-0.5
0.0
0.0
EGASWKS
0.0
0.0
0.0
0.0
0.0
0.0
-43.2
0.0
0.0
0.0
0.0
0.0
-4.7
-0.3
0.0
0.0
EBKB
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
EREFINER
0.0
0.0
0.0
0.0
-4709.2
-0.7
-164.6
-15.6
0.0
0.0
0.0
-1.1
-102.6
-1423.7
-8.4
0.0
EPOWERPLT
0.0
0.0
0.0
0.0
-0.9
0.0
0.0
-0.5
0.0
0.0
0.0
0.0
-54.6
-25.9
0.0
0.0
EPUMPST
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
ENUC
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
ENONSPEC
0.0
0.0
0.0
0.0
0.0
0.0
-0.7
0.0
0.0
0.0
0.0
-0.3
-0.6
-114.8
0.0
0.0
DISTLOSS
-0.8
0.0
0.0
0.0
-2.8
0.0
-1.4
-0.7
0.0
0.0
-0.1
0.0
-2.6
-2.3
0.0
0.0
TFC
65.7
0.0
0.0
0.0
512.6
1300.0
8673.8
36200.5
65.0
1.8
4643.4
2480.6
41320.3
5731.0
8772.4
237.2
PIPELINE
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
197.9
0.0
0.0
0.0
146
147
304.8
2.0
374.1
0.9
0.0
402.3
0.0
0.0
0.0
0.0
0.0
2193.3
0.2
184211.2
EXPORTS
-649.7
-553.7
-39.7
-891.5
-756.5
0.0
0.0
0.0
0.0
0.0
0.0
0.0
-2209.3
-0.3
-121253.9 -11600.0
147
HYDRO
TOTAL
OTHER
1692.6
0.0
HEAT
WIND
10120.7
0.0
ELECTR
TIDE
30221.8
1002.6
ARTH
SOLARPV,SOL
0.0
1038.4
NUCLEAR
0.0
48.8
ONONSPEC
0.0
401.1
PETCOKE
0.0
421.0
PARWAX
0.0
IMPORTS
BITUMEN
INDPROD
LUBRIC
GEOTHERM
Table 10-9: IEA Energy Balance data used for base-year calibration (continued from table 10-8)
381358.1
BUNKERS
-13.3
0.0
0.0
0.0
-0.4
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
STOCKCHA
19.0
4.1
0.9
-0.3
7.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
-895.2
TPES
-223.0
-148.6
10.0
146.6
252.6
30221.8
10120.7
1692.6
304.8
2.0
374.1
0.9
-15.9
402.2
431820.2
TRANSFER
-29.7
-11.5
-3.6
-2.0
-377.9
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
540.4
STATDIFF
5.5
22.9
1.0
37.4
7.2
0.0
0.0
0.0
0.0
0.0
0.0
0.0
17.4
8.0
-941.6
TOTTRANF
1588.0
3777.9
190.0
2486.7
3097.1
-30221.8
-10120.7
-1535.5
-11.9
-2.0
-374.1
-0.9
62665.8
13209.6
-106188.9
MAINELEC
0.0
0.0
0.0
-283.6
-1.8
-29895.1
-9856.3
-1474.2
-10.9
-2.0
-354.9
-0.2
53770.6
-27.5
-79882.8
AUTOELEC
0.0
-23.4
0.0
-68.7
-19.1
0.0
-264.4
-14.9
-0.9
0.0
-19.2
-0.8
1959.1
0.0
-3233.4
MAINCHP
0.0
0.0
0.0
-37.3
-9.3
-326.7
0.0
-41.0
0.0
0.0
0.0
0.0
5313.9
4875.8
-7482.3
AUTOCHP
0.0
0.0
0.0
-38.5
-43.4
0.0
0.0
-1.3
0.0
0.0
0.0
0.0
1637.7
1401.6
-2216.7
MAINHEAT
0.0
0.0
0.0
-1.0
-2.0
0.0
0.0
-4.0
-0.1
0.0
0.0
0.0
0.0
3308.4
-1008.7
AUTOHEAT
0.0
0.0
0.0
0.0
-0.5
0.0
0.0
-0.1
0.0
0.0
0.0
0.0
0.0
3633.4
-702.6
THEAT
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
-7.0
10.3
3.3
TBOILER
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
-8.4
7.6
-0.8
TPATFUEL
0.0
-0.1
0.0
-0.5
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
103.1
TCOKEOVS
0.0
-4.5
0.0
-60.9
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
-1511.2
TGASWKS
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
-244.6
BLASTFUR
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
-5523.1
PETCHEM
0.0
0.0
0.0
-0.1
-11.3
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
-11.0
TBKB
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
-23.8
TREFINER
1588.1
3805.9
190.0
2977.2
3184.4
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
-1716.0 -1094.4
LIQUEFAC,ELNG
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
-2.8
0.0
TNONSPEC,TCHARCOAL
0.0
0.1
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
129.2
4.2
-1666.2
TOTENGY
-3.1
-21.7
0.0
-834.9
-149.5
0.0
0.0
0.0
0.0
0.0
0.0
0.0
-5476.2
-1372.8
-24473.0
Sub-total transf. (not ELC)
-3.1
-21.7
0.0
-834.2
-149.5
0.0
0.0
0.0
0.0
0.0
0.0
0.0
-2023.8
-1184.0
-19607.3
MINES
0.0
0.0
0.0
0.0
-0.1
0.0
0.0
0.0
0.0
0.0
0.0
0.0
-442.7
-44.9
-1592.3
OILGASEX
0.0
0.0
0.0
-58.8
-3.1
0.0
0.0
0.0
0.0
0.0
0.0
0.0
-656.9
-155.6
-5696.4
EPATFUEL
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
-1.9
0.0
-4.9
TOTAL
HEAT
ELECTR
OTHER
WIND
TIDE
ARTH
SOLARPV,SOL
GEOTHERM
HYDRO
NUCLEAR
ONONSPEC
PETCOKE
PARWAX
BITUMEN
LUBRIC ECOKEOVS
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
-14.4
-13.3
-901.2
EGASWKS
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
-18.9
-5.0
-202.3
EBKB
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
-18.3
-6.4
-36.6
EREFINER
-3.1
-21.7
0.0
-773.0
-129.1
0.0
0.0
0.0
0.0
0.0
0.0
0.0
-642.8
-625.3
-9874.6
EPOWERPLT
0.0
0.0
0.0
-0.7
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
-3347.1
-188.2
-4325.3
EPUMPST
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
-101.1
0.0
-101.1
ENUC
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
-1.4
-0.6
-2.0
ENONSPEC
0.0
0.0
0.0
-2.4
-17.2
0.0
0.0
0.0
0.0
0.0
0.0
0.0
-227.9
-333.6
-1299.1
DISTLOSS
0.0
0.0
0.0
0.0
-1.8
0.0
0.0
-9.0
0.0
0.0
0.0
0.0
-5342.0
-1043.0
-7574.9
TFC
1337.7
3619.0
197.5
1833.8
2827.8
0.0
0.0
148.1
292.9
0.0
0.0
0.0
51849.1
11204.1
293182.3
PIPELINE
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
121.8
0.0
2827.0
148
149 Upstream energy consumption is presented in table 10-10 by sources and fuels in the baseyear 2005 at global level. The IEA data has been aggregated into 8 different fuels for final consumption and are the same as upstream sector fuel technologies presented (commodity out) in table 10-3. Similar table has been used for each region to fill out the regional upstream energy consumption data for the base-year 2005. It is assumed that 10% of CHP plants belong to upstream (refinery). Table 10-11 provides CHP data for refinery at global level. Similar table has been generated for each region for the base-year calibration.
UPNSTM
HEAT/
UPNELC
ELECTRICITY/
UPNREN
RENEWABLES/
UPNRPG
OIL PRO-
DUCTS (gas)/
UPNRPP
PRODUCTS/
OIL
UPNCRD
CRUDE OIL/
UPNCOA
Technologies/Products
COAL/
GAS/ UPNNGA
Table 10-10: Upstream energy consumption
MINES
5.8
1013.3
0.0
85.6
0.0
0.0
442.7
44.9
Hard coal mines
4.9
850.5
0.0
71.9
0.0
0.0
371.6
37.7
Brown coal mines
0.9
162.8
0.0
13.8
0.0
0.0
71.1
7.2
OILGASEX
4257.9
0.0
296.5
282.7
46.7
0.0
656.9
155.6
Gas
2129.0
0.0
148.2
141.3
23.4
0.0
328.5
77.8
Light oil
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
Heavy oil
1774.1
0.0
123.5
117.8
19.5
0.0
273.7
64.8
Oil sands (mined-synth.)
56.9
0.0
4.0
3.8
0.6
0.0
8.8
2.1
Oil sands (very heavy)
0.4
0.0
0.0
0.0
0.0
0.0
0.1
0.0
NGL
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
Shale oil
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
EPATFUEL
0.0
0.0
0.0
2.9
0.0
0.0
1.9
0.0
ECOKEOVS
3.1
868.1
0.0
1.3
1.1
0.0
14.4
13.3
98.0
32.3
0.0
4.9
43.2
0.0
18.9
5.0
0.0
11.9
0.0
0.0
0.0
0.0
18.3
6.4
1493.9
97.9
6.3
2528.9
4893.0
10.9
642.8
625.3
76.8
183.2
0.4
135.2
0.7
341.2
227.9
333.6
EGASWKS EBKB EREFINER ENONSPEC
2506.5
0.0
0.8
198.0
0.0
0.0
121.8
0.0
Oil pipelines
PIPELINE
751.9
0.0
0.2
39.6
0.0
0.0
36.5
0.0
Gas pipelines
1002.6
0.0
0.4
99.0
0.0
0.0
48.7
0.0
Rpp pipelines
751.9
0.0
0.2
59.4
0.0
0.0
36.5
0.0
Table 10-11: CHP in refinery (upstream) Input UPSNGA
247. 5
149
Output
Output
REH
EFF
Output
Input
EFF
(ELC)
(heat)
(ELC/het)
heat
(heat) Total
Total
total
80.6
67.3
0.384
0.8
209.7
509.7
0.569
Input
Output
Output
REH
EFF
Output
Input
EFF
(ELC)
(heat)
(ELC/het)
heat
(heat) Total
Total
total
UPSRPP
53.8
15.5
20.2
0.384
0.8
40.4
104.4
0.536
UPSRPG
20.7
5.6
3.0
0.384
0.8
14.7
39.2
0.521
UPSCOA
95.1
28.6
17.2
0.384
0.8
74.5
188.2
0.548
10.7 References International Energy Agency (IEA), World Energy Balances, 2009, ESDS International, (Mimas) University of Manchester EFDA (2004). EFDA World TIMES Model, Final report, prepared by ORDECSYS, KanORS, HALOA, KUL. www.efda.org
150
11 Resource module 11.1 Introduction This module contains data on resource availability at regional level for the period 20052100. The name of the template is ‗Scen_B_Extraction‘. The module separately characterises OPEC and Non-OPEC resources. The module was originally based upon that provided in ETSAP-TIAM although significant changes have been made to the oil and gas characterisation including: adding Arctic oil and gas, shale gas and separately considering natural bitumen produced by mining and by in situ methods. 11.2 Coal Cost assumptions and resource data is taken from ETSAP-TIAM, which is based on the report by Remme et al. (2007). Coal resources in TIAM are distinguished between hard coal, which includes anthracite, bituminous and sub-bituminous coal, and lignite (soft brown coal). Table 11-1 gives an overview of proved recoverable reserves and additional resources. The data for coal resources and reserves are taken from BGR (2006). Table 11-1Coal reserves and resource data at regional level Hard Coal Region
Brown Coal
Total
Reserves
Resources
Reserves
Resources
Gtoe
Gtoe
Gtoe
Gtoe
Gtoe
AFR_P
0.1
0.2
0.0
0.0
0
AFR_N
28.7
71.2
0.0
0.0
100
AUS
38.3
87.2
8.8
10.2
145
CAN
2.0
28.5
0.7
0.7
32
CHI
54.8
508.1
4.3
20.1
587
CSA_P
0.3
0.7
0.0
0.0
1
CSA_N
8.4
19.5
1.2
4.7
34
EEU
6.5
31.5
6.6
12.9
58
FSU
109.8
1084.6
4.5
45.8
1245
IND
51.5
2.7
8.1
0.0
62
JPN
0.2
92.5
0.0
0.9
94
Hard Coal
Brown Coal
Total
MEA_P
0.2
1.7
0.0
0.5
2
MEA_N
0.6
1.1
0.7
1.3
4
MEX
0.5
1.1
0.1
0.0
2
ODA_P
1.2
0.7
0.7
1.0
4
ODA_N
2.3
123.5
1.4
4.1
131
SKO
0.0
0.0
0.0
0.0
0
UK
0.1
2.9
0.0
0.0
3
USA
142.7
235.6
7.7
91.4
477
WEU
0.7
4.5
2.5
19.3
27
143.4
240.1
10.2
110.7
504
World
Assumptions on production costs for hard coal are based on several, different sources (for more detail see Remme et al. (2003)). The cost estimates range from 5-37 US-$/toe for hard coal and 2-36 US-$/toe for brown coal. Figure 1-1 shows a supply cost curve for hard and brown coal.
Coal supply costs [$2000/boe]
45 40 35 30 25 20
Hard Coal
15
Brown Coal
10 5 0 0
1000
2000
3000
4000
5000
6000
Amount of coal [Gtoe]
Figure 11-1 Supply cost curve for hard and brown coal 11.3 Oil 11.3.1
Resources
Regional oil resources are determined for the following categories: 152
153
Proved and probable reserves(2P reserves)
reserve growth7
undiscovered oil
Arctic oil
natural bitumen recoverable by surface mining
natural bitumen recoverable by in situ procedures
extra-heavy oil and
oil shale.
The first four of these are collectively referred to as ‗heavy oil‘ for ease of reference in the model, although this nomenclature bares no relationship to the definition of ‗heavy oil‘ as used in the industry (generally oil denser than 20oAPI8). Regional resources for each of these categories were derived using a country level database that provided high, best and low estimates of each. A percentage of each category was assigned to a ‗deepwater resource‘ for relevant countries. This deepwater resource is not reported separately but combined into the appropriate figure; its differentiation is necessary due to its higher production costs (see next section). Natural Gas Liquids (NGL), although contained within the definition of ‗heavy oil‘, are excluded from each country‘s ‗heavy oil‘ resource categories. TIAM-UCL produces NGLs as a by-product of natural gas production and so these were included in the natural gas resources. On an energy basis, the EIA (2009) reports that NGLs have an energy of
7
Reserve growth is the observed phenomenon that volumes of reserves tend to grow after
they are initially discovered and assessed. 8
API gravity is a measure of density, calculated using the formula as shown: . 100 API is the same density as water.
153
3.9GJ/NGLbbl and a conversion of 105m3of natural gas was hence assumed per barrel of NGL. For detailed references of how all of the resource values were determined, see McGlade (2010). The remaining categories, natural bitumen recoverable by surface mining, natural bitumen recoverable by in situ procedures, extra-heavy oil and oil shale, are collectively referred to as unconventional oil. Country level estimates of recoverable volumes were based upon high, best and low data available on the oil originally in place (OOIP) and the fraction of this that is recoverable (the recovery factor). A statistical procedure was employed to combine these values utilising Monte-Carlo simulation: probability distributions were fitted to the OOIP and recovery factor data and, for a large number of repetitions, a random selection of the recovery factor multiplied by a random selection of the OOIP. It was assumed that a high recovery factor in one country would result in a high recovery factor in all other countries due to technology transfer and so a +1 correlation was assumed for the selection of recovery factors in each country. The country level data for both the ‗heavy oils‘ and unconventional oils was finally combined into regional estimates again using Monte-Carlo simulation. This process involved by fitting probability distributions to the data and adding together random selections, this time with a +0.5 correlation, from each country within each region separately for each category of oil. 11.3.2
Costs
The oil price comprises of four external components:
Resource cost, associated with extraction (in Scenario file Scen_B_Extraction)
VAROM mark-up to establish levels close to oil prices seen in the market (in Scenario file Scen_X_OilOpec5bis)
Other energy costs associated with extraction (particularly for oil sands and shale oil)
Transportation costs for traded oil (see ScenTrade_Trade_Parms)
These costs and the supply / demand balance are used to derive an endogenously calculated marginal cost.
154
155 11.3.3
Resource cost
The resource costs for each of the oils contains two components: the first to extract the native oil from the ground, and the second, if necessary, to upgrade this into a usable crude oil. The upgrading component is necessary for all of the unconventional oils. The resource costs for the first component are derived using data provided by the IEA (2008 pg 218). This is modified in a number of ways so that each country could be assigned a high and low cost for each of the ‗heavy oils‘ and unconventional oils that it possesses. The modifications that were necessary included: splitting the data by countries and/or regions, separating between production costs of reserves and undiscovered oil and between costs bitumen by any means and extra-heavy oil, separating between extraction costs of the unconventional oils and upgrading costs, and accounting for how the costs vary as the resource is depleted. See McGlade (2011) for a more detailed account of how these costs were derived for each country. Table 11-2 gives cost ranges assumed for each category, these represent only the absolute maximum and minimum for all countries, each individual country is assigned its own range and magnitude. Table 11-2 shows cost ranges assumed for each category of oil in TIAM-UCL Category of oil
Minimum cost
Maximum cost
(2005$/bbl)
(2005$/bbl)
Reserves
8
34
Reserve growth
17
70
Undiscovered oil
10
74
Deepwater reserves
36
65
Deepwater reserve growth
45
83
Deepwater undiscovered
42
89
Arctic oil
36
58
Natural bitumen – mining
35
44
Natural bitumen – in situ
29
37
Extra-heavy oil
29
37
Oil shale
39
83
The variation of cost as the resource was depleted was derived using depletion costs curves. Derived using empirical evidence, these curves displayed below demonstrate how the cost of 155
each resource in each country increases as more of it is used. They represent the percentage increase in the cost range for each incremental percentage of the resource that is produced. 100% 90%
Reserves & Reserve growth
% of price range
80% 70%
Undiscovered
60% 50% 40%
Deepwater (Reserve & YTF)
30%
Arctic
20% 10%
Unconventionals
0%
0%
20%
40% 60% % of resource depleted
80%
100%
Figure 11-2 Depletion cost curves for each category of oil examined In order to derive the inputs for TIAM-UCL, each country‘s cost data was applied to that country‘s resource probability distributions. An overall supply cost curve that represented the resource variability could then be derived. An example for reserves in African OPEC countries is presented below. Blue and green figures represent the 65th and 35th percentiles and the 95th and 5th percentiles respectively. As discussed above, any
156
157 deepwater reserves, which appear at higher costs, are included in this figure.
Figure 11-3 show an example of 2P reserves in the OPEC African region, of supply cost curve generated The mode value from this curve was then separated and the curve differentiated into three steps so that the number of inputs in the resource module was kept at a reasonable level. These three steps were the first 50% of the resource, the next 30% and the final 20%. The overall oil global supply cost curve that represents all of the resource and cost data i.e. the data used as inputs to TIAM-UCL is presented below. It is important to recognise that all of the categories of all are not equivalent. Some require (potentially major) upgrading which has additional costs and needs. If these costs were taken into account, the unconventional oils would tend be shifted upwards and further to the right of this curve. Oil was converted to energy using 1bbl = 6.1GJ.
157
80 AFR_P
Supply Curve/ Resource availability by Region 70
AFR_N
AUS CAN
60
Price (2005)$/bbl
CHI
CSA_P
50
CSA_N EEU
40
FSU IND JPN
30
MEA_P MEA_N 20
MEX
ODA SKO
10
UK
USA 0 0
250
500
750
1000
1250
1500
1750
2000
2250
2500
2750
3000
3250
3500
3750
WEU
Remaining resources /Gb
Figure 11-4 shows the supply cost curve for all oil differentiated by region
80
Supply Cost curve/ Resource availability by resource type 70 Reserves Reserve Growth
60
Cost (2005)$/bbl
Undiscovered 50
Arctic oil 40
Mined natural bitumen In situ natural bitumen
30
Extra-heavy
20 Oil shale 10
0 0
250
500
750
1,000
1,250
1,500
1,750
2,000
2,250
2,500
2,750
3,000
3,250
3,500
3,750
Resource availability / Gb
Figure 11-5 shows the supply cost curve for all oil differentiated by oil category 11.3.4
Upgrading oil
As mentioned, an additional cost was necessary for the unconventional oils to upgrade them into an oil that is equivalent to ‗heavy oil‘. These additional costs included both investment
158
159 costs as well as heat and electricity. These inputs varied depending on the unconventional oil in question and are summarised in the table below; these are assumed for all regions. The data was derived using a number of sources; see McGlade (2011) for more details. Currently, heat is entirely provided and electricity primarily provided by natural gas. This will not always necessarily be the case and these are hence reported as heat and electricity input instead of natural gas. In the Reference case, the model is constrained to limit OPEC production to a maximum 80% of total production (see Scen_Oil-UC-opec_080). Table 11-3 show details of upgrading technologies for unconventional oils Category of oil
Investment cost
Heat input
Electricity input
($2005/bbl)
(MJ/bbl)
(MJ/bbl)
Natural bitumen – mining
23
500
100
Natural bitumen – in situ
5
1000
250
Extra-heavy oil
5
1000
250
Oil shale
1
1000
0
11.4 Gas Natural gas has been separated into conventional gas consisting of reserves, reserve growth, undiscovered and Arctic gas, and unconventional gas consisting of tight gas, coal bed methane and shale gas. Since all gas produced from the above categories is similar, there was no need to add an extra upgrading stage as was necessary for oil. As discussed above, Natural Gas Liquids are produced as a by-product of natural gas production with approximately 0.3PJ NGL produced for every 1PJ of natural gas produced. NGL resources were added to the natural gas reserves with a conversion of 105m3of natural gas assumed per barrel of NGL. A similar methodology for natural gas was used as was employed for oil. Regional resources for each of the above categories were again derived using a country level database that provided high, best and low estimates of each, which were combined using Monte-Carlo simulation. Similar to the procedure for dealing with deepwater oil, the percentages of conventional gas that were either in deepwater or were sour (with high concentrations of H2S) were derived using data from the MMS (2006), USGS (2000) and Rojey (1997) and, after 159
cost data was applied, recombined back into the relevant category and so are not reported separately. Primary sources for the conventional data included: for reserves: BGR (2008), Campbell (2009) and USGS (2000) and for the unconventional sources: Kuuskraa (2010) and IEA (2009). 11.4.1
Resource costs
Again a similar procedure to that used for oil was employed to associate the gas resources with costs of production. The cost data was based upon information from IEA (2009 pg 416) and modified for natural gas costs in each country using data provided by Observatoire Mediterraneen de l'Energie (2001) and Lochner (2009) . A table of natural gas costs is presented below, again with the minimum and maximum cost from any country within each gas category. Gas was converted to barrels of boil equivalent (boe) using 160m3 = 1boe = 6.1GJ. These cost data were again applied to the resource data using depletion cost curves. Table 11-4 shows the cost ranges for each type of gas resource Category of oil
Minimum cost
Maximum cost
(2005$/boe)
(2005$/boe)
Reserves
3
25
Reserve growth
7
45
Undiscovered oil
8
36
Deepwater reserves
28
52
Deepwater reserve growth
32
59
Deepwater undiscovered
43
68
Sour reserves
18
44
Sour reserve growth
22
52
Sour undiscovered
22
55
Arctic oil
23
69
Tight gas
15
45
Coal bed methane
17
50
Shale gas
17
45
The gas supply cost curve demonstrating the inputs to TIAM-UCL are presented in Figure 11-6 and Figure 11-7.
160
161 50 AFR_P
Supply Curve/ Resource availability by Region
45
AFR_N
AUS
40
CAN CHI
35
Price (2005)$/boe
CSA_P CSA_N
30
EEU
25
FSU IND
20
JPN
MEA_P 15
MEA_N MEX
10
ODA SKO
5
UK
USA 0 0
500
1000
1500
2000
2500
3000
WEU
3500
Remaining resources /Gboe
Figure 11-6 shows the natural gas supply cost curve by region 50
Supply Curve/ Resource availability by resource type 45
Reserves 40 Reserve Growth
Price (2005)$/ boe
35
Undiscovered
30
25
Undiscovered Arctic
20
Tight Gas
15
CBM
10
Shale Gas
5 0 0
250
500
750
1,000
1,250
1,500
1,750
2,000
2,250
2,500
2,750
3,000
3,250
3,500
Resource availability / Gb
Figure 11-7 shows the natural gas supply cost curve by resource type 11.5 Other fuels 11.5.1
Biomass for electricity sector
Biomass used in the electricity sector is provided by two different commodities - ELCSLD (from BIOSLD) and ELCCRP (from BIOCRP). Both originate from domestic (MIN) processes: 161
MINBIOCRP0 (producing BIOCRP) and MINBIOSLD1,2 and 3 (producing BIOSLD). In this module biomass availability is modelled for energy crops and solid biomass (Table 11-5). Energy crops and solid biomass availability data is taken from TIAM-WORLD (www.kanors.com) and some adjustment made to match the regions in the TIAM-UCL. These two biomass resources are traded, transportation cost is presented in trade module. The domestic production bounds for 2005 can be found in the BY UPS templates. Concerning costs, all regions have the same COST for the three tranches of BIOSLD (at 0.63, 1.88 and 3.13). For BIOCRP, resource costs differ between regions although the basis for this differential is not clear. They range between 1.38 in India to 3.65 in ODA. All costs remain the same over the time horizon. Table 11-5 Biomass resource availability in 2050 and 2100
Biomass
MINBIOSLD1
MINBIOSLD2
MINBIOSLD3
MINBIOCRP0
Yr
2050
2100
2050
2100
2050
2100
2050
2100
AFR
9650
9650
7720
7720
1930
1930
9000
15000
AUS
1386
1386
567
567
147
147
13000
16600
CAN
1980
1980
810
810
210
210
6000
9000
CHI
7437
7437
3330
3330
333
333
5000
6000
CSA
13350
13350
3738
3738
712
712
17000
22000
EEU
971
971
747
747
149
149
167
167
FSU
1519
1519
1333
1333
248
248
55000
56700
IND
8170
8170
1235
1235
95
95
5000
7000
JPN
0
0
0
0
0
0
100
100
MEA
204
204
87
87
9
9
1000
1500
MEX
1258
1258
374
374
68
68
2000
3000
ODA
1407
1407
588
588
105
105
6000
6500
SKO
67
67
30
30
3
3
100
100
UK
93
93
78
78
15
15
17
17
USA
3276
3276
1612
1612
312
312
16400
22000
WEU
1773
1773
1490
1490
284
284
317
317
11.6 Uranium Uranium resource is modelled in the ―SubRES_Nucresource‖. The resource availability data is taken from IER report (IER; 2007). This includes reasonable assured resources (RAR), inferred resources (IR), prognosticated resources, Prognosticated Resources (PR) and 162
163 speculative resources (SR). Reasonable assured resources (RAR) are uranium deposits, which are proven to exist with a high degree of certainty and which can be extracted with known mining technologies. Inferred resources (IR) refers to uranium that is inferred to occur due to direct geological evidence, but due to missing further exact information cannot be included in the RAR category. Prognosticated resources (PR) describe uranium deposits that are assumed to exist mainly based on indirect evidence, e.g. due to the existence of other minerals typically occurring together with uranium. Furthermore, the location of the deposit is exactly known. Speculative resources (SR) are quantities that are thought to exist based on indirect evidence or geological extrapolations. Only the rough location of these deposits in a region is known, but not the exact position Depending on the extraction costs, these uranium resources are specified in the three categories less 40 $/kg U, 40-80 $/kg U and 80-130 $/kg U extraction costs (Table 11-6). It is assumed based on IER report that, One kg of Uranium can generate 61 MWh of electricity in a nuclear plant with the thermal efficiency of 37% and nuclear fuel is reprocessed once. Data presented in the table is equivalent of electricity generation. It is also assumed in the model that any region can import or export uranium. Table 11-6 Cumulative Uranium resource availability (PJ)-data used in TIAM-UCL Region
163
Cost ranges RAR+IR+PR+SR US$/PJ 8.784
US$/PJ 17.568
US$/PJ 28.548
(US$40/kg)
(US$80/kg)
(US$130/kg)
Total
AFR
96491
175741
238902
511133
AUS
229262
235850
251003
716116
CAN
81647
108438
284118
474204
CHI
6957
13906
14806
35669
CSA
32400
120675
188432
341507
EEU
728
4194
15395
20317
FSU
134500
296078
631056
1061634
IND
0
0
16896
16896
JPN
0
0
1449
1449
MEA
17343
27202
29420
73964
MEX
0
0
1054
1054
ODA
3558
13674
345227
362458
SKO
0
0
0
0
Total
603105
1208784
2595464
4407353
Region
Cost ranges RAR+IR+PR+SR US$/PJ 8.784
US$/PJ 17.568
US$/PJ 28.548
(US$40/kg)
(US$80/kg)
(US$130/kg)
Total
USA
0
206644
543071
749714
WEU
220
6382
34635
41236
11.7 References BGR (Federal Institute for Geosciences and Natural Resources): Reserves, Resources and Availability of Energy Resources 2004, Brief Study, Hannover, 2006 BGR (2008) – Reserves, resources and availability of Energy Resources, Hannover Campbell (2009) – Atlas of oil and gas depletion. Campbell C. And Heapes S. EIA (2009) – Energy Information Agency table A2 available at: http://search.usa.gov/search?affiliate=eia.doe.gov&locale=en&m=false&query=tabl e+A2 IEA (2008) - World Energy Outlook 2008 International Energy Agency IEA (2009) - World Energy Outlook 2009 International Energy Agency Kuuskraa (2010) - From Fears of Shortages to Expectations of Plenty: The Paradigm Shift in Natural Gas Supplies. Kuuskraa V.A. Presentation at 29thUSAEE/IAEE North American Conference, Calgary, October 2010. Lochner (2009) - The development of natural gas supply costs to Europe, the United States and Japan in a globalizing gas market—Model-based analysis until 2030. Energy Policy 37 (2009) 1518–1528 McGlade (2010) - Uncertainties in estimating remaining recoverable resources of conventional oil – conference paper 29th USAEE/IAEE North American Conference, Calgary, October 2009 McGlade (2011) - Uncertainties in the long term availability of crude oil– conference paper 34th IAEE International Conference, Stockholm, June 2011 (in press) 164
165 MMS (2006) - Outer Continental Shelf Oil & Gas Assessment 2006, Mineral Management Service, available at http://www.boemre.gov/revaldiv/RedNatAssessment.htm Observatoire Mediterraneen de l'Energie (2001) - Assessment of internal and external gas supply options for the EU, evaluation of the supply costs of new natural gas supply projects to the EU and an investigation of related financial requirements and tools. Remme, Uwe, Blesl, Markus, Fahl, Ulrich (2007): ―Global resources and energy trade: An overview for coal, natural gas, oil and uranium‖, Band 101, IER Universitaet Stuttgart Rojey (1997) - Natural gas: production, processing, transport USGS (2000) – USGS World Petroleum Assessment 2000, Ahlbrandt et. al, available at http://pubs.usgs.gov/dds/dds-060/ Uwe Remme, Markus Blesl and Ulrich Fahl, 2007. Global resources and energy trade: an overview for coal, natural gas, oil and uranium. IER, University of Stuugart.
165
12 Cross-sector modules 12.1 Introduction There are a range of SubRes files in the model which characterise technologies not found in the BY templates i.e. options for investment post-2005. All are described in this section, with the exception of B-NewTechs, which is described in the relevant sector chapters. B-
Newtechs is the main SubRes file, listing the key technology options that can be invested in future years. The SubRes files described in this section are listed in Table 12-1 below. Table 12-1: List of SubRes files in the TIAM-UCL model SubRes file
Included in current
Description
Reference Scenario? Alternative fuel
Yes
New alternative fuel technologies such as coal-to-liquids
Hydrogen
Yes
Hydrogen technologies, including production and transport technologies
Sequestration
Yes
Capture and storage technologies included, plus forestry sinks
Land-use CO2
No
(LUCO2) Non-CO2 gases
Accounting of emission of methane and CO2 from land use
No
Accounting of emission of methane and N2O from agriculture, residential and industry sectors
CH4 measures
No
CH4 mitigation measures
N2O measures
No
N2O mitigation measures
NucResource
Yes
12.2 Alternative fuel This SubRes file contains technologies for the production of alternative fuels. The technologies are splits into two groups: 1) Ethanol and methanol production, either from coal or biomass and 2) Fischer-Tropsch processes, producing oil products from coal, gas and biomass.
Table 12-2: Alternative fuel technologies Model Technology Name
Model Technology Description
UBIOETH100
Ethanol from biomass
UETHCRP100
Cellulose ethanol plant
UMETBIO100
Methanol from Bioliquids
UMETCOA100
Methanol from coal
UMETCOAS100
Methanol from coal with CO2 capture
UMETGAS100
Prod of Methanol from natural gas
UFTSYNBSLD
FT Diesel Solid biomass
UFTSYNBSLDH
Synth Diesel Hydrothermal upgrading
UFTSYNCOA
FT Diesel Coal
UFTSYNCOACCS
FT Diesel Coal with CO2 capture
UFTSYNNGA
FT Diesel Natural gas
UFTSYNJTKCCS
Prod of JTK from coal FT
UFTSYNHFOCCS
Prod of HFO from coal FT
As noted in the template, further work is needed to develop the cost information currently being used. All regions use the same assumptions with no additional information provided in the Trans file. 12.3 Hydrogen SubRes technologies include those used for hydrogen production and demand technologies in the transport sector that consume hydrogen. Production technologies (name starting 'H') are generic in nature and are defined by the type of fuel used - coal, natural gas, electricity and biomass. There are also technologies, available from 2020, that allow for mixing of hydrogen into the natural gas supply to different sectors (name starting 'UP'). This mix is fixed at 15% hydrogen / 85% natural gas. A single distribution technology allows for hydrogen transport, with costs developed on the basis of unit of energy transported (using VAROM).
168
169 Table 12-3: Hydrogen production and supply technologies Model Technology Name
Model Technology Description
HBCO105
Hydrogen from Brown coal
HHCO105
Hydrogen from Hard coal
HLYSI05
Electrolysis
HNGA105
Hydrogen from NGA
HNGAD105
Hydrogen from NGA - Decentralized
HBIO105
Hydrogen from biomass gasification
UPCGAHH00
Mix of Gas and Hydrogen - For COM
UPIGAHH00
Mix of Gas and Hydrogen - For IND
UPRGAHH00
Mix of Gas and Hydrogen - For RES
UDISTHH200
Distribution of hydrogen
Hydrogen technologies for cars and light duty trucks are included in the model, with different types based on the use of combustion, hybrid or fuel cell technology. The associated Trans file puts different hurdle rates on these technologies, assuming 15% for developed regions and 30% for developing regions such as Africa. The Trans file is also used to adjust efficiencies and costs across all regions, for both transport and production technologies. Table 12-4 Hydrogen technologies in transport sector Tech. Name
Technology Description
Year
LIFE
INVCOST
FIXOM
EFF
TRTHHA005
CAR:
2006
12.5
2000
80
0.372
2008
12.5
1750
80
0.393
2015
12.5
1600
80
0.404
2020
12.5
1528
80
0.415
2020
12.5
1929
80
0.446
2006
12.5
2500
80
0.496
.05.AFV.HH2.Combustion.Liq sto. TRTHHA010
CAR: .10.AFV.HH2.Combustion.Liq sto.
TRTHHA015
CAR: .15.AFV.HH2.Combustion.Liq sto.
TRTHHA020
CAR: .20.AFV.HH2.Combustion.Liq sto.
TRTHHB020
CAR: .20.AFV.HH2.Combustion.Car bon sto.
TRTHHC005
CAR: .05.AFV.HH2.Hybrid.Liq sto.
169
Tech. Name
Technology Description
Year
LIFE
INVCOST
FIXOM
EFF
TRTHHC010
CAR: .10.AFV.HH2.Hybrid.Liq
2008
12.5
2000
80
0.498
2015
12.5
1750
80
0.511
2020
12.5
1674
80
0.525
2020
12.5
2074
80
0.594
2006
12.5
5000
80
0.685
2008
12.5
2500
80
0.688
2015
12.5
2200
80
0.707
2020
12.5
1892
80
0.726
2020
12.5
2293
80
0.780
2006
12.5
2500
80
0.737
2008
12.5
2000
80
0.740
2015
12.5
1800
80
0.760
2020
12.5
1608
80
0.780
2006
15
2000
75
0.248
2008
15
1750
75
0.262
2015
15
1600
75
0.269
2020
15
1528
75
0.276
2020
15
1929
75
0.030
sto. TRTHHC015
CAR: .15.AFV.HH2.Hybrid.Liq sto.
TRTHHC020
CAR: .20.AFV.HH2.Hybrid.Liq sto.
TRTHHD020
CAR: .20.AFV.HH2.Hybrid.Carbon sto.
TRTHHE005
CAR: .05.AFV.HH2.Fuel cell.Liq sto.
TRTHHE010
CAR: .10.AFV.HH2.Fuel cell.Liq sto.
TRTHHE015
CAR: .15.AFV.HH2.Fuel cell.Liq sto.
TRTHHE020
CAR: .20.AFV.HH2.Fuel cell.Liq sto.
TRTHHF020
CAR: .20.AFV.HH2.Fuel cell.Carbon sto.
TRTHHG005
CAR: .05.AFV.HH2.Fuel cell.Gas sto.
TRTHHG010
CAR: .10.AFV.HH2.Fuel cell.Gas sto.
TRTHHG015
CAR: .15.AFV.HH2.Fuel cell.Gas sto.
TRTHHG020
CAR: .20.AFV.HH2.Fuel cell.Gas sto.
TRLHHA005
LIGHT TRUCK: .05.AFV.HH2.Combustion.Liq sto.
TRLHHA010
LIGHT TRUCK: .10.AFV.HH2.Combustion.Liq sto.
TRLHHA015
LIGHT TRUCK: .15.AFV.HH2.Combustion.Liq sto.
TRLHHA020
LIGHT TRUCK: .20.AFV.HH2.Combustion.Liq sto.
TRLHHB020
LIGHT TRUCK: .20.AFV.HH2.Combustion.Car bon sto.
170
171 Tech. Name
Technology Description
Year
LIFE
INVCOST
FIXOM
EFF
TRLHHC005
LIGHT TRUCK:
2006
15
2500
75
0.331
2008
15
2000
75
0.332
2015
15
1750
75
0.341
2020
15
1674
75
0.350
2020
15
2074
75
0.396
2006
15
5000
75
0.457
2008
15
2500
75
0.459
2015
15
2200
75
0.471
2020
15
1892
75
0.484
2020
15
2293
75
0.520
2006
15
2500
75
0.491
2008
15
2000
75
0.493
2015
15
1800
75
0.507
2020
15
1608
75
0.520
.05.AFV.HH2.Hybrid.Liq sto. TRLHHC010
LIGHT TRUCK: .10.AFV.HH2.Hybrid.Liq sto.
TRLHHC015
LIGHT TRUCK: .15.AFV.HH2.Hybrid.Liq sto.
TRLHHC020
LIGHT TRUCK: .20.AFV.HH2.Hybrid.Liq sto.
TRLHHD020
LIGHT TRUCK: .20.AFV.HH2.Hybrid.Carbon sto.
TRLHHE005
LIGHT TRUCK: .05.AFV.HH2.Fuel cell.Liq sto.
TRLHHE010
LIGHT TRUCK: .10.AFV.HH2.Fuel cell.Liq sto.
TRLHHE015
LIGHT TRUCK: .15.AFV.HH2.Fuel cell.Liq sto.
TRLHHE020
LIGHT TRUCK: .20.AFV.HH2.Fuel cell.Liq sto.
TRLHHF020
LIGHT TRUCK: .20.AFV.HH2.Fuel cell.Carbon sto.
TRLHHG005
LIGHT TRUCK: .05.AFV.HH2.Fuel cell.Gas sto.
TRLHHG010
LIGHT TRUCK: .10.AFV.HH2.Fuel cell.Gas sto.
TRLHHG015
LIGHT TRUCK: .15.AFV.HH2.Fuel cell.Gas sto.
TRLHHG020
LIGHT TRUCK: .20.AFV.HH2.Fuel cell.Gas sto.
171
Table 12-5 Hydrogen production technologies in ETSAP-TIAM Tech. Name
Technology description
Com.-IN
Com.-OUT
Input
LIFE
DISCRAT
INVCOS
FIXO
VARO
E
T
M
M
AF
T
HLYSI05
Electrolysis
ELCC
SYNHY0
1.25
30
0.1
30
0.95
0.85
HNGA105
Hydrogen from NGA
GASNGA
SYNHY0
1.23
20
0.1
10
0.56
0.95
HHCO105
HBCO105
Hydrogen from Hardcoal
Hydrogen from
COAHCO
COABCO
ENV_AC
UPNCO2N
56.10
UPNCH4N
0.13
UPNN2ON
0.62
SYNHY0
1.59
20
0.1
33.5
1.5
0.2
0.95
UPNCO2N
98.30
UPNCH4N
0.54
UPNN2ON
1.81
SYNHY0
1.59
20
0.1
33.5
1.5
0.2
0.95
Browncoal
HNGAD105
Hydrogen from NGA -
GASNGA
UPNCO2N
101.20
UPNCH4N
0.54
UPNN2ON
1.81
TRAHH2
1.33
20
0.1
10
0.56
2.0
0.95
Decentralized
HBIO105
Hydrogen from biomass
BIOBSL
TRACO2N
56.10
TRACH4N
0.13
TRAN2ON
0.62
SYNHY0
1.59
25
0.1
100
1.08
0.85
gasification
172
173
12.4 Sequestration Sequestration technologies and storage options mainly relate to the electricity sector, and are described in the relevant sector chapter of this report. There are two technologies that allow for the capture of CO2 emissions (process-based) in the upstream sector. The costs of such 'dummy' capture technologies are modelled simply, using variable costs of 0.001 (equivalent to $1/tCO2). Another set of important technologies for integrated climate modelling are those that relate to emissions and removals by the forestry sector. Labelled SINKAF*. The levels of emissions and removals and the associated costs are controlled by the Trans file and are based on assumptions used in the EMF analysis. Finally, atmospheric CO2 may be partly absorbed and fixed by biological sinks such as forests; the model has six options for forestation and avoided deforestation, as described in Sathaye et al. (2005) and adopted by the Energy Modelling Forum, EMF-21 and 22 groups. 12.5 Land-use CO2 The SubRes file LUCO2 defines a single technology that emits fixed levels of emissions by region each period. It is net CO2 emissions from deforestation and forest degradation. It does not include emissions from land use. The levels are calculated in the associated Trans file. The global emission level in 2005 is estimated at 2.7 GtCO2 per year, which decreases to 0.1 GtCO2 by 2100.9 Allocation by region is based on distribution of agricultural managed land. It is assumed that LULUCF emissions for UK is zero and therefore, WEU region‘s LULUCF emission has not been changed. There are scenarios in the model with reduced emissions from deforestation based on the EMF 21 study scenarios.
9
A note in the template states that the total emissions are from the MIR paper
173
12.6 Non-CO2 gases TIAM includes energy related CO2, land-use (and forestry) CO2, and non-CO2 gases CH4 and N2O. CH4 from upstream, landfills, manure, rice paddies, enteric fermentation, wastewater is based on EMF-22 data and WEO-2008. N2O from industry and agriculture is based on WEO2008. CO2 from land-use is based on the Reference scenario of the United States Climate Change Science Program (MIT) presented in Prinn et al. (2008). UK data for Non-CO2 gases are taken from UK greenhouse gas inventory national system (www.ghgi.org.uk). Some other greenhouse gases (CFC‘s, HFC‘s, SF6, etc.) and chemically active gases such as NOX, CO, VOC‘s are not explicitly modelled, but their radiative forcing is represented as an exogenous extra term in the Forcing expression (this is only for climate module). When aggregate non-CO2 emissions (CH4 and N2O) to CO2 equivalent, the model uses a factor of 0.025 for CH4 and 0.298 for N2O. This SubRes does the emissions accounting for non-CO2 emission sources, which are listed Table 12-6 below. These emission sources are important to include when running climate targets taking account of all GHGs. Emission levels are fixed in the Trans file, and appear to have been calculated using EMF data. Table 12-6: Non-CO2 emission sources Sector
Emission source
GHG
Industry
Adipic Acid Production
N2O
Industry
Nitric Acid Production
N2O
Agriculture
Manure
CH4
Agriculture
Other e.g. residue burning
CH4
Agriculture
Other
N2O
Residential
Landfill
CH4
Residential
Other e.g. wastewater
CH4
12.7 CH4 measures CH4 mitigation measures in the model are reasonably extensive with 50 measures relating to the UPS sector and 20 measures relating to waste and agriculture sector emissions. CH4 mitigation options were provided by the Energy Modeling Forum, EMF-21 group. CH4 removal is modelled by being 'consumed' by these mitigation technologies. 174
175 The Trans file is used to update fixed O&M costs of upstream sector mitigation measures. Table 12-5 and 12-6 present technologies for CH4 mitigation in residential and upstream sectors. CO2 emissions from residential CH4 mitigation technologies are captured and allocated to residential process emissions (RESCO2P). Similar CO2 emissions from upstream CH4 mitigation technologies are captured and allocated to upstream process emissions (UPCO2P). Table 12-7: Technologies to mitigate CH4 Technology
Description
ACH4MANE3
CH4 option - Manure - Production of elec and heat
ACH4MANE4
CH4 option - Manure - Production of elec and heat
RCH4WLFE4
CH4- Heat Production - Power
RCH4WLFE2
CH4- Anaerobic digestion 2 - Power
RCH4WLFE8
CH4- Electricity Generation - Power
ACH4MAN01
CH4- Farm Scale Digesters-A (cool climate)
ACH4MAN02
CH4- Farm Scale Digesters-A (warm climate)
ACH4MAN03
CH4- Farm Scale Digesters-B (cool climate)
ACH4MAN04
CH4- Farm Scale Digesters-B (warm climate)
RCH4WLF01
CH4- Anaerobic digestion 1 (AD1)
RCH4WLF02
CH4- Anaerobic digestion 2 (AD2)
RCH4WLF03
CH4- Composting (C1)
RCH4WLF04
CH4- Mechanical Biological Treatment
RCH4WLF05
CH4- Heat Production
RCH4WLF06
CH4- Increased Oxidation
RCH4WLF07
CH4- Direct Gas Use (profitable at base price)
RCH4WLF08
CH4- Electricity Generation
RCH4WLF09
CH4- Direct Gas Use (profitable above base price)
RCH4WLF10
CH4- Flaring
RCH4WLF11
CH4- Composting (C2) Table 12-8: Technologies to mitigate CH4
Technology
Description
UNCH4COAE5
CH4 option - Production of elec and heat
UNCH4COAE6
CH4 option - Production of elec and heat
UNCH4COAE7
CH4 option - Production of elec and heat
UPCH4COAE5
CH4 option - Production of elec and heat
UPCH4COAE6
CH4 option - Production of elec and heat
175
Technology
Description
UPCH4COAE7
CH4 option - Production of elec and heat
UNCH4COA08
CH4- Catalytic Oxidation (EU)
UNCH4COAE3
CH4 option - Production of elec
UNCH4COAE8
CH4 option - Production of elec
UPCH4COA08
CH4- Catalytic Oxidation (EU)
UPCH4COAE3
CH4 option - Production of elec
UPCH4COAE8
CH4 option - Production of elec
UNCH4COA01
CH4- Degasification and Pipeline Injection
UNCH4COA02
CH4- Enhanced Degasification_ Gas Enrichment_ and Pipeline Injection
UNCH4COA03
CH4- Catalytic Oxidation (US)
UNCH4COA04
CH4- Flaring
UNCH4COA05
CH4- Degasification and Power Production – A
UNCH4COA06
CH4- Degasification and Power Production – B
UNCH4COA07
CH4- Degasification and Power Production – C
UNCH4GAS01
CH4- P&T - Use gas turbines instead of reciprocating engines
UNCH4GAS02
CH4- Prod-D I&M (Pipeline Leaks)
UNCH4GAS03
CH4- Installation of Flash Tank Separators (Production)
UNCH4GAS04
CH4- Replace high-bleed pneumatic devices with compressed air systems (Production)
UNCH4GAS05
CH4- Replace high-bleed pneumatic devices with low-bleed pneumatic devices (Production)
UNCH4GAS06
CH4- Dry Seals on Centrifugal Compressors (P&T)
UNCH4GAS07
CH4- Catalytic Converter (P&T)
UNCH4GAS08
CH4- Portable Evacuation Compressor for Pipeline Venting (P&T)
UNCH4GAS09
CH4- Replace High-bleed pneumatic devices with compressed air systems (P&T)
UNCH4GAS10
CH4- Replace high-bleed pneumatic devices with low-bleed pneumatic devices (P&T)
UNCH4GAS11
CH4- D-D I&M (Distribution)
UNCH4GAS12
CH4- D-D I&M (Enhanced: Distribution)
UNCH4GAS13
CH4- Electronic Monitoring at Large Surface Facilities (D)
UNCH4GAS14
CH4- Replacement of Cast Iron_Unprotected Steel Pipeline (D)
UNCH4OIL01
CH4- Flaring instead of Venting (Offshore)
UNCH4OIL02
CH4- Flaring instead of Venting (Onshore)
UNCH4OIL03
CH4- Associated Gas (vented) Mix with Other Options
UNCH4OIL04
CH4- Associated Gas (flared) Mix with Other Options
UPCH4COA01
CH4- Degasification and Pipeline Injection
176
177 Technology
Description
UPCH4COA02
CH4- Enhanced Degasification_ Gas Enrichment_ and Pipeline Injection
UPCH4COA03
CH4- Catalytic Oxidation (US)
UPCH4COA04
CH4- Flaring
UPCH4COA05
CH4- Degasification and Power Production – A
UPCH4COA06
CH4- Degasification and Power Production – B
UPCH4COA07
CH4- Degasification and Power Production – C
UPCH4GAS01
CH4- P&T - Use gas turbines instead of reciprocating engines
UPCH4GAS02
CH4- Prod-D I&M (Pipeline Leaks)
UPCH4GAS03
CH4- Installation of Flash Tank Separators (Production)
UPCH4GAS04
CH4- Replace high-bleed pneumatic devices with compressed air systems (Production)
UPCH4GAS05
CH4- Replace high-bleed pneumatic devices with low-bleed pneumatic devices (Production)
UPCH4GAS06
CH4- Dry Seals on Centrifugal Compressors (P&T)
UPCH4GAS07
CH4- Catalytic Converter (P&T)
UPCH4GAS08
CH4- Portable Evacuation Compressor for Pipeline Venting (P&T)
UPCH4GAS09
CH4- Replace High-bleed pneumatic devices with compressed air systems (P&T)
UPCH4GAS10
CH4- Replace high-bleed pneumatic devices with low-bleed pneumatic devices (P&T)
UPCH4GAS11
CH4- D-D I&M (Distribution)
UPCH4GAS12
CH4- D-D I&M (Enhanced: Distribution)
UPCH4GAS13
CH4- Electronic Monitoring at Large Surface Facilities (D)
UPCH4GAS14
CH4- Replacement of Cast Iron_Unprotected Steel Pipeline (D)
UPCH4OIL01
CH4- Flaring instead of Venting (Offshore)
UPCH4OIL02
CH4- Flaring instead of Venting (Onshore)
UPCH4OIL03
CH4- Associated Gas (vented) Mix with Other Options
UPCH4OIL04
CH4- Associated Gas (flared) Mix with Other Options
12.8 N2O measures N2O abatement measures are provided for the nitric and adipic acid industries. Costs by region are differentiated in the Trans file. Table 12.7 provides list of technologies for N2O mitigation. N2O mitigation options were provided by the Energy Modeling Forum, EMF-21 group.
177
Table 12-9: Technologies to mitigate N2O Technology
Description
IN2OADI01
N2O option - Thermal Destruction
IN2ONIT01
N2O option - Grand Paroisse - High Temperature Catalytic Reduction Method
IN2ONIT02
N2O option - BASF - High Temperature Catalytic Reduction Method
IN2ONIT03
N2O option - Norsk Hydro - High Temperature Catalytic Reduction Method
IN2ONIT04
N2O option - HITK – High Temperature Catalytic Reduction Method
IN2ONIT05
N2O option - Krupp Uhde - Low Temperature Catalytic Reduction Method
IN2ONIT06
N2O option - ECN - Low temperature selective catalytic reduction with propane addition
IN2ONIT07
N2O option - Non-Selective Catalytic Reduction (NSCR)
12.9 References Prinn R., S. Paltsev, A. Sokolov, M. Sarofim, J. Reilly, and H. Jacoby (2008). The Influence on Climate Change of Differing Scenarios for Future Development Analyzed Using the MIT Integrated Global System Model. Report nº163, MIT Joint Program on the Science and Policy of Global Change, 32 p. www.ghgi.org.uk (for UK non-CO2 gases) Sathaye J., Makundi W., Dale L., Chan P., and Andrasko K. (2005). Estimating Global Forestry GHG Mitigation Potential and Costs: A Dynamic Partial Equilibrium Approach. LBNL – 55743.
178
13 Trade Module 13.1 Introduction A key strength of the model is the characterisation of energy and emission commodity trading. Based on the costs of resource extraction and production, and transportation, regions 'decide' whether to import or export. This includes, for example, whether to import crude for refining, which can then be used domestically or exported, or simply import refined petroleum products. Therefore, the amount and price of each of these traded commodities is endogenously computed as part of the partial equilibrium solution. Endogenously modeled trade is available for coal (COAHCO), natural gas (GASNGA), liquefied natural gas (GASLNG), crude oil (OILCRD), distillates (OILDST), gasoline (OILGSL), heavy fuel oil (OILHFO), naphta (OILNAP), and Natural Gas Liquids (OINNGL). The TIAM-UCL version also includes trade in uranium (DMYNUC) and biomass (energy crops and solid biomass). Emission commodities can also be traded, representing a market for emissions trading (CO2 and GHG). This allows for analyses of global carbon prices, based on whether regions choose to abate domestically or buy credits to meet mitigation targets. 13.2 Energy trading The characterisation of energy trading in the model is primarily based on work undertaken by IER (2007). To set up trading in the model, trade links first have to be defined (as set-up in the file ScenTrade__Trade_Links). These reflect the linkages between regions that allow for the flows of different commodities. In the model, all are defined as unilateral links (i.e. from exporter to importer), and are primarily based on current patterns of trading. (Further consideration should be given to expanding trade links, as there is no reason why two regions cannot start trading in future years, particularly if the trade is via shipping). Costs and limits on trade levels for each trade link are provided in file
ScenTrade_Trade_Parms. This includes setting lower limits on trade in 2005 to ensure calibration. Limits on trade levels reflect capacity limits on transport, including in relation to pipelines, rail infrastructure and shipping routes (e.g. narrow channels in maritime
transport, such as the Strait of Hormuz leading out of the Persian Gulf and the Strait of Malacca linking the Indian Ocean (and oil coming from the Middle East) with the Pacific Ocean (and major consuming markets in Asia) (IER 2007)). 13.2.1
Coal
Trade links for coal are shown below. From this graphic (for which there is an equivalent for each traded commodities), the UK is able to import hard coal from 10 other regions, or of course produce domestically.
Currently, major coal exporters are Africa, Australia, China and the USA whilst major importing regions are Japan, South Korea and Western Europe. 13% of coal consumed in 2005 was traded, and consisted primarily of steam coal (74%), the remainder being coking coal (IER 2007). Transport costs are a function of typical coal tanker or train capacity and distance between regions. The costs range is illustrated by the following two examples with very different distances for trade: the China-Japan link incurs costs of 0.03 $/GJ while the Australia-WEU links incurs costs of 0.4 $/GJ. 13.2.2
Gas
Natural gas can be either transported at high pressure via pipeline or as liquefied natural gas (LNG) by tanker. IER (2007) put global trade in 2005 at 19 EJ or 18 % of global gas consumption. Just over 60% was via pipelines, while the rest was as LNG, via shipping. Most 180
181 of the pipeline capacity is between Russia and Europe, between Western and Eastern Europe. the Middle East and Russia, and Canada and the USA. These linkages are shown in the matrix below.
The capacity can be expanded but incurs investment costs as a result, and associated fixed O&M costs. The linkages for LNG are of course greater due to the use of shipping, although constraints in the near terms are significant, dictated by liquefaction and re-gasification plants (in import and export countries). The current Reference case (using UCL-TIAM-16R-VER_3-0-1) produces the following export-import, and production / consumption patterns by region. Those countries with the largest resources - Russia and Iran / Middle East - are the biggest exporters, while the rapidly growing economies of China, India and other developing countries (where gas resources are limited) become the largest importers over time. 13.2.3
Oil and oil products
Regional trade is allowed to crude oil and oil products such as diesel, gasoline and heavy fuel oil. Trade flows bounded to ensure reasonable constraints on transportation (pipeline and shipping). Transportation costs added based on distance of trade. Transportation plus extraction costs provide the exogenous inputs into endogenously derived oil price (hotelling rent is also added to the price as we have cumulative bounds on reserve categories). For all commodities, trade links easily amended using type of matrix provided below (showing OILCRD links). Trade link is based on existing import/export trade link.
181
13.3 Emission trading CO2 and other non-CO2 GHGs can also be traded (as TOTCO2 / NONCO2). Trading links across all regions via the GBL region (which acts as the central trading body) allow for CO2 credits to be sold from one region to the next, to reduce the costs of a global emission target or regional targets. Such trading links allow for the lowest cost mix of mitigation measures to be found, resulting in the lowest marginal cost of mitigation. GHG emissions are traded via a global market (global region) where regions can sell or buy credits. Net trade (export-import) of the global market should be zero in a year—no facility for stock transfer. 13.4 Biomass trading The framework has been set-up in the trade module for biomass trade. Currently trading is allowed only to energy crops (BIOCRP) and solid biomass (BIOSLD). Transportation cost is taken from international maritime transportation (http://stats.oecd.org/Index.aspx?datasetcode=MTC). Regional availability of biomass resources are taken from TIAM-WORLD (www.kanors.com/dcm). 13.5 References IER (2007), Global resources and energy trade: An overview for coal, natural gas, oil and uranium, Authored by Uwe Remme, Markus Blesl, and Ulrich Fahl, July 2007
182
14 Climate Module This chapter presents the climate module, which enables the analyst to translate greenhouse gas emissions from the energy system into atmospheric concentrations, radiative forcing and temperature change. This in turn permits one to run scenarios with upper bounds on atmospheric concentration, radiative forcing and temperature change. This chapter is mainly based on the ETSAP documentation of the climate module (Loulou et al. 2010). 14.1 Overview The climate module uses emissions that are endogenously calculated in TIAM as an input. These are carbon dioxide (CO2), methane (CH4) and nitrous oxide (N20). Successively, it calculates changes in the concentration of CO2, CH4 and N2O, change in radiative forcing over pre-industrial times from all three gases plus an exogenously defined additional forcing and finally the temperature change over pre-industrial times for the atmosphere and the deep ocean. Figure 14-1 gives a graphical overview of the module‘s structure.
Figure 14-1: Illustration of the TIAM climate module
The underlying mathematical structure of the module is based on a linear recursive approach from Nordhaus and Boyer (1999). This is a well-documented, albeit simple approach, which gives a good approximation of more complex climate models (Loulou et al. 2010, p. 3). Instead of converting non-CO2 greenhouse gases into CO2-equivalents and calculating concentrations and radiative forcing on this basis, the module models the life cycle of each endogenous emission separately. 14.2 Concentration 14.2.1
Carbon dioxide
The mass concentration of CO2 is calculated with a three-reservoir model for the carbon cycle, including the atmosphere (ATM) , the biosphere and upper ocean (UP) , and the deep ocean (LO). CO2 flows are modelled in both directions between adjacent reservoirs. The reservoirs are represented by the following equations, where the step of recursion is one year, y, and not a model period:
( (
(
)
(1)
)
(2)
)
(3)
where Matm(y), Mup(y), Mlo(y) are the masses of carbon (not carbon dioxide) in the atmosphere, the quickly mixing reservoir of the biosphere and upper ocean, and in the deep ocean in year y. All masses are given in Gigatons (Gt) of carbon (C). This can be converted into a relative concentration in parts per million (ppm) by using the conversion factor of 2.13 ppmv/Gt C. E(y-1) are the CO2 emissions in the previous year in GtC. Finally φi,j is the transport rate from reservoir i to reservoir j from year y-1 to y.
184
185 14.2.2
Methane
The mass concentration of methane is represented in a simplified single-box model, where the atmospheric concentration is calculated in the following way assuming a constant annual decay rate:
(4) where CH4atm(y) is the atmospheric concentration in Mt CH4, and EACH4(y) represents anthropogenic emissions of CH4 in year y in Mt/year. ΦCH4 is the one-year retention rate of CH4 in the atmosphere. Atmospheric mass concentration can be expressed in ppb by using the conversion factor of 2.84 ppbv/Mt CH4. 14.2.3
Nitrous oxide
The mass concentration of nitrous oxide is calculated in the same way as for methane. Equally, a single-box is used where atmospheric N2O mass concentration is calculated in the following way:
(5) where N2Oatm(y) is the atmospheric concentration in Mt N2O, and EAN2O(y) represents anthropogenic emissions of N2O in year y in Mt/year. ΦN2O is the one-year retention rate of N2O in the atmosphere. Atmospheric mass concentration can expressed in ppb by using the conversion factor of 7.81 ppbv/Mt N2O. 14.3 Radiative forcing Radiative forcing in the TIAM climate module is assumed to be additive for the various gases, as is usually assumed in science (Forster et al. 2007, p. 197):
(6) The calculation of the single summands in the above equations are explained in more detail below.
185
14.3.1
Carbon Dioxide
Radiative forcing caused by the accumulation of carbon dioxide in the atmosphere is derived from a widely used linear relationship (Ramaswamy et al. 2001, p. 358):
(7) Where M0 is the pre-industrial (circa 1750) reference atmospheric concentration of CO 2 of 596.4 GtC. γ is the radiative forcing sensitivity to atmospheric CO2 concentration doubling, which is usually assumed to be 3.7 W/m2 (Ramaswamy et al. 2001, p. 356). 14.3.2
Methane and Nitrous Oxide
The radiative forcing due to accumulation of CH4 in the atmosphere is based on an equation given in Ramaswamy et al. (2001, p. 358). This considers interactions between CH 4 and N2O:
(√
√
)
[ (
)
]
(8)
Similarly to methane, the radiative forcing equation for nitrous oxide looks as follows:
(√
√
)
[ (
)
]
(9)
where:
[
]
(10)
N2O and CH4 represent the mass concentration of nitrous oxide and methane respectively in Mt, while the subscript 0 indicates pre-industrial times (1750). CH40 is 1988 Mt CH4 and
N2O0 is 2101 Mt N2O. 14.3.3
Exogenous forcing
EXOFOR(y) stands for the increase in total radiative forcing in year y in comparison to preindustrial levels due to gases that are not taken into account in the model. TIAM accounts for CO2, N2O and CH4, but does not cover other Kyoto gases, Montreal gases, ozone, water vapour, and aerosols. Therefore, it is the analyst‘s responsibility to adjust EXOFOR(y) to the extent that it represents additional radiative forcing that is not captured within TIAM. 186
187 14.3.4
Linear approximation
As TIAM does only use linear equations, each of the three forcing expressions is replaced by a linear approximation. Two linear functions are used to approximate the concave functions, one is the chord from below and the other one is the tangent from above. Finally, the arithmetic average of both linear functions is used to approximate the original non-linear radiative forcing function. In order to keep the approximation accurate, an interval of concentration has to be specified by the analyst. 14.4 Temperature increase An increase of the global mean surface temperature is a widely used figure to quantify climate change. The climate module in TIAM uses a two-reservoir model to represent global warming. Radiative forcing heats up the atmosphere and is then transmitted to the quickly mixing upper ocean. Both, the upper ocean and the atmosphere form one reservoir. The upper ocean then slowly warms the deeper layers of the ocean, which forms the second reservoir. An increase in the global mean temperature is described by the influence of radiative forcing and the exchange processes as follows:
[
{ [
]} ]
(11) (12)
where ΔTup is the global mean surface temperature increase above pre-industrial levels and
ΔTlow is the deep-ocean mean temperature increase above pre-industrial levels. σ1 is the one-year speed of adjustment parameter for atmospheric temperature (lag parameter), σ2 is the coefficient of heat loss from atmosphere to deep oceans, and σ3 represents the oneyear coefficient of heat gain by deep oceans. λ is the feedback parameter; it is defined as the ratio λ=γ/CS, where CS is the climate sensitivity parameter, defined as the change in equilibrium atmospheric temperature provoked by a doubling of the atmospheric CO2 concentration. In contrast to most other parameters, CS is highly uncertain with a possible range from 1°C to 10°C.
187
14.5 Parameters of the Climate Module Table 14-1 shows the default values of all parameters of the climate module Parameter
Year
Default
Unit
value CO2-ATM
2005
807.27
Gt Carbon
CO2-UP
2005
793
Gt Carbon
CO2-LO
2005
19217
Gt Carbon
ΔUP
2005
0.74
°C
ΔLO
2005
0.06
°C
CH4atm
2005
3050
Mt CH4
N2Oatm
2005
390
Mt N2O
3.7
W/m2
up-atm
0.0453
-
atm-up
0.0495
-
lo-up
0.00053
-
up-lo
0.0146
-
λ
1.28
(W/m2)/°C
CS
2.9
°C
σ1
0.024
σ2
0.44
σ3
0.002
φCH4
0.09158
-
φN2O
0.008803
-
γ
14.6 References Forster, P., V. Ramaswamy, P. Artaxo, T. Berntsen, R. Betts, D.W. Fahey, J. Haywood, J. Lean, D.C. Lowe, G. Myhre, J. Nganga, R. Prinn, G. Raga, M. Schulz and R. Van Dorland, 2007: Changes in Atmospheric Constituents and in Radiative Forcing. In: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change [Solomon, S., D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M.Tignor and H.L. Miller (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA. Loulour, R., Lehtila, A., Labriet, M. (2010): ―TIMES Climate Module (Nov. 2010)‖, ETSAP, http://www.etsap.org/documentation.asp 188
189 Nordhaus, W.D., Boyer, J. (1999): ―Roll the DICE Again: Economic Models of Global Warming‖, Yale University, manuscript edition. Ramaswamy, V., Boucher, O., Haigh, J., Hauglustaine, D., Haywood, J., Myhre, G., Nakajima, T., Shi, G.W., Solomon, S. 2007: Radiative Forcing of Climate Change. In: Climate Change 2001: The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change [Houghton, J.T., Ding, Y., Griggs, D.J., Noguer, M., van der Linden, P.J., Dai, X., Maskell, K., Johnson, C.A. (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.
189