op woensdag, 30 Manuari 2013 om 15.00 uur door. $lexander ...... STUV ). HO elastic material behaviour. SO plastic material behaviour. HS elasto²plastic ...
7RZDUGVSDUDPHWHUOLPLWV RIGLVSODFHPHQWERXQGDU\YDOXHSUREOHPV IRU0RKU²&RXORPEPRGHOV 352()6&+5,)7 WHUYHUNULMJLQJYDQGHJUDDGYDQGRFWRU DDQGH7HFKQLVFKH8QLYHUVLWHLW'HOIW RSJH]DJYDQGH5HFWRU0DJQLILFXVSURILU.&$0/X\EHQ YRRU]LWWHUYDQKHW&ROOHJHYRRU3URPRWLHV LQKHWRSHQEDDUWHYHUGHGLJHQ RSZRHQVGDJMDQXDULRPXXU GRRU $OH[DQGHU52+( 0DVWHURI6FLHQFHLQ&LYLO(QJLQHHULQJ 'HOIW8QLYHUVLW\RI7HFKQRORJ\ JHERUHQWH/HRQEHUJ'XLWVODQG
'LWSURHIVFKULIWLVJRHGJHNHXUGGRRUGHSURPRWRU 3URIGULU)0ROHQNDPS &RSURPRWRU'ULU:7YDQ+RUVVHQ 6DPHQVWHOOLQJSURPRWLHFRPPLVVLH 5HFWRU0DJQLILFXV
7HFKQLVFKH8QLYHUVLWHLW'HOIWYRRU]LWWHU
3URIGULU)0ROHQNDPS
7HFKQLVFKH8QLYHUVLWHLW'HOIWSURPRWRU
'ULU:7YDQ+RUVVHQ
7HFKQLVFKH8QLYHUVLWHLW'HOIWFRSURPRWRU
3URIGU0$+LFNV
7HFKQLVFKH8QLYHUVLWHLW'HOIW
'ULU-%6HOOPHLMHU
'HOWDUHV'HOIW
3URIGULU3$9HUPHHU
8QLYHUVLWlW6WXWWJDUW6WXWWJDUW*HUPDQ\
3URIGU5&KDPERQ
8QLYHUVLWp-RVHSK)RXULHU*UHQREOH)UDQFH
3URIGU$366HOYDGXUDL
0F*LOO8QLYHUVLW\0RQWUHDO&DQDGD
3URIGU$90HWULNLQH
7HFKQLVFKH8QLYHUVLWHLW'HOIWUHVHUYHOLG
,6%1²²²² &RS\ULJKWE\$5RKH 7KLVUHVHDUFKZDVFDUULHGRXWDWWKH*HRHQJLQHHULQJ6HFWLRQRIWKH'HSDUWPHQWRI *HRWHFKQRORJ\ )DFXOW\ RI &LYLO (QJLQHHULQJ DQG *HRVFLHQFHV 'HOIW 8QLYHUVLW\ RI 7HFKQRORJ\'HOIW7KH1HWKHUODQGV 7KHSXEOLFDWLRQRIWKLVWKHVLVZDVVXSSRUWHGE\'HOWDUHV'HOIW7KH1HWKHUODQGV $OOULJKWVUHVHUYHG1RSDUWRIWKHPDWHULDOSURYLGHGE\WKLVFRS\ULJKWQRWLFHPD\EHUHSURGXFHG RUXWLOL]HGLQDQ\IRUPRUE\DQ\PHDQVHOHFWURQLFRUPHFKDQLFDOLQFOXGLQJSKRWRFRS\LQJUHFRU² GLQJRUE\DQ\LQIRUPDWLRQVWRUDJHDQGUHWULHYDOV\VWHPZLWKRXWZULWWHQFRQVHQWRIWKHDXWKRU 3ULQWHGE\5LGGHUSULQWLQ7KH1HWKHUODQGV
$%675$&7
7KHDLPRIWKLVUHVHDUFKLVWRJHWDQDO\WLFDOLQVLJKWLQWRFRQGLWLRQVRIH[LVWHQFH XQLTXHQHVV DQG VWDELOLW\ RI VROXWLRQV RI GLVSODFHPHQW²W\SH RI ILQLWH HOHPHQWV FRPSRVHG RI WKH 0RKU²&RXORPE PDWHULDO PRGHO IRU LQILQLWHVLPDO LQFUHPHQWDO GHIRUPDWLRQ 7KH FRUUHVSRQGLQJ OLPLWV RFFXU LQ WKH PDWHULDO SDUDPHWHU VSDFH DQG GHSHQG RQ WKH LQLWLDOO\ XQLIRUP SULQFLSDO VWUHVV VWDWH )XUWKHUPRUH WKH VKDSHDVZHOODVWKHQRQ²XQLIRUP PRGHVRIGHIRUPDWLRQRIWKHILQLWHHOHPHQWDUH IDFWRUV RI PDMRU LQIOXHQFH 7KH DQDO\VHV LQ WKLV WKHVLV IRFXV RQ WKH ZHOO² SRVHGQHVV RI GLVSODFHPHQW²W\SH RI ERXQGDU\ YDOXH SUREOHPV ZLWK FRQWLQXRXV GHIRUPDWLRQ RI LQLWLDOO\ KRPRJHQHRXV PDWHULDOV ZLWKLQ WKH HOHPHQWV DQG DORQJ WKHLU ERXQGDULHV 7R YDOLGDWH DQG GHPRQVWUDWH WKH VXLWDELOLW\ RI WKH SURSRVHG DQDO\WLFDO VROXWLRQ PHWKRG DV DSSOLHG LQ WKLV WKHVLV EHVLGHV IRU WKH PDWHULDO PRGHORI0RKU²&RXORPEHODVWR²SODVWLFLW\LQFOXGLQJKDUGHQLQJDQGVRIWHQLQJDOVR IRUHTXLYDOHQW LVRWURSLFOLQHDUHODVWLFLW\WKHFRUUHVSRQGLQJSDUDPHWHUOLPLWVDUH GHWHUPLQHG0RUHRYHUWKHFULWHULDIRUORFDOPDWHULDOVWDELOLW\DUHGHWHUPLQHGIRU ERWK PDWHULDO PRGHOV LQ RUGHU WR DVVHVV WKH LQIOXHQFH RI WKH GRPDLQ ERXQGDULHV ZLWKWKHLUFRUUHVSRQGLQJOLPLWLQJERXQGDU\FRQGLWLRQV ,QYHVWLJDWLQJ WKH ORFDO FULWHULD RI PDWHULDO VWDELOLW\ IRU WKH VLWXDWLRQ RI LVRWURSLF OLQHDU HODVWLFLW\ LW IROORZV WKDW WKH GHYLDWRULF VWUDLQ UDWH HQHUJ\ LV DOZD\V SRVLWLYH ZKLOH WKH LVRWURSLF VWUDLQ UDWH HQHUJ\ LV RQO\ SRVLWLYH LQ WKH UDQJH RI 3RLVVRQ·VUDWLR −∞ < ν < DQGIRUWKHVKHDUPRGXOXV * > )RUWKHSODQHVWUDLQ VLWXDWLRQ RI 0RKU²&RXORPE HODVWR²SODVWLFLW\ LW LV VKRZQ WKDW WKH VLJQLILFDQW SDUDPHWHUV GHWHUPLQLQJ WKH FRQGLWLRQV IRU PDWHULDO VWDELOLW\ DUH RQO\ WKH QRUPDOLVHGKDUGHQLQJPRGXOXV + DQGWKHGHJUHHRIGLODWLRQ ΦΨ 7KHUHVXOWV DUHHVVHQWLDOWRH[SODLQWKHSDUDPHWHUUDQJHZKLFKLVREWDLQHGDVDUHVXOWRIWKH DQDO\WLFDO VROXWLRQ RI WKH ERXQGDU\ YDOXH SUREOHP IRU 0RKU²&RXORPE HODVWR² SODVWLFLW\LQWKHFLUFXODUGRPDLQ 7KH SODQH VWUDLQ GLVSODFHPHQW ERXQGDU\ YDOXH SUREOHP RI LVRWURSLF OLQHDU HODVWLFLW\LQWKHFLUFXODUGRPDLQLVVROYHGDQDO\WLFDOO\7KHFORVHGIRUPDQDO\WLFDO LLL
VROXWLRQ LV GHULYHG XVLQJ DQ H[WHQGHG YHUVLRQ RI WKH PHWKRG RI VHSDUDWLRQ RI YDULDEOHV )RU LVRWURSLF OLQHDU HODVWLFLW\ WZR SDUDPHWHUV DUH FRQWUROOLQJ WKH EHKDYLRXURIWKHVROXWLRQLHWKHVKHDUPRGXOXV * DQG3RLVVRQ·VUDWLR ν ,WLV VKRZQWKDWWKHUHH[LVWVDWOHDVWRQHVROXWLRQIRUDOO * ∈ \ DQGDOO ν ∈ \ $WPRVW RQH VROXWLRQ H[LVWV IRU DOO * ≠ DQG DOO ν ≠ 7KH VROXWLRQ LV PDWKHPDWLFDOO\ VWDEOH IRU DOO * ≠ DQG DOO ν ≠ 7KLV LPSOLHV WKDW WKH SUREOHPLVZHOO²SRVHGIRUWKHVKHDUPRGXOXV * ≠ DQGIRUDOOYDOXHVRI3RLVVRQ·V UDWLR ν ≠ $W ν = ORFNLQJ RI WKH HOHPHQW RFFXUV GXH WR WKH WRWDO VWUDLQUDWHHQHUJ\EHFRPLQJLQILQLWH7KHORFDOVWUDLQUDWHHQHUJ\SHUXQLWRIDUHD DORQJWKHFLUFXODUERXQGDU\DSSURDFKHVSOXVDQGPLQXVLQILQLW\IRU ν ↑ DQG ν ↓ UHVSHFWLYHO\7KHFKDUDFWHURIWKHV\VWHPRISDUWLDOGLIIHUHQWLDOHTXDWLRQV LV QRW FKDQJHG E\ WKH FKRLFH RI WKH FRRUGLQDWH V\VWHP RU GRPDLQ +HQFH QRQ² XQLTXHVROXWLRQVZLOODOVRRFFXUDWWKHSRLQWV * = DQG ν = DQG ν = DVZHOO IRU UHFWDQJXODU DV IRU DUELWUDU\ GRPDLQV +RZHYHU WKH FKRLFH RI WKH ERXQGDU\ PD\ LQIOXHQFH WKH QDWXUH RI WKH UHPDLQLQJ QRQ²XQLTXH SDUDPHWHU UDQJH 7KH VXIILFLHQW XQLTXHQHVV FULWHULRQ RI &RVVHUDW LV FRQILUPHG 0RUHRYHU WKH XQLTXH² QHVVFULWHULRQLQWKHUDQJH < ν < LVLPSURYHGIRUWKHFLUFXODUGRPDLQ:KLOVW &RVVHUDWVWDWHGWKDWLQWKLVUDQJHDWOHDVWRQHQRQ²XQLTXHVROXWLRQH[LVWVLQWKLV WKHVLV LW LV SURYHQ WKDW IRU WKH FLUFXODU GRPDLQ H[DFWO\ RQH QRQ²XQLTXH VROXWLRQ H[LVWV,QWKLVWKHVLVDQHFHVVDU\FRQGLWLRQIRUXQLTXHQHVVLVGHULYHG 7KHSODQHVWUDLQGLVSODFHPHQWERXQGDU\YDOXHSUREOHPRI0RKU²&RXORPEHODVWR² SODVWLFLW\ LQFOXGLQJ KDUGHQLQJ LQ WKH FLUFXODU GRPDLQ LV VROYHG DQDO\WLFDOO\ 7KH DQDO\WLFDO VROXWLRQ SURFHGXUH LV EDVHG RQ D )RXULHU VHULHV DSSURDFK UHVXOWLQJ LQ DQLQILQLWHV\VWHPRIHTXDWLRQVIRUWKHGHWHUPLQDWLRQRIWKHFRHIILFLHQWVWRVDWLVI\ WKH ERXQGDU\ FRQGLWLRQV 7KHVH FRHIILFLHQWV DUH GHWHUPLQHG QXPHULFDOO\ 7KH GHULYHG VROXWLRQ LV LQYHVWLJDWHG E\ HYDOXDWLQJ LWV HLJHQYDOXHV WKH LQFUHPHQWDO GLVSODFHPHQW ILHOG VWUDLQ UDWH ILHOGV DQG LQYDULDQWV DQG VWUDLQ UDWH HQHUJ\ GLVWULEXWLRQ %DVHG RQ WKH HYDOXDWLRQ RI WKHVH UHVXOWV WKH VROXWLRQ SURFHGXUH LV VKRZQWREHUHOLDEOHDQGWRSURGXFHH[SHFWHGUHVXOWVIRUVWUHVVVWDWHVLQYROYHGLQ DVWDQGDUGWULD[LDOFRPSUHVVLRQWHVW)RU0RKU²&RXORPEHODVWR²SODVWLFLW\LQFOX² GLQJKDUGHQLQJWKHSDUDPHWHUOLPLWVRIWKHGLVSODFHPHQWERXQGDU\YDOXHSUREOHP LQ WKH FLUFXODU GRPDLQ DUH LGHQWLILHG DSSUR[LPDWHO\ ZLWK UHDVRQDEOH DFFXUDF\ 7KH UHOHYDQW SDUDPHWHUV WKDW FRQWURO WKH SDUDPHWHU OLPLWV DUH WKH QRUPDOLVHG KDUGHQLQJPRGXOXV + DQGWKHGHJUHHRIGLODWLRQ ΦΨ 7KHFRUUHVSRQGLQJOLPLWV DUH LOOXVWUDWHG )RU ERXQGHG GRPDLQV WKHUH H[LVWV D UDQJH RI SDUDPHWHUV IRU ZKLFK QR VROXWLRQ H[LVWV 7KH SDUDPHWHU OLPLWV IRU WKH FLUFXODU GRPDLQ DUH JHQHUDOO\QRWRYHUODSSLQJWKHSDUDPHWHUUDQJHRISUDFWLFDOLQWHUHVW+RZHYHUWKH LQWURGXFWLRQRIUHFWDQJXODUHOHPHQWVPD\H[WHQGWKHUHVWULFWHGSDUDPHWHUUDQJH 7KHUHIRUH LW LV H[SHFWHG WKDW IRU UHFWDQJXODU HOHPHQWV IRU SDUDPHWHUV LQ WKH SUDFWLFDOUDQJHLQVWDELOLWLHVPD\RFFXUZKLFKDUHOHIWKHUHIRUIXUWKHUUHVHDUFK
LY
&217(176
$EVWUDFW«««LLL &RQWHQWV««Y /LVWRIV\PEROV[L
&+$37(5,QWURGXFWLRQ
&+$37(5%DFNJURXQGDQGJHQHUDOWKHRU\ ([LVWLQJXQLTXHQHVVDQGVWDELOLW\FULWHULD 8QLTXHQHVVFULWHULRQE\.LUFKKRII 0DWHULDOVWDELOLW\DQGSRVLWLYH²GHILQLWHQHVV /RFDOLVDWLRQRIGHIRUPDWLRQDQGHOOLSWLFLW\ 8QLTXHQHVVFULWHULRQE\&RVVHUDW :HOO²SRVHGQHVVRIWKHERXQGDU\YDOXHSUREOHP
&+$37(5&RQWLQXXPPHFKDQLFVDQGFRQVWLWXWLYHODZV &RQWLQXXPPHFKDQLFDOFRQFHSWV 1RWDWLRQ 6LJQFRQYHQWLRQ 'HILQLWLRQRIDWHQVRU 2XWHUSURGXFW ,QQHUSURGXFW 'RXEOHLQQHUSURGXFW 7UDQVSRVHDQGLQYHUVHRIDWHQVRU .URQHFNHUGHOWD /HYL²&LYLWDV\PERO ,GHQWLW\DQGLVRWURSLFWHQVRUV 5RWDWLRQWHQVRU 5RWDWLRQRIEDVHYHFWRUV 5RWDWLRQRIDWHQVRU Y
7UDFHRIDWHQVRU 1DEODRSHUDWRU *UDGLHQWGLYHUJHQFHDQGFXUO /DSODFHRSHUDWRU (LJHQYDOXHVDQGHLJHQYHFWRUVRIVHFRQG²RUGHUWHQVRUV 6\PPHWULFVHFRQG²RUGHUWHQVRULQSULQFLSDOVSDFH ,VRWURSLFDQGGHYLDWRULFVHFRQG²RUGHUWHQVRUV ,QYDULDQWVRIVHFRQG²RUGHUWHQVRUV ,QYDULDQWVRIGHYLDWRULFVHFRQG²RUGHUWHQVRUV 7HQVRUGHULYDWLYHV 6WUHVVWHQVRUDQGVWUHVVLQYDULDQWV 7UDFWLRQDQGVWUHVVFRPSRQHQWV 6WUHVVHVZLWKUHVSHFWWRURWDWHGEDVHYHFWRUV 3ULQFLSDOVWUHVVHV ,VRWURSLFDQGGHYLDWRULFVWUHVV 6WUHVVLQYDULDQWVDQGPDJQLWXGHV /RGH·VDQJOH 6WUDLQWHQVRUDQGVWUDLQLQYDULDQWV 'HIRUPDWLRQDQGVWUDLQFRPSRQHQWV ,VRWURSLFDQGGHYLDWRULFVWUDLQ 6WUDLQLQYDULDQWVDQGPDJQLWXGHV (TXLYDOHQWLVRWURSLFOLQHDUHODVWLFLW\ 0RKU²&RXORPEHODVWR²SODVWLFLW\LQFOXGLQJKDUGHQLQJ *HQHUDOIUDPHZRUNRISODVWLFLW\ *HQHUDOHODVWR²SODVWLFVWLIIQHVVWHQVRU )ULFWLRQVKHDUVWUHQJWKDQG\LHOGFULWHULRQ 6WUHVV²GLODWDQF\DQGSODVWLFSRWHQWLDO +DUGHQLQJEHKDYLRXU 0RKU²&RXORPEHODVWR²SODVWLFLW\WHQVRU $YRLGDQFHRIHODVWR²SODVWLFEHKDYLRXUDWYHUWLFHV
&+$37(5/RFDOFULWHULRQRIPDWHULDOVWDELOLW\ 0DWHULDOVWDELOLW\DQGSRVLWLYH²GHILQLWHQHVV 3ODQHGHIRUPDWLRQ 0RGDOGHFRPSRVLWLRQRIHLJHQPRGHV 3ODQHGHIRUPDWLRQ 6WUDLQUDWHLQYDULDQWV 0RGDOVWUHVVUDWHV (QHUJ\GLVVLSDWLRQ 6WUDLQUDWHHQHUJ\ 3ODVWLFHQHUJ\ 3ODQHVWUDLQLVRWURSLFOLQHDUHODVWLFLW\ (LJHQYDOXHVDQGHLJHQYHFWRUV 0RGDOGHFRPSRVLWLRQ YL
6WUDLQUDWHHQHUJ\ 6WUDLQUDWHHQHUJ\RIERXQGDU\YDOXHSUREOHPV 3ODQHVWUDLQ0RKU²&RXORPEHODVWR²SODVWLFLW\ (LJHQYDOXHV ,QWHUSUHWDWLRQRIHLJHQYDOXHV 'HWHUPLQDWLRQRIHLJHQYHFWRUV 0RGDOGHFRPSRVLWLRQ 0RGLILHGVHWRIXQLWYHFWRUV 'HFRPSRVLWLRQRIVWUDLQUDWHVDQGVWUHVVUDWHV 6WUDLQUDWHHQHUJ\ 3DUDPHWULFVWXG\RILVRWURSLFVWUDLQUDWHHQHUJ\ 3DUDPHWULFVWXG\RIGHYLDWRULFVWUDLQUDWHHQHUJ\ &RQFOXVLRQ
&+$37(5)LHOGHTXDWLRQVRIHTXLOLEULXP 7HQVRUIRUPXODWLRQ ,VRWURSLFOLQHDUHODVWLFLW\ 0RKU²&RXORPEHODVWR²SODVWLFLW\LQFOXGLQJKDUGHQLQJ %DODQFHGJUDGLHQWRSHUDWRU %DVLFGHILQLWLRQV 6FDODUV )LUVW²RUGHUWHQVRUV 6HFRQG²RUGHUWHQVRUV 2UWKRJRQDOFXUYLOLQHDUFRRUGLQDWHV ,VRWURSLFOLQHDUHODVWLFLW\ 0RKU²&RXORPEHODVWR²SODVWLFLW\ 5HFWDQJXODUFRRUGLQDWHV\VWHP ,VRWURSLFOLQHDUHODVWLFLW\ 0RKU²&RXORPEHODVWR²SODVWLFLW\LQFOXGLQJKDUGHQLQJ &LUFXODUF\OLQGULFDOFRRUGLQDWHV\VWHP ,VRWURSLFOLQHDUHODVWLFLW\ 0RKU²&RXORPEHODVWR²SODVWLFLW\LQFOXGLQJKDUGHQLQJ
&+$37(5%RXQGDU\FRQGLWLRQV 'LULFKOHWFRQGLWLRQV 5HFWDQJXODUGRPDLQ &LUFXODUGRPDLQ 'HIRUPDWLRQPRGHV 5HFWDQJXODUHOHPHQW &LUFXODUHOHPHQW +RXUJODVVGHIRUPDWLRQ +RPRJHQHLW\RIPDWHULDOW\SHRIEHKDYLRXU YLL
&+$37(5,VRWURSLFOLQHDUHODVWLFLW\LQWKHFLUFXODUGRPDLQ 'HILQLWLRQRIERXQGDU\YDOXHSUREOHP )LHOGHTXDWLRQV %RXQGDU\FRQGLWLRQV 6SHFLDOFDVHV 6HSDUDWLRQRIYDULDEOHV 6HSDUDWHGθ²GHSHQGHQWSUREOHP 6HSDUDWHGU²GHSHQGHQWSUREOHP &RPSOHWHJHQHUDOVROXWLRQ 'LVSODFHPHQWILHOGIRUJHQHUDOERXQGDU\FRQGLWLRQVDQGXQLTXHQHVV FULWHULRQ ,QFUHPHQWDOGLVSODFHPHQWILHOGIRUGHIRUPDWLRQPRGHV 6WUDLQUDWHDQGVWUHVVUDWHWHQVRUILHOGV ,QYDULDQWVDQGVWUDLQUDWHHQHUJ\GLVWULEXWLRQ 3DUDPHWULFVWXG\ &RQFOXVLRQ
&+$37(50RKU²&RXORPEHODVWR²SODVWLFLW\LQFOXGLQJKDUGHQLQJ LQWKHFLUFXODUGRPDLQ 'HILQLWLRQRIERXQGDU\YDOXHSUREOHP )LHOGHTXDWLRQV %RXQGDU\FRQGLWLRQV &RPSDULVRQZLWKVROXWLRQSURFHGXUHIRUOLQHDUHODVWLFLW\ )RXULHUVHULHVDSSURDFK &DVHN &DVH0XOWLSOLFDWLRQE\FRVNθ DQGN « &DVH0XOWLSOLFDWLRQE\VLQNθ DQGN « &RPSDULVRQZLWKVROXWLRQSURFHGXUHIRUOLQHDUHODVWLFLW\ )RUPXODWLRQRIJOREDOPDWUL[SUREOHP 7UDQVIRUPDWLRQWRV\VWHPRIILUVW²RUGHU2'(V &RPSRVLWLRQRIPDWUL[HTXDWLRQV 7UXQFDWLRQRI)RXULHUVHULHV )RUPXODWLRQRIJOREDOPDWUL[SUREOHP &RPSDULVRQZLWKVROXWLRQSURFHGXUHIRUOLQHDUHODVWLFLW\ *HQHUDOVROXWLRQRIJOREDOPDWUL[SUREOHP )LUVWGHULYDWLYHVRIJHQHUDOVROXWLRQ &RPSDULVRQZLWKVROXWLRQSURFHGXUHIRUOLQHDUHODVWLFLW\ &KDUDFWHULVWLFVRIJHQHUDOVROXWLRQ ,QIOXHQFHRIGHJUHHRISODVWLFLW\ ,QIOXHQFHRIWUXQFDWLRQRI)RXULHUVHULHV $SSOLFDWLRQRIGLVSODFHPHQWERXQGDU\FRQGLWLRQV 'LVSODFHPHQWYHFWRUILHOG 6WUDLQUDWHDQGVWUHVVUDWHWHQVRUILHOGVDQGLQYDULDQWV 5HVXOWVIRUVWDQGDUGPDWHULDOSDUDPHWHUVHWV YLLL
6LPXODWLRQRISODQHKRXUJODVVGHIRUPDWLRQPRGHIRUVWUHVV VWDWHVFRUUHVSRQGLQJWRWULD[LDOFRPSUHVVLRQWHVW &RPSDULVRQZLWKLVRWURSLFOLQHDUHODVWLFLW\ $FFXUDF\RIVROXWLRQSURFHGXUH 3DUDPHWULFVWXG\ 9DULDWLRQRI3RLVVRQ·VUDWLR 9DULDWLRQRILQLWLDOSULQFLSDOVWUHVVGLUHFWLRQ 9DULDWLRQRIQRUPDOLVHGKDUGHQLQJPRGXOXV 9DULDWLRQRIGHJUHHRIGLODWLRQ 3DUDPHWHUOLPLWV 'LVFXVVLRQRIVROXWLRQFORVHWRRULJLQ 3HUWXUEDWLRQDQGUHJXODULVDWLRQRIGLIIHUHQWLDOHTXDWLRQV $GDSWHGFRHIILFLHQWV &RQFOXVLRQ
&+$37(5&RQFOXVLRQ
%,%/,2*5$3+ DQG − ∞ < ν <
1RWH WKDW WKH PDWHULDO SURSHUWLHV * DQG ν DUH FRYHUHG LQ PRUH GHWDLO LQ 6HFWLRQ (T LV VXIILFLHQW WR JXDUDQWHH XQLTXHQHVV RI WKH VROXWLRQ RI WKH VWDWLF HTXLOLEULXP SUREOHP 7KHVH LQHTXDOLWLHV FRUUHVSRQG WR WKH FULWHULRQ SURYLGLQJSRVLWLYHJHQHUDWHGHQHUJ\
σ
ORVVRIPDWHULDOVWDELOLW\
ε )LJXUH6WUHVV²VWUDLQFXUYHRIDXQL²D[LDOFRPSUHVVLRQWHVW
%DFNJURXQGDQGJHQHUDOWKHRU\
0DWHULDOVWDELOLW\DQGSRVLWLYH²GHILQLWHQHVV
&ORVHO\ DVVRFLDWHG ZLWK WKH FRQFHSW RI XQLTXHQHVV LV WKDW RI PDWHULDO VWDELOLW\ 6WDEOH PDWHULDO EHKDYLRXU LV GHILQHG DV WKH SRVLWLYHQHVV RI WKH SURGXFW RI WKH VWUHVVUDWHLQFUHPHQW σ LM DQGWKHVWUDLQUDWHLQFUHPHQW εLM
σLM εLM ≥
NQRZQDV+LOO·VFRQGLWLRQIRUPDWHULDOVWDELOLW\+LOO ZKHUHWKHHTXDOVLJQ PDUNV WKH RQVHW RI LQVWDELOLW\ )RU XQL²D[LDO ORDGLQJ DQG GHIRUPDWLRQ HT EHFRPHV QHJDWLYH ZKHQ WKH VORSH RI WKH VWUHVV²VWUDLQ FXUYH LV QHJDWLYH WKH VR² FDOOHGVWUDLQVRIWHQLQJUHJLPH ,Q )LJXUH DQ H[DPSOH LV JLYHQ IRU DQ XQL²D[LDO FRPSUHVVLRQ WHVW +LOO·V FRQGLWLRQ IRU PDWHULDO VWDELOLW\ LQ HT LV H[SHULPHQWDOO\ REVHUYHG DQG YHULILHG E\ /DGH IRU JUDQXODU PDWHULDOV DQG LOOXVWUDWHG LQ )LJXUH ,Q WKLV ILJXUH WKH UHVXOWV RI D WULD[LDO FRPSUHVVLRQ WHVW RQ D IXOO\ VDWXUDWHG ORRVH VDQGVSHFLPHQDUHVKRZQ σD LVWKHVWUHVVUHVXOWLQJIURPD[LDOORDGLQJZKLOH σU LV WKH UDGLDO VWUHVV UHVXOWLQJ IURP WKH FHOO SUHVVXUH 7KH GHYLDWRULF VWUHVV IRU WULD[LDO WHVWV LV GHULYHG DV σ (G ) = σ D − σU 7KH UHVXOWLQJ VWUDLQV DUH ε D LQ D[LDO GLUHFWLRQDQG ε U LQUDGLDOGLUHFWLRQIURPZKLFKWKHGHYLDWRULFVWUDLQIRUWULD[LDO WHVWV LV GHULYHG DV ε (G ) = ( ε D − ε U ) 1RWH WKDW WKHVH GHILQLWLRQV RI GHYLDWRULF VWUHVV DQG VWUDLQ DV XVHG LQ /DGH DUH GLIIHUHQW IURP WKH PRUH JHQHUDO GHILQLWLRQV XVHG LQ WKH UHPDLQGHU RI WKH WKHVLV GHILQHG LQ 6HFWLRQV DQG 7KH UHVXOWV RI WKH WHVWV VKRZ WKDW XQVWDEOH PDWHULDO EHKDYLRXU RFFXUUHG DW WKH VZLWFK IURP GUDLQHG WR XQGUDLQHG FRQGLWLRQV E\ FORVLQJ WKH GUDLQDJH YDOYH LQGLFDWHG E\ SRLQW $ LQ )LJXUH D 7KH UHODWHG QHJDWLYH ZRUN LQFUHPHQW G : = σLM εLM < FDQEHUHWULHYHGLQ)LJXUHEZKHUHWKHGHYLDWRULFVWUHVV σ (G ) LV GHFUHDVLQJ ZKLOH WKH VWUDLQ LQFUHPHQW YHFWRU Gε LV SUDFWLFDOO\ GHYLDWRULF 7KDW PHDQV WKDW LW LV GLUHFWHG YHUWLFDOO\ XSZDUGV DV QHDUO\ QR YROXPH FKDQJH RFFXUVGXHWRWKHYHU\VPDOOFRPSUHVVLELOLW\RIERWKWKHSRUHZDWHUDQGPLQHUDOV ,QGLFDWHGLQ)LJXUHELVDOVRWKHDQJOH θ EHWZHHQWKHLQFUHPHQWVRIHIIHFWLYH VWUHVVDQGVWUDLQVHHQWREHODUJHUWKDQ R )RUDQ\GHYLDWRULFVWUHVV σ (G ) WKH SRUH IOXLG VWUHVV RU SRUH SUHVVXUH σ S LV WKH GLIIHUHQFH EHWZHHQ WRWDO DQG HIIHFWLYHVWUHVVSDWKVLQ)LJXUHE7KHSRUHSUHVVXUHLQFUHDVHFDQEHVHHQDIWHU FORVLQJ WKH YDOYH DW SRLQW $ ,Q YLHZ RI WKHVH H[SHULPHQWV XQVWDEOH FRQGLWLRQV UHTXLUHWKDWDWOHDVWRQHRIWKHORDGLQJSDUDPHWHUVVXFKDVWKHSRUHSUHVVXUHLV QRW FRQWUROOHG EXW ZLOO DFW WR SURGXFH DQ XQVWDEOH VLWXDWLRQ &RQVLGHU LQ WKLV UHJDUG HJ 1RYD RU ,PSRVLPDWR ZKR VKRZHG WKDW GLIIHUHQW ORDGLQJ SURJUDPPHV LQ ZKLFK GLIIHUHQW ORDGLQJ SDUDPHWHUV ZHUH FRQWUROOHG LQIOXHQFHWKHRFFXUUHQFHRILQVWDELOLWLHVLQGLIIHUHQWZD\V )RU LQFUHPHQWDOO\ OLQHDU VWUHVV²VWUDLQ UHODWLRQV IRU ZKLFK σ LM = 'LMNOεNO LQYROYLQJ WKHPDWHULDOWDQJHQWVWLIIQHVVWHQVRU 'LMNO HT FDQEHUHIRUPXODWHGDV
εLM 'LMNOεNO ≥
&+$37(5
σG >N3D@
σG >N3D@
Gε
εG >²@
( PP ) ) σσ σσ′(·PP >N3D@
F
Gε ( G ) Gε
Gε (Y )
)LJXUH([SHULPHQWDOYHULILFDWLRQRI+LOO·VFRQGLWLRQIRUPDWHULDOVWDELOLW\DFFRUGLQJWR/DGH 5HVXOWVIRUDWHVWRQDIXOO\VDWXUDWHGWULD[LDOVDQGVSHFLPHQ D FXUYHRIGHYLDWRULFVWUHVV σ ( G ) = σ D − σ U YVGHYLDWRULFVWUDLQ ε ( G ) = ( ε D − ε U ) E WRWDODQGHIIHFWLYHVWUHVVSDWKVLQYROYLQJGHYLDWRULFVWUHVV σ ( G ) YVPHDQWRWDO VWUHVV σ ( P ) DQGPHDQHIIHFWLYHVWUHVV σ ′( P ) = σ ( P ) − σ S UHVSHFWLYHO\LQYROYLQJVWUDLQ LQFUHPHQWYHFWRUV Gε DQGDQJOH θ EHWZHHQLQFUHPHQWVRIHIIHFWLYHVWUHVVDQGVWUDLQ F VWUDLQLQFUHPHQWVGXULQJXQGUDLQHGGHIRUPDWLRQ
([SUHVVHGLQWHUPVRIWKHHLJHQYDOXHV λS RIWKHWDQJHQWVWLIIQHVVWHQVRUDQGWKH PRGDOZHLJKWV α S RIWKHFRUUHVSRQGLQJQRUPDOLVHGHLJHQYHFWRUVWKLVUHVXOWVIRU UHDOHLJHQYDOXHV λS LQ
α SλS ≥
,QVXFKFDVHPDWHULDOLQVWDELOLW\FDQRFFXURQO\LIDWOHDVWRQHRIWKHHLJHQYDOXHV λS < 0DWKHPDWLFDOO\WKLVLVDVVRFLDWHGZLWKORVVRISRVLWLYH²GHILQLWHQHVVRIWKH PDWHULDO VWLIIQHVV WHQVRU ,Q FDVH RI SODQH VWUDLQ LVRWURSLF OLQHDU HODVWLFLW\ ZLWK HO PDWHULDOWDQJHQWVWLIIQHVVWHQVRU 'LMNO = * (δ LNδ MO + ν ( − ν ) δ LMδ NO ) VHH6HFWLRQ HT WKH UHVXOWLQJ HLJHQYDOXHV UHDG λS = {* ( − ν ) * *} 7KHQ SRVLWLYH²GHILQLWHQHVV DQG WKHUHIRUH PDWHULDO VWDELOLW\ LV VXIILFLHQWO\ JXDUDQWHHG IRU * > DQG − ∞ < ν <
)RU WKH SODQH VWUDLQ VLWXDWLRQ RI LVRWURSLF OLQHDUHODVWLFLW\ WKH PDWHULDO VWDELOLW\ FULWHULRQ GXH WR +LOO LQ HT LV HTXDO WR .LUFKKRII·V XQLTXHQHVV DQG HQHUJ\ FULWHULRQLQHT
%DFNJURXQGDQGJHQHUDOWKHRU\
I (V)
H
H
)LJXUH3ODQHGLVFRQWLQXLW\RIWKHYHORFLW\JUDGLHQWLQORFDOLVLQJVKHDUEDQG
/RFDOLVDWLRQRIGHIRUPDWLRQDQGHOOLSWLFLW\
$VHFRQGFRQGLWLRQOLPLWLQJWKHXQLTXHQHVVRIPDWHULDOEHKDYLRXULVUHODWHGWRWKH SRVVLELOLW\ RI D GLVFRQWLQXLW\ VXUIDFH WKDW GRHV QRW WUDYHO UHODWLYHO\ WR WKH PDWHULDO LH D SODQH VWDQGLQJ ZDYH GLVFRQWLQXLW\ LQ WKH YHORFLW\ JUDGLHQW RU ORFDOLVDWLRQ RI GHIRUPDWLRQ DV LOOXVWUDWHG LQ )LJXUH DFFRUGLQJ WR 5XGQLFNL $ GLVFRQWLQXLW\ LQ WKH YHORFLW\ ILHOG LQ WKH IRUP RI D VKHDU EDQG FDQ EH IRUPXODWHGDVDIXQFWLRQRIWLPH W DWDPDWHULDOSRLQW [L E\
YL ( [ N W ) = YØL (W ) I ( [ M Q M ) = YØL (W ) I ( V ) RUY ( [ W ) = YØL (W ) I ( [ ZKHUH σ LMHO LV WKH HODVWLF WULDO VWUHVV UDWH )RU )LMσ LMHO < WKH PDWHULDOEHKDYLRXULVHODVWLF ,QWKHIROORZLQJWKH\LHOGFULWHULRQRU\LHOGVXUIDFH I DQGWKHSODVWLFSRWHQWLDO J ZLOOEHGHILQHGIRUWKHFRQVLGHUHGFDVHRIORFDOFRD[LDOQRQ²DVVRFLDWHG0RKU² &RXORPEHODVWR²SODVWLFLW\LQFOXGLQJLVRWURSLFKDUGHQLQJVRIWHQLQJDVWKH\ZLOOEH XVHGLQWKHUHPDLQGHURIWKHWKHVLV
)ULFWLRQVKHDUVWUHQJWKDQG\LHOGFULWHULRQ
)RUFRKHVLYHIULFWLRQDOVRLOVWKHNH\IHDWXUHLVWKHGHSHQGHQF\RIWKHLU\LHOGLQJRQ P WKH PHDQ VWUHVV σ ( ) 2U LQ RWKHU ZRUGV DQ DSSURSULDWH \LHOG FULWHULRQ IRU DQ\ IULFWLRQDOPDWHULDOZRXOGEHDIXQFWLRQRIWKHILUVWVWUHVVLQYDULDQW ,σ RUPHDQ P VWUHVV σ ( ) DV SRLQWHG RXW LQ 6HFWLRQ ,Q WKLV UHVSHFW WKH ROGHVW DQG SUREDEO\WKHPRVWXVHG\LHOGFULWHULRQIRUFRKHVLYHIULFWLRQDOVRLOVLVWKHSURSRVDO PDGHE\&RXORPE LQKLVLQYHVWLJDWLRQVRIUHWDLQLQJZDOOV ,QWKLVFULWHULRQIDLOXUHLVDVVXPHGWRRFFXUDVVRRQDVRQDQ\SODQHZLWKQRUPDO Q XQLWYHFWRU Q LQWKHPDWHULDOWKHVKHDUVWUHVV τ ( ) LQFUHDVHVWREHFRPHHTXDOWR WKH IULFWLRQ FRHIILFLHQW U RI WKH PDWHULDO PXOWLSOLHG E\ WKH QRUPDO HIIHFWLYH Q VWUHVV σ ( ) RQ WKDW SODQH QHJDWLYH IRU FRPSUHVVLRQ 7KH IULFWLRQ FRHIILFLHQW FDQ EHH[SUHVVHGDVWKHWDQJHQWRIWKHIULFWLRQDQJOH ϕ LH U = WDQ (ϕ ) )RUIULFWLRQDO PDWHULDOVZLWKFRKHVLRQ F WKHVWUHQJWKWKHQEHFRPHV
τ (Q) = −σ (Q) WDQ (ϕ ) + F
LQ ZKLFK WKH VWUHVVHV DUH GHILQHG DFFRUGLQJ WR WKH FRQWLQXXP PHFKDQLFV VLJQ
&RQWLQXXPPHFKDQLFVDQGFRQVWLWXWLYHODZV
τ
IDLOXUHSRLQW$
(Q)
WULD[LDO H[WHQVLRQ
σI
$
τI
α
σ PLQ
α
SROH Q
SROH S
F
α σ PLQ
τI
σI
−α
σ PD[
σ
ϕ
σ PD[
(Q)
−α
%
τI F
WULD[LDO FRPSUHVVLRQ
WDQ (ϕ )
−α
σI
IDLOXUHSRLQW%
)LJXUH,OOXVWUDWLRQRI0RKU·VVWUHVVFLUFOHDWIDLOXUHDQGFRUUHVSRQGLQJ0RKU²&RXORPE VWUHQJWKSDUDPHWHUVFRQWLQXXPPHFKDQLFVVLJQFRQYHQWLRQ
FRQYHQWLRQ ZLWK FRPSUHVVLRQ QHJDWLYH VHH 6HFWLRQ 7KH UDWLR RI VKHDU Q Q VWUHVV τ ( ) DQG QRUPDO HIIHFWLYH VWUHVV σ ( ) RQ D SRWHQWLDO VKHDU SODQH ZLWK QRUPDO XQLW YHFWRU Q LV PD[LPXP DW WKH VWUHVV VWDWH ZKHUH WKH OLQH IURP WKH DSH[LVWDQJHQWWRWKHVWUHVVFLUFOHIROORZLQJIURP)LJXUHDV VLQ (ϕ ) =
σ PLQ − σ PD[ σ PLQ + σ PD[
F − WDQ (ϕ )
§ F · DQG (σ PLQ − σ PD[ ) = ¨ σ PLQ + σ PD[ − ¸ VLQ (ϕ ) ¨ WDQ (ϕ ) ¹¸ ©
&RQVHTXHQWO\WKH0RKU²&RXORPE\LHOGVXUIDFHFDQEHGHWHUPLQHGE\VROYLQJWKH H[SUHVVLRQVLQHT DV
I = (σ PLQ − σ PD[ ) − (σ PLQ + σ PD[ ) VLQ (ϕ ) + F FRV (ϕ ) =
1RWHWKDWWKH0RKU²&RXORPE\LHOGFULWHULRQLQHT LVJLYHQZLWKVWUHVVHV GHILQHGDFFRUGLQJWRWKHFRQWLQXXPPHFKDQLFVVLJQFRQYHQWLRQ7RDUULYHDWWKH GHILQLWLRQ DV XVHG PRVW FRPPRQO\ LQ VRLO PHFKDQLFV UHSODFH σ PLQ E\ −σ PD[ DQG σ PD[ E\ −σ PLQ ,QWKUHH²GLPHQVLRQDO(XFOLGHDQVSDFHLQJHQHUDOWKHWKUHHSULQFLSDOVWUHVVHVFDQ EH DUUDQJHG LQ WKH VHTXHQFH RI PD[LPXP LQWHUPHGLDWH DQG PLQLPXP LH σ PLQ ≤ σ LQW ≤ σ PD[ < ZLWK UHVSHFW WR WKH SULQFLSDO GLUHFWLRQV RI WKH SULQFLSDO VWUHVVHV σ σ DQG σ LQVL[GLIIHUHQWZD\V7KLVUHVXOWVLQVL[\LHOGVXUIDFHVLQ SULQFLSDO VWUHVV VSDFH IRU GLIIHUHQW DUUDQJHPHQWV RI VHTXHQFHV RI SULQFLSDO VWUHVVHVDV
&+$37(5
−σ
VSDFHGLDJRQDO
π − SODQH H[WHQVLRQ
FRPSUHVVLRQ
−σ
0RKU&RXORPEFRQH
−σ )LJXUH,OOXVWUDWLRQRI0RKU²&RXORPE\LHOGVXUIDFHVLQSULQFLSDOVWUHVVVSDFHFRQWLQXXP PHFKDQLFVVLJQFRQYHQWLRQ
I = (σ − σ ) − (σ + σ ) VLQ (ϕ ) + F FRV (ϕ ) = IRU > σ ≥ σ ≥ σ I = (σ − σ ) − (σ + σ ) VLQ (ϕ ) + F FRV (ϕ ) = IRU > σ ≥ σ ≥ σ I = (σ − σ ) − (σ + σ ) VLQ (ϕ ) + F FRV (ϕ ) = IRU > σ ≥ σ ≥ σ I = (σ − σ ) − (σ + σ ) VLQ (ϕ ) + F FRV (ϕ ) = IRU > σ ≥ σ ≥ σ
I = (σ − σ ) − (σ + σ ) VLQ (ϕ ) + F FRV (ϕ ) = IRU > σ ≥ σ ≥ σ I = (σ − σ ) − (σ + σ ) VLQ (ϕ ) + F FRV (ϕ ) = IRU > σ ≥ σ ≥ σ ,QWKHIROORZLQJWKHFRKHVLRQZLOOEHVHWHTXDOWR]HURLH F = IRUFRQYHQLHQFH $OO VL[ VXUIDFHV FDQ EH FRPELQHG LQ RQH ILJXUH ZKHUH RQO\ WKH SDUW ZLWK σ PLQ ≤ σ LQW ≤ σ PD[ < LVJLYHQDVVKRZQLQ)LJXUH
&RQWLQXXPPHFKDQLFVDQGFRQVWLWXWLYHODZV
PRELOLVHGIULFWLRQDQJOHϕP
GHYLDWRULFVWUDLQ ε ( G )
)LJXUH&DOFXODWHGYDULDWLRQRIPRELOLVHGIULFWLRQDQJOH ϕP YHUVXVGHYLDWRULFVWUDLQ ε ( G ) IRU WKHH[SHULPHQWDOWULD[LDOFRPSUHVVLRQGDWDVKRZQLQ)LJXUHVDQG*RWR 0ROHQNDPSD
%DVHGRQWKHH[SHULPHQWDOGDWDRI*RWR0ROHQNDPSD SUHVHQWHGLQ 6HFWLRQIRUDGUDLQHGVWDQGDUGWULD[LDOFRPSUHVVLRQWHVWRQDF\OLQGHURIGHQVH 7R\RXUD VDQG WKH PRELOLVHG IULFWLRQ DQJOH ϕ FDQ EH GHWHUPLQHG LQ WHUPV RI WKH SULQFLSDO D[LDO DQG UDGLDO VWUHVVHV σ = σ PLQ DQG σ = σ PD[ UHVSHFWLYHO\ VHH )LJXUH 1RWHWKDWIRUWULD[LDOFRPSUHVVLRQZLWKFRQWLQXXPPHFKDQLFVVLJQ FRQYHQWLRQ σ < σ = σ < 6XEVWLWXWLQJ WKH SULQFLSDO VWUHVVHV LQWR HT IRU I ZLWK F = JLYHV IRU WKH PRELOLVHG IULFWLRQ DQJOH IRU WULD[LDO FRPSUHVVLRQ WHVWVIROORZLQJIURPHT VLQ (ϕ ) =
σ − σ σ PLQ − σ PD[ = σ + σ σ PLQ + σ PD[
ZKLFK LV D IXQFWLRQ RI WKH GHYLDWRULF VWUDLQ ε ( ) DV GHILQHG E\ HT ,Q )LJXUH WKH YDULDWLRQ RI WKH PRELOLVHG IULFWLRQ DQJOH ϕ LV VKRZQ YHUVXV WKH G G GHYLDWRULFVWUDLQ ε ( ) )LUVWWKHDQJOHLQFUHDVHVZLWKLQFUHDVLQJ ε ( ) IURP]HURWRD (G ) R PD[LPXPYDOXHRIDERXW DW ε = WKHUHDIWHULWGHFUHDVHVDOEHLWVORZO\ G
6WUHVV²GLODWDQF\DQGSODVWLFSRWHQWLDO
,W FDQ EH VKRZQ WKDW GHQVH VDQGV H[SDQG DW IDLOXUH ZKLFK 5H\QROGV QDPHG ¶GLODWDQF\· ZKHUHDV ORRVH VDQGV FRQWUDFW GXULQJ VKHDU WR IDLOXUH 7KLV SURYHV WKDW SDUWLFOH PRYHPHQWV GXULQJ GHIRUPDWLRQ DQG IDLOXUH DUH QRW QHFHVVDULO\LQWKHGLUHFWLRQRIWKHDSSOLHGVKHDUVWUHVV $VVXPLQJ FRD[LDOLW\ EHWZHHQ WKH SODVWLF VWUDLQ UDWH DQG WKH VWUHVV WKH UDWLR EHWZHHQ WKH SULQFLSDO SODVWLF VWUDLQ UDWHV FDQ EH GHULYHG XVLQJ WKH IROORZLQJ SODVWLFSRWHQWLDODVVRFLDWHGWRHT
J = (σ PLQ − σ PD[ ) − (σ PLQ + σ PD[ ) VLQ (ψ ) =
&+$37(5
SO
εLM L ≠ M ψ >
( GLODWLRQ ) (G )
γ SO
εPLQ = ε
(Y )
ε SO
εPD[ = ε
SO
εLM L = M
)LJXUH0RKUFLUFOHIRUSODVWLFVWUDLQUDWHVLOOXVWUDWLQJWKHGLODWLRQDQJOHψ IRUSODQH GHIRUPDWLRQSRVLWLYHIRUGLODWLRQ LQFRQWLQXXPPHFKDQLFVVLJQFRQYHQWLRQ
LQ ZKLFK ψ LV WKH GLODWLRQ DQJOH 7KH SK\VLFDO PHDQLQJ RI WKH GLODWLRQ DQJOH ψ FDQ EH XQGHUVWRRG DIWHU FRQVLGHULQJ WKH UHVXOWLQJ SULQFLSDO SODVWLF VWUDLQ UDWHV 7KH\FDQEHFDOFXODWHGIROORZLQJIURPHT DV SO ε = εPD[ = η
∂J ∂σ PD[
∂J SO = −η ª¬+ VLQ (ψ ) º¼ DQGε = εPLQ = η = η ª¬− VLQ (ψ ) º¼ ∂σ PLQ
)RUSK\VLFDOLQWHUSUHWDWLRQFRQVLGHUWKHVWUHVVVWDWHRISODQHGHIRUPDWLRQZLWKIRU YHUWLFDO VWDQGDUG FRPSUHVVLRQ WKH YHUWLFDO VWUHVV DQG VWUDLQ WDNHQ DV σ = σ = σ PLQ DQG ε = ε = ε PLQ UHVSHFWLYHO\ ,Q KRUL]RQWDO GLUHFWLRQ WKH VWUHVV DQGVWUDLQDUHWDNHQDV σ = σ = σ PD[ DQG ε = ε = ε PD[ UHVSHFWLYHO\7KHRXW² RI²SODQH VWUDLQ LV HTXDO WR ]HUR LH ε = ε = 7KHQ WKH YROXPHWULF DQG GHYLDWRULFSODVWLFVWUDLQUDWHPHDVXUHVIRUSODQHGHIRUPDWLRQEHFRPH SO SO εSO(Y ) = εSO + εSO = εPD[ + εPLQ = −η VLQ (ψ ) DQG SO SO γSO(G ) = εSO − εSO = εPD[ − εPLQ = −η
&RQVHTXHQWO\WKHGLODWLRQDQJOHLQWHUPVRI VLQ (ψ ) FDQEHH[SUHVVHGDVWKHUDWLR RIWKHVHSODVWLFVWUDLQUDWHPHDVXUHVIRUSODQHGHIRUPDWLRQDV VLQ (ψ ) =
SO SO ε (Y ) + εPLQ εSO + εSO εPD[ = SO = (SOG ) SO SO SO ε − ε εPD[ − εPLQ γSO
7KHGLODWLRQDQJOH ψ LVVKRZQLQ)LJXUHLQZKLFKWKH0RKUFLUFOHIRUSODVWLF VWUDLQUDWHVLVLOOXVWUDWHG)RU ψ > GLODWLRQRFFXUVZKLOHIRU ψ < WKHPDWHULDO EHKDYLRXULVFRQWUDFWLYHIROORZLQJWKHFRQWLQXXPPHFKDQLFVVLJQFRQYHQWLRQ 1RWHWKDWWKHGLODWLRQDQJOHFDQDOVREHH[SUHVVHGLQWHUPVRIWKHYROXPHWULFDQG GHYLDWRULF VWUDLQ UDWH LQYDULDQWV LQ SULQFLSDO VWUHVV VSDFH IRU SODQH GHIRUPDWLRQ ZKLFKUHDGIROORZLQJIURPHTV DQG DQGVXEVWLWXWLQJ ε =
&RQWLQXXPPHFKDQLFVDQGFRQVWLWXWLYHODZV
εSO(Y ) = εSO + εSO DQGεSO(G ) =
(ε ) + (ε ) SO
SO
− εSOεSO
7KHQ IRU SODQH GHIRUPDWLRQ WKH UDWLR RI LVRWURSLF DQG GHYLDWRULF VWUDLQ UDWH LQYDULDQWVIROORZVE\FRPELQLQJERWKH[SUHVVLRQVLQHT DQGXVLQJWKHILUVW SDUWRIHT DV
εSO(Y ) (G )
εSO
=
εSO + εSO
(ε ) + (ε ) SO
SO
= − εSOεSO
VLQ (ψ ) + VLQ (ψ )
$QG WKH GLODWLRQ DQJOH IRU SODQH GHIRUPDWLRQ IROORZV IURP WKH ODVW HTXDOLW\ LQ HT DV
VLQ (ψ ) =
εSO(Y )
( ) ( )
(G ) εSO
(Y ) − εSO
([WHQGLQJ WR JHQHUDO WKUHH²GLPHQVLRQDO (XFOLGHDQ VSDFH WKH WKUHH SULQFLSDO VWUHVVHV FDQ EH DUUDQJHG LQ WKH VHTXHQFH RI PD[LPXP LQWHUPHGLDWH DQG PLQLPXPLH σ PLQ ≤ σ LQW ≤ σ PD[ < ZLWKUHVSHFWWRWKHSULQFLSDOGLUHFWLRQVRIWKH SULQFLSDOVWUHVVHV σ σ DQG σ LQVL[GLIIHUHQWZD\V7KLVUHVXOWVLQVL[SODVWLF SRWHQWLDOVXUIDFHVLQSULQFLSDOVWUHVVVSDFHIROORZLQJIURPHT IRUGLIIHUHQW DUUDQJHPHQWVRIVHTXHQFHVRISULQFLSDOVWUHVVHVDVDOVRDSSOLHGLQHT DQG LOOXVWUDWHGLQ)LJXUHDV
J = (σ − σ ) − (σ + σ ) VLQ (ψ ) = FRQVWIRU > σ ≥ σ ≥ σ J = (σ − σ ) − (σ + σ ) VLQ (ψ ) = FRQVWIRU > σ ≥ σ ≥ σ J = (σ − σ ) − (σ + σ ) VLQ (ψ ) = FRQVWIRU > σ ≥ σ ≥ σ J = (σ − σ ) − (σ + σ ) VLQ (ψ ) = FRQVWIRU > σ ≥ σ ≥ σ
J = (σ − σ ) − (σ + σ ) VLQ (ψ ) = FRQVWIRU > σ ≥ σ ≥ σ J = (σ − σ ) − (σ + σ ) VLQ (ψ ) = FRQVWIRU > σ ≥ σ ≥ σ 7R EH DEOH WR XVH WKH H[SHULPHQWDO GDWD RI *RWR 0ROHQNDPS D SUHVHQWHG LQ 6HFWLRQ IRU 7R\RXUD VDQG FRQVLGHU WKH VWUHVV VWDWH RI WULD[LDO FRPSUHVVLRQ,QWKLVFDVHWKHD[LDOVWUHVVDQGVWUDLQDUHWDNHQDV σ = σ = σ PLQ DQG ε = ε = ε PLQ UHVSHFWLYHO\,QERWKUDGLDOGLUHFWLRQVWKHVWUHVVDQGVWUDLQDUH WDNHQ DV σ = σ = σ = σ PD[ DQG ε = ε = ε = ε PD[ UHVSHFWLYHO\ 1RWH WKDW IRU WULD[LDOFRPSUHVVLRQZLWKFRQWLQXXPPHFKDQLFVVLJQFRQYHQWLRQ σ < σ = σ < 7KHQ WKH YROXPHWULF DQG GHYLDWRULF VWUDLQ UDWH LQYDULDQWV LQ SULQFLSDO VWUHVV VSDFH IRU WULD[LDO FRPSUHVVLRQ DV GHULYHG SUHYLRXVO\ LQ HTV DQG UHDG
&+$37(5
GLODWLRQDQJOHψ
GHYLDWRULFVWUDLQ ε ( G )
)LJXUH9DULDWLRQRIGLODWLRQDQJOHψ DJDLQVWGHYLDWRULFVWUDLQ ε ( G ) IRUWKHH[SHULPHQWDO WULD[LDOGDWDVKRZQLQ)LJXUHVDQG*RWR0ROHQNDPSD
εSO(Y ) = εSO + εSO DQGεSO(G ) =
(
)
SO SO (Y ) ε − ε = εSO − εSO
(
)
7KHGLODWLRQDQJOHXVLQJWKH0RKU²&RXORPEPRGHODWWKHYHUWLFHVRIWKHWULD[LDO VWDWHVRIGHIRUPDWLRQFDQEHH[SUHVVHGDV VLQ (ψ ) =
SO SO εSO(Y ) + εPLQ εSO + εSO εPD[ = = SO SO − εPLQ εSO − εSO εPD[ εSO(Y ) − εSO
7KHQ IRU WULD[LDO GHIRUPDWLRQ WKH UDWLR RI LVRWURSLF DQG GHYLDWRULF VWUDLQ UDWH LQYDULDQWVIROORZVE\FRPELQLQJERWKH[SUHVVLRQVLQHT DV
εSO(Y ) εSO(G )
=
(Y ) εSO VLQ (ψ ) εSO + εSO = = SO SO Y) ( SO ε − ε + VLQ (ψ ) ε − εSO
$QG WKH GLODWLRQ DQJOH IRU WULD[LDO GHIRUPDWLRQ IROORZV IURP WKH ODVW HTXDOLW\ LQ HT DV VLQ (ψ ) =
( ) εSO Y
( ) ( ) εSO − εSO G
Y
=
εSO(Y ) ( ) εSO − εSO Y
%DVHGRQWKHH[SHULPHQWDOGDWDRI*RWR0ROHQNDPSD SUHVHQWHGLQ 6HFWLRQIRUDGUDLQHGVWDQGDUGWULD[LDOFRPSUHVVLRQWHVWRQDF\OLQGHURIGHQVH 7R\RXUDVDQGWKHGLODWLRQDQJOH ψ FDQEHGHWHUPLQHGLQWHUPVRIWKHYROXPHWULF DQGD[LDOVWUDLQVVHH)LJXUHDQG)LJXUH 7KHGLODWLRQDQJOHDWWKHYHUWH[ RI WKH \LHOG VXUIDFH IRU WULD[LDO WHVW LV GHWHUPLQHG DFFRUGLQJ WR HT 7KH UHVXOWLQJUDQJHRIWKHGLODWLRQDQJOHLVVKRZQLQ)LJXUH7KLVDQJOHLQLWLDOO\
&RQWLQXXPPHFKDQLFVDQGFRQVWLWXWLYHODZV
WDNHVQHJDWLYHYDOXHVEHIRUHLQFUHDVLQJUDSLGO\WRDPD[LPXPYDOXHRIDERXW R G G DWDURXQG ε ( ) = WKHQLWGHFUHDVHVZLWKLQFUHDVLQJ ε ( ) 7R GHVFULEH WKH FRPSOH[ SKHQRPHQRQ RI GLODWDQF\ 5RZH KDV GHYHORSHG WKH VWUHVV²GLODWDQF\ WKHRU\ 7KH YDOLGLW\ RI WKLV WKHRU\ KDV EHHQ VXSSRUWHG E\ PDQ\ H[SHULPHQWDO GDWD DW KLJK VKHDU VWUHVV OHYHOV +RZHYHU DW ORZ VKHDU VWUHVV OHYHO WKH WKHRU\ LV FRQWUDGLFWHG E\ H[SHULPHQWDO HYLGHQFH 9HUPHHU ZKHUH DGGLWLRQDO FRPSUHVVLYH GHIRUPDWLRQ EHFRPHV VLJQLILFDQW ,Q WKLV WKHVLV WRR WKH VWUHVV²GLODWDQF\ LV GHVFULEHG LQ VXFK D ZD\ WKDWLWDJUHHVZLWKWKHVWUHVV²GLODWDQF\WKHRU\DWKLJKVKHDUVWUHVVOHYHOV 7KH VWUHVV²GLODWDQF\ HTXDWLRQ SURSRVHG E\ 5RZH LV EDVHG RQ WKH K\SRWKHVLVRIPLQLPXPHQHUJ\UDWLRZKLFKLQWHUPVRIFRQWLQXXPPHFKDQLFVFDQ EHZULWWHQDV
ε (Y ) ε (Y ) 5σ = − SOSO = − SOSO .σ ε εPLQ
LQZKLFK 5σ LVWKHSULQFLSDOVWUHVVUDWLR 5σ = σ PLQ σ PD[ LQFRQWLQXXPPHFKDQLFV WHUPV DQG . σ LV D PDWHULDO FRQVWDQW 6XEVWLWXWLQJ IRU SODQH GHIRUPDWLRQ HT DQG IRU WULD[LDO FRPSUHVVLRQ HT LQWR HT OHDGV IRU WKH WZRFDVHVWR SO εSO εPD[ IRUSODQHGHIRUPDWLRQ °− ε SO = − ε SO 5σ ° PLQ =® . σ ° εSO ε SO − SO = − SOPD[ IRUWULD[LDOFRPSUHVVLRQ °¯ ε εPLQ
6XEVWLWXWLQJ UHVSHFWLYHO\ HT IRU SODQH GHIRUPDWLRQ RU HT IRU WULD[LDO FRPSUHVVLRQ LQWR HT WKHQ JLYHV WKH GLODWDQF\ UDWLR IRU WKH WZR FDVHVDV
5σ + VLQ (ψ ) = . σ − VLQ (ψ )
)URPHT IROORZVWKHGLODWLRQDQJOHLQWHUPVRI VLQ (ψ ) DV VLQ (ψ ) =
5σ − . σ 5σ + . σ
7KHFRQVWDQW . σ UHSUHVHQWVDVSHFLDOYDOXHRIWKHVWUHVVUDWLR 5σ VLQFHGLODWLRQ RFFXUVIRU 5σ > . σ DQGFRQWUDFWLRQRFFXUVIRU 5σ < . σ )RU 5σ = . σ WKHGLODWLRQ LVHTXDOWR]HUR 5RZH VWDWHG WKDW WKH UDWLR RI DFWLYH DQG SDVVLYH ZRUN RQ DQ HOHPHQW RI VDQG FDQ EH GHVFULEHG E\ WKH IULFWLRQDO FRQVWDQW . σ WKDW FDQ EH H[SUHVVHGIRUWZR²GLPHQVLRQDOVWUHVVFRQGLWLRQVSODQHGHIRUPDWLRQDQGWULD[LDO FRPSUHVVLRQ DV
&+$37(5
ϕ µ [ GHJ ]
GLODWLRQ
ψ [ GHJ ]
FRQWUDFWLRQ
ϕP [ GHJ ] )LJXUH'LODWLRQDQJOHψ YVPRELOLVHGIULFWLRQDQJOH ϕP DQGDFFRUGLQJWRHT LQVROLG R R OLQHVZLWKPDUNHUVIRULQWHUSDUWLFOHIULFWLRQDQJOHV ϕ µ EHWZHHQ DQG 7KH VROLGOLQHVZLWKRXWPDUNHUVLQGLFDWHDOLQHDUUHODWLRQVKLSHT 7KHEODFNVROLG OLQHLQGLFDWHVZKDWZRXOGFRUUHVSRQGWRDQDVVRFLDWHGIORZUXOHψ = ϕP
§π ϕ . σ = WDQ ¨ + µ ©
· + VLQ (ϕ µ ) ¸= ¹ − VLQ (ϕ µ )
LQ ZKLFK ϕ µ LV WKH LQWHUSDUWLFOH IULFWLRQ DQJOH 2QO\ GHQVH VDQG IXOO\ REH\V WKLV IULFWLRQDO FRQFHSW DW ORZ LVRWURSLF VWUHVV OHYHOV +RZHYHU WKH FRQFHSW FRXOG EH H[WHQGHGE\OHWWLQJWKHYDOXHRI ϕ µ GHSHQGRQWKHYRLGUDWLRDQGSUHVVXUHUDQJH ,W ZRXOG LQFUHDVH ZLWK ERWK LQFUHDVLQJ YRLG UDWLR DQG SUHVVXUH 5RZH IRXQG YDOXHV IRU WKH LQWHUSDUWLFOH IULFWLRQ DQJOH ϕ µ YDU\LQJ EHWZHHQ R IRU FRDUVH TXDUW] VDQG XS WR R IRU YHU\ ILQH IHOGVSDU &RQVLGHULQJ WKH SDUDPHWHU UDQJH RI SUDFWLFDO UHOHYDQFH LW LV FKRVHQ WR SHUIRUP WKH SDUDPHWULFDO VWXGLHV LQ WKHUDQJH R ≤ ϕ µ ≤ R +RZHYHUWKHVWXG\LVORRNLQJDOVRIRUOLPLWVLQVLGHDQG RXWVLGHWKLVSUDFWLFDOUDQJHZKHUHQHFHVVDU\ 7KH VWUHVV UDWLR FDQ EH H[SUHVVHG XVLQJ WKH 0RKU²&RXORPE IDLOXUH FULWHULRQ LQ WKHDSSURSULDWHSODQHIROORZLQJIURPHT IRU I ZLWK F = DV
5σ =
σ σ PLQ + VLQ (ϕP ) = = σ σ PD[ − VLQ (ϕP )
&RQWLQXXPPHFKDQLFVDQGFRQVWLWXWLYHODZV
ϕ µ [ GHJ ]
ΦΨ
GLODWLRQ
FRQWUDFWLRQ
ϕP [ GHJ ] )LJXUH&RPELQHGSDUDPHWHU ΦΨ GHJUHHRIGLODWLRQ DVDIXQFWLRQRIWKHPRELOLVHGIULFWLRQ R DQJOH ϕP DFFRUGLQJWRHT IRULQWHUSDUWLFOHIULFWLRQDQJOHV ϕ µ EHWZHHQ DQG R 7KHEODFNVROLGOLQHLQGLFDWHVZKDWZRXOGFRUUHVSRQGWRDQDVVRFLDWHGIORZUXOH ψ = ϕP
LQZKLFK ϕP LVFRQVLGHUHGWREHDEOHWRUHSUHVHQWDQ\PRELOLVHGIULFWLRQDQJOHDW ZKLFKHODVWR²SODVWLFGHIRUPDWLRQRFFXUV 6XEVWLWXWLQJ HTV DQG LQWR HT WKHQ JLYHV WKH GLODWDQF\ UDWLRDFFRUGLQJWR5RZH DV VLQ (ψ ) =
VLQ (ϕP ) − VLQ (ϕ µ )
− VLQ (ϕP ) VLQ (ϕ µ )
,Q )LJXUH WKLV UHODWLRQ LV LOOXVWUDWHG IRU ϕ µ = R R R R R E\ VROLG OLQHVZLWKPDUNHUV)RU ψ > GLODWLRQRFFXUVZKLOHIRU ψ < WKHYROXPHFKDQJH LVFRQWUDFWLYH)RU ϕP = ϕ µ LWIROORZVWKDWWKHGLODWLRQLVHTXDOWR]HURLH ψ = 7KH EODFN VROLG OLQH LQGLFDWHV ZKDW ZRXOG FRUUHVSRQG WR DQ DVVRFLDWHG IORZ UXOH IRU ZKLFK ψ = ϕP ,Q WKH UHPDLQGHU RI WKH WKHVLV IRU FRQYHQLHQFH LW LV DVVXPHG WKDWWKHGLODWLRQDQJOH ψ LVOLQHDUO\GHSHQGHQWRQWKHPRELOLVHGIULFWLRQDQJOH ϕP DFFRUGLQJWR
ψ = ϕP − ϕ µ
,Q )LJXUH WKH VROLG OLQHV ZLWKRXW PDUNHUV LQGLFDWH WKLV OLQHDU UHODWLRQVKLS DFFRUGLQJWRHT EHWZHHQGLODWLRQDQGIULFWLRQDQJOH +RZHYHU IRU LQWHUSUHWDWLRQ RI FDOFXODWLRQ UHVXOWV LQ WKH UHPDLQGHU RI WKH WKHVLV WKH QXPEHU RI LQGHSHQGHQW SDUDPHWHUV FDQ EH UHGXFHG LQ VRPH FDVHV 7KH SDUDPHWHUV ϕP DQG ψ RIWHQ RFFXU DV WKH SURGXFW RI WKHLU VLQH IXQFWLRQV
&+$37(5
7KHUHIRUHWKHSDUDPHWHUFRPELQDWLRQ ΦΨ WREHLQGLFDWHGDVGHJUHHRIGLODWLRQ FDQEHXVHGUHSUHVHQWDWLYHO\ ΦΨ = VLQ (ϕP ) VLQ (ψ ) = VLQ (ϕP ) VLQ (ϕP − ϕ µ )
LQ ZKLFK HT KDV EHHQ DSSOLHG ,Q )LJXUH WKH IXQFWLRQ ΦΨ LV LOOXVWUDWHG IRU WKH UDQJH RI SUDFWLFDO UHOHYDQFH LH R ≤ ϕP ≤ R DQG R ≤ ϕ µ ≤ R +HQFH DVVXPLQJ WKH IULFWLRQ DQJOH SRVLWLYH LW IROORZV WKDW Φ > )RU ΦΨ > 0 LH ψ > WKHQ GLODWLRQ RFFXUV DQG IRU ΦΨ < 0 LH ψ < WKH PDWHULDOEHKDYLRXULVFRQWUDFWLYH)URP)LJXUHLWFDQEHFRQFOXGHGWKDWWKH FRPELQHG SDUDPHWHU ΦΨ UDQJHV EHWZHHQ DSSUR[LPDWHO\ − DQG + IRU SUDFWLFDO SXUSRVHV %\ GHILQLWLRQ WKH YDOXH ΦΨ = 0 UHSUHVHQWV WKH FDVH RI QR GLODWLRQIRUZKLFK ϕP = ϕ µ )RULOOXVWUDWLRQSXUSRVHVWKHEODFNVROLGOLQHZLWKRXW PDUNHUV LQGLFDWHV ZKDW ZRXOG FRUUHVSRQG WR DQ DVVRFLDWHG IORZ UXOH IRU ZKLFK ψ = ϕP DQGWKHUHIRUH ϕ µ = R
+DUGHQLQJEHKDYLRXU
,W LV DVVXPHG WKDW IRU LQILQLWHVLPDO LQFUHPHQWV RI WKH SODVWLF VWUDLQ εLMSO WKH LQFUHPHQWRIWKHKDUGHQLQJSDUDPHWHU κ LVGHILQHGE\
κ ≡ εLMSO(GHY ) = η
∂J ( ) ∂σ LM GHY
LQZKLFK εLM ( ) LVWKH(XFOLGHDQQRUPRIWKHGHYLDWRULFSDUWRIWKHSODVWLFVWUDLQ GHY LQFUHPHQWDQG J ( ) LVWKHGHYLDWRULFSDUWRIWKHSODVWLFSRWHQWLDO)RUWKHVHFRQG HTXDOLW\XVHKDVEHHQPDGHRIHT UHODWLQJWKHSODVWLFVWUDLQLQFUHPHQWWR WKH SODVWLF SRWHQWLDO 7KH GHILQLWLRQ LQ HT GHVFULEHV WKH VR²FDOOHG GHYLDWRULFKDUGHQLQJ )URPHTV DQG IROORZVUHVSHFWLYHO\WKDW SO GHY
GHY εLMSO ∂ε LMSO κ ∂κ ∂J ∂J ( ) = = = DQG = η η ∂η ∂η ∂σ LM ∂σ LM
7KHQ WKH KDUGHQLQJ PRGXOXV + FRQWUROOLQJ WKH SODVWLF VWLIIQHVV IROORZV IURP HT DQGFDQEHH[SUHVVHGDIWHUVXEVWLWXWLQJERWKUHVXOWVRIHT E\
+ =−
SO GHY ∂I ∂κ ∂J ∂I ∂κ ∂ε LM ∂I ∂κ ∂I ∂J ( ) = − = − = − ∂κ ∂ε LMSO ∂σ LM ∂κ ∂ε LMSO ∂η ∂κ ∂η ∂κ ∂σ LM
7KH KDUGHQLQJ PRGXOXV KDV WKH VDPH GLPHQVLRQ DV WKH VWUHVVHV DV PHQWLRQHG SUHYLRXVO\DWHT 1RWHWKDW
∂I ∂ ¬ª(σ − σ ) − (σ + σ ) VLQ (ϕP ) ¼º ∂ϕ = = − (σ + σ ) FRV (ϕP ) P ∂κ ∂κ ∂κ
QRUPDOLVHGKDUGHQLQJPRGXOXV+
&RQWLQXXPPHFKDQLFVDQGFRQVWLWXWLYHODZV
GHYLDWRULFVWUDLQ ε ( G )
)LJXUH9DULDWLRQRIGLPHQVLRQOHVVQRUPDOLVHGKDUGHQLQJPRGXOXV + DJDLQVWGHYLDWRULF VWUDLQ ε ( G ) IRUWKHH[SHULPHQWDOGDWDVKRZQLQ)LJXUH0ROHQNDPSD
ZKLOH VXEVWLWXWLQJ I ZLWK F = IRU I DFFRUGLQJ WR HT DQG FRQVLGHULQJ WKDW RQO\ WKH PRELOLVHG IULFWLRQ DQJOH ϕP LV D IXQFWLRQ RI WKH KDUGHQLQJ SDUDPHWHULH ϕP = ϕP(κ ) 0RUHRYHUQRWHWKDW ª º GHY ∂ (σ − σ ) ∂J ( ) = = «« − »» = ∂σ LM ∂σ LM «¬ »¼
ZKLOH VXEVWLWXWLQJ J IRU J DFFRUGLQJ WR HT 7KHQ VXEVWLWXWLQJ HTV DQG LQWRHT UHVXOWVLQ + = (σ + σ ) FRV (ϕP )
∂ϕP ∂ϕ = (σ + σ ) FRV (ϕP ) (PG ) ∂κ ∂ε SO
( ) ZLWK IRU VWUHVV VWDWHV RI WULD[LDO FRPSUHVVLRQ WKH GHYLDWRULF SODVWLF VWUDLQ ε SO IROORZLQJ IURP HT DQG PRELOLVHG IULFWLRQ DQJOH ϕP IROORZLQJ IURP HT )RUWKHVHFRQGHTXDOLW\XVHKDVEHHQPDGHRIHT %DVHG RQ WKH H[SHULPHQWDO GDWD RI *RWR SUHVHQWHG LQ 6HFWLRQ VHH )LJXUHDQG)LJXUH IRUDGUDLQHGVWDQGDUGWULD[LDOFRPSUHVVLRQWHVWRQD F\OLQGHURIGHQVH7R\RXUDVDQGWKHGLPHQVLRQOHVVQRUPDOLVHGKDUGHQLQJPRGXOXV + HT FDQ EH GHWHUPLQHG LQ WHUPV RI WKH PRELOLVHG IULFWLRQ DQJOH ϕP G DQG GHYLDWRULF VWUDLQ ε ( ) )LJXUH DFFRUGLQJ WR 0ROHQNDPS D 7KH G YDULDWLRQ RI WKH GLPHQVLRQOHVV KDUGHQLQJ PRGXOXV + ZLWK UHVSHFW WR ε ( ) LV G VKRZQLQ)LJXUH7KHKDUGHQLQJPRGXOXV + GHFUHDVHVZLWKLQFUHDVLQJ ε ( ) (G ) IURP ODUJH SRVLWLYH YDOXHV WR ]HUR DW ε = DQG GHFUHDVHV IXUWKHU LQ WKH VRIWHQLQJUDQJH G
&+$37(5
0RKU²&RXORPEHODVWR²SODVWLFLW\WHQVRU
)RUWKHSDUDPHWULFVWXG\WKHHODVWR²SODVWLFWDQJHQWVWLIIQHVVWHQVRULVHODERUDWHG IRU D VWUHVV VWDWH RQ D VLQJOH \LHOG VXUIDFH 7KH SULQFLSDO VWUHVVHV DUH FKRVHQ LQ WKHRUGHU σ ≤ σ ≤ σ < ,QWHUPVRIWKHSULQFLSDOVWUHVVHVLQWKHILUVWRFWDQWRI SULQFLSDO VWUHVV VSDFH RI FRQWLQXXP PHFKDQLFV ZLWK RQO\ SRVLWLYH SULQFLSDO VWUHVVHV DV LOOXVWUDWHG LQ )LJXUH WKLV FKRLFH RI PD[LPXP DQG PLQLPXP SULQFLSDOVWUHVVHVFRQFHUQVWKH0RKU²&RXORPEVXUIDFH I DFFRUGLQJWRHT 7KHQ WKH \LHOG FULWHULRQ DFFRUGLQJ WR HT DQG WKH SODVWLF SRWHQWLDO DFFRUGLQJWRHT ERWKGHILQHGLQSULQFLSDOVWUHVVVSDFHUHDG I = I = (σ − σ ) − (σ + σ ) Φ DQGJ = J = (σ − σ ) − (σ + σ ) Ψ
,QHT
Φ = VLQ (ϕ ) DQGΨ = VLQ (ψ )
DUHLQWURGXFHGIRUFRQYHQLHQFH$V\LHOGFULWHULRQ I DQGSRWHQWLDOIXQFWLRQ J DUH GHILQHG LQ SULQFLSDO VWUHVV VSDFH σ LM DOVR \LHOG WHQVRU ) = )LM HL ⊗ H M DQG SRWHQWLDOWHQVRU * = *LM HL ⊗ H M ZLOOLQILUVWLQVWDQFHEHGHULYHGLQSULQFLSDOVWUHVV VSDFH 7KHLU FRPSRQHQWV ZLWK UHVSHFW WR SULQFLSDO VWUHVV GLUHFWLRQV GHILQHG E\ &DUWHVLDQWULDG HL UHDGE\VXEVWLWXWLQJHT LQWRHT
º º ª − Φ ª − Ψ ∂I ∂J « » « )LM = = − − Φ » DQG*LM = = − − Ψ »» ∂σ LM « ∂σ LM « «¬ «¬ »¼ »¼
7KHQIURPHT LWIROORZVLQJHQHUDOVWUHVVVSDFH
)LM = 4LN )NO4OM7 DQG*LM = 4LN*NO4OM7
LQZKLFK 4LM DUHWKHFRPSRQHQWVRIWKHURWDWLRQWHQVRUZLWKUHVSHFWWRWKHIL[HG WULDG HL HT VXFK WKDW HL = 4LM7 H M HT VSHFLI\ WKH SULQFLSDO VWUHVV GLUHFWLRQV,QDFFRUGDQFHZLWKHT ª FRV ( Ξ ) « 4 = 4LM HL ⊗ H M = « VLQ ( Ξ ) « ¬
− VLQ ( Ξ ) FRV ( Ξ )
º » » HL ⊗ H M » ¼
LQZKLFK Ξ LVWKHSRVLWLYHURWDWLRQDQJOHDURXQGXQLWYHFWRU H 7KHRULHQWDWLRQ RI WKH SULQFLSDO VWUHVVHV ZLWK UHVSHFW WR WKH UHFWDQJXODU FRRUGLQDWH V\VWHP ZLWK &DUWHVLDQ WULDG HL ( L = ) LV LOOXVWUDWHG LQ )LJXUH IRU LQ²SODQH URWDWLRQ DURXQGXQLWEDVHYHFWRU H
&RQWLQXXPPHFKDQLFVDQGFRQVWLWXWLYHODZV
−σ
−σ
H H
H Ξ
H −σ −σ
)LJXUH,OOXVWUDWLRQRIRULHQWDWLRQRIWKHLQ²SODQHSULQFLSDOVWUHVVHVDVGHVFULEHGE\SRVLWLYH URWDWLRQDQJOH Ξ DURXQGXQLWEDVHYHFWRU H
1RWH WKDW )LM = )ML DQG *LM = * ML ,Q JHQHUDO VWUHVV VSDFH WKH \LHOG WHQVRU DQG SODVWLF SRWHQWLDO WHQVRU IROORZ IURP HTV DQG DQG FDQ EH HODERUDWHGDV ªFRV ( Ξ ) − Φ ªFRV ( Ξ ) − Ψ VLQ ( Ξ ) º VLQ ( Ξ ) º « » « » )LM = « VLQ ( Ξ ) − FRV ( Ξ ) − Φ » DQG*LM = « VLQ ( Ξ ) − FRV ( Ξ ) − Ψ » « « »¼ »¼ ¬ ¬ )RU VLPSOLILFDWLRQ RI WKH HODVWR²SODVWLF WDQJHQW VWLIIQHVV WHQVRU WKH QRUPDOLVHG \LHOG WHQVRU DQG SRWHQWLDO WHQVRU DUH LQWURGXFHG ,Q SULQFLSDO VWUHVV VSDFH WKH\ FDQEHHODERUDWHGIROORZLQJIURPHTV DQG DV
ª − ( + ν ) Φ « )LM( ) = « − − ( + ν ) Φ « ¬ ª − ( + ν ) Ψ « *LM( ) = « − − ( + ν ) Ψ « ¬
º » » DQG »¼ º » » »¼
,Q JHQHUDO VWUHVV VSDFH WKH QRUPDOLVHG \LHOG WHQVRU DQG SRWHQWLDO WHQVRU IROORZ IURPHTV DQG DQGFDQEHHODERUDWHGDV
ªFRV ( Ξ ) − ( + ν ) Φ VLQ ( Ξ ) « − FRV ( Ξ ) − ( + ν ) Φ )LM( ) = « VLQ ( Ξ ) « ¬ ªFRV ( Ξ ) − ( + ν ) Ψ VLQ ( Ξ ) « VLQ ( Ξ ) − FRV ( Ξ ) − ( + ν ) Ψ *LM( ) = « « ¬
º » » DQG »¼ º » » »¼
7KHHODVWR²SODVWLFGHQRPLQDWRU ' HS FDQEHHODERUDWHGIROORZLQJIURPHT DV
&+$37(5
' HS =
+ + + ( + ν ) ΦΨ
LQ ZKLFK ν = ν ( − ν ) DQG + = + * DFFRUGLQJ WR HTV DQG UHVSHFWLYHO\ 1RWH WKDW ' HS LV D VFDODU DQG WKHUHIRUH LQGHSHQGHQW RI WKH RULHQWDWLRQ RI WKH FRRUGLQDWH V\VWHP )RU WKH KRPRJHQHRXV PDWHULDO SURSHUWLHV XQGHUFRQVLGHUDWLRQDOVRDQ\RILWVGHULYDWLYHVLVHTXDOWR]HUR7KHQWKHHODVWR² SODVWLFWDQJHQWVWLIIQHVVWHQVRUUHDGVDFFRUGLQJWRHT § δ δ + δ LOδ MN *( ) ) ( ) · HS = * ¨ LN MO + ν δ LMδ NO − LM HSNO ¸ 'LMNO ¨ ¸ ' © ¹
'
HS
ΦΨ
>
+
'
HS
WKHDUHDEHORZWKHOLQHVPDUNVWKH SDUDPHWHU VHW ZKHUH ' HS < )RU ΦΨ = LH ϕ = ϕ µ WKH GLODWLRQ LV ]HUR DQG WKHUHIRUH WKH HODVWR²SODVWLF GHQRPLQDWRU LV FRQVWDQW OHDGLQJ WR D KRUL]RQWDO DV\PSWRWH DW + = − IRU ORZ YDOXHV RI ν 2QO\ IRU ν > ≈ IRU FRQWUDFWLYH PDWHULDOEHKDYLRXU ΦΨ < LH ϕ < ϕ µ DSRVLWLYHKDUGHQLQJPRGXOXVFDQOHDGWR DQ HODVWR²SODVWLF GHQRPLQDWRU OHVV RU HTXDO WR ]HUR 7KHUHIRUH IRU GHFUHDVLQJ YDOXHV RI WKH PRELOLVHG IULFWLRQ DQJOH WKH SUREOHPV GXH WR VLQJXODULW\ RI WKH GHQRPLQDWRU LQFUHDVH 7KH VDPH FRQFOXVLRQ FDQ EH GUDZQ IRU KLJKHU GHJUHHV RI QRQ²DVVRFLDWLYLW\ 1RWH WKDW LQ WKH FDVH RI ϕ < ϕ µ WKH VWUHVV²GLODWDQF\ WKHRU\ XQGHUHVWLPDWHV WKH FRQWUDFWDQF\ DQG WKH DSSOLFDWLRQ RI D GRXEOH KDUGHQLQJ PRGHO FRXOG EH PRUH DSSURSULDWH LQ ZKLFK DOVR WKH LQIOXHQFH RI LVRWURSLF KDUGHQLQJLVWDNHQLQWRDFFRXQW)RU ΦΨ > FRUUHVSRQGLQJWRGLODWLYHPDWHULDO EHKDYLRXU WKH HODVWR²SODVWLF GHQRPLQDWRU ZRXOG QHYHU EH HTXDO WR ]HUR IRU DQ\ SDUDPHWHU FRPELQDWLRQ DV ORQJ DV WKH QRUPDOLVHG KDUGHQLQJ PRGXOXV VDWLVILHV + > −
+ >
ϕ µ [ GHJ ]
ν
+ <
ϕP [ GHJ ] )LJXUH3RLVVRQ·VUDWLRν YVPRELOLVHGIULFWLRQDQJOH ϕP IRUYDOXHVRILQWHUSDUWLFOHIULFWLRQ ϕ µ R R EHWZHHQ DQG VKRZLQJDWZKLFKSRLQWIRUSRVLWLYHKDUGHQLQJWKHHODVWR² HS SODVWLFGHQRPLQDWRU ' LVJHWWLQJ]HUR
&+$37(5
,Q )LJXUH WKH UHODWLRQ EHWZHHQ 3RLVVRQ·V UDWLR ν DQG PRELOLVHG IULFWLRQ DQJOH ϕP LVVKRZQDWZKLFKD]HURHODVWR²SODVWLFGHQRPLQDWRU ' HS RFFXUVZKLOH WKHQRUPDOLVHGKDUGHQLQJPRGXOXV + LVJHWWLQJ]HUR7KDWPHDQVWKDWWKHDUHD EHORZ WKH OLQHV LV PDUNLQJ WKH SDUW ZKHUH WKH KDUGHQLQJ PRGXOXV KDV WR EH QHJDWLYHWRHQIRUFHD]HURGHQRPLQDWRUZKLOHWKHDUHDDERYHWKHOLQHVPDUNVWKH SDUWVZKHUHIRUVWLOOSRVLWLYHKDUGHQLQJPRGXOLWKHHODVWR²SODVWLFGHQRPLQDWRULV JHWWLQJ]HUR)RUDQLQFUHDVLQJGHJUHHRIQRQ²DVVRFLDWLYLW\WKHDUHDLVLQFUHDVLQJ LQ ZKLFK IRU VWLOO SRVLWLYH KDUGHQLQJ PRGXOL WKH HODVWR²SODVWLF GHQRPLQDWRU LV JHWWLQJ]HUR)RUDQDVVRFLDWHGIORZUXOHWKHRQO\SRLQWIRUJHWWLQJDGHQRPLQDWRU HTXDO WR ]HUR ZRXOG EH IRU ν = +RZHYHU LQ JHQHUDO LW LV VKRZQ WKDW IRU WKH SUDFWLFDO SDUDPHWHU UDQJH RI LQWHUHVW LH ≤ ν ≤ QR SUREOHPV RFFXU IRU + > ≈ − LIRQO\XQLIRUPGHIRUPDWLRQQRORFDOLVDWLRQ RFFXUV &RQFOXGLQJ WKLV VHFWLRQ WKH ILYH SDUDPHWHUV FRQWUROOLQJ 0RKU²&RXORPE HODVWR² SODVWLF PDWHULDO EHKDYLRXU LQFOXGLQJ KDUGHQLQJ DQG VRIWHQLQJ IRU JHQHUDO VWUHVV VWDWHVDUHVXPPDULVHGLQ7DEOHLQGLFDWLQJWKHUDQJHVRISUDFWLFDOLQWHUHVW PDWHULDOSDUDPHWHU
SUDFWLFDOUDQJH
3RLVVRQ·VUDWLRν
≤ ν ≤
PRELOLVHGDQJOHRILQWHUQDOIULFWLRQ ϕP
≤ ϕP ≤
LQWHUSDUWLFOHIULFWLRQDQJOH ϕ µ
≤ ϕ µ ≤
RUDOWHUQDWLYHO\GLODWDQF\DQJOHψ QRUPDOLVHGKDUGHQLQJPRGXOXV +
− ≤ ψ ≤ < + < ∞ −
LQLWLDOSULQFLSDOVWUHVVGLUHFWLRQ Ξ
≤ Ξ ≤
R
R
R
R
R
R
R
R
7DEOH 3DUDPHWHUV FRQWUROOLQJ 0RKU²&RXORPE HODVWR²SODVWLF PDWHULDO EHKDYLRXU LQGLFDWLQJ SDUDPHWHUUDQJHVRISUDFWLFDOLQWHUHVW
$YRLGDQFHRIHODVWR²SODVWLFEHKDYLRXUDWYHUWLFHV
)RUWKHFRQVLGHUHGEUDQFKRIWKH\LHOGVXUIDFH I DVGHVFULEHGE\HT DQG LOOXVWUDWHG LQ WKH ILUVW RFWDQW RI SULQFLSDO VWUHVV VSDFH LQ )LJXUH WKH FRUUHVSRQGLQJSULQFLSDOVWUHVVFRQGLWLRQLQDFFRUGDQFHZLWKHT UHDGV
σ ≤ σ ≤ σ <
ZKHUH LQ WHUPV RI FRQWLQXXP PHFKDQLFV DQG IRU DOO SULQFLSDO VWUHVVHV EHLQJ FRPSUHVVLYH σ PLQ = σ PLQLPXP SULQFLSDO VWUHVV σ LQW = σ LQWHUPHGLDWH SULQFLSDOVWUHVVDQG σ PD[ = σ PD[LPXPSULQFLSDOVWUHVV ,WLVQRWHGWKDWWKHFRUUHVSRQGLQJVWUHVVSRLQWZRXOGUHDFKRQHRIERWKYHUWLFHVRI WKHFRQVLGHUHGEUDQFKRIWKH\LHOGVXUIDFH I LIWKHLQWHUPHGLDWHSULQFLSDOVWUHVV σ LQW = σ ZRXOG EHFRPH HTXDO WR HLWKHU WKH PLQLPXP RU PD[LPXP SULQFLSDO VWUHVVHV 7R DYRLG WKLV LQ WKH DQDO\VLV LQ SULQFLSOH WKH LQWHUPHGLDWH SULQFLSDO VWUHVV σ LQW = σ FRXOG EH FKRVHQ HTXDO WR WKH PHDQ RI ERWK WKH PLQLPXP DQG PD[LPXP LQ²SODQH SULQFLSDO VWUHVVHV WKXV σ LQW = (σ PLQ + σ PD[ ) = (σ + σ ) ,Q WKHDQDO\VLVWKLVFDVHLVQRWFRQVLGHUHGDQ\IXUWKHU
(TXDWLRQ&KDSWHU6HFWLRQ
&+$37(5 /RFDOFULWHULRQRIPDWHULDOVWDELOLW\
7KHORFDOFULWHULRQIRUPDWHULDOVWDELOLW\DVLQWURGXFHGLQ&KDSWHULVHODERUDWHG IRU LVRWURSLF OLQHDU HODVWLFLW\ DQG 0RKU²&RXORPE HODVWR²SODVWLFLW\ LQFOXGLQJ KDUGHQLQJDQGVRIWHQLQJ0RGDOGHFRPSRVLWLRQRIHLJHQPRGHVLVDSSOLHGWRGHULYH FRQYHQLHQW H[SUHVVLRQV IRU WKH FRQWULEXWLRQ RI LVRWURSLF DQG GHYLDWRULF GHIRUPDWLRQWRWKHWRWDOVWUDLQUDWHHQHUJ\GXHWRERWKHODVWLFDQGSODVWLFVWUDLQ UDWHVVHSDUDWHO\7KHSDUDPHWHUUDQJHVIRUZKLFKWKHORFDOFRQGLWLRQRIPDWHULDO VWDELOLW\LVVDWLVILHGDUHGHULYHGIRUERWKPDWHULDOPRGHOV
0DWHULDOVWDELOLW\DQGSRVLWLYH²GHILQLWHQHVV
$VLQWURGXFHGLQ6HFWLRQVWDEOHPDWHULDOEHKDYLRXULVORFDOO\GHILQHGDVWKH SRVLWLYHQHVVRIWKHSURGXFWRIWKHVWUHVVUDWH σ LM DQGWKHWRWDOVWUDLQUDWH εLM
σ LMεLM ≥ RUσ $OO WKH FRUUHVSRQGLQJ HLJHQYHFWRUV DUH UHODWHG WR IRUPV RI SXUH VKHDU WKXV ZLWKRXW DQ\ YROXPHWULF GHIRUPDWLRQ 7KH WKLUG HLJHQYDOXH ϑHO( ) LV IRXQG WR EH D IXQFWLRQ RI ERWK WKH 3RLVVRQ·V UDWLR ν DQG WKH VKHDU PRGXOXV * DV JLYHQ E\ WKH WKLUG H[SUHVVLRQ RI HT 7KH WKLUG HLJHQYDOXHLVLOOXVWUDWHGLQ)LJXUHLQ DGLPHQVLRQOHVVZD\DV ϑHO( ) * LQWKH UDQJH − ≤ ν ≤ VKRZLQJ D YHUWLFDO DV\PSWRWH DW ν = 7KLV WKLUG HLJHQYDOXHLVVKRZQWREHSRVLWLYHLQWKHUDQJH −∞ < ν < LIWKHVKHDUPRGXOXV * LVSRVLWLYHLH * > $FFRUGLQJWRWKHWKLUGH[SUHVVLRQLQHT WKHWKLUG HLJHQYHFWRU Y (HO ) LV UHODWHG WR SXUH LVRWURSLF GHIRUPDWLRQ WKXV YROXPHWULF VWUDLQ Y ε ( )
D
() Y HO H
E
()
Y HO
H
()
( )
Y HO
Y HO
( )
Y HO
()
Y HO
H
H
H
H
)LJXUH ,OOXVWUDWLRQRIILUVWWKUHHQRUPDOLVHGHLJHQYHFWRUVDFFRUGLQJWRHT IRUSODQH VWUDLQOLQHDUHODVWLFLW\D LQSULQFLSDOVWUDLQVSDFH HL DQGE SURMHFWHGRQ π − SODQH
/RFDOFULWHULRQRIPDWHULDOVWDELOLW\
( )
ϑHO
*
ν
()
)LJXUH 'LPHQVLRQOHVVWKLUGHLJHQYDOXH ϑHO * DFFRUGLQJWRHT IRUSODQHVWUDLQ LVRWURSLFOLQHDUHODVWLFLW\DVDIXQFWLRQRI3RLVVRQ·VUDWLRLQWKHUDQJH − ≤ ν ≤ ZLWKYHUWLFDODV\PSWRWHDWν =
D PRGH
E PRGH
H
H
H
F PRGH
G PRGH
)LJXUH(ODVWLFHLJHQPRGHVRIGHIRUPDWLRQLQSULQFLSDOVWUDLQVSDFH D PRGHSODQHVWUHWFKLQJER[²VKDSH E PRGHWKUHH²GLPHQVLRQDOVWUHWFKLQJER[²VKDSH F PRGHLVRWURSLFFRPSUHVVLRQ G PRGHVKHDULQJGLDPRQG²VKDSH
&+$37(5
7KH HLJHQPRGHV LQ HT FDQ EH FODVVLILHG 0ROHQNDPS DV PRGH SODQH VWUHWFKLQJ ER[²VKDSH LQ H − H − GLUHFWLRQ PRGH WKUHH²GLPHQVLRQDO VWUHWFKLQJ ER[²VKDSH PRGH LVRWURSLF FRPSUHVVLRQ DQG PRGH VKHDULQJ GLDPRQG²VKDSH $OO IRXU HLJHQPRGHV DUH LOOXVWUDWHG LQ )LJXUH 7KHVH HLJHQPRGHV LQYROYH RQO\ XQLIRUP GHIRUPDWLRQ 7KH FRPSUHVVLRQ PRGH PRGH LQYROYHVRQO\YROXPHWULFVWUDLQLWVHLJHQYDOXHGHSHQGVRQWKHVKHDUPRGXOXV * DQG 3RLVVRQ·V UDWLR ν )RU LQFRPSUHVVLEOH PDWHULDO WKLV HLJHQYDOXH EHFRPHV LQILQLWH DV LW VKRXOG %RWK WKH VWUHWFKLQJ DQG VKHDULQJ PRGHV PRGHVDQG LQYROYH RQO\ GHYLDWRULF GHIRUPDWLRQ WKHLU HLJHQYDOXHV GHSHQG RQ WKH VKHDU PRGXOXV * RQO\$SDUWRIPRGHWKHVHPRGHVGLIIHUIURPWKHSODQHGHIRUPDWLRQ PRGHVJLYHQE\HJ+DFNHU0ROHQNDPS
0RGDOGHFRPSRVLWLRQ
6XEVWLWXWLQJ WKH FRPSRQHQWV RI WKH QRUPDOLVHG HLJHQYHFWRUV HT LQWR HT JLYHVIRUWKHHODVWLFPRGDOVWUDLQUDWHV § εHO · ª ¨ ¸ « ¨ εHO ¸ « ¨ ( )¸ = « ¨ ¸ « − ¨ HO ¸ « © ε ¹ ¬
−
−
º § α HO() · » ¨ () ¸ » ¨ α HO ¸ » ¨ ( ) ¸ » ¨ α HO ¸ » ¨ α ( ) ¸ ¼ © HO ¹
$IWHUVROYLQJHT RUDOWHUQDWLYHO\VXEVWLWXWLQJHT LQWRHT WKH PRGDOZHLJKWVIRUOLQHDUHODVWLFLW\DQGSODQHGHIRUPDWLRQIROORZDV
α HO() =
εHO
α HO( ) =
HO ε − εHO ε HO + ε HO = − α HO( ) + α HO( ) α HO( ) = DQGα HO( ) = εHO
1RWH WKDW WKH GHWHUPLQDQW RI WKH PDWUL[ RI ULJKW HLJHQYHFWRUV LQGLFDWHG LQ HT LV HTXDO WR RQH LH GHW 9 = (T FRQILUPV WKDW LQ WKH FDVH RI SODQH GHIRUPDWLRQ GHILQHG LQ WHUPV RI QRUPDO SULQFLSDO VWUDLQ UDWHV RQO\ WZR LQGHSHQGHQW QRQ²]HUR PRGDO ZHLJKWV ZRXOG RFFXU DV LQ WKLV FDVH εHO = 6XEVWLWXWLQJHT LQWRHT JLYHVWKHYROXPHWULFVWUDLQLQYDULDQWDV
( )
εHO(Y ) = α HO()
ZKLFK ZRXOG UHGXFH WR WKH NQRZQ H[SUHVVLRQ IRU SODQH GHIRUPDWLRQ DIWHU Y HO HO VXEVWLWXWLQJ WKH PRGDO ZHLJKWV HT LH εHO( ) = ε 6XEVWLWXWLQJ + ε HT LQWRHT JLYHVWKHGHYLDWRULFVWUDLQUDWHFRPSRQHQWVDV ) () εHO(GHY = α HO −
α HO()
()
()
α α GHY GHY GHY εHO( ) = − α HO( ) + HO εHO( ) = − HO DQGεHO( ) = α HO( )
ZKLFK ZRXOG UHGXFH WR WKH NQRZQ H[SUHVVLRQV IRU SODQH GHIRUPDWLRQ DIWHU VXEVWLWXWLQJWKHPRGDOZHLJKWVHT DV
/RFDOFULWHULRQRIPDWHULDOVWDELOLW\
) εHO(GHY =
εHO − εHO −ε HO + εHO ε HO + εHO GHY GHY GHY εHO( ) = εHO( ) = − DQGεHO( ) = εHO
6XEVWLWXWLQJ WKH HLJHQYDOXHV HT DQG WKH FRPSRQHQWV RI WKH OHIW QRUPDOLVHG HLJHQYHFWRUV ZKLFK DUH HTXDO WR WKH ULJKW QRUPDOLVHG HLJHQYHFWRUV DFFRUGLQJWRHT LQWRHT JLYHVIRUWKHHODVWLFPRGDOVWUHVVUDWHV
§ ¨ ¨ ¨ ¨ ¨ ©
σHO · HO σ HO ( σ
σHO
ª ¸ « ¸ « = « )¸ «− ¸ ¸ « ¬ ¹
−
−
ª º § ϑHO( ) β HO( ) · « » ¨ ( ) ( ) ¸ » ¨ ϑHO β HO ¸ * « = « »¨ ¸ « − » ¨ ϑHO( ) β HO( ) ¸ « »¨ ¸ ¼ © ϑHO( ) β HO( ) ¹ ¬
· α HO( ) − º § ¨ ¸ » ¸ α HO() ( ) » ¨ »¨ () ¸ − » ¨ ( + ν ) α HO ¸ ¸ »¨ α HO( ) ¼ © ¹
LQ ZKLFK WKH PRGDO ZHLJKWV GHWHUPLQHG E\ HT RFFXU IRU ZKLFK KROGV WKDW α HO(L ) = β HO(L ) DVOHIWDQGULJKWHLJHQYHFWRUVDUHHTXDO(T ZRXOGUHGXFHWRWKH NQRZQ H[SUHVVLRQV IRU SODQH GHIRUPDWLRQ DIWHU VXEVWLWXWLQJ WKH PRGDO ZHLJKWV HT DV
σHO *
= (+ν ) εHO + ν εHO
HO σ
*
= ν εHO + (+ν ) εHO
HO σ
σ HO = ν εHO + εHO DQG = εHO * *
(
)
$OVRWKHLVRWURSLFVWUHVVLQYDULDQWFDQEHH[SUHVVHGLQWHUPVRIWKHPRGDOZHLJKWV DFFRUGLQJWRHT DV
σ HO(P) *
ϑ( ) + ν () α HO RUσ HO(P) = HO α HO()
=
ZKLFK ZRXOG UHGXFH WR WKH NQRZQ H[SUHVVLRQ IRU SODQH GHIRUPDWLRQ DIWHU VXEVWLWXWLQJWKHPRGDOZHLJKWVHT DV
σ HO(P) *
= ( + ν )
εHO + εHO
= ( + ν )
εHO(Y )
6WUDLQUDWHHQHUJ\
6XEVWLWXWLQJ WKH HLJHQYDOXHV IROORZLQJ IURP HT LQWR HT JLYHV WKH VWUDLQ UDWH HQHUJ\ IRU OLQHDU HODVWLFLW\ DQG SODQH GHIRUPDWLRQ LQ WHUPV RI WKH ULJKWPRGDOZHLJKWVDV
( )
( )
( )
( )
: HO = ªϑHO( ) α HO( ) + ϑHO( ) α HO( ) + ϑHO( ) α HO( ) + ϑHO( ) α HO( ) º RU « »¼ ¬ :HO ª () () ( ) ( ) º = + + + + α α ν α α ( ) HO HO HO HO * ¬« ¼»
( ) ( )
( ) ( )
ZKLFK ZRXOG UHGXFH WR WKH NQRZQ H[SUHVVLRQ IRU SODQH GHIRUPDWLRQ DIWHU VXEVWLWXWLQJWKHPRGDOZHLJKWVHT DV
&+$37(5
: HO ª HO = ε * ¬«
( ) + (ε )
HO
(
+ ν εHO + εHO
) + (ε ) º¼»
HO
6XEVWLWXWLQJHTV DQG LQWRHT JLYHVWKHVWUDLQUDWHHQHUJ\GXH WRLVRWURSLFGHIRUPDWLRQDV (LVR ) + ν HO = α HO()
( ) RU :*
LVR : HO( ) = ϑHO( ) α HO( )
( )
ZKLFK ZRXOG UHGXFH WR WKH NQRZQ H[SUHVVLRQ IRU SODQH GHIRUPDWLRQ DIWHU VXEVWLWXWLQJWKHPRGDOZHLJKWVHT DV LVR : HO( ) + ν HO HO = ε + ε *
(
)
DQG ϑHO( ) ZRXOG FRUUHVSRQG WR WKH HODVWLF EXON PRGXOXV . )RU LVRWURSLF OLQHDU LVR HODVWLFLW\ : HO( ) LVHTXDOWRWKHVWUDLQUDWHHQHUJ\RIWKHWKLUGHLJHQPRGH 6XEVWLWXWLQJHTV DQG LQWRHT JLYHVWKHVWUDLQUDWHHQHUJ\GXH WRGHYLDWRULFGHIRUPDWLRQDV
GHY : ( ) ª () GHY : HO( ) = ªϑHO( ) α HO( ) + ϑHO( ) α HO( ) + ϑHO( ) α HO( ) º RU HO = α HO « » ¬ * «¬ ¼
( )
( )
( )
( ) + (α ( ) ) + (α ( ) ) º»¼
HO
HO
ZKLFK LV DOZD\V ODUJHU WKDQ ]HUR IRU QRQ²]HUR GHIRUPDWLRQ (T ZRXOG UHGXFH WR WKH NQRZQ H[SUHVVLRQ IRU SODQH GHIRUPDWLRQ DIWHU VXEVWLWXWLQJ WKH PRGDOZHLJKWVHT DV GHY : HO( ) ª HO = « ε * ¬
( )
( )
− εHOεHO + εHO
+
HO º ε » ¼
( )
GHY : HO( )
( )
* α HO( )
α HO() α HO() ( GHY )
)LJXUH1RUPDOLVHGVWUDLQUDWHHQHUJ\IRUGHYLDWRULFGHIRUPDWLRQ : HO DFFRUGLQJWR () () HT IRUSODQHVWUDLQOLQHDUHODVWLFLW\DVDIXQFWLRQRIWKHUDWLR α HO α HO
/RFDOFULWHULRQRIPDWHULDOVWDELOLW\
)RUWKHJUDSKLFDOUHSUHVHQWDWLRQRIWKHLVRWURSLFDQGGHYLDWRULFVWUDLQUDWHHQHUJ\ ILUVW WKH H[SUHVVLRQV LQ HTV DQG DUH UHIRUPXODWHG E\ VXEVWLWXWLQJ α HO() DFFRUGLQJWRHT DQGQRUPDOLVLQJERWKZLWKUHVSHFWWR α HO() ≠ ZKLFK ( ) IRU α HO = OHDGVWR
( )
LVR : HO( )
( )
* α HO( )
= + ν =
GHY § α () · § : HO( ) α () · +ν = ¨¨ HO() ¸¸ + ¨¨ − HO() ¸¸ DQG − ν α HO ¹ © α HO ¹ © * α HO( )
( )
7KHQRUPDOLVHGGHYLDWRULFVWUDLQUDWHHQHUJ\HT ZKLFKLVLQGHSHQGHQWRI 3RLVVRQ·VUDWLR ν LVLOOXVWUDWHGDVDIXQFWLRQRI α HO( ) α HO( ) LQ)LJXUH)RU * > DQGQRQ²]HURGHIRUPDWLRQ ε ε ≠ WKLVHQHUJ\LVVKRZQWREHDOZD\VSRVLWLYH ZLWKDPLQLPXPDW α HO( ) α HO( ) = )LJXUHLOOXVWUDWHVERWKQRUPDOLVHGVWUDLQUDWHHQHUJLHVDFFRUGLQJWRHT DVIXQFWLRQVRI3RLVVRQ·VUDWLRν LQWKHUDQJH − < ν < DQGIRUDIHZYDOXHVRI α HO() α HO() 7KHGHYLDWRULFVWUDLQUDWHHQHUJ\LVDOZD\VSRVLWLYHZKLOHWKHLVRWURSLF VWUDLQ UDWH HQHUJ\ LV RQO\ SRVLWLYH LQ WKH UDQJH −∞ < ν < IRU * > &RQVHTXHQWO\+LOO·VORFDOPDWHULDOVWDELOLW\FULWHULRQHT LVVDWLVILHGLQWKH SDUDPHWHUUDQJH −∞ < ν < IRU * >
GHY : HO( ) ª ± º ¬ ¼
GHY : HO( ) ª¬ ± º¼
: HO
(
)
()
* α HO
GHY : HO( ) ª ± º ¬ ¼ ( GHY ) ª :HO º ¬ ¼
LVR : HO( )
ν ( GHY )
)LJXUH1RUPDOLVHGVWUDLQUDWHHQHUJLHV : HO( LVR ) DQG : HO DFFRUGLQJWRHT IRUSODQH VWUDLQOLQHDUHODVWLFLW\DVDIXQFWLRQRI3RLVVRQ·VUDWLRLQWKHUDQJH − ≤ ν ≤ IRU LVRWURSLFGHIRUPDWLRQUHG DQGGHYLDWRULFGHIRUPDWLRQEOXH IRUGLIIHUHQWUDWLR·V () () α HO α HO
&+$37(5
)RU WKH SODQH VWUDLQ VLWXDWLRQ RI LVRWURSLF OLQHDU HODVWLFLW\ WKH ORFDO PDWHULDO VWDELOLW\FULWHULRQGXHWR+LOOJLYHQE\HT LVHTXDOWR.LUFKKRII·VXQLTXHQHVV DQG HQHUJ\ FULWHULRQ )RU WKH UDQJH RI 3RLVVRQ·V UDWLR DV −∞ < ν < ZLWK DOO HLJHQYDOXHV EHLQJ SRVLWLYH .LUFKKRII VKRZHG WKDW DW PRVW RQH VROXWLRQ H[LVWV WR WKH PL[HG ERXQGDU\ YDOXH SUREOHP RI WKUHH²GLPHQVLRQDO KRPRJHQHRXV LVRWURSLFOLQHDUHODVWLFLW\LQERXQGHGUHJLRQV
6WUDLQUDWHHQHUJ\RIERXQGDU\YDOXHSUREOHPV
)RUERXQGHGGRPDLQV Ω WKHWRWDOVWUDLQHQHUJ\FDQEHFDOFXODWHGE\LQWHJUDWLQJ WKH ORFDO VWUDLQ HQHUJ\ RYHU WKH GRPDLQ 7KHQ LW IROORZV IURP HTV DQG IRULVRWURSLFOLQHDUHODVWLFLW\
( ) GΩ
LVR : HO( ) = ϑHO( ) ³ α HO( ) Ω Ω
( ) + (α ( ) ) + (α ( ) ) º»¼ GΩ
GHY : HO( ) = ϑHO( ) ³ ª α HO( ) «¬ Ω Ω
HO
HO
IURPZKLFKLWFDQEHVHHQWKDWWKHVLJQRIWKHVWUDLQHQHUJ\GHSHQGVVROHO\RQWKH HLJHQYDOXHV DV WKH LQWHJUDOV DUH DOZD\V ODUJHU WKDQ ]HUR LQGHSHQGHQW RQ WKH GRPDLQRIFRQVLGHUDWLRQ
3ODQHVWUDLQ0RKU²&RXORPEHODVWR²SODVWLFLW\
)RU 0RKU²&RXORPE HODVWR²SODVWLFLW\ LQFOXGLQJ KDUGHQLQJ WKH FRPSRQHQWV RI WKH VWLIIQHVVPDWUL[ ' LMHS HT IRUSODQHGHIRUPDWLRQZLWKUHVSHFWWRSULQFLSDO VWUHVVGLUHFWLRQVIROORZLQJIURPHTV DQG UHDG ª § ( − ΝΦ )( − ΝΨ ) º * ( )) ( ) · HS ' = * ¨ + ν − HS ¸ = * « + ν − » ' ' HS © ¹ ¬ ¼
() () · ª § ( + ΝΦ )( + ΝΨ ) º * ) ' HS ¸ = * « + ν − = * ¨ + ν − » HS ' ' HS © ¹ ¬ ¼ § *( ) ) ( ) · HS ' = * ¨ + ν − HS ¸ = * ( + ν ) ' © ¹ ª § ( + ΝΦ )( − ΝΨ ) º * ( )) ( ) · HS ' = * ¨ν − HS ¸ = * «ν + » ' ' HS © ¹ ¬ ¼
() () · ª § ( − ΝΦ )( + ΝΨ ) º * ) ' HS ¸ = * «ν + = * ¨ν − » HS ' ' HS © ¹ ¬ ¼
/RFDOFULWHULRQRIPDWHULDOVWDELOLW\
§ *( ) ) ( ) · HS ' = * ¨ν − HS ¸ = *ν ' © ¹
§ *( ) ) ( ) · HS ' = * ¨ν − HS ¸ = *ν ' © ¹
§ *( ) ) ( ) · HS ' = * ¨ν − HS ¸ = *ν ' © ¹
§ *( ) ) ( ) · HS ' = * ¨ν − HS ¸ = *ν DQG ' © ¹
§ * () ) () · HS ' = * ¨ − HS ¸ = * ' © ¹
LQ ZKLFK ν = ν ( − ν ) Ν = ( − ν ) Φ = VLQ (ϕ ) Ψ = VLQ (ψ ) = VLQ (ϕ − ϕ µ ) DQG WKH HODVWR²SODVWLF GHQRPLQDWRU LV GHILQHG DFFRUGLQJ WR HT DV ' HS = + + + ΝΦΨ 1RWH WKDW IRU 0RKU²&RXORPE HODVWR²SODVWLFLW\ WKH FRPSRQHQWVRIWKHVWLIIQHVVWHQVRUDUHGHSHQGHQWRQWKHFRRUGLQDWHGLUHFWLRQVDQG HS HS WKHUHIRUH 'LMNO ≠ 'LMNO 6XEVWLWXWLQJHT LQWRHT JLYHVWKHVWUHVV²VWUDLQ UDWHUHODWLRQIRUSODQHGHIRUPDWLRQIRU0RKU²&RXORPEHODVWR²SODVWLFLW\DV
ν ν º § εHS · § σHS · ª + ν ¨ HS ¸ ¨ ¸ « ν +ν »» ¨ εHS ¸ ν ¨ σ ¸ = * « + HS ¸ ¨ σ « ν ν + ν » ¨ ¸ ¨¨ HS ¸¸ ¨ ¸ « » ¼ ¨© εHS ¹¸ ¬ © σ ¹ ª − ( − ΝΦ )( − ΝΨ ) ( + ΝΦ )( − ΝΨ ) « * « ( − ΝΦ )( + ΝΨ ) − ( + ΝΦ )( + ΝΨ ) + HS « ' « « ¬
º § εHS · » ¨ HS ¸ » ¨ ε ¸ ¸ »¨ » ¨ ¸ »¼ ¨© εHS ¹¸
ZKLFKFDQEHZULWWHQLQPDWUL[²YHFWRUIRUPDWDV
(
)
(
σ HS = 'HS ε HS = 'HO + ' SO ε HS = 'HO + ' SO
) ( ε
HO
)
+ ε SO
1RWH WKDW WKH H[SUHVVLRQV IRU WKH HODVWR²SODVWLF VKHDU VWUHVV UDWH σHS DQG WKH HS RXWRISODQHHODVWR²SODVWLFVWUHVVUDWH σ DUHHTXDOWRWKHHODVWLFRQHVJLYHQLQ HT DOEHLW WKDW KHUH WKH VWUDLQV DUH WKH HODVWR²SODVWLF VWUDLQV ,Q WKLV VHFWLRQWKHVXSHU²DQGRUVXEVFULSW HS LVXVHGWRLQGLFDWHWKDWWKHTXDQWLWLHVDUH UHODWHG WR WKH 0RKU²&RXORPE HODVWR²SODVWLF PDWHULDO PRGHO HO LV XVHG WR LQGLFDWH SXUH HODVWLF FRQWULEXWLRQ DQG SO LV XVHG WR LQGLFDWH SXUH SODVWLF FRQWULEXWLRQ)RUWKHHYDOXDWLRQRIHLJHQYDOXHVDQG²YHFWRUVWKHSDUDPHWHUUDQJH LV FRQVLGHUHG WR EH UHVWULFWHG WR WKH IROORZLQJ OLPLWV LH < ν < * > R < ϕ < R R < ϕ µ < R ZKLFK LV ZLGHU WKDQ WKH SUDFWLFDOO\ RFFXUULQJ SDUDPHWHU UDQJH DV JLYHQ LQ &KDSWHU 7DEOH )URP WKHVH UDQJHV WKH OLPLWDWLRQVRIWKHSDUDPHWHUVXVHGLQWKHFXUUHQWIRUPXODWLRQFDQEHGHULYHGDV < ν < ∞ < * < ∞ < Φ < − < ΦΨ < DQG < Ν < ∞
− < Ψ < < ' HS < ∞
&+$37(5
(LJHQYDOXHV
7KHFKDUDFWHULVWLFGHWHUPLQDQWXVLQJWKHHODVWR²SODVWLFWDQJHQWVWLIIQHVVPDWUL[ IRUSODQHGHIRUPDWLRQLQHT UHDGV
(
)
GHW 'HS − ϑHS , = (ϑHS − * ) ¬ªϑHS − * ( + ν ) ¼º +
* (ϑHS − * ) ª¬ϑHS − * ( + ν ) + Ν (ϑHS − * ( + ν ) ) ΦΨ º¼ ' HS
+
1RWHWKDWIRU ' HS → ∞ LWIROORZVWKDWHT ZRXOGUHGXFHWRWKHOLQHDUHODVWLF FDVHLH GHW 'HO − ϑHO , = (ϑHO − * ) ª¬ϑHO − * ( + ν ) º¼ DVGHULYHGLQHT 7KH IRXU GLPHQVLRQOHVV HLJHQYDOXHV IROORZ E\ VROYLQJ HT IRU GHW 'HS − ϑHS, = DQGUHDG
(
ϑHS() *
ϑHS() *
ϑHS() *
ϑHS( ) *
)
(
)
=
=+
§ ν ν + Ν 2 ΦΨ + Ν 2 ΦΨ · ν Ν 2 ΦΨ − − ¨ + ¸ − HS ' ' HS ' HS © ¹
=+
§ ν ν + Ν 2 ΦΨ + Ν 2 ΦΨ · ν Ν 2 ΦΨ DQG − + ¨ + ¸ − HS ' ' HS ' HS © ¹
=
7KHVHTXHQFHLVFKRVHQVXFKWKDWWKHOLQHDUHODVWLFFDVHFRXOGEHUHVROYHG1RWH WKDW IRU ' HS → ∞ LW IROORZV WKDW HTV WR ZRXOG UHGXFH WR WKH OLQHDU HODVWLFFDVHZKLFKFRUUHVSRQGVWRFDVHFGHILQHGLQHT 7KHHLJHQYDOXHVLQ HTV WR FDQEHUHSUHVHQWHGVLPSOLILHGE\
ϑHS() *
=
ϑHS() *
= D − E
ϑHS() *
= D + E DQG
ϑHS( ) *
=
LQZKLFK D =+
ν + Ν ΦΨ − DQGE = E − E ' HS
DQG E =
ν + Ν ΦΨ ν Ν ΦΨ + E = HS HS ' '
1RWH WKDW WKHUH H[LVW DOZD\V HLJHQYDOXHV ZLWK PXOWLSOLFLW\ WZR LH ϑHS( ) = ϑHS( ) +RZHYHUPRUHFDVHVKDYHWREHGLVWLQJXLVKHGLHWKHUHPDLQLQJWZRHLJHQYDOXHV EHLQJ HTXDO RU GLVWLQFW WR HDFK RWKHU DQG WR WKH ILUVW WZR RQHV UHVSHFWLYHO\ &RQVLGHUWKDWHTXDOLW\RIWKHUHPDLQLQJWZRHLJHQYDOXHVLH ϑHS( ) = ϑHS( ) FDQRFFXU
/RFDOFULWHULRQRIPDWHULDOVWDELOLW\
LI DQG RQO\ LI E = &RPSOH[ HLJHQYDOXHV FDQ RFFXU LI DQG RQO\ LI E < DQG WKH RQO\SRVVLELOLW\WKHQLVWKDWWKH\DUHFRPSOH[FRQMXJDWHG,QWKHFDVHWKDW E > WKUHHSRVVLELOLWLHVFDQRFFXU7KLVUHVXOWVLQWKHIROORZLQJVL[FDVHVWKDWKDYHWR EHGLVWLQJXLVKHGQDPHO\ FDVHDJHQHUDOFDVHPXOWLSOLFLW\WZR IRUE > DQGD ≠ ± E
ϑHS() *
=
ϑHS( )
= DQG
*
ϑHS() *
= D − E ≠
ϑHS() *
= D + E ≠
FDVHEPXOWLSOLFLW\WKUHH IRUE > DQGD = − E
ϑHS() *
ϑHS()
=
*
=
ϑHS( ) *
= DQG
ϑHS()
= − E ≠
*
FDVHFHJOLQHDUHODVWLFLW\IRUν ≠ PXOWLSOLFLW\WKUHH IRUE > DQGD = + E
ϑHS() *
=
ϑHS() *
=
ϑHS( ) *
= DQG
ϑHS()
= + E ≠
*
FDVHDWZLFHPXOWLSOLFLW\WZR IRUE = DQGD ≠
ϑHS() *
=
ϑHS( ) *
= DQG
ϑHS() *
=
ϑHS() *
= D
FDVHEHJOLQHDUHODVWLFLW\IRUν = PXOWLSOLFLW\IRXU IRUE = DQGD =
ϑHS() *
=
ϑHS() *
=
ϑHS() *
=
ϑHS( ) *
=
FDVHFRPSOH[FRQMXJDWHGHLJHQYDOXHV IRUE < DQGD ∈ \
ϑHS() *
=
ϑHS( ) *
= DQG
ϑHS() *
= D −L E
ϑHS() *
= D +L E
,QWHUSUHWDWLRQRIHLJHQYDOXHV
)RUWKHLQWHUSUHWDWLRQRIWKHHLJHQYDOXHVFRQVLGHUWKHFDVHVDQGDVJLYHQE\ HTV WR )RU DOO FDVHV WKH ILUVW DQG IRXUWK HLJHQYDOXHV DUH HTXDO WR * DQG WKXV SRVLWLYH DVVXPLQJ WKDW WKH VKHDU PRGXOXV LV SRVLWLYH LH * > )RU WKH JHQHUDO FDVH FDVH D WKH VHFRQG DQG WKLUG HLJHQYDOXH DUH IRXQG WR EH IXQFWLRQV RI DOO ILYH PDWHULDO SDUDPHWHUV LQYROYHG LH VKHDU PRGXOXV * QRUPDOLVHG KDUGHQLQJ PRGXOXV + 3RLVVRQ·V UDWLR ν IULFWLRQ DQJOH ϕ DQG GLODWLRQDQJOH ψ ZKLFKLVUHSUHVHQWHGE\WKHLQWHUSDUWLFOHIULFWLRQDQJOH ϕ µ VHH HT +RZHYHU WKH QXPEHU RI LQGHSHQGHQW SDUDPHWHUV FDQ EH UHGXFHG WR VWXG\ WKH EHKDYLRXU RI WKH HLJHQYDOXHV $V ϕ DQG ψ RFFXU RQO\ FRPELQHG DV D SURGXFW VHH HTV DQG WKH SDUDPHWHU FRPELQDWLRQ ΦΨ GHJUHH RI GLODWLRQ DVLQWURGXFHGLQHT FDQEHXVHGUHSUHVHQWDWLYHO\IRUHYDOXDWLRQ SXUSRVHV0RUHRYHU3RLVVRQ·VUDWLRLVFRQVLGHUHGWREHDIL[HGYDOXH,WLVFKRVHQ WR EH HTXDO WR ν = )LQDOO\ WKH HLJHQYDOXHV DUH QRUPDOLVHG ZLWK UHVSHFW WR
&+$37(5
WKH VKHDU PRGXOXV * 7KHQ RQO\ WZR LQGHSHQGHQW SDUDPHWHUV UHPDLQ LH WKH QRUPDOLVHGKDUGHQLQJPRGXOXV + DQGWKHGHJUHHRIGLODWLRQ ΦΨ DVPHQWLRQHG EHIRUH )RU WKH PRVW JHQHUDO FDVH FDVHD DV JLYHQ E\ HT WKH VHFRQG DQG WKLUG QRUPDOLVHG HLJHQYDOXHV ϑHS( ) * DQG ϑHS( ) * DUH LOOXVWUDWHG LQ )LJXUH IRU 3RLVVRQ·VUDWLR ν = 7KHGHJUHHRIGLODWLRQ ΦΨ UDQJHVEHWZHHQ − ZKLFK LVUHODWHGWRWKHFDVHRIFRQWUDFWLRQ DQG + IRUGLODWLYHPDWHULDOEHKDYLRXU
ν =
ΦΨ
( )
ϑHS
*
C
+
ν =
()
ϑHS
*
+
()
()
)LJXUH1RUPDOLVHGUHDOSDUWRIWKHHLJHQYDOXHV ϑHS * DQG ϑHS * IRUWKHJHQHUDOFDVH FDVHD DFFRUGLQJWRHT IRU0RKU²&RXORPEHODVWR²SODVWLFLW\LQFOXGLQJ KDUGHQLQJDVDIXQFWLRQRIWKHQRUPDOLVHGKDUGHQLQJPRGXOXV + IRUIL[HG3RLVVRQ·V UDWLRν = DQGYDOXHVRIWKHFRPELQHGSDUDPHWHU ΦΨ EHWZHHQ − DQG +
/RFDOFULWHULRQRIPDWHULDOVWDELOLW\
1RWHWKDWRQO\WKHSDUDPHWHUUDQJHZKHUHUHDOHLJHQYDOXHVRFFXULVVKRZQ7KH FRPSOH[SDUDPHWHUUDQJHRFFXUVLI E < ZKLFKOHDGVWRHLJHQYDOXHVDFFRUGLQJWR FDVH DV GHILQHG LQ HT 7KH OLPLWV RI WKH FRPSOH[ SDUDPHWHU UDQJH DUH HODERUDWHGODWHU $VVXPH WKDW WKH VKHDU PRGXOXV LV SRVLWLYH LH * > 7KHQ WKH VHFRQG HLJHQYDOXH LV SRVLWLYH IRU SRVLWLYH KDUGHQLQJ PRGXOL LH + > 7KH WKLUG HLJHQYDOXH LV SRVLWLYH LQ WKH ZKROH SDUDPHWHU UDQJH %RWK HLJHQYDOXHV KDYH KRUL]RQWDO DV\PSWRWHV IRU ODUJH YDOXHV RI + DV ZLOO EH HODERUDWHG LQ WKH IROORZLQJ )RU + = WKHVHFRQGHLJHQYDOXHLVDOZD\VHTXDOWR]HUR)RUQHJDWLYHKDUGHQLQJ PRGXOL D YHUWLFDO DV\PSWRWH H[LVWV ZKHUH WKH VHFRQG HLJHQYDOXH LV WHQGLQJ WR PLQXV LQILQLW\ LH ϑHS( ) → −∞ DQG WKH WKLUG HLJHQYDOXH WR SOXV LQILQLW\ LH () ϑHS → +∞ 7KHSDUDPHWHUUDQJHIRULQILQLWHHLJHQYDOXHVZLOOEHHODERUDWHGLQWKH IROORZLQJ +RUL]RQWDODV\PSWRWHVOLPLWYDOXHVIRU + → ∞ 7KH VHFRQG DQG WKLUG HLJHQYDOXHV KDYH KRUL]RQWDO DV\PSWRWHV IRU YDOXHV RI + WHQGLQJWRSOXVRUPLQXVLQILQLW\VHH)LJXUH 7KH\FDQEHFDOFXODWHGWDNLQJ WKHOLPLWYDOXHVDV
( )
( )
/ = OLP ϑHS( ) = * DQG/ = OLP ϑHS( ) = * ( + ν ) = *
+ →±∞
+ →±∞
+ν − ν
,Q )LJXUH WKHVH OLPLWV DUH VKRZQ GHSHQGLQJ RQ ν ZKHUH WKH SUDFWLFDO SDUDPHWHU UDQJH LV LQGLFDWHG )URP WKLV ILJXUH LW FDQ EH XQGHUVWRRG WKDW WKH OLPLWV RI WKH QRUPDOLVHG HLJHQYDOXHV OLH EHWZHHQ DQG IRU WKH SUDFWLFDO SDUDPHWHUUDQJHRI3RLVVRQ·VUDWLR ≤ ν ≤
SUDFWLFDO UDQJH
/ *
/
/
ν ()
)LJXUH /LPLWVRIWKHQRUPDOLVHGHLJHQYDOXHV ϑHS ODUJHKDUGHQLQJPRGXOL + → ±∞
()
* DQG ϑHS
* DFFRUGLQJWRHT IRU
&+$37(5
( ) 9HUWLFDODV\PSWRWHVHLJHQYDOXHVWHQGLQJWRLQILQLW\ ϑHS → ±∞ 7KHVHFRQGDQGWKLUGHLJHQYDOXHVKDYHYHUWLFDODV\PSWRWHVIRUZKLFKWKH\WHQGWR SOXV RU PLQXV LQILQLW\ VHH )LJXUH 7KH FRQGLWLRQ IRU ZKLFK WKHVH YHUWLFDO DV\PSWRWHVRFFXULVGHWHUPLQHGE\WKHHODVWR²SODVWLFGHQRPLQDWRU ' HS GHILQHGLQ HT ,I ' HS = WKHQWKHVHFRQGDQGWKLUGHLJHQYDOXHVWHQGWRLQILQLW\7KH HODVWR²SODVWLF GHQRPLQDWRU ' HS LV SORWWHG LQ )LJXUH IRU D IL[HG YDOXH RI 3RLVVRQ·V UDWLR ν = DQG WKH GHJUHH RI GLODWLRQ ΦΨ LQ WKH UDQJH EHWZHHQ − FRQWUDFWLRQ DQG + GLODWLRQ )URPWKLVILJXUHLWFDQEHVHHQWKDWIRUWKH SUDFWLFDO FRQVLGHUHG UDQJH RI 3RLVVRQ·V UDWLR < ν < DQG GHJUHH RI GLODWLRQ ΦΨ ≥ − WKH HODVWR²SODVWLF GHQRPLQDWRU ' HS LV JHWWLQJ ]HUR LQ WKH RXWHUPRVW FDVH ΦΨ = − RQO\ IRU + < − )RU LQFUHDVLQJ GHJUHH RI GLODWLRQ WKH OLPLW LV GHFUHDVLQJ 7R HODERUDWH IRU ZKLFK YDOXHV WKH HODVWR²SODVWLF GHQRPLQDWRU ' HS SORWWHG LQ )LJXUHLVJHWWLQJ]HURFRQVLGHUIROORZLQJIURPHT
' HS = + + + ΝΦΨ =
6ROYLQJIRU + JLYHV + = − − ΝΦΨ = − −
ΦΨ . − ν
,Q )LJXUH WKH FRQGLWLRQ HODERUDWHG LQ HT IRU ZKLFK WKH HODVWR²SODVWLF GHQRPLQDWRU ' HS LVHTXDOWR]HURLVSORWWHG7KHLQGLYLGXDOOLQHVWKHPVHOYHVVKRZ IRU GLIIHUHQW YDOXHV RI 3RLVVRQ·V UDWLR ν WKH FRQGLWLRQ IRU ZKLFK ' HS LV H[DFWO\ HTXDOWR]HUR,QWKHKDOI²VSDFHDERYHHDFKOLQH ' HS LVODUJHUWKDQ]HURDQGLQWKH KDOI²VSDFHEHORZWKHOLQHV ' HS LVVPDOOHUWKDQ]HUR
ν =
ΦΨ
' HS
+
)LJXUH (ODVWR²SODVWLFGHQRPLQDWRU ' HS DVDIXQFWLRQRIWKHQRUPDOLVHGKDUGHQLQJPRGXOXV + IRUIL[HG3RLVVRQ·VUDWLRν = DQGYDOXHVRIWKHGHJUHHRIGLODWLRQ ΦΨ EHWZHHQ − DQG 7KHGDVKHGOLQHVVKRZWKHH[WUHPDIRU ΦΨ = ±1
/RFDOFULWHULRQRIPDWHULDOVWDELOLW\
' HS =
' HS >
ν
+
' HS <
ΦΨ
)LJXUH 1RUPDOLVHGKDUGHQLQJPRGXOXV + DVDIXQFWLRQRIWKHGHJUHHRIGLODWLRQ ΦΨ IRU GLIIHUHQWYDOXHVRI3RLVVRQ·VUDWLRν VKRZLQJIRUZKLFKYDOXHVRIKDUGHQLQJWKH HS HODVWR²SODVWLFGHQRPLQDWRU ' DFFRUGLQJWRHT LVJHWWLQJ]HUR7KHGDVKHG OLQHVVKRZWKHH[WUHPDIRUν = DQGν →
6XPPDULVHGWKHVHFRQGDQGWKLUGHLJHQYDOXHVFDQWHQGWRLQILQLW\LIHLWKHUWKHLU GHQRPLQDWRU LV JHWWLQJ ]HUR RU WKHLU QXPHUDWRU LV JHWWLQJ LQILQLWH 7KDW PHDQV HLWKHUIRUWKHHODVWR²SODVWLFGHQRPLQDWRU ' HS HTXDOWR]HURRUIRUν = ZKLFK LV RXWVLGH WKH SUDFWLFDO SDUDPHWHU UDQJH ≤ ν ≤ 7KH DQDO\VLV IRU ]HUR HODVWR²SODVWLFGHQRPLQDWRULVJLYHQLQ)LJXUHVDQG7KHUHLWLWVKRZQWKDW RQO\IRUFRQWUDFWLYHPDWHULDOEHKDYLRXULHIRUψ < R ZKLFKUHVXOWVLQ ϕ µ > ϕ WKH HODVWR²SODVWLF GHQRPLQDWRU FDQ EH HTXDO WR ]HUR 7KH FRQGLWLRQ RQ + WR JHW DQ LQILQLWH VHFRQG HLJHQYDOXH LV JLYHQ E\ HT 7KH WKLUG HLJHQYDOXH LV QRW WHQGLQJWRLQILQLW\EXWKDVDILQLWHYDOXHDWWKLVVWDWHDVERWKWKHQXPHUDWRUDQG GHQRPLQDWRUDUHHTXDOWR]HURDWWKHVDPHWLPH8VLQJWKHUXOHRI+{SLWDODILQLWH YDOXHFDQEHFDOFXODWHG 3DUDPHWHU D DQG E $V HODERUDWHG DERYH WKH EHKDYLRXU RI WKH HLJHQYDOXHV LV PDLQO\ GRPLQDWHG E\ SDUDPHWHUV D DQG E RFFXUULQJLQHTV WR DQGGHILQHGE\HTV 7KHUHIRUHWKHSDUDPHWHUV D DQG E DUHSORWWHGLQ)LJXUHDVDIXQFWLRQRIWKH QRUPDOLVHGKDUGHQLQJPRGXOXV + IRUDIL[HGYDOXHRI3RLVVRQ·VUDWLR ν = DQG WKH GHJUHH RI GLODWLRQ ΦΨ LQ WKH UDQJH EHWZHHQ − FRQWUDFWLRQ DQG + GLODWLRQ ,QWKLVILJXUHLWFDQEHVHHQWKDWWKHSDUDPHWHU E LVVPDOOHUWKDQ ]HUR RQO\ IRU QHJDWLYH YDOXHV RI WKH QRUPDOLVHG KDUGHQLQJ PRGXOXV + DQG PRUHRYHU RQO\ IRU QHJDWLYH YDOXHV RI WKH GHJUHH RI GLODWLRQ ΦΨ 7KH H[DFW SDUDPHWHU UDQJHV ZLOO EH HODERUDWHG LQ WKH IROORZLQJ 7KH SDUDPHWHU E FDQ EH HTXDOWR]HURRQO\IRUQHJDWLYHYDOXHVRIWKHQRUPDOLVHGKDUGHQLQJPRGXOXVDQG
&+$37(5
IRUDGHJUHHRIGLODWLRQ ΦΨ VPDOOHURUHTXDOWR]HURZKLFKZLOOEHHODERUDWHGLQ WKHIROORZLQJ %RWKSDUDPHWHUV D DQG E KDYHOLPLWYDOXHVKRUL]RQWDODV\PSWRWHV IRULQILQLWH YDOXHVRIWKHQRUPDOLVHGKDUGHQLQJPRGXOXV7KHOLPLWYDOXHVZLOOEHHODERUDWHG LQWKHIROORZLQJ%RWKSDUDPHWHUVKDYHYHUWLFDODV\PSWRWHVIRUZKLFKWKH\WHQGWR SOXVRUPLQXVLQILQLW\7KH\RFFXUIRUQRUPDOLVHGKDUGHQLQJYDOXHVVPDOOHUWKDQ ]HUR7KHH[DFWSDUDPHWHUUDQJHZLOOEHHODERUDWHGLQWKHIROORZLQJ
ν =
D
+
ν =
ΦΨ
E
+
)LJXUH3DUDPHWHUV D DQG E DFFRUGLQJWRHT DVDIXQFWLRQRIWKHQRUPDOLVHG KDUGHQLQJPRGXOXV + IRUIL[HG3RLVVRQ·VUDWLRν = DQGYDOXHVRIWKHGHJUHHRI GLODWLRQ ΦΨ EHWZHHQ − DQG
/RFDOFULWHULRQRIPDWHULDOVWDELOLW\
&DVHEF E > D = ± E VHFRQGRUWKLUGHLJHQYDOXHHTXDOWRRQH 7KH VSHFLDO FDVH FDVHV E DQG F HTV DQG IRU ZKLFK HLWKHU WKH VHFRQG RU WKH WKLUG HLJHQYDOXH LV HTXDO WR RQH RFFXUV LI D = ± E 7R HODERUDWH IRUZKLFKYDOXHVWKHSDUDPHWHU D SORWWHGLQ)LJXUHLVJHWWLQJHTXDOWR ± E IRU E > FRQVLGHUIROORZLQJIURPHT D =+
ν + Ν 2 ΦΨ − =± E ' HS
DVE >
↔
§ ν + Ν 2 ΦΨ · − ¨ ¸ = E ' HS © ¹
6XEVWLWXWLQJWKHH[SUHVVLRQIRU E HT LQWRHT UHVXOWVLQ DV{ν ' HS }≠ § ν + Ν 2 ΦΨ · § ν + Ν 2 ΦΨ · ν Ν 2 ΦΨ − + ↔ ¨ ¸ =¨ ¸ − ' HS ' HS ' HS © ¹ © ¹ ΦΨ ↔ − ( − ν ) = ΦΨ ↔ ν − ν + + =
− = Ν 2 ΦΨ
ZKLFK LV LQGHSHQGHQW RI WKH QRUPDOLVHG KDUGHQLQJ PRGXOXV + 6ROYLQJ IRU ν JLYHV
ν=
ΦΨ ± −
ZKLFKKDVUHDOVROXWLRQVIRU ν LIDQGRQO\LI ΦΨ ≤ 0 ,Q)LJXUHWKHFRQGLWLRQ HODERUDWHG LQ HT IRU ZKLFK WKH SDUDPHWHU D LV HTXDO WR ± E LV SORWWHG )URPWKLVILJXUHLWFDQEHFRQFOXGHGWKDWIRUWKHSUDFWLFDOUDQJHRI3RLVVRQ·VUDWLR ≤ ν ≤ DQG − ≤ ΦΨ ≤ LW IROORZV WKDW D ≠ ± E DQG WKHUHIRUH FDVHV E DQGFGRQRWRFFXU
D =± E
ν
ΦΨ
)LJXUH3RLVVRQ·VUDWLRν DVDIXQFWLRQRIWKHGHJUHHRIGLODWLRQ ΦΨ VKRZLQJIRUZKLFK YDOXHVWKHSDUDPHWHU D DFFRUGLQJWRHT LVJHWWLQJHTXDOWR ± E IRU E >
&+$37(5
&DVHD E = D ≠ VHFRQGDQGWKLUGHLJHQYDOXHHTXDOWR D 7KHVSHFLDOFDVHFDVHDHT IRUZKLFKWKHVHFRQGDQGWKLUGHLJHQYDOXHV DUH HTXDO WR HDFK RWKHU EXW DUH QRW HTXDO WR RQH RFFXUV LI E = DQG D ≠ 7R HODERUDWH IRU ZKLFK YDOXHV WKH SDUDPHWHU E DV SORWWHG LQ )LJXUH LV JHWWLQJ HTXDOWR]HURFRQVLGHUIROORZLQJIURPHT
§ ν + Ν 2 ΦΨ · ν Ν 2 ΦΨ E=¨ + = ¸ − ' HS ' HS © ¹
6XEVWLWXWLQJWKHHODVWR²SODVWLFGHQRPLQDWRU ' HS DQGVROYLQJIRU + JLYHV § § Ν · · + = − ΝΦΨ ¨ − − + Ν 2 ΦΨ Ν 2 ΦΨ = ¸ − ¨ + ¸± ν ¹ ν ¹ ν © ©
(
)
§ −ΦΨ § ΦΨ · ΦΨ · § − ν · ( − ν ) ¸ = − ¨ + ¨ − ¸ − ¨ + ¸± 2 ¨ ¸ ( − ν )2 − ν © ν ¹ ν ¹ ν © ν − ( ) © ¹
,Q)LJXUHWKHFRQGLWLRQHODERUDWHGLQHT IRUZKLFKWKHSDUDPHWHU E LV HTXDOWR]HURLVSORWWHG7KHLQGLYLGXDOOLQHVWKHPVHOYHVVKRZIRUGLIIHUHQWYDOXHV RI 3RLVVRQ·V UDWLR ν WKH FRQGLWLRQ IRU ZKLFK E LV H[DFWO\ HTXDO WR ]HUR )URP )LJXUH LW FDQ EH XQGHUVWRRG WKDW IRU WKH SUDFWLFDO FRQVLGHUHG UDQJH RI 3RLVVRQ·V UDWLR < ν < DQG GHJUHH RI GLODWLRQ ΦΨ ≥ − PXOWLSOH HLJHQYDOXHVHTXDOWR D FDQLQWKHRXWHUPRVWFDVHRFFXURQO\IRU + ≤ −
E=
+
ν
ΦΨ
)LJXUH1RUPDOLVHGKDUGHQLQJPRGXOXV + DVDIXQFWLRQRIWKHGHJUHHRIGLODWLRQ ΦΨ IRU GLIIHUHQWYDOXHVRI3RLVVRQ·VUDWLRν VKRZLQJIRUZKLFKSDUDPHWHUUDQJHWKH SDUDPHWHU E DFFRUGLQJWRHT LVJHWWLQJ]HUR
/RFDOFULWHULRQRIPDWHULDOVWDELOLW\
&DVHE E = D = VHFRQGDQGWKLUGHLJHQYDOXHHTXDOWRRQH 7KHVSHFLDOFDVHFDVHEHT IRUZKLFKWKHVHFRQGDQGWKLUGHLJHQYDOXHV DUH HTXDO WR RQH RFFXUV LI E = DQG D = 7KH FRQGLWLRQ IRU E = LV DOUHDG\ HODERUDWHGLQHT 7RHODERUDWHIRUZKLFKYDOXHVWKHSDUDPHWHU D SORWWHGLQ )LJXUHLVJHWWLQJHTXDOWRRQHFRQVLGHUIROORZLQJIURPHT D =+
ν + Ν 2 ΦΨ − = ' HS
6XEVWLWXWLQJWKHHODVWR²SODVWLFGHQRPLQDWRU ' HS DQGVROYLQJIRU + JLYHV
+ =
(
+ Ν 2 ΦΨ ν
) − − ΝΦΨ = − § − · § + ¨ ©
¸¨ ν ¹ ©
ΦΨ − ν
· ¸ − ¹
,Q)LJXUHWKHFRQGLWLRQHODERUDWHGLQHT IRUZKLFKWKHSDUDPHWHU D LV HTXDO WR RQH LV SORWWHG 7KH LQGLYLGXDO OLQHV WKHPVHOYHV VKRZ IRU GLIIHUHQW YDOXHVRI3RLVVRQ·VUDWLRν WKHFRQGLWLRQIRUZKLFK D LVH[DFWO\HTXDOWRRQH)URP )LJXUHVDQGLWFDQEHXQGHUVWRRGWKDWIRUWKHSUDFWLFDOFRQVLGHUHGUDQJH RI 3RLVVRQ·V UDWLR < ν < DQG GHJUHH RI GLODWLRQ ΦΨ ≥ − PXOWLSOH HLJHQYDOXHVHTXDOWRRQHFDQQRWRFFXU
D =
+
ν
ΦΨ
)LJXUH1RUPDOLVHGKDUGHQLQJPRGXOXV + DVDIXQFWLRQRIWKHGHJUHHRIGLODWLRQ ΦΨ IRU GLIIHUHQWYDOXHVRI3RLVVRQ·VUDWLRν VKRZLQJIRUZKLFKSDUDPHWHUUDQJHWKH SDUDPHWHU D DFFRUGLQJWRHT LVJHWWLQJHTXDOWRRQH
&+$37(5
&DVH E < FRPSOH[FRQMXJDWHGHLJHQYDOXHV 7KHVHFRQGDQGWKLUGHLJHQYDOXHVFDQJHWFRPSOH[FDVHHT DSSHDULQJ DV D SDLU RI FRPSOH[ FRQMXJDWHV 7KDW FDVH FDQ RFFXU LI WKH DUJXPHQW RI WKH VTXDUHURRWLQWKHH[SUHVVLRQRIWKHHLJHQYDOXHVLQHT LVJHWWLQJQHJDWLYH LH E < 7KDWPHDQVWKDWRQO\IRU ΦΨ < FRPSOH[HLJHQYDOXHVFDQRFFXU$VWKH IULFWLRQ DQJOH ϕ LV DVVXPHG WR EH ODUJHU WKDQ ]HUR WKLV UHVXOWV LQ FRPSOH[ HLJHQYDOXHVRQO\IRUQHJDWLYHGLODWLRQDQJOHVFRQWUDFWLRQ ψ < R WKDWPHDQVIRU ϕ µ > ϕ 7KHQ WKH FRQGLWLRQ RQ + WR JHW FRPSOH[ FRQMXJDWH VHFRQG DQG WKLUG HLJHQYDOXHVLVJLYHQE\HT ,Q )LJXUH WKH SDUDPHWHU UDQJH IRU ZKLFK FRPSOH[ HLJHQYDOXHV RFFXU DFFRUGLQJ WR HT LV VKRZQ IRU D GHJUHH RI GLODWLRQ ΦΨ LQ WKH FRQWUDFWLYH UDQJH − < ΦΨ < DQGYDU\LQJYDOXHVRI3RLVVRQ·VUDWLR ν 7KHUHLWFDQEHVHHQ WKDWFRPSOH[HLJHQYDOXHVFDQRFFXURQO\IRUQHJDWLYHKDUGHQLQJPRGXOL + )RU HDFKGHJUHHRIGLODWLRQ ΦΨ WKHDUHDLQVLGHWKHOLQHVRIVDPHFRORXULQ)LJXUH LQGLFDWHV WKH SDUDPHWHU UDQJH IRU HDFK GHJUHH RI FRQWUDFWLRQ IRU ZKLFK FRPSOH[ VROXWLRQV RFFXU )URP )LJXUH LW FDQ EH XQGHUVWRRG WKDW IRU WKH SUDFWLFDO FRQVLGHUHGUDQJHRI3RLVVRQ·VUDWLR < ν < DQGGHJUHHRIGLODWLRQ ΦΨ ≥ − FRPSOH[FRQMXJDWHHLJHQYDOXHVFDQLQWKHRXWHUPRVWFDVHRFFXURQO\IRU + < −
E=
E>
E
(LJHQYHFWRUVIRUFDVHF 7KH SDUDPHWHU UDQJH IRU ZKLFK WKH VROXWLRQ RI WKH HLJHQYHFWRUV LV YDOLG LV UHVWULFWHG DFFRUGLQJ WR HT IRU FDVHF )XUWKHU UHVWULFWLRQ IROORZV GXULQJ WKH SUHVHQW GHULYDWLRQ 7KH FRPSOHWH UHVWULFWHG SDUDPHWHU UDQJH LV JLYHQ DW WKH HQGRIWKHGHULYDWLRQ7KHVWLIIQHVVPDWUL[LVEHFRPLQJV\PPHWULFDQGWKHUHIRUH WKHULJKWDQGOHIWHLJHQYHFWRUVDUHHTXDO 7KLV FDVH FRUUHVSRQGV WR WKH FDVH RI OLQHDU HODVWLFLW\ IRU ν ≠ GHULYHG LQ HT 7RFUHDWHVHWVRIRUWKRJRQDOYHFWRUVWKHHLJHQYHFWRUVKDYHWREHOLQHDUO\ FRPELQHG DV VKRZQ LQ HT $IWHU QRUPDOLVDWLRQ WKH IRXU ULJKW DQG OHIW HLJHQYHFWRUVUHDGIRUFDVHF
§ − · ¨ ¸ ¨¸ Y (HS)F = Z(HS)F = ¨ − ¸ ¨ ¸ ©¹
§ − · ¨ ¸ ¨¸ Y (HS)F = Z(HS)F = ¨ ¸ ¨ ¸ ©¹
§ · ¨ ¸ ¨ ¸ Y (HS)F = Z(HS)F = ¨ ¸ ¨ ¸ ©¹
/RFDOFULWHULRQRIPDWHULDOVWDELOLW\
DQG
§· ¨ ¸ Y (HS)F = Z(HS)F = ¨ ¸ ¨¸ ¨ ¸ © ¹
ZKLFK FRUUHVSRQGV WR HT 7KH HLJHQYHFWRUV IRU FDVHF DV JLYHQ E\ HT DUHYDOLGIRUWKHUHVWULFWHGSDUDPHWHUUDQJH
ν ≠ ' HS = ∞
→
D =+
ν § ν · E=¨ ¸ © ¹
→
D = + E E >
(LJHQYHFWRUVIRUFDVHE 7KH VWLIIQHVV PDWUL[ LV EHFRPLQJ V\PPHWULF DQG WKHUHIRUH WKH ULJKW DQG OHIW HLJHQYHFWRUV DUH HTXDO 7KLV FDVH FRUUHVSRQGV WR WKH FDVH RI OLQHDU HODVWLFLW\ IRU ν = GHULYHGLQHT 7KHHLJHQYHFWRUVFDQEHOLQHDUO\FRPELQHGDVVKRZQ LQ HT VXFK WKDW WKH VDPH VHW RI QRUPDOLVHG ULJKW DQG OHIW HLJHQYHFWRUV DV IRUFDVHFFDQEHGHULYHGDVVKRZQLQHT 7KHUHIRUH
Y (HS)E = Z(HS)E = Y (HS)F
Y (HS)E = Z(HS)E = Y (HS)F
Y (HS)E = Z(HS)E = Y (HS)F
Y (HS)E = Z(HS)E = Y (HS)F DQG
7KH HLJHQYHFWRUV IRU FDVHF DV JLYHQ E\ HT DUH YDOLG IRU WKH UHVWULFWHG SDUDPHWHUUDQJH
ν = ' HS = ∞
→
D = E =
(LJHQYHFWRUVIRUFDVHDDQGFDVH 7KHVHFDVHVDUHSK\VLFDOO\QRWUHOHYDQWDQGWKHUHIRUHQRWHODERUDWHG 7KH IROORZLQJ HODERUDWLRQ RI WKH PRGDO GHFRPSRVLWLRQ DLPV DW D JHQHUDO IRUPXODWLRQ RI WKH LVRWURSLF DQG GHYLDWRULF VWUDLQ UDWH HQHUJ\ DSSOLFDEOH WR DQ\ PDWHULDO SRLQW RI D ERXQGDU\ YDOXH SUREOHP ,Q WKH IROORZLQJ WKHVH HODERUDWLRQV DUH GRQH IRU WKH PRVW JHQHUDO FDVH RI HODVWR²SODVWLF SDUDPHWHUV LH FDVHD DV LQWURGXFHGLQHT ZLWKQRUPDOLVHGULJKWDQGOHIWHLJHQYHFWRUVDVGHWHUPLQHG LQHTV DQG 7KHRWKHUFDVHVPD\EHHODERUDWHGDQDORJRXVO\1RWH WKDWWKHQRUPDOLVHGHLJHQYHFWRUVDFFRUGLQJWRHTV DQG GHSHQGRQ IRXU PDWHULDO SDUDPHWHUV LH 3RLVVRQ·V UDWLR ν QRUPDOLVHG KDUGHQLQJ PRGXOXV + IULFWLRQ DQJOH ϕ DQG GLODWLRQ DQJOH ψ &RQWUDU\ WR WKH HYDOXDWLRQ RI HLJHQYDOXHVWKHSDUDPHWHUV ϕ DQGψ FDQQRWEHFRPELQHG7KHUHIRUHWKH\KDYHWR EHWDNHQLQWRDFFRXQWVHSDUDWHO\IRUWKHLQWHUSUHWDWLRQRIWKHHLJHQYHFWRUVDQGDOO TXDQWLWLHVLQZKLFKWKHHLJHQYHFWRUVDUHLQYROYHG
&+$37(5
0RGDOGHFRPSRVLWLRQ
7KHPRGDOGHFRPSRVLWLRQLVHODERUDWHGIRUWKHPRVWJHQHUDOFDVHRIHODVWR²SODVWLF SDUDPHWHUVLHFDVHDDVLQWURGXFHGLQHT 6XEVWLWXWLQJWKHFRPSRQHQWV RI WKH QRUPDOLVHG ULJKW HLJHQYHFWRUV IROORZLQJ IURP HT LQWR HT JLYHVIRUWKHHODVWR²SODVWLFPRGDOVWUDLQUDWHV § HS · ª + ΝΦ ¨ ε ¸ « Q ¨ ¸ « ¨ ¸ « − ΝΦ ¨ εHS ¸ « ¨ ¸ « Q ¨ ¸=« ¨ ¸ « − ¨ ¸ « Q ¨ ¸ « ¨ εHS ¸ « ¨ ¸ © ¹ ¬«
ª − ΝΨ º + E + E ν ΝΨ »¼ Q «¬ ª + ΝΨ º − E + E « ν ΝΨ ¼» Q ¬
(
)
(
)
Q
º§ ª − ΝΨ º + E − E » ¨ α HS( ) « » ν ΝΨ ¼ Q ¬ »¨ » ¨ ( ) ª + ΝΨ º − E − E » ¨ α HS ν ΝΨ ¼» Q ¬« »¨ »¨ » ¨¨ α HS( ) » Q »¨ ¨ ( ) »» ¨ α HS ¼ ¨©
(
)
(
)
· ¸ ¸ ¸ ¸ ¸ ¸ ¸ ¸ ¸ ¸ ¸¸ ¹
LQZKLFKWKHQRUPDOLVDWLRQIDFWRUV Q Q DQG Q RFFXUDVGHILQHGLQHT 7KH GHWHUPLQDQW RI WKH PDWUL[ RI ULJKW QRUPDOLVHG HLJHQYHFWRUV LQGLFDWHG LQ HT UHDGV
( )
GHW 9 = −
P E QQQν ΝΨ
LQ ZKLFK P DFFRUGLQJ WR HT RFFXUV 1RWH WKDW IRU WKH JHQHUDO FDVH WKH GHWHUPLQDQW LV QRW HTXDO WR RQH DV WKH ULJKW HLJHQYHFWRUV DUH QRW PXWXDOO\ RUWKRJRQDOWRHDFKRWKHU $IWHU VROYLQJ HT RU DOWHUQDWLYHO\ VXEVWLWXWLQJ HT LQWR HT L WKH IRXU ULJKW PRGDO ZHLJKWV α HS( ) IRU 0RKU²&RXORPE HODVWR²SODVWLFLW\ LQ SULQFLSDOVWUHVVVSDFHDQGSODQHGHIRUPDWLRQIROORZDV
α HS() =
Q ª HS HS ε + ε + ΝΨ εHS − εHS º¼ P ¬
(
)
(
)
ª α HS() α HS() º − » Q »¼ «¬ Q ª º § · § · Q E + ν Ν ΦΨ HS HS E − ν HS HS = «¨ + ¸ ε + ε + ¨ + ¸ ΝΨ ε − ε » DQG P ¬© E E ¹ © ¹ ¼ HS = ε
α HS() = Q « α HS() α HS( )
(
)
(
)
LQ ZKLFK WKH QRUPDOLVDWLRQ IDFWRUV Q Q Q DQG P RFFXU DV GHILQHG LQ HTV DQG (T FRQILUPV WKDW LQ WKH FDVH RI SODQH GHIRUPDWLRQ GHILQHG LQ WHUPV RI QRUPDO SULQFLSDO VWUDLQ UDWHV RQO\ WZR LQGHSHQGHQW QRQ²]HUR PRGDO ZHLJKWV α HS( ) DQG α HS( ) ZRXOG RFFXU DV LQ WKDW ( ) HS SDUWLFXODUFDVH ε = DQGWKHUHIRUH α HS =
/RFDOFULWHULRQRIPDWHULDOVWDELOLW\
7KHIRXUOHIWPRGDOZHLJKWV β HS( ) DUHGHWHUPLQHGE\XVLQJHT ZKLFKUHDGV IRUSODQHGHIRUPDWLRQLQSULQFLSDOVWUHVVVSDFH L
β HS( N ) = ¦ α HS(L ) Y (HSL ) Y (HSN )
L =
1RWH WKDW WKH YHFWRU SURGXFWV DV PHQWLRQHG LQ HT KDYH WR EH WDNHQ LQWR DFFRXQW6XEVWLWXWLQJWKHULJKWQRUPDOLVHGHLJHQYHFWRUVIROORZLQJIURPHT DQGWKHH[SUHVVLRQVIRU E DQG E DFFRUGLQJWRHT LQWRHT JLYHVIRU WKHOHIWPRGDOZHLJKWV
(
ª ( Φ − Ψ ) E + E
β HS() = « « ¬
(
ª ( Φ − Ψ ) E + E « ¬
()
β HS =
Qν Ψ
( Φ − Ψ ) §¨ E −
© Qν Ψ
HS
Qν Ψ
β HS() = «
) + Q º» α ( ) − ( Φ − Ψ ) » Q ¼
Qν Ψ
E α HS() Q
) + Q º» α ( ) + ª ( Φ − Ψ ) − Q º α ( ) HS
E+
» Q ¼
« HS ¬ Qν Ψ'
HS
» ¼ Q
· ¸ () ( Φ − Ψ ) º α HS() ' HS ¹ α HS ª + «Q − DQG » Q ¬ Qν Ψ' HS ¼ Q
β HS( ) = α HS( ) 1RWHWKDWIRU Φ = Ψ WKHOHIWPRGDOZHLJKWVDUHHTXDOWRWKHULJKWPRGDOZHLJKWV DVGHPDQGHG 6XEVWLWXWLQJ HT LQWR HT JLYHV WKH YROXPHWULF VWUDLQ LQYDULDQW LQ WHUPVRIWKHULJKWPRGDOZHLJKWVDV
εHS(Y ) =
α HS() α () º ª + E HS » « ν − E − E ν «¬ Q Q »¼
(
)
ZKLFK ZRXOG UHGXFH WR WKH NQRZQ H[SUHVVLRQ IRU SODQH GHIRUPDWLRQ LH HS εHS(Y ) = εHS + ε DIWHUVXEVWLWXWLQJWKHULJKWPRGDOZHLJKWVHT 6XEVWLWXWLQJWKHFRPSRQHQWVRIWKHOHIWQRUPDOLVHGHLJHQYHFWRUVHT LQWR HT JLYHVIRUWKHHODVWR²SODVWLFPRGDOVWUHVVUDWHV
§ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ©
ª Q Q ª « (+ΝΨ ) «+ E + E P P ¬ « ¸ «Q ¸ Q ª « (−ΝΨ ) ¸ «− E + E P P « ¬ ¸ * = « ¸ Q « − Q ¸ « P P ¸ « ¸ « ¸ ¸ « ¹ ¬
−ΝΦ º º § Q ª «+ E − E ν ΝΦ » »¨ P ¬ ¼ »¨ +ΝΦ º Q ª +ΝΦ º »¨ − E − E »¨ ν ΝΦ ¼» P ¬« ν ΝΦ ¼» »¨ »¨ Q »¨ »¨ P »¨ »¨ »¨ ¼©
σHS ¸
(
º ) ν−ΝΦ ΝΦ »¼
(
)
σ
(
)
(
)
·
HS
σHS σHS
·
ϑHS() βHS() ¸
¸ ¸ ϑ β ¸ ¸ ¸ ( ) ( ) ¸ ϑHS βHS ¸ ¸ ϑHS() βHS() ¸¸ ¹ ( ) HS
( ) HS
&+$37(5
LQZKLFKWKHIRXUHLJHQYDOXHV ϑHS( ) DFFRUGLQJWRHT DQGWKHIRXUOHIWPRGDO L ZHLJKWV β HS( ) DFFRUGLQJ WR HT RFFXU 1RWH WKDW WKH GHWHUPLQDQW RI WKH PDWUL[RIOHIWHLJHQYHFWRUVLQGLFDWHGLQHT UHDGV L
( )
GHW : = −
QQQ E PPν ΝΦ
6XEVWLWXWLQJ WKH IRXU OHIW PRGDO ZHLJKWV β HS( ) DFFRUGLQJ WR HT LQWR HT OHDGV WR WKH H[SUHVVLRQ RI WKH VWUHVV UDWHV LQ WHUPV RI OHIW PRGDO ZHLJKWV DQG HLJHQYDOXHV IRU SODQH GHIRUPDWLRQ +RZHYHU WKH HODERUDWLRQ LV QRW SUHVHQWHGKHUHDVQRVLPSOLILFDWLRQVDUHSRVVLEOHWKHUHIRUH L
(
)
σ LMHS = I ϑHS(L ) α HS(L )
6XEVWLWXWLQJ HT LQWR HT UHVXOWV LQ WKH LVRWURSLF VWUHVV UDWH LQYDULDQWLQWHUPVRIWKHULJKWPRGDOZHLJKWVDQGHLJHQYDOXHVDV () º ½ ª§ ( Φ − Ψ ) · () α HS α HS D − E − «¨ Q Q − + ° ° »+ ¸ HS (P ) Q »¼ ° ° ϑHS() «¬© ν Ψ' σ HS ¹ Q =® + ¾ () * ° ª§ ν · § + Ν ΦΨ · + Ν ΦΨ º ( Φ − Ψ ) α HS ° ν P » ¸ ° + «¨ ¸ − E − ¨ E + ° ' HS ' HS ¹ © ¹ ¼» ν Ψ Q ¿ ¯ «¬©
(
)
§ (Φ − Ψ ) · () α HS − + Q °− D + E − ¨ ¸ HS °° © ν Ψ' ¹ Q + ®ª + Ν ΦΨ E + ν + Ν ΦΨ + Ν ΦΨ ° «§ ν · E − + − ¨ ¸ ° «© ¹ ' HS ' HS ¯° ¬
(
)
(
)
(
)(
(
)
)
½ ° °° ϑ () HS º () ¾ ν P α § · Φ − Ψ HS ° » » ¨© ν Ψ ¹¸ Q ° ¼ ¿°
)RU Φ = Ψ LWIROORZV
σ HS(P) *
() ( ) Q α HS () () Q α HS () () ϑHS ϑHS − + ϑHS ϑHS − ν P Q ν P Q
=
(
)
(
)
7KH LVRWURSLF VWUDLQ UDWH HQHUJ\ DV GHILQHG LQ HT PD\ EH FDOFXODWHG E\ PXOWLSO\LQJWKHYROXPHWULFVWUDLQUDWHLQYDULDQWLQHT ZLWKWKHLVRWURSLF VWUHVV UDWH LQYDULDQW LQ HT $ IXQFWLRQ GHSHQGLQJ RQ WKH ULJKW PRGDO ZHLJKWV DQG WKH HLJHQYDOXHV IROORZV ZKLFK LV QRW HODERUDWHG DV QR VLJQLILFDQW VLPSOLILFDWLRQV DUH SRVVLEOH +RZHYHU LQ WKH IROORZLQJ VHFWLRQV DQ DOWHUQDWLYH DSSURDFK LV SUHVHQWHG IRU ZKLFK H[SUHVVLRQV IRU WKH VWUDLQ UDWH HQHUJ\ FDQ EH GHULYHGDQGLQWHUSUHWHG
0RGLILHGVHWRIXQLWYHFWRUV
)RU IDFLOLWDWLQJ WKH SK\VLFDO LQWHUSUHWDWLRQ RI WKH VWUDLQ UDWH HQHUJ\ LQ WKH IROORZLQJWKHVWUDLQUDWHHQHUJ\LVFRQVLGHUHGWREHVSOLWLQWRWZRSDUWV2QHSDUW
/RFDOFULWHULRQRIPDWHULDOVWDELOLW\
LVGXHWRLVRWURSLFGHIRUPDWLRQDQGWKHRWKHUSDUWLVGXHWRGHYLDWRULFGHIRUPDWLRQ DV LQWURGXFHG LQ 6HFWLRQ HT 7R HODERUDWH WKHVH TXDQWLWLHV D PRGLILHG VHW RI XQLW YHFWRUV ZLOO EH LQWURGXFHG FRQVLVWLQJ RI RQH YHFWRU UHSUHVHQWLQJ LVRWURSLF GHIRUPDWLRQ DQG WKH RWKHU YHFWRUV WRJHWKHU UHSUHVHQWLQJ GHYLDWRULFGHIRUPDWLRQ (L ) )RUWKHJHQHUDOFDVHFDVHD WKHVHWRIIRXUULJKWHLJHQYHFWRUV YHS D DFFRUGLQJ ∗L WR HT LV OLQHDUO\ FRPELQHG WR FUHDWH WKH DOWHUQDWLYH VHW RI YHFWRUV Y HS( ) +RZHYHU DV WKH RULJLQDO HLJHQYHFWRUV GR QRW VKDUH WKH VDPH HLJHQYDOXHV WKH OLQHDUO\ FRPELQHG PRGLILHG YHFWRUV DUH QRW HLJHQYHFWRUV DQ\PRUH 7KLV DOWHUQDWLYHVHWRIYHFWRUVZLOOEHXVHGIRUUHSUHVHQWDWLRQSXUSRVHV7KHPRGLILHG VHWRIYHFWRUVLVPRUHFRQYHQLHQWDVLWZLOOEHFUHDWHGVXFKWKDWWKHWKLUGPRGLILHG ∗ YHFWRU Y HS( ) LV UHSUHVHQWLQJ LVRWURSLF GHIRUPDWLRQ DQG WKH ILUVW DQG VHFRQG ∗ ∗ PRGLILHGYHFWRU Y HS( ) DQG Y HS( ) DUHORFDWHGLQVLGHWKH π − SODQHRISULQFLSDOVWUHVV VSDFHDVVKRZQLQ)LJXUH1RWHWKDWWKHYHFWRUVLQVLGHWKH π − SODQHDUHRQO\ RUWKRJRQDOIRU Φ = Ψ DVZLOOEHVKRZQGXULQJWKHGHULYDWLRQ+RZHYHUWKH\DUH DOZD\VRUWKRJRQDOWRWKHLVRWURSLFYHFWRU 7KHVHFRQGDQGWKLUGULJKWRULJLQDOHLJHQYHFWRUV Y (HS)D DQG Y (HS)D DVGHWHUPLQHG ∗ E\HT DUHOLQHDUO\FRPELQHGWRFUHDWHDVHWRIPRGLILHGYHFWRUV Y HS( ) DQG ∗( ) Y HS DVIROORZV ∗( )
YHS =
(
)
(
( )
)
()
− ν + E − E Y HSD + ν − E − E Y HSD
Q∗ν E
∗()
DQGY HS
( =
)
E − E Y(HS)D +
(
)
E + E Y(HS)D
ν ΝΨ E
LQZKLFKWKHSDUDPHWHUV E DQG E RFFXUDVJLYHQE\HTV DQG 1RWH WKDW WKHVH OLQHDU FRPELQDWLRQV DUH DOORZHG IRU WKH SDUDPHWHUV EE Q∗ ≠ DQG ν Ν Ψ ≠ ZKLFKUHVXOWVLQDUHVWULFWLRQRIWKHSDUDPHWHUUDQJHDVZLOOEHJLYHQ DWWKHHQGRIWKHGHULYDWLRQ7KHILUVWDQGIRXUWKYHFWRUVDUHQRWPRGLILHG
Y HS( ) ∗
H
Y HS( ) ∗
θ
Y HS( ) ∗
H
H )LJXUH,OOXVWUDWLRQRIILUVWWKUHHPRGLILHGXQLWYHFWRUV Y HS( L ) IRUSODQHVWUDLQ0RKU²&RXORPE HODVWR²SODVWLFLW\ZLWK]HURVKHDUVWUDLQLQSULQFLSDOVWUDLQVSDFH HL SURMHFWHGRQWKH π − SODQH θ LQGLFDWHVWKHRULHQWDWLRQEHWZHHQWKHWZRYHFWRUVORFDWHGLQVLGHWKH π − SODQH ∗
&+$37(5
7KHVHWRIIRXUULJKWPRGLILHGYHFWRUV Y HS( ) Y HS( ) Y HS( ) DQG Y HS( ) WKHQUHDGV ∗
Y HS( ) ∗
§ + ΝΦ · ¨ ¸ − ΝΦ ¸ ∗ =¨ Y ¨ − ¸ ¨ ¸ © ¹
Y HS( ) ∗
§ − + ΝΨ · ¨ ¸ + ΝΨ ¸ ∗ =¨ Y ¨ −ΝΨ ¸ ¨ ¸ © ¹
∗
Y HS( ) ∗
∗
∗
§ · §· ¨ ¸ ¨ ¸ ∗ = ¨ ¸ Y∗ DQGY HS( ) = ¨ ¸ Y∗ ¨ ¸ ¨¸ ¨ ¸ ¨ ¸ ©¹ © ¹
)RU WKH QRUPDOLVDWLRQ RI WKH ULJKW PRGLILHG YHFWRUV FRQVLGHU HT LH ∗L Y HS( ) = 7KHQLWIROORZV
Y∗ =
+ ( ΝΦ )
Y∗ =
+ ( ΝΨ )
Y∗ =
Y∗ = DQG
1RWH WKDW WKHVH QRUPDOLVDWLRQV DUH DOORZHG IRU WKH SDUDPHWHUV ( ΝΦ ) ( ΝΨ ) ≠ − ZKLFK UHVXOWV LQ D UHVWULFWLRQ RI WKH SDUDPHWHU UDQJH DV ZLOO EHJLYHQDWWKHHQGRIWKHGHULYDWLRQ6XEVWLWXWLQJHT LQWRHT WKH IRXUQRUPDOLVHGULJKWPRGLILHGYHFWRUVUHDGIRUFDVHD
Y HS( ) ∗
§ + ΝΦ · ¨ ¸ ¨ − ΝΦ ¸ = ∗¨ − ¸ Q ¨ ¸ © ¹
Y HS( ) ∗
§ − + ΝΨ · ¨ ¸ ¨ + ΝΨ ¸ = ∗¨ Q −ΝΨ ¸ ¨ ¸ © ¹
Y HS( ) ∗
§ · §· ¨ ¸ ¨ ¸ ¨ ¸ ∗ = DQGY HS( ) = ¨ ¸ ¨¸ ¨ ¸ ¨ ¸ ¨ ¸ ©¹ © ¹
LQZKLFKWKHQRUPDOLVDWLRQIDFWRUV
Q∗ = + ( ΝΦ ) DQGQ∗ = + ( ΝΨ )
RFFXU,WFDQEHVHHQWKDWWKHILUVWDQGVHFRQGYHFWRUDUHRUWKRJRQDOWRWKHWKLUG YHFWRUDVLOOXVWUDWHGLQ)LJXUH+RZHYHUZLWKUHVSHFWWRHDFKRWKHUWKH\DUH RQO\RUWKRJRQDOIRU Φ = Ψ 7KHRULHQWDWLRQEHWZHHQWKHILUVWDQGVHFRQGPRGLILHG YHFWRUORFDWHGLQVLGHWKH π − SODQHFDQEHFDOFXODWHGDV FRV (θ ) =
Y HS( ) − WKH GHWHUPLQDQW LV ODUJHU WKDQ ]HUR 7KLV LQGLFDWHV WKDW LQ WKLV FDVH WKH ULJKW PRGLILHG YHFWRUV IRUP D ULJKW² KDQGHGFRRUGLQDWHV\VWHP 6XEVWLWXWLQJHT LQWRHT JLYHVWKHYROXPHWULFVWUDLQUDWHLQYDULDQW LQWHUPVRIWKHULJKWPRGLILHGZHLJKWVDV ∗( ) εHS(Y ) = α HS
ZKLFK ZRXOG UHGXFH WR WKH NQRZQ H[SUHVVLRQ IRU SODQH GHIRUPDWLRQ DIWHU (Y ) HS = ε + εHS 6XEVWL² VXEVWLWXWLQJ WKH ULJKW PRGLILHG ZHLJKWV HT LH εHS WXWLQJHT LQWRHT JLYHVWKHGHYLDWRULFVWUDLQUDWHFRPSRQHQWVDV ) εHS(GHY =
Q∗ Q∗ − ΝΨ ∗() + ΝΨ ∗() ∗() ∗() ) − + α HS α HS εHS(GHY α HS α HS = − ∗ Q ΝΨ ΝΨ Q∗ ΝΨ ΝΨ ∗( )
α HS GHY ∗ ) DQGεHS( ) = α HS( ) εHS(GHY = −
ZKLFK ZRXOG UHGXFH WR WKH NQRZQ H[SUHVVLRQV IRU SODQH GHIRUPDWLRQ DIWHU VXEVWLWXWLQJWKHULJKWPRGLILHGZHLJKWVHT DV ) εHS(GHY =
εHS − εHS −ε HS + εHS ε HS + εHS GHY GHY GHY εHS( ) = εHS( ) = − DQGεHS( ) = εHS
/RFDOFULWHULRQRIPDWHULDOVWDELOLW\
7KH HODVWR²SODVWLF VWUHVV UDWHV FDQ EH H[SUHVVHG LQ WHUPV RI WKH VWUDLQ UDWHV IROORZLQJIURPHT DV
§ ( − ΝΦ )( − ΝΨ ) · ε HS + §ν + ( + ΝΦ )( − ΝΨ ) · ε HS = ¨ + ν − ¸ ¨ ¸ * © ' HS ' HS ¹ © ¹ HS § ( − ΝΦ )( + ΝΨ ) · ε HS + § + ν − ( + ΝΦ )( + ΝΨ ) · ε HS σ = ¨ν + ¸ ¨ ¸ ' HS ' HS * © ¹ © ¹ HS σ σ HS = ν εHS + εHS DQG = εHS * *
σHS
(
)
$IWHUVXEVWLWXWLQJHT LQWRHT WKHLVRWURSLFVWUHVVUDWHLQYDULDQWLQ WHUPVRIVWUDLQUDWHVUHDGV
σ HS(P) *
=
+ ν HS HS ΝΨ ª HS HS ε + ε + ε − ε − ΝΦ εHS + εHS º¼ ' HS ¬
(
)
(
)
(
)
)URPWKHULJKWPRGLILHGZHLJKWVHT IROORZV ( − ΝΨ ) ∗() ( + ΝΨ ) ∗() −Q∗ Q∗ ∗() α ∗() − α HS εHS = α HS α HS + ∗ HS ∗ ΝΨ ΝΨ ΝΨQ ΝΨQ
εHS = → ε
HS
+ ε
HS
∗( )
= α HS ε
HS
− ε
HS
Q∗ ∗() ∗() α HS − α HS = ΝΨ Q∗ ΝΨ
6XEVWLWXWLQJ HT LQWR HT UHVXOWV LQ WKH LVRWURSLF VWUHVV UDWH LQYDULDQWLQWHUPVRIWKHULJKWPRGLILHGZHLJKWVDV
σ HS(P) *
=
Q∗ ∗() § + ν + Ν ΦΨ · ∗() − ¸ α HS HS ∗ α HS + ¨ ' Q ' HS ¹ ©
6WUDLQUDWHHQHUJ\
6XEVWLWXWLQJ WKH VWUHVV UDWHV IROORZLQJ IURP HT LQWR HT JLYHV WKH VWUDLQUDWHHQHUJ\IRU0RKU²&RXORPEHODVWR²SODVWLFLW\DQGSODQHGHIRUPDWLRQLQ WHUPVRIWKHVWUDLQUDWHVDV : HS = (σε + σ ε + σε ) RU :HS § ( − ΝΦ )( − ΝΨ ) · ε HS = ¨ + ν − ¸ * © ' HS ¹
( )
§ − Ν ΦΨ · HS HS HS + ¨ν + ¸ ε ε + ε HS ' © ¹
( )
( + ΝΦ )( + ΝΨ ) · ε HS + § + ¨ + ν − ¸ © ' HS ¹
( )
$IWHU VXEVWLWXWLQJ WKH VWUDLQ UDWHV LQ WHUPV RI WKH ULJKW PRGLILHG ZHLJKWV DV GHULYHGLQHT LQWRHT LWIROORZVIRUWKHWRWDOVWUDLQUDWHHQHUJ\
&+$37(5
· Q∗ ∗ ∗ : HS · § Q∗ ∗() · § + Ν ΦΨ + ( ΝΨ ) § ¨ = − α + − ¸ ∗ α HS( )α HS( ) + HS ¸ ¨ HS ¸ ¨ ∗ HS ¸Q * ( ΝΨ ) © ' ¹ © Q ' ¹ ( ΝΨ ) ¨© ¹ 1 + Ν Ψ + Ν ΦΨ · ∗() § ∗ ¸ α HS + ¨ + ν + − + α HS( ) HS ¸ ¨ ( ΝΨ ) ( ΝΨ ) ' © ¹
(
)(
)
(
) (
)
6XEVWLWXWLQJ HTV DQG LQWR HT JLYHV WKH VWUDLQ UDWH HQHUJ\ GXHWRLVRWURSLFGHIRUPDWLRQDV ( P ) (Y ) LVR : HS( ) = σ HS εHS RU LVR : HS( ) Q∗ ∗() ∗() § + ν + Ν ΦΨ · ∗() = − α HS α HS + ¨ ¸ α HS * ' HS Q∗ ' HS © ¹
(
=
(
+ Ν ΦΨ
) α ∗( )α ∗( ) + § + ν
+ ( ΝΦ ) ' HS
HS
HS
¨ ©
−
)
=
+ Ν ΦΨ · ∗() ¸ α HS ' HS ¹
(
)
ZKLFK ZRXOG UHGXFH WR WKH H[SUHVVLRQ LQ WHUPV RI VWUDLQ UDWHV IRU SODQH GHIRUPDWLRQDIWHUVXEVWLWXWLQJWKHULJKWPRGLILHGZHLJKWVHT DV LVR : HS( ) + ν HS HS ε + ε = *
(
)
+
ΝΨ ª HS HS HS HS ε + ε ε − ε − ΝΦ εHS + εHS º ¼» ' HS ¬«
(
)(
)
(
)
6XEVWLWXWLQJ HTV DQG LQWR HT JLYHV WKH VWUDLQ UDWH HQHUJ\ GXHWRGHYLDWRULFGHIRUPDWLRQDV (LVR ) GHY : ( ) : HS : HS GHY LVR : HS( ) = : HS − : HS( ) RU HO = − * * *
ZKLFKUHDGVHODERUDWHG GHY : HS( ) · § Q∗ ∗() · + ( ΝΨ ) § + Ν ΦΨ · ∗() § = − α + − HS ¨ ¸ ¨ ¸ ¸ α HS ¨ * ' HS ¹ © Q∗ ' HS ( ΝΨ ) © ( ΝΨ ) © ¹ ¹
(
§ 6 + 3Ν ΦΨ + ( ΝΨ ) · Q∗ ∗ ∗ ∗ ¨ + − ¸ ∗ α HS( )α HS( ) + α HS( ) HS ¸Q ' ( ΝΨ ) ¨© ¹
(
)
+
)
7RDOORZIRUDSDUDPHWULFVWXG\RIWKHLVRWURSLFDQGGHYLDWRULFVWUDLQUDWHHQHUJ\ ILUVW WKH H[SUHVVLRQV LQ HTV DQG DUH UHIRUPXODWHG E\ QRUPDOLVLQJ ∗ ERWKZLWKUHVSHFWWR α HS( ) ≠ ZKLFKOHDGVWRWKHIROORZLQJGLPHQVLRQOHVVIRUPV
(
LVR : HS( )
(
∗( )
* α HS
)
=
)
(
)
∗() + Ν ΦΨ α HS + ν + Ν ΦΨ − + ∗( ) ' HS + ( ΝΦ ) ' HS α HS
/RFDOFULWHULRQRIPDWHULDOVWDELOLW\
(
GHY : HS( )
(
* α HS(
∗ )
+
)
)
+Ν ΦΨ · § = ¨− HS ¸ © ' ¹ ( ΝΨ ) +( ΝΦ )
(
+ Ν ΦΨ ( ΝΨ )
)
+ ( ΝΦ )
(
)
∗() § α HS · + ( ΝΨ ) § + Ν ΦΨ · − ¨ ∗() ¸ + ¸+ ¨ α ¸ ( ΝΨ ) ¨© ' HS ¹ © HS ¹
§ 6 + 3Ν ΦΨ + ( ΝΨ ) · α ∗() § α ∗( ) · ¨ − ¸ HS + ¨ HS ¸ HS ∗() ¨ ∗() ¸ ¨ ¸ α HS ' © α HS ¹ © ¹
1RWHWKDWIRU α HS( ) = LWIROORZVWKDWWKHLVRWURSLFVWUDLQUDWHHQHUJ\LV]HURZKLOH ∗ ∗ WKHGHYLDWRULFVWUDLQUDWHHQHUJ\LVQRQ²]HURDQGVWLOODIXQFWLRQRI α HS( ) DQG α HS( ) )URP ERWK HTXDWLRQV DQG WKH UHOHYDQW SDUDPHWHUV WR VWXG\ WKH EHKDYLRXURILVRWURSLFDQGGHYLDWRULFVWUDLQUDWHHQHUJ\FDQEHGHULYHG1RWHWKDW ILYHLQGHSHQGHQWSDUDPHWHUVRUSDUDPHWHUFRPELQDWLRQVFDQEHLGHQWLILHGLH ² 3RLVVRQ·VUDWLRν RFFXUULQJLQWKHGHILQLWLRQRIν =ν ( − ν ) DQG Ν= ( − ν ) ² WKHIULFWLRQDQJOH ϕ RUDOWHUQDWLYHO\GLODWLRQDQJOH ψ RULQWHUSDUWLFOHIULFWLRQ DQJOH ϕ µ RFFXUULQJLQWKHGHILQLWLRQRI Φ DQG Ψ UHVSHFWLYHO\ ² WKH GHJUHH RI GLODWLRQ ΦΨ = VLQ (ϕ ) VLQ (ψ ) LQGLFDWLQJ GLODWDQW SRVLWLYH RU FRQWUDFWLQJQHJDWLYH PDWHULDOEHKDYLRXU ² WKH QRUPDOLVHG KDUGHQLQJ PRGXOXV + = + * RFFXUULQJ LQ WKH GHILQLWLRQ RI WKHHODVWR²SODVWLFGHQRPLQDWRU ' HS = + + + ( + ν ) ΦΨ ∗ ∗ ² WKHUDWLRRIPRGLILHGZHLJKWV α HS( ) α HS( ) ,Q7DEOHWKHSUDFWLFDOUDQJHVRIWKHPDWHULDOSDUDPHWHUVDUHLQGLFDWHG1RWH WKDW LQ FRPSDULVRQ WR WKH LQWHUSUHWDWLRQ RI HLJHQYHFWRUV WKH UDWLR RI PRGLILHG ZHLJKWVLVDQH[WUDSDUDPHWHUZKLFKLQIOXHQFHVWKHEHKDYLRXURIWKHVWUDLQUDWH HQHUJ\ ∗
3DUDPHWULFVWXG\RILVRWURSLFVWUDLQUDWHHQHUJ\
,QWKLVVHFWLRQILUVWDSDUDPHWULFVWXG\ZLOOEHSHUIRUPHGIRUDQLQWHUSUHWDWLRQRI LVR ∗ WKH QRUPDOLVHG LVRWURSLF VWUDLQ UDWH HQHUJ\ : HS( ) * α HS( ) DV HODERUDWHG LQ HT 3RLVVRQ·VUDWLRZLOOEHIL[HGWRν = EHLQJDQDSSURSULDWHYDOXHIRU SUDFWLFDODSSOLFDWLRQV7KHLQIOXHQFHRIWKHUHPDLQLQJIRXUPHQWLRQHGSDUDPHWHUV ZLOOEHVWXGLHGFRQVHFXWLYHO\ ,QIOXHQFHRIIULFWLRQDQJOH ,Q)LJXUHVDQGWKHLQIOXHQFHRIWKHIULFWLRQDQJOH ϕ LVVWXGLHGIRUDIL[HG YDOXH RI WKH GHJUHH RI GLODWLRQ ΦΨ = DQG WZR IL[HG YDOXHV RI WKH UDWLR RI ∗ ∗ PRGLILHG ZHLJKWV α HS( ) α HS( ) = ± ,QGHSHQGHQW SDUDPHWHU LV LQ WKHVH FDVHV WKH QRUPDOLVHG KDUGHQLQJ PRGXOXV + )RU GLIIHUHQW YDOXHV RI WKH IULFWLRQ DQJOH ϕ UDQJLQJ EHWZHHQ R DQG R WKH FRXUVH RI WKH QRUPDOLVHG LVRWURSLF VWUDLQ UDWH LVR ∗ HQHUJ\ : HS( ) * α HS( ) LVJLYHQ ,Q )LJXUHV DQG LW FDQ EH VHHQ WKDW LQ DOO FDVHV IRU ODUJH YDOXHV RI WKH QRUPDOLVHG KDUGHQLQJ PRGXOXV + → ∞ WKH LVRWURSLF VWUDLQ UDWH HQHUJ\ KDV D
(
(
)
)
&+$37(5
KRUL]RQWDODV\PSWRWHZLWKDOLPLWYDOXHODUJHUWKDQ]HUR:LWKGHFUHDVLQJYDOXHV RI + WKH LVRWURSLF VWUDLQ UDWH HQHUJ\ LV DSSURDFKLQJ D YHUWLFDO DV\PSWRWH ZLWK ∗ ∗ ∗ ∗ SRVLWLYHYDOXHVIRU α HS( ) α HS( ) = + DQGQHJDWLYHYDOXHVIRU α HS( ) α HS( ) = − +RZHYHU LWLVQRWHGWKDWLQDOOFDVHVWKHLQIOXHQFHRIWKHIULFWLRQDQJOHPD\EHFRQVLGHUHG DVQRWVLJQLILFDQWDQGIXUWKHUSDUDPHWULFVWXG\RIWKHVWUDLQUDWHHQHUJ\PD\EH UHVWULFWHGWRIL[HGYDOXHVRIWKHIULFWLRQDQJOHHJWRDIULFWLRQDQJOHRI ϕ = R
∗() α HS = ∗( ) α HS
ν =
ΦΨ =
(
* α HS(
∗ )
ϕ ª¬GHJ º¼
LVR : HS( )
)
+
(
( LVR )
)
∗( )
)LJXUH1RUPDOLVHGVWUDLQUDWHHQHUJ\IRULVRWURSLFGHIRUPDWLRQ : HS DFFRUGLQJ * α HS WRHT DVDIXQFWLRQRIWKHQRUPDOLVHGKDUGHQLQJPRGXOXV + IRUIL[HGYDOXHV ∗( ) ∗( ) RIν ΦΨ DQG α HS α HS = +
∗() α HS = − ∗( ) α HS
ν =
ΦΨ =
(
* α HS(
∗ )
ϕ ¬ªGHJ ¼º
LVR : HS( )
)
+ ( LVR )
(
)
∗( )
)LJXUH1RUPDOLVHGVWUDLQUDWHHQHUJ\IRULVRWURSLFGHIRUPDWLRQ : HS * α HS DFFRUGLQJ WRHT DVDIXQFWLRQRIWKHQRUPDOLVHGKDUGHQLQJPRGXOXV + IRUIL[HGYDOXHV ∗( ) ∗( ) RIν ΦΨ DQG α HS α HS = −
/RFDOFULWHULRQRIPDWHULDOVWDELOLW\
,QIOXHQFHRIGHJUHHRIGLODWLRQ ,Q)LJXUHVWRWKHLQIOXHQFHRIWKHGHJUHHRIGLODWLRQ ΦΨ LVVWXGLHGIRU D IL[HG YDOXH RI WKH IULFWLRQ DQJOH ϕ = R DQG ILYH IL[HG YDOXHV RI WKH UDWLR RI ∗ ∗ PRGLILHG ZHLJKWV α HS( ) α HS( ) = + + − − ,QGHSHQGHQW SDUDPHWHU LV LQ WKHVH FDVHVWKHQRUPDOLVHGKDUGHQLQJPRGXOXV + )RUGLIIHUHQWYDOXHVRIWKHGHJUHHRI GLODWLRQ ΦΨ LQ WKH UDQJH EHWZHHQ − FRQWUDFWLRQ DQG + GLODWLRQ WKH LVR ∗ FRXUVH RI WKH QRUPDOLVHG LVRWURSLF VWUDLQ UDWH HQHUJ\ : HS( ) * α HS( ) LV JLYHQ $OVRWKHH[WUHPHYDOXHVRI ΦΨ = ± DUHLQGLFDWHGE\GRWWHGOLQHV,WFDQEHVHHQ WKDWLQDOOFDVHVIRUODUJHYDOXHVRIWKHQRUPDOLVHGKDUGHQLQJPRGXOXV + → ∞ WKH LVRWURSLF VWUDLQ UDWH HQHUJ\ KDV D KRUL]RQWDO DV\PSWRWH ZLWK D OLPLW YDOXH ODUJHUWKDQ]HUR:LWKGHFUHDVLQJYDOXHVRI + WKHLVRWURSLFVWUDLQUDWHHQHUJ\LV DSSURDFKLQJ D YHUWLFDO DV\PSWRWH ZLWK HLWKHU SRVLWLYH RU QHJDWLYH YDOXHV ∗ ∗ GHSHQGLQJ RQ α HS( ) α HS( ) DQG ΦΨ 1RWH WKDW IRU FRQWLQXRXV ORDGLQJ LH FRQWLQXRXV GHFUHDVH RI WKH KDUGHQLQJ WKH SRLQW RI UHDFKLQJ WKHVH YHUWLFDO DV\PSWRWHV FDQQRW EH SDVVHG 7KH SDUW IRU ORZHU YDOXHV RI WKH QRUPDOLVHG KDUGHQLQJPRGXOXVLHOHIWRIWKHYHUWLFDODV\PSWRWHVLVVKRZQIRULOOXVWUDWLRQDO SXUSRVHV DQG LV QRW RI SUDFWLFDO UHOHYDQFH 1RWH WKDW WKH YHUWLFDO DV\PSWRWH RFFXUV LQ DOO VKRZQ FDVHV RI SUDFWLFDO SDUDPHWHUV IRU YDOXHV RI WKH QRUPDOLVHG KDUGHQLQJPRGXOXVOHVVWKDQ]HUR+RZHYHUQHJDWLYHLVRWURSLFVWUDLQUDWHHQHUJ\ FDQ RFFXU HDUOLHU LH DOVR IRU KDUGHQLQJ ODUJHU WKDQ ]HUR LQ WKH FDVH WKDW WKH ∗ ∗ UDWLRRIPRGLILHGZHLJKWVLVQHJDWLYHLH α HS( ) α HS( ) <
(
)
∗() α HS = ∗( ) α HS
ν =
ϕ =
R
(
* α HS(
∗ )
ΦΨ
LVR : HS( )
)
+ ( LVR )
(
)
∗( )
)LJXUH1RUPDOLVHGVWUDLQUDWHHQHUJ\IRULVRWURSLFGHIRUPDWLRQ : HS * α HS DFFRUGLQJ WRHT DVDIXQFWLRQRIWKHQRUPDOLVHGKDUGHQLQJPRGXOXV + IRUIL[HGYDOXHV ∗( ) ∗( ) RIν ϕ DQG α HS α HS = 7KHGRWWHGOLQHVVKRZWKHH[WUHPHFDVHVRI ΦΨ = ±
&+$37(5
ν =
ϕ = R
∗() α HS = ∗( ) α HS
(
* α HS(
∗ )
ΦΨ
LVR : HS( )
)
+
(
( LVR )
)
∗( )
)LJXUH1RUPDOLVHGVWUDLQUDWHHQHUJ\IRULVRWURSLFGHIRUPDWLRQ : HS DFFRUGLQJ * α HS WRHT DVDIXQFWLRQRIWKHQRUPDOLVHGKDUGHQLQJPRGXOXV + IRUIL[HGYDOXHV ∗( ) ∗( ) RIν ϕ DQG α HS α HS = 7KHGRWWHGOLQHVVKRZWKHH[WUHPHFDVHVRI ΦΨ = ±
ν =
ϕ = R
∗() α HS = ∗( ) α HS
(
* α HS(
∗ )
ΦΨ
LVR : HS( )
)
+ ( LVR )
(
)
∗( )
)LJXUH1RUPDOLVHGVWUDLQUDWHHQHUJ\IRULVRWURSLFGHIRUPDWLRQ : HS * α HS DFFRUGLQJ WRHT DVDIXQFWLRQRIWKHQRUPDOLVHGKDUGHQLQJPRGXOXV + IRUIL[HGYDOXHV ∗( ) ∗( ) RIν ϕ DQG α HS α HS = 7KHGRWWHGOLQHVVKRZWKHH[WUHPHFDVHVRI ΦΨ = ±
/RFDOFULWHULRQRIPDWHULDOVWDELOLW\
ν =
∗() α HS = − ∗( ) α HS
ϕ = R
(
* α HS(
∗ )
ΦΨ
LVR : HS( )
)
( LVR )
(
+
)
∗( )
)LJXUH1RUPDOLVHGVWUDLQUDWHHQHUJ\IRULVRWURSLFGHIRUPDWLRQ : HS * α HS DFFRUGLQJ WRHT DVDIXQFWLRQRIWKHQRUPDOLVHGKDUGHQLQJPRGXOXV + IRUIL[HGYDOXHV ∗( ) ∗( ) RIν ϕ DQG α HS α HS = − 7KHGRWWHGOLQHVVKRZWKHH[WUHPHFDVHVRI ΦΨ = ±
ν =
ϕ =
∗() α HS = − ∗( ) α HS
R
(
* α HS(
∗ )
ΦΨ
LVR : HS( )
)
+ ( LVR )
(
)
∗( )
)LJXUH1RUPDOLVHGVWUDLQUDWHHQHUJ\IRULVRWURSLFGHIRUPDWLRQ : HS * α HS DFFRUGLQJ WRHT DVDIXQFWLRQRIWKHQRUPDOLVHGKDUGHQLQJPRGXOXV + IRUIL[HGYDOXHV ∗( ) ∗( ) RIν ϕ DQG α HS α HS = − 7KHGRWWHGOLQHVVKRZWKHH[WUHPHFDVHVRI ΦΨ = ±
&+$37(5
ν =
ϕ = R
ΦΨ =
(
∗( )
* α HS
Η
LVR : HS( )
)
∗( ) ∗( ) α HS α HS
( LVR )
(
)
∗( )
)LJXUH1RUPDOLVHGVWUDLQUDWHHQHUJ\IRULVRWURSLFGHIRUPDWLRQ : HS * α HS DFFRUGLQJ ∗( ) ∗( ) WRHT DVDIXQFWLRQRIWKHUDWLRRIPRGLILHGZHLJKWV α HS α HS 7KHGRWWHGOLQH VKRZVWKHYDOXHVIRUWKHH[WUHPHFDVHVRI + = ±∞
,QIOXHQFHRIQRUPDOLVHGKDUGHQLQJPRGXOXV ,Q)LJXUHWKHLQIOXHQFHRIWKHQRUPDOLVHGKDUGHQLQJPRGXOXV + LVVWXGLHG IRUDIL[HGYDOXHRIWKHIULFWLRQDQJOH ϕ = R DQGDGHJUHHRIGLODWLRQ ΦΨ = ∗ ∗ ,QGHSHQGHQW SDUDPHWHU LV LQ WKLV FDVH WKH UDWLR RI PRGLILHG ZHLJKWV α HS( ) α HS( ) )RU GLIIHUHQW YDOXHV RI WKH QRUPDOLVHG KDUGHQLQJ PRGXOXV + LQ WKH UDQJH EHWZHHQ + KDUGHQLQJ DQG − VRIWHQLQJ WKHFRXUVHRIWKHQRUPDOLVHGLVRWURSLF LVR ∗ VWUDLQ UDWH HQHUJ\ : HS( ) * α HS( ) LV JLYHQ $ OLQHDU GHSHQGHQF\ RI WKH LVRWURSLF VWUDLQ UDWH HQHUJ\ RQ WKH UDWLR RI PRGLILHG ZHLJKWV FDQ EH REVHUYHG +RZHYHUDUELWUDU\YDOXHVRIWKHUDWLRRIPRGDOZHLJKWVFDQRFFXU7KHUHIRUHWKH LVRWURSLFVWUDLQUDWHHQHUJ\PD\WDNHDOOSRVVLEOHYDOXHV ,VRWURSLFVWUDLQUDWHHQHUJ\HTXDOWR]HUR 7R H[SODLQ LQ PRUH GHWDLO WKH EHKDYLRXU RI WKH QRUPDOLVHG LVRWURSLF VWUDLQ UDWH LVR ∗ HQHUJ\ : HS( ) * α HS( ) LWLVHODERUDWHGIRUZKLFKSDUDPHWHUVLWVYDOXHLVHTXDO WR ]HUR )URP HT LW IROORZV WKDW WKH QRUPDOLVHG LVRWURSLF VWUDLQ UDWH HQHUJ\LVHTXDOWR]HURIRU
(
(
)
)
* = α HS( ) = RU ∗
+ =
(
+ Ν ΦΨ + ν
) − ΝΦΨ − + −
(
+ Ν ΦΨ
)
( + ν ) + ( ΝΦ )
∗() α HS ∗( ) α HS
7KHILUVWWZRFRQGLWLRQVDUHWULYLDODQGWKHUHIRUHLQ)LJXUHWKHODVWFRQGLWLRQ IROORZLQJ IURP HT IRU ]HUR QRUPDOLVHG LVRWURSLF VWUDLQ UDWH HQHUJ\ LV
/RFDOFULWHULRQRIPDWHULDOVWDELOLW\
ν =
ϕ = R
LVR : HS( )
+
(
* α HS(
∗ )
)
>
ΦΨ
LVR : HS( )
(
* α HS(
∗ )
)
ϕ = R
ΦΨ
+
GHY : HS( )
(
* α HS(
∗ )
)
WKH LVRWURSLF VWUDLQ UDWH HQHUJ\ WHQGV WR SOXV ∗ ∗ LQILQLW\)RU α HS( ) α HS( ) < LWWHQGVWRPLQXVLQILQLW\ )LJXUHZLOOEHXVHGWRH[SODLQWKHSDUDPHWHUUDQJHVIRUWKHHYDOXDWLRQRIWKH UHVXOWV RI WKH DQDO\WLFDO VROXWLRQ RI WKH ERXQGDU\ YDOXH SUREOHP RI 0RKU² &RXORPEHODVWR²SODVWLFLW\LQWKHFLUFXODUGRPDLQLQ&KDSWHU ∗
∗
&+$37(5
(TXDWLRQ&KDSWHU6HFWLRQ
&+$37(5 )LHOGHTXDWLRQVRIHTXLOLEULXP
7KH ILHOG HTXDWLRQV RI HTXLOLEULXP LQ WHUPV RI GLVSODFHPHQWV DUH GHULYHG IRU LVRWURSLF OLQHDU HODVWLFLW\ DQG 0RKU²&RXORPE HODVWR²SODVWLFLW\ LQFOXGLQJ KDUGHQLQJ 7KH UHOHYDQW PDWHULDO WDQJHQW VWLIIQHVV WHQVRUV RI ERWK PDWHULDO PRGHOV DUH GHILQHG LQ WKH SUHYLRXV 6HFWLRQVDQG +HUH ILUVW WKH ILHOG HTXDWLRQV RI HTXLOLEULXP DUH JLYHQ LQ LQGH[ DQG WHQVRU QRWDWLRQ WKXV LQGHSHQGHQW RI DQ\ FRRUGLQDWH GHVFULSWLRQ $IWHUZDUGV D FRQYHQLHQW PHWKRG LV LQWURGXFHG WR UHIRUPXODWH WKH ILHOG HTXDWLRQV LQ D JHQHUDO WKUHH²GLPHQVLRQDO RUWKRJRQDO FXUYLOLQHDU FRRUGLQDWH GHVFULSWLRQ 7KH PHWKRG XVHV D EDODQFHG JUDGLHQWRSHUDWRU7KHHTXDWLRQVDUHUHGXFHGWRWKHSODQHVWUDLQVLWXDWLRQZKLFK FDQEHUHSUHVHQWHGE\DWZR²GLPHQVLRQDOF\OLQGULFDOFRRUGLQDWHV\VWHP)LQDOO\ WKHILHOGHTXDWLRQVRIHTXLOLEULXPDUHJLYHQDVDV\VWHPRIWZRSDUWLDOGLIIHUHQWLDO HTXDWLRQV ZLWK UHVSHFW WR D UHFWDQJXODU DQG D FLUFXODU F\OLQGULFDO FRRUGLQDWH V\VWHP ERWK IRU LVRWURSLF OLQHDU HODVWLFLW\ DV ZHOO DV IRU 0RKU²&RXORPE HODVWR² SODVWLFLW\LQFOXGLQJKDUGHQLQJ
7HQVRUIRUPXODWLRQ
7KH ILHOG HTXDWLRQ RI HTXLOLEULXP LV GHULYHG LQ LQGH[ DQG WHQVRU QRWDWLRQ LQGHSHQGHQW RI DQ\ FRRUGLQDWH GHVFULSWLRQ $ V\VWHP RI SDUWLDO GLIIHUHQWLDO HTXDWLRQVDULVHVZKLFK IROORZVIURPWKHHTXLOLEULXPRIVWUHVVHVLQ DFRQWLQXRXV ERG\ LQ WKUHH²GLPHQVLRQDO (XFOLGHDQ VSDFH 7KH HTXDWLRQV DUH JLYHQ LQ LQGH[ QRWDWLRQ XVLQJ WKH (LQVWHLQ VXPPDWLRQ FRQYHQWLRQ WHQVRU QRWDWLRQ XVLQJ PXOWLSOH LQQHU DQG RXWHU WHQVRU SURGXFWV DV GHILQHG LQ 6HFWLRQ DQG ZKHUH SRVVLEOHPDWUL[²YHFWRUQRWDWLRQXVLQJWKHSK\VLFDOO\UHOHYDQWRSHUDWRUVJUDGLHQW GLYHUJHQFHDQGFXUOVHH6HFWLRQ
&+$37(5
7KHSK\VLFDOODZRIFRQVHUYDWLRQRIOLQHDUPRPHQWXPLQDEVHQFHRIERG\IRUFHV LH EL = DQGIRU]HURLQHUWLDOIRUFHLH ρYL = UHVXOWVLQWKHILHOGHTXDWLRQRI HTXLOLEULXPLQWHUPVRIVWUHVVHVDV
σ ML M = σ LM M = RU∇ ∂σ LM ∂σ LM
LQZKLFKWKHHODVWLFWULDOVWUHVVUDWHLVGHILQHGDV HO σ LMHO = 'LMNO εNO
(OVHHODVWLFLW\RFFXUVWKXVLI IHO ≤ LQZKLFKFDVHWKHHODVWLFWULDOVWUHVVUDWH σ LMHO HTXDOVWKHDFWXDOHODVWLFVWUHVVUDWH +RZHYHUIRUWKHFRQVLGHUHGKRXUJODVVPRGHWKHLQGXFHGVWUDLQUDWH εLM ZLOOYDU\ VSDWLDOO\ DQG FRQVHTXHQWO\ ERWK WKH HODVWLF WULDO VWUHVV UDWH σ LMHO DFFRUGLQJ WR HT DQG WKH FRUUHVSRQGLQJ RXWFRPH RI WKH FRQGLWLRQ DFFRUGLQJ WR HT ZLOO YDU\ VSDWLDOO\ 7KLV UHVXOW ZRXOG FRQWUDGLFW WKH DSSOLFDELOLW\ RI RQH W\SH RI PDWHULDOEHKDYLRXUWKURXJKRXWWKHZKROHFLUFXODUGRPDLQ 7KHUHIRUHLQWKHDSSOLHGDQDO\VLVWKHORFDOVWUDLQUDWH εLM LVFRQVLGHUHGWREHWKH UHVXOW RI WKH PRGDO VXSHUSRVLWLRQ RI DOO GHIRUPDWLRQ PRGHV DV LOOXVWUDWHG LQ )LJXUHWKXV
εLM = ¦ Z(P)εLM(P)
P =
LQ ZKLFK WKH VXSHUVFULSW P LQGLFDWHV WKH PRGH QXPEHU εLM( ) LV WKH ORFDO PRGDO P VWUDLQ UDWH WHQVRU DQG Z( ) LQGLFDWHV WKH FRUUHVSRQGLQJ PRGDO ZHLJKW )RU WKH KRUL]RQWDOKRXUJODVVPRGHWKHPRGHQXPEHUHTXDOV P = 7KHFRUUHVSRQGLQJH[SUHVVLRQIRUWKHORFDOHODVWLFWULDOVWUHVVUDWH σ LMHO LVREWDLQHG E\VXEVWLWXWLQJHT LQWRHT JLYLQJ P
%RXQGDU\FRQGLWLRQV
HO σ LMHO = 'LMNO ¦ Z(P)εNO(P)
P =
7KHQ WKH FRUUHVSRQGLQJ FRQGLWLRQ IRU WKH DSSOLFDELOLW\ RI RQH W\SH RI PDWHULDO EHKDYLRXU WKURXJKRXW WKH ZKROH FLUFXODU GRPDLQ IROORZV IURP VXEVWLWXWLQJ HT LQWRHT OHDGLQJWRHODVWR²SODVWLFLW\IRU ∂I P P HO IHO = 'LMNO Z( )εNO( ) > ¦ ∂σ LM P =
7KLVH[SUHVVLRQLQGLFDWHVWKHUROHVRIWKHORFDOPRGDOVWUDLQUDWHV εLM( ) DQGPRGDO P ZHLJKWV Z( ) WR MXVWLI\ WKH DSSOLFDELOLW\ RI RQH W\SH RI PDWHULDO EHKDYLRXU WKURXJKRXWWKHZKROHFLUFXODUGRPDLQ P
&+$37(5
(TXDWLRQ&KDSWHU6HFWLRQ
&+$37(5 ,VRWURSLFOLQHDUHODVWLFLW\LQWKHFLUFXODUGRPDLQ
$ VROXWLRQ SURFHGXUH IRU WKH SODQH VWUDLQ ERXQGDU\ YDOXH SUREOHP LQ WHUPV RI GLVSODFHPHQWVLVSURSRVHGIRUWKHFDVHRILVRWURSLFOLQHDUHODVWLFLW\LQWKHFLUFXODU GRPDLQ7KHERXQGDU\YDOXHSUREOHPFRQVLVWVRIWZRSDUWVWKHV\VWHPRISDUWLDO GLIIHUHQWLDOHTXDWLRQVDQGDQDSSURSULDWHVHWRIERXQGDU\FRQGLWLRQV7KHV\VWHP RI SDUWLDO GLIIHUHQWLDO HTXDWLRQV LV GHULYHG IRU WKH FDVH RI SODQH VWUDLQ LVRWURSLF OLQHDU HODVWLFLW\ LQ D FLUFXODU F\OLQGULFDO FRRUGLQDWH V\VWHP LQ 6HFWLRQ 7KH ERXQGDU\FRQGLWLRQVIRUWKHFLUFXODUGRPDLQDUHGHULYHGLQ6HFWLRQVDQG
'HILQLWLRQRIERXQGDU\YDOXHSUREOHP
7KH ERXQGDU\ YDOXH SUREOHP FRQVLVWV RI WKH ILHOG HTXDWLRQ RI HTXLOLEULXP DV GHULYHG LQ 6HFWLRQ DQG WKH ERXQGDU\ FRQGLWLRQV DV GHULYHG LQ 6HFWLRQV DQG 7KH ERXQGDU\ YDOXH SUREOHP LV GHILQHG LQ WKH RSHQ FLUFXODU GRPDLQ Ω& ≤ U < 5 IRU 5 ∈ \ DQG ≤ θ < π ZLWKRXWHUERXQGDU\ ∂Ω& IRU U = 5
)LHOGHTXDWLRQV
,Q SRODU FRRUGLQDWH GHVFULSWLRQ WKH ILHOG HTXDWLRQ RI HTXLOLEULXP IRU LVRWURSLF OLQHDU HODVWLFLW\ LQ WKH FLUFXODU GRPDLQ DV GHULYHG LQ HT IRU * ≠ DQG ν ≠ { } UHDGV
(
)
( + ν ) U X U UU + UX U U − X U + X U θθ + ( + ν ) U Xθ U θ − ( + ν )Xθ θ = ° ® ° U Xθ UU + UXθ U − Xθ + ( + ν )Xθ θθ + ( + ν ) U X U U θ + ( + ν )X U θ = ¯
(
)
SDUWRIWKHUHVXOWVSUHVHQWHGLQWKLVFKDSWHUKDYHEHHQSXEOLVKHGDV5RKH
&+$37(5
$ FRPPD LQGLFDWHV SDUWLDO GLIIHUHQWLDWLRQ ZLWK UHVSHFW WR WKH PHQWLRQHG FRRUGLQDWHGLUHFWLRQ7KHQRUPDOLVHG3RLVVRQ·VUDWLR ν = ν ( − ν ) IRU ν ≠ LV GHILQHGLQHT 7KHFRPSRQHQWVRIWKHGLVSODFHPHQWYHFWRU X = ( XU Xθ ) ∈ \ DUH GHSHQGHQW RQ WKH FRRUGLQDWH GLUHFWLRQV U DQG θ LH XU = XU ( Uθ ) DQG Xθ = Xθ ( Uθ ) 7KH FRHIILFLHQWV GHSHQG RQ WKH SDUDPHWHUV RI WKH DSSOLHG PDWHULDO PRGHO RI LVRWURSLF OLQHDU HODVWLFLW\ LH QRUPDOLVHG 3RLVVRQ·V UDWLR ν DQG VKHDU PRGXOXV * DQG RQ WKH UDGLDO FRRUGLQDWH GLUHFWLRQ U 7KH PDWHULDO SDUDPHWHUV DUH FRQVLGHUHG WR EH FRQVWDQW LQVLGH WKH GRPDLQ %HIRUH GHYHORSLQJ WKH JHQHUDO VROXWLRQSURFHGXUHILUVWWKHVSHFLDOFDVHVIRUν = { } DQG * = ZLOOEHWUHDWHG LQ6HFWLRQ
%RXQGDU\FRQGLWLRQV
7KHERXQGDU\FRQGLWLRQVDVGHULYHGLQ6HFWLRQVDQGUHDGVXPPDULVHG 3UHVFULEHGIXQFWLRQVRQWKHERXQGDU\ ∂Ω& DFFRUGLQJWRHT
XU ( 5θ ) = ϕU (θ ) DQGXθ ( 5θ ) = ϕθ (θ )
%RXQGHGQHVVDWWKHRULJLQDFFRUGLQJWRHT XU ( θ ) < ∞
XU U ( θ ) < ∞
Xθ ( θ ) < ∞ DQG Xθ U ( θ ) < ∞
3HULRGLFLW\FRQGLWLRQVDFFRUGLQJWRHTV DQG
XU ( U ) = XU ( Uπ ) DQGXθ ( U ) = Xθ ( Uπ )
XU θ ( U ) = XU θ ( Uπ ) DQGXθ θ ( U ) = Xθ θ ( Uπ )
+HUHZLWKWKHERXQGDU\YDOXHSUREOHPLVIXOO\GHILQHG H
XU Xθ
ϕU ϕθ U
Ω&
∂Ω& )LJXUH%RXQGDU\YDOXHSUREOHPLQWKHFLUFXODUGRPDLQ Ω& ZLWKERXQGDU\ ∂Ω& GHVFULEHGLQ SRODUFRRUGLQDWHV ( U θ ) +RXUJODVV²OLNHGLVSODFHPHQWERXQGDU\FRQGLWLRQVDUH SUHVFULEHGIRULOOXVWUDWLRQ H LVWKHPDJQLWXGHRIWKHSUHVFULEHGQRGDOGLVSODFHPHQW
,VRWURSLFOLQHDUHODVWLFLW\LQWKHFLUFXODUGRPDLQ
6SHFLDOFDVHV
,QWKLVVHFWLRQILUVWWKHVROXWLRQRIWKHHTXLOLEULXPHTXDWLRQVIRUWKHVSHFLDOFDVHV
ν = { } DQG * = ZLOO EH FRQVLGHUHG 7KH JHQHUDO IRUP RI WKH HTXLOLEULXP HTXDWLRQV DV JLYHQ LQ HT KRZHYHU LV YDOLG IRU * ≠ DQG ν ≠ { } )RU
* ≠ WKH VROXWLRQ LV LQGHSHQGHQW RI WKH VKHDU PRGXOXV * +RZHYHU IRU * = WKHVHWRIHTXDWLRQVKDVLQILQLWHO\PDQ\VROXWLRQV :LWKUHVSHFWWR3RLVVRQ·VUDWLRν WZRVSHFLDOFDVHVFDQEHGLVWLQJXLVKHG7KHILUVW FDVH LV UHODWHG WR ν = 7KH ILHOG HTXDWLRQV IROORZLQJ IURP 6HFWLRQ VLPSOLI\LQWHQVRUDQGLQGH[QRWDWLRQWR∇ (∇ $VVXPHWKDWWKHV\VWHPLQHT KDVDJHQHUDOVROXWLRQRIWKHIRUP (Q ) · § I U(Q ) · Q § Q Q τ ( ) G N τ( ) I = ¨ Q ¸ = U N ¨ (Q ) ¸ = U N d N( ) ¨I ( ) ¸ ¨G ¸ © θ ¹ © N ¹
ZKHUH τ N( ) ∈ ^ DUH WKH HLJHQYDOXHV DQG WKH FRQVWDQWV G N( ) DQG G N( ) DUH WKH Q FRPSRQHQWV RI WKH FRUUHVSRQGLQJ HLJHQYHFWRUV d N( ) RI WKH V\VWHP RI RUGLQDU\ GLIIHUHQWLDO HTXDWLRQV $V WKH V\VWHP LQ HT LV D VHFRQG²RUGHU V\VWHP RI RUGLQDU\ GLIIHUHQWLDO HTXDWLRQV LQ WZR GHSHQGHQW YDULDEOHV DQG WKHUHIRUH N = IRXU HLJHQYDOXHV H[LVW ZLWK FRUUHVSRQGLQJ HLJHQYHFWRUV 7KH ILUVW² DQGVHFRQG²RUGHURUGLQDU\GHULYDWLYHVRIHT UHDG Q
I ′ = τ N( )U Q
Q τ N( ) −
Q
GN( ) DQGI ′′ = τ N( Q
Q)
(τ ( ) − ) U Q N
Q τ N( ) −
GN( ) Q
Q
6XEVWLWXWLQJ HTV DQG LQWR WKH V\VWHP DV GHILQHG LQ HT WKHQ JLYHVZKLOHVRUWLQJIRUSRZHUVRI U
,VRWURSLFOLQHDUHODVWLFLW\LQWKHFLUFXODUGRPDLQ
(
)
(Q )
ªτ N(Q ) τ N(Q ) − $I GN(Q ) + τ N(Q ) %I GN(Q ) + & I GN(Q ) º U τ N = ¬ ¼
)RUHT EHLQJVDWLVILHGIRUDOO U WKHFRHIILFLHQWRIHDFKSRZHURI U PXVWEH Q ]HUR+HQFHLWIROORZVDIWHUUHDUUDQJHPHQWLQWHUPVRI τ N( )
( )
ª $ τ (Q ) I N ¬«
Q Q N Q + ( %I − $I )τ N( ) + & I º GN( ) ≡ 'I( )GN( ) = ¼»
ZKLFKGHILQHVWKHPDWUL[ 'I( ) DV N
( ))
'I( ) = $I τ N( N
Q
+ ( %I − $I )τ N( ) + & I Q
ZKLOHWKHPDWULFHV $I %I DQG & I DUHGHILQHGDFFRUGLQJWRHT )RUJHWWLQJ Q N QRQ²WULYLDOVROXWLRQVRIHT LH d N( ) ≠ WKHGHWHUPLQDQWRIPDWUL[ 'I( ) KDV WR EH HTXDO WR ]HUR 7KDW GHILQHV WKH FKDUDFWHULVWLF HTXDWLRQ DVVRFLDWHG ZLWK HT DV
(
GHW 'I(
N)
) = GHW ª«¬ $ (τ ( ) ) I
Q N
Q + ( %I − $I )τ N( ) + & I º = »¼
IRU HDFK Q = ! DQG N = 7KHVH YDOXHV RI N DUH FODULILHG DIWHU WKH IROORZLQJHODERUDWLRQRIHT $IWHUHYDOXDWLRQRIHT LWIROORZV
(
)
(
)
ª $τ N + % − $ τ N + & º ª $τ N + % − $ τ N + & º + ¬ ¼¬ ¼
(
)
(
)
− ¬ª $ τ + % − $ τ N + & ¼º ¬ª $ τ + % − $ τ N + & ¼º = N
N
LQZKLFK $LM %LM DQG &LM DUHWKHFRPSRQHQWVRIWKHPDWULFHV $I %I DQG & I DV GHILQHG LQ HT )URP HT D TXDUWLF HTXDWLRQ IROORZV WKDW FDQ EH ZULWWHQE\VXEVWLWXWLQJWKHFRPSRQHQWVRI $I %I DQG & I DV
(
)(
)(
)(
)
( + ν ) τ N( ) − Q − τ N( ) − Q + τ N( ) + Q + τ N( ) + Q − = Q
Q
Q
Q
IRUHDFK Q = ! DQGLQZKLFK τ N( ) IRU N = DUHWKHIRXUVROXWLRQVRIWKH Q TXDUWLFHTXDWLRQ7KHVROXWLRQV τ N( ) DUHWKHHLJHQYDOXHVRIWKHV\VWHPRIRUGLQDU\ Q GLIIHUHQWLDO HTXDWLRQV GHILQHG LQ HT 7KH IRXU HLJHQYDOXHV τ N( ) IRU HDFK Q = ! UHDG Q
τ(Q ) = Q + τ (Q ) = Q − τ (Q ) = −Q + DQGτ (Q ) = −Q −
1RWHWKDWWKHHLJHQYDOXHVDUHUHDODQGGRQRWGHSHQGRQWKHVHSDUDWLRQFRQVWDQW µ &RQFHUQLQJ WKH PXOWLSOLFLW\ DQG SRVLWLYHQHVV RI WKHVH HLJHQYDOXHV WZR GLIIHUHQWFDVHVKDYHWREHGLVWLQJXLVKHGVHH7DEOH ,Q WKH ILUVW FDVH IRU Q = D GRXEOH HLJHQYDOXH HTXDO WR ]HUR DQG D SDLU RI HLJHQYDOXHVWKDWDUHHTXDOWRSOXVDQGPLQXVWZRRFFXU$QGLQWKHVHFRQGFDVH IRU HDFK Q ≥ IRXU GLVWLQFW HLJHQYDOXHV RFFXU DV SDLUV LH WZR DUH SRVLWLYH DQG WZRDUHQHJDWLYHZLWKVDPHPDJQLWXGH
&+$37(5
Q =
HLJHQYDOXH (Q )
Q =
Q =
Q ≥ ≥
τ
τ
≥
τ
−
−
≤ −
τ
−
−
−
≤ −
(Q ) (Q ) (Q )
(Q)
7DEOH 'LIIHUHQWFDVHVUHJDUGLQJYDOXHRI Q IRUWKHIRXUHLJHQYDOXHV τ L
1RZWKHIRXUHLJHQYHFWRUV GN( ) ZLWKFRPSRQHQWV G N( ) DQG G N( ) FDQEHFDOFXODWHG Q IROORZLQJ IURP HT IRU HDFK HLJHQYDOXH τ N( ) 5HIRUPXODWLQJ HT LW IROORZV Q
Q
'( N ) G N(Q) + '( N ) G N(Q) = ° ® ( N ) (Q ) (N ) (Q ) G N = °¯ ' G N + '
Q
LQZKLFK 'LM( ) DUHWKHFRPSRQHQWVRIWKHPDWUL[ 'I( ) GHILQHGLQ )URPWKH ILUVWHTXDWLRQLQHT IROORZVIRUHDFK Q = ! N
G N( ) = − Q
N
'( ) (Q ) '( ) Q G ≡ − ( N ) δ N( ) ( N ) N ' ' N
N
LQ ZKLFK WKH DUELWUDU\ FRQVWDQW FRHIILFLHQWV δ N( ) ∈ ^ IRU HDFK N = DQG Q = ! DUH GHILQHG 6XEVWLWXWLQJ HT LQWR WKH VHFRQG HTXDWLRQ RI HT JLYHV Q
( '( ) '( ) − '( ) '( ) ) δ ( ) = GHW ( '( ) ) δ ( ) = ZKLFKLVVDWLVILHGIRUHDFK δ ( ) DV GHW ( '( ) ) = E\GHILQLWLRQLQHT IRUHDFK ( ) N
N
N
N
Q N
N
Q N
I
Q N
RIWKHIRXUHLJHQYDOXHV τ (Q)
GN
Q N
N
I
7KHQWKHIRXUHLJHQYHFWRUVUHDG
(N) · § ' ¨ − ( N ) ¸ (Q ) = ¨ ' ¸ δ N IRUN = DQGQ = ! ¨ ¸ © ¹
6XEVWLWXWLQJ WKH FRPSRQHQWV RI $I %I & I DQG 'I DV JLYHQ LQ HTV DQG LQWRHT WKHQRQ²QRUPDOLVHG HLJHQYHFWRUVIRU Q = ! UHDG
(Q) N
G
§ ( + ν )τ N(Q) − ( + ν ) ·¸ ¨ −µ (Q) Q Q =¨ ( + ν ) τ N( ) + τ N( ) − − Q ¸ δ N ¨¨ ¸¸ © ¹
(
)(
)
7KHQLWIROORZVDIWHUVXEVWLWXWLQJWKHHLJHQYDOXHV τ N( ) IROORZLQJIURPHT Q
§ µ (Q ) · § µ· § µ (Q) · §µ· ω ¸ (Q ) − − ω ¸ (Q) Q G( ) = ¨ Q δ G(Q ) = ¨ Q ¸ δ (Q ) G(Q ) = ¨ Q δ DQGG(Q ) = ¨ Q ¸ δ (Q ) ¨ ¸ ¨ ¸ ¨ ¸ ¨ ¸ © ¹ © ¹ © ¹ © ¹
,VRWURSLFOLQHDUHODVWLFLW\LQWKHFLUFXODUGRPDLQ
IRUHDFK Q = ! DQGLQZKLFK
ω (Q ) =
− ( + ν ) Q
( + ν ) + ( + ν ) Q
DQGω ( ) =
+ ( + ν ) Q
Q
( + ν ) − ( + ν ) Q
7KHQ WKH IXQFWLRQV IU DQG Iθ FDQ EH FRPSRVHG E\ VXEVWLWXWLQJ WKH IRXU Q Q HLJHQYDOXHV τ N( ) IROORZLQJIURPHT DQGWKHIRXUHLJHQYHFWRUV GN( ) IROORZLQJ IURP HT LQWR WKH VXSSRVHG JHQHUDO IRUP RI WKH VROXWLRQ DV JLYHQ LQ HT +RZHYHU GLVWLQFWLRQ KDV WR EH PDGH IRU WKH GLIIHUHQW FDVHV RI PXOWLSOLFLW\ RI HLJHQYDOXHV DV VKRZQ LQ 7DEOH 7KHQ WKH IXQFWLRQV UHDG IRU Q ≥
µ ª (Q ) (Q ) τ(Q) (Q) ( Q ) τ (Q ) ( Q ) ( Q ) τ (Q ) ( Q ) τ (Q ) º ° IU ( U ) = Q ¬«ω δ U − δ U − ω δ U + δ U ¼» ® ° I (Q )( U ) = δ (Q )Uτ(Q) + δ (Q )Uτ (Q) + δ (Q )Uτ (Q) + δ (Q )Uτ (Q) ¯ θ
DQGIRU Q = IU()( U ) = µ ªω ()δ()U − δ ()U − ω ()δ ()U OQ ( U ) + δ ()U − º ° ¬ ¼ ® () () () () () − °¯ Iθ ( U ) = δ U + δ U + δ U OQ ( U ) + δ U
$V PHQWLRQHG LQ WKH EHJLQQLQJ RI WKH SUHVHQW VHFWLRQ IRU Q = D VSHFLDO FDVH RFFXUVDVHT LVQRWYDOLG+RZHYHUIURPHT IROORZVGLUHFWO\IRU Q = DIWHUVXEVWLWXWLQJHTV DQG IRU JU( ) DQG Jθ( )
U IU′′( ) + U IU′( ) − IU( ) = DQGU Iθ′′( ) + U Iθ′( ) − Iθ( ) =
7KHQWKHVROXWLRQIRU Q = UHDGV
° IU( )( U ) = δ( )U + δ ( )U − ® () () ( ) − °¯ Iθ ( U ) = δ U + δ U
5HFDOOWKHERXQGDU\FRQGLWLRQRIERXQGHGQHVVDWWKHRULJLQPHQWLRQHGLQHT 7KDW PHDQV WKDW WKH H[SRQHQWV RI U KDYH WR EH SRVLWLYH RU ]HUR )RU Q ≥ WKH Q HLJHQYDOXHV τ L( ) RFFXUDVWZRSDLUV7KHILUVWWZRHLJHQYDOXHVDUHSRVLWLYHDQGWKH ODVWWZRRIWKHPDUHQHJDWLYH7KHUHIRUHIRU Q ≥ WKHH[SRQHQWVRIWKHWKLUGDQG IRXUWK WHUP LQ ERWK HTXDWLRQV RI HT DUH DOZD\V QHJDWLYH DQG WKHLU FRHIILFLHQWVKDYHWREHHTXDOWR]HUR)RU Q = WKHIRXUWKHLJHQYDOXHLVQHJDWLYH DQGWKHWKLUGHLJHQYDOXHLVDGRXEOHHLJHQYDOXHOHDGLQJWRDORJDULWKPLFIXQFWLRQ ZKLFKLVXQERXQGHGIRU U = 7KHUHIRUHWKHFRUUHVSRQGLQJFRHIILFLHQWVRIWKHODVW WZRWHUPVLQERWKHTXDWLRQVRIHT KDYHWREHHTXDOWR]HUR)RU Q = WKH H[SRQHQW RI WKH ODVW WHUP RI WKH VHFRQG HTXDWLRQ LQ HT LV QHJDWLYH 7KHUHIRUHWKHFRUUHVSRQGLQJFRHIILFLHQWRIWKLVWHUPKDVWREHHTXDOWR]HUR7KDW PHDQVWKDWWKHFRHIILFLHQWVKDYHWREHFKRVHQDV
&+$37(5
° δ (Q ) = δ (Q ) = IRUQ = ! ® () °¯ δ = IRUQ =
7KHQ WKH IXQFWLRQV IU DQG Iθ IROORZLQJ IURP HTV DQG FDQ EH GHWHUPLQHGDV IU(
Q)
µ ª (Q ) (Q ) Q + ( Q ) Q − ° ¬ω δ U − δ U º¼ IRUQ = ! Q = U ( ) ® ° δ ( )U IRUQ = ¯
DQG Iθ(
Q)
δ(Q )U Q + + δ (Q )U Q − IRUQ = !
( U ) = °®
( ) °¯ δ U IRUQ =
+HUHZLWKWKHVHSDUDWHG U − GHSHQGHQWSUREOHPLVVROYHG7KHVHSDUDWLRQFRQVWDQW µ ∈ ^ UHPDLQVXQNQRZQIRUWKHPRPHQW
&RPSOHWHJHQHUDOVROXWLRQ
,QWKLVVHFWLRQWKHFRPSOHWHJHQHUDOVROXWLRQRIWKHGLVSODFHPHQWILHOG XU DQG Xθ LVGHWHUPLQHGE\FRPELQLQJWKHUHVXOWVRI6HFWLRQVDQG7KHVROXWLRQZLOO VWD\JHQHUDOVRIDUDVLWVWLOOPD\VDWLVI\DQ\W\SHRI'LULFKOHWERXQGDU\FRQGLWLRQ GHILQHGDVSUHVFULEHGIXQFWLRQVRIWKHGLVSODFHPHQWVRQWKHERXQGDU\7RGHULYH Q Q WKHFRPSOHWHJHQHUDOVROXWLRQIRU XU DQG Xθ WKHIXQFWLRQV IU( ) DQG Iθ( ) GHSHQGLQJ Q Q RQ U IROORZLQJ IURP HTV DQG DQG WKH IXQFWLRQV JU( ) DQG Jθ( ) GHSHQGLQJ RQ θ IROORZLQJ IURP HTV DQG DUH VXEVWLWXWHG LQWR WKH VXSSRVHGVHSDUDWHGSURGXFWIRUPRIWKHVROXWLRQDVJLYHQLQHTV DQG DV
(
)
ω (Q )δ(Q )U Q + − δ (Q )U Q − ª −F(Q ) VLQ ( Qθ ) + F(Q ) FRV ( Qθ ) º IRUQ = ! ¬ ¼ ° XU ( Uθ ) = ® () ° δ( )U F IRUQ = ¯ (Q )
DQG
(
)
δ(Q )U Q + + δ (Q )U Q − ªF(Q ) FRV ( Qθ ) + F(Q ) VLQ ( Qθ ) º IRUQ = ! ¬ ¼ ° Q Xθ( )( Uθ ) = ® () F ° δ( )U IRUQ = ¯
,QHTV DQG WKHFRHIILFLHQWV FL( ) DQG δ L( ) FDQEHFRPELQHGWRIRUPQHZ Q Q FRHIILFLHQWV DL( ) DQG EL( ) DFFRUGLQJWR Q
D( ) = δ( )F( ) Q
Q
Q
Q
D( ) = δ ( )F( ) E( ) = δ( )F( ) DQGE( ) = δ ( )F( ) Q
Q
Q
Q
Q
Q
Q
Q
Q
,VRWURSLFOLQHDUHODVWLFLW\LQWKHFLUFXODUGRPDLQ
$IWHU VXPPDWLRQ IRU DOO Q WKH FRPSOHWH JHQHUDO VROXWLRQ RI WKH GLVSODFHPHQW ILHOG XU DQG Xθ IRU * ≠ DQGν ≠ { } UHDGV ∞ D( ) Q Q Q Q Q Q U + ¦ U Q − ª D( )ω ( )U − D( ) FRV ( Qθ ) − E( )ω ( )U − E( ) VLQ ( Qθ ) º ° XU ( Uθ ) = ¬ ¼ ° Q = ® () ∞ ° X Uθ = E U + U Q − ª E(Q )U + E(Q ) FRV Qθ + D (Q )U + D (Q ) VLQ Qθ º ( ) ( )¼ ¦ °¯ θ ( ) ¬ Q =
(
)
(
(
)
)
(
)
LQZKLFK ω ( ) LVGHILQHGDFFRUGLQJWRHT DQG D( ) D( ) E( ) DQG E( ) DUHVR IDU XQGHWHUPLQHG FRQVWDQW FRHIILFLHQWV 7KLV VROXWLRQ VDWLVILHV WKH V\VWHP RI SDUWLDO GLIIHUHQWLDO HTXDWLRQV LQ HT WKH SHULRGLF ERXQGDU\ FRQGLWLRQV LQ HTV DQG DQGWKHERXQGHGQHVVSURSHUWLHVLQHT ,WKDVWKHIRUPRI DIXOO)RXULHUVHULHVLQ θ DQGLVWKHUHIRUHFRPSOHWH$OVRLWVKRXOGEHQRWHGWKDW WKH VHSDUDWLRQ FRQVWDQW µ GRHV QRW RFFXU LQ WKH JHQHUDO VROXWLRQ HT IRU XU DVDUHVXOWRIWKHPXOWLSOLFDWLYHFRPELQDWLRQRIWKHVROXWLRQVIRU IU HT DQG IRU JU HT 7KH SUHVFULEHG IXQFWLRQV RQ WKH ERXQGDU\ DV GHILQHG E\ Q Q Q Q HT FDQEHVDWLVILHGE\GHWHUPLQLQJWKHFRHIILFLHQWV D( ) D( ) E( ) DQG E( ) Q
Q
Q
Q
Q
'LVSODFHPHQWILHOGIRUJHQHUDOERXQGDU\FRQGLWLRQVDQG XQLTXHQHVVFULWHULRQ
,QWKLVVHFWLRQWKHFRHIILFLHQWV D( ) D( ) E( ) DQG E( ) IRU Q = ! RFFXUULQJLQ WKH JHQHUDO VROXWLRQ RI WKH GLVSODFHPHQW ILHOG DV JLYHQ LQ HT DUH GHWHUPLQHG )RU WKLV SXUSRVH WKH WZR UHPDLQLQJ 'LULFKOHW²W\SH RI ERXQGDU\ FRQGLWLRQVIRUWKHSUHVFULEHGGLVSODFHPHQWVDVJLYHQE\HT DUHXVHG7KHVH ERXQGDU\ FRQGLWLRQV DUH SUHVFULEHG IXQFWLRQV DW WKH ERXQGDU\ U = 5 7KHUHIRUH U = 5 DQG WKH IXQFWLRQV DW WKH ERXQGDU\ ϕU (θ ) DQG ϕθ (θ ) DV JLYHQ E\ HT DUHVXEVWLWXWHGLQWRWKHJHQHUDOVROXWLRQRIHT OHDGLQJWR Q
Q
Q
Q
∞ D( ) Q Q Q Q Q Q 5 + ¦ 5Q − ª D( )ω ( ) 5 − D( ) FRV ( Qθ ) − E( )ω ( ) 5 − E( ) VLQ ( Qθ ) º ° ϕU (θ ) = ¬ ¼ ° Q = ® () ∞ ° ϕ θ = E 5 + 5Q − ª E(Q ) 5 + E(Q ) FRV Qθ + D (Q ) 5 + D (Q ) VLQ Qθ º ( ) ( )¼ θ( ) ¦ ¬ Q = ¯°
(
(
)
)
(
(
)
)
1RZ XVH FDQ EH PDGH RI WKH RUWKRJRQDOLW\ RI WKH VLQH DQG FRVLQH IXQFWLRQV )RU WKLVUHDVRQERWKHTXDWLRQVLQHT DUHPXOWLSOLHGE\ FRV ( Pθ ) DQG VLQ ( Pθ ) IRU P = ! UHVSHFWLYHO\DQGDIWHUZDUGVLQWHJUDWHGZLWKUHVSHFWWR θ RQWKH ZKROH GRPDLQ >π @ 1RWH WKDW SURGXFWV RI VLQH DQG FRVLQH IXQFWLRQV OHDG WR D UHVXOW HTXDO WR ]HUR IRU HDFK Q DQG P DIWHU LQWHJUDWLRQ DV WKH IXQFWLRQV DUH RUWKRJRQDO)XUWKHUPRUHSURGXFWVRIVLQHRUFRVLQHIXQFWLRQVDPRQJWKHPVHOYHV JLYHDUHVXOWHTXDOWR π RQO\LIWKHLUDUJXPHQWVDUHHTXDOLHIRU Q = P )RUDOO RWKHU FDVHV Q ≠ P WKH UHVXOW LV HTXDO WR ]HUR 6XPPDULVHG WKH RUWKRJRQDOLW\ RI WKHVLQHDQGFRVLQHIXQFWLRQIRUWKHSUHVHQWFDVHFDQEHZULWWHQDV
&+$37(5
π IRUQ = P
π
³ FRV ( Qθ ) FRV (Pθ ) Gθ = ®¯IRUQ ≠ P
π IRUQ = P
π
³ VLQ ( Qθ ) VLQ (Pθ ) Gθ = ®¯IRUQ ≠ P DQG
π
³ VLQ ( Qθ ) FRV (Pθ ) Gθ = IRUDOOQP
)RUWKHPXOWLSOLFDWLRQRIERWKHTXDWLRQVRIHT E\ VLQ ( Pθ ) LWIROORZVDIWHU LQWHJUDWLRQIRU P = ! π P− (P) (P) P E ω 5 − E( ) = ³ ϕU (θ ) VLQ ( Pθ ) Gθ °− 5 π ° ® π P P ° 5P− D( ) 5 + D( ) = ³ ϕθ (θ ) VLQ ( Pθ ) Gθ ° π ¯
(
)
(
)
$QG IRU WKH PXOWLSOLFDWLRQ RI ERWK HTXDWLRQV RI HT E\ FRV ( Pθ ) LW IROORZV DIWHULQWHJUDWLRQIRU P = ! π P− (P) (P) P D ω 5 − D( ) = ³ ϕU (θ ) FRV ( Pθ ) Gθ °5 π ° ® π (P ) (P ) P − ° 5 E 5 + E = ³ ϕθ (θ ) FRV ( Pθ ) Gθ ° π ¯
(
)
(
)
,WFDQEHVHHQWKDWWKHSURSRVHGDSSURDFKOHDGVWRWZROLQHDUV\VWHPVRIHDFKWZR HTXDWLRQV)RU P = WKHFRHIILFLHQWVIROORZGLUHFWO\IURPHT DV D( ) =
π5
π
() ³ ϕU(θ ) Gθ DQGE =
π5
π
³ ϕθ (θ ) Gθ
5HVXOWLQJIURPWKHLQWHJUDWLRQRIWKHERXQGDU\FRQGLWLRQVRQWKHULJKWKDQGVLGHV LQHTV DQG OHWIRU P = !
,(
P)
=
, (
P)
π =
π
(P ) ³ ϕU(θ ) VLQ (Pθ ) Gθ , =
π
π
π
π
³ ϕ (θ ) FRV (Pθ ) Gθ U
(P ) ³ ϕθ (θ ) VLQ (Pθ ) Gθ DQG, =
π
π
³ ϕθ (θ ) FRV (Pθ ) Gθ
ZKLFK DUH FRQVWDQW FRHIILFLHQWV DIWHU LQWHJUDWLRQ 7KHQ IRU P = ! WKH IRXU HTXDWLRQV IROORZLQJ IURP HTV DQG FDQ EH FRPELQHG DQG UHDUUDQJHG P IRUFRUUHVSRQGLQJFRHIILFLHQWVLQPDWUL[²YHFWRUQRWDWLRQ)RUWKHFRHIILFLHQWV D( ) (P) DQG D LWIROORZV
ª 5 0D = « (P) ¬«ω 5
§ (P ) · º § D(P) · −P , » ¨¨ (P) ¸¸ = 5 ¨¨ (P) ¸¸ IRUP = ! −¼» © D ¹ © , ¹
,VRWURSLFOLQHDUHODVWLFLW\LQWKHFLUFXODUGRPDLQ
$QGIRUWKHFRHIILFLHQWV E( ) DQG E( ) LWIROORZV P
P
§ , (P) · º § E(P) · −P » ¨¨ (P) ¸¸ = 5 ¨¨ (P) ¸¸ IRUP = ! −»¼ © E ¹ © − , ¹
ª 5 0E = « (P) «¬ω 5
%RWKV\VWHPVRIOLQHDUHTXDWLRQVLQHTV DQG DUHXQLTXHO\VROYDEOHLI DQGRQO\LIWKHGHWHUPLQDQWRIWKHPDWUL[ 0 LVQRQ²]HUR1RQ²XQLTXHVROXWLRQV RIHTV DQG FDQH[LVWLIDQGRQO\LIWKHGHWHUPLQDQWLVHTXDOWR]HUR )RUERWKFDVHVWKHGHWHUPLQDQWIRU P = ! UHDGV
(
GHW ( 0 ) = − + ω (
P)
)5
=−
( + ν )
( + ν ) + ( + ν ) P
5 = −
( − ν )
( − ν ) + P
5
LQZKLFK ω ( ) DFFRUGLQJWRHT DQG ν = ν ( − ν ) LVVXEVWLWXWHG7KHUHIRUH D XQLTXH VROXWLRQ H[LVWV IRU DOO ν ≠ 1R VROXWLRQV RU QRQ²XQLTXH VROXWLRQV H[LVW LI DQG RQO\ LI ν = (T LV WKHUHIRUH FDOOHG WKH QHFHVVDU\ DQG VXIILFLHQW FULWHULRQ IRU XQLTXHQHVV RI WKH 'LULFKOHW ERXQGDU\ YDOXH SUREOHP IRU OLQHDU HODVWLFLW\ LQ WKH FLUFXODU GRPDLQ 1RWH WKDW WKH GHWHUPLQDQW PD\ EHFRPH LQILQLWHIRU ν = P + DQGWKHRQO\VROXWLRQIRUWKHUHVSHFWLYHFRHIILFLHQWVLVWKH KRPRJHQHRXVVROXWLRQ 7KH XQLTXH SDUW RI WKH VROXWLRQ RI WKH GLVSODFHPHQW ILHOG DV JLYHQ E\ HT FDQ WKHQ EH GHWHUPLQHG IRU ν ≠ 7KHUHIRUH ILUVW ERWK V\VWHPV LQ HTV P P P DQG KDYHWREHVROYHGIRUν ≠ WRFDOFXODWHWKHFRHIILFLHQWV D( ) D( ) E( ) (P) DQG E 7KH\IROORZIRU P = ! DV P
D(
P)
, ( ) + , (
P)
P
=
( + ω ) 5 (P )
(P )
DQGE
=
,(
P)
P +
D(
P)
+ ω ( ) , ( P
( + ω ( ) ) 5 P
− , ( ) + ω ( ) , ( P
=
( + ω ) 5
P)
P −
P
(P)
P)
P −
E(
P)
=
− ,(
P)
+ , (
P)
( + ω ) 5 (P)
P +
)RU P = WKHWZRRFFXUULQJFRHIILFLHQWVDUHGHWHUPLQHGE\HT DQGFDQEH ZULWWHQDV
D( ) = , ( ) 5 − DQGE( ) = , ( ) 5 −
6XEVWLWXWLQJ WKH FRHIILFLHQWV RI HTV DQG LQWR WKH JHQHUDO VROXWLRQ RI HT UHVXOWVDIWHUVRPHHODERUDWLRQIRU * ≠ DQGν ≠ { } LQ
&+$37(5
° XU ( Uθ ) = ° ° ° ° ® ° ° Xθ ( Uθ ) = ° ° ° ¯
∞ , ( ) ω (P)U P− U + ¦ (P ) P = + ω
ª§ · (P ) (P ) º ® «¨ U + (P) ¸ , − − U , » FRV ( Pθ ) + ω ¹ ¼ ¯ ¬©
(
)
½ ª§ · P P º + «¨ U + (P) ¸ ,( ) + − U , ( ) » VLQ ( Pθ ) ¾ ω ¹ ¬© ¼ ¿
(
()
∞
P −
{(
)
)
, U ª U + ω (P) , (P) + − U ,(P) º FRV ( Pθ ) + U + ¦ (P ) ¬ ¼ ω + P =
(
(
)
)
(
)
}
P P P + ª U + ω ( ) , ( ) − − U , ( ) º VLQ ( Pθ ) ¬ ¼
ZLWKFRQVWDQWV , L( ) DVGHILQHGLQHT ω ( ) DFFRUGLQJWRHT DQGWKH QRUPDOLVHGUDGLXV U = U 5 7KHFDVHVIRU * = DQGν = { } KDYHEHHQWUHDWHGLQ6HFWLRQ)RUν = WKH OLQHDU V\VWHPV LQ HTV DQG FDQQRW EH VROYHG XQLTXHO\ 7KH GHWHUPLQDQWRIWKHPDWUL[ 0 LQERWKV\VWHPVLVHTXDOWR]HURLQWKLVFDVH7KHQ HLWKHUQRVROXWLRQRULQILQLWHO\PDQ\VROXWLRQVFDQH[LVW6XEVWLWXWLQJν = LQWR P HT LW IROORZV WKDW ω ( ) = − 7KHQ IURP HTV DQG LW IROORZV IRU WKHFRHIILFLHQWV P
P
P P § , (P) · § (P ) · ª 5 º § D( ) · ª 5 º § E( ) · −P −P , « » ¨¨ (P) ¸¸ = 5 ¨¨ (P) ¸¸ DQG « » ¨¨ (P) ¸¸ = 5 ¨¨ (P) ¸¸ ¬ 5 ¼ © D ¹ ¬ 5 ¼ © E ¹ © −, ¹ © , ¹
7KHQLQILQLWHO\PDQ\VROXWLRQVH[LVWIRU , ( FDVHVQRVROXWLRQH[LVWV
P)
= − , ( ) DQG ,( P
P)
= , ( ) )RUDOORWKHU P
,QFUHPHQWDOGLVSODFHPHQWILHOGIRUGHIRUPDWLRQPRGHV
,QWKLVVHFWLRQWKHFRHIILFLHQWV ,( ) , ( ) , ( ) DQG , ( ) IRU P = ! RFFXUULQJ LQWKHJHQHUDOVROXWLRQRIWKHLQFUHPHQWDOGLVSODFHPHQWILHOGDVJLYHQLQHT DUH GHWHUPLQHG 7KH\ FDQ EH GHWHUPLQHG E\ GHILQLQJ WKH IXQFWLRQV IRU WKH SUHVFULEHG LQFUHPHQWDO GLVSODFHPHQWV DW WKH FLUFOH ERXQGDU\ ∂Ω& FKDUDFWHULVHG E\WKHIXQFWLRQV ϕU (θ ) DQG ϕθ (θ ) DVGHILQHGLQHT LQZKLFKWKHSUHVFULEHG QRGDOLQFUHPHQWDOGLVSODFHPHQW H LVLQYROYHG ,Q6HFWLRQLWZDVVKRZQWKDWHLJKWGLIIHUHQWW\SHVRIGHIRUPDWLRQPRGHVFDQ EH GLVWLQJXLVKHG )RU WKH FLUFXODU GRPDLQ WKH IXQFWLRQV ϕU (θ ) DQG ϕθ (θ ) ZHUH GHILQHGLQHTV WR IRUWKHHLJKWGHIRUPDWLRQPRGHV1RUPDOLVHGZLWK UHVSHFWWRWKHSUHVFULEHGHQIRUFHGQRGDOLQFUHPHQWDOGLVSODFHPHQW H WKH\UHDG P
P
P
P
PRGH ϕU,(θ ) H = FRV (θ ) DQG ϕθ, (θ ) H = − VLQ (θ )
PRGH ϕU,,(θ ) H = VLQ (θ ) DQG ϕθ,,(θ ) H = FRV (θ )
PRGH ϕU,,,(θ ) H = DQG ϕθ,,,(θ ) H =
PRGH ϕU,9 (θ ) H = FRV ( θ ) DQG ϕθ,9 (θ ) H = − VLQ ( θ )
,VRWURSLFOLQHDUHODVWLFLW\LQWKHFLUFXODUGRPDLQ
PRGH ϕU9 (θ ) H = VLQ ( θ ) DQG ϕθ9 (θ ) H = FRV ( θ )
PRGH ϕU9,(θ ) H = −DQG ϕθ9,(θ ) H =
PRGH
PRGH
ϕU9,,(θ ) H
VLQ (θ ) + VLQ ( θ )
=
ϕU9,,,(θ )
FRV (θ ) − FRV ( θ )
=
H
DQG
ϕθ9,,(θ )
DQG
H
=
ϕθ9,,,(θ ) H
− FRV (θ ) + FRV ( θ )
=
VLQ (θ ) + VLQ ( θ )
6HH )LJXUH IRU DQ LOOXVWUDWLRQ RI WKH ERXQGDU\ FRQGLWLRQV UHSUHVHQWLQJ WKH HLJKWGHIRUPDWLRQPRGHV6XEVWLWXWLQJHTV WR LQWRHT WKHIRXU P P P P FRHIILFLHQWV ,( ) , ( ) , ( ) DQG , ( ) FDQ EH GHWHUPLQHG IRU HDFK GHIRUPDWLRQ PRGH7KH\UHDGIRUHDFK P = !
PRGH
, ( ) , ( ) = = H H
PRGH
, ( ) , ( ) = = H H
,P
,, P
,,,( P )
PRGH
,
PRGH
,
H ,9 ( P )
H
,,,( P )
=
,
=
,
H ,9 ( P )
H
=
,,,( P )
,
H
9,( P )
,
,9 ( P )
H
PRGH
,
H
9,,( P )
H
9,( P )
,
=
H
=
9,,( P )
,
H
H
9,( P )
,
IRUP = =® ¯ IRUP ≠
H
=
=
9,,( P )
,
H
9,( P )
,
H
,, P , ( ) IRUP = =® H ¯IRUP ≠
IRUP = =® ¯IRUP ≠
9 P , ( ) IRUP = =® H ¯IRUP ≠
9 P
=
,,,( P )
,
=
,
=
, ( ) , ( ) = = H H
PRGH
,P , ( ) −IRUP = =® H ¯ IRUP ≠
,, P , ( ) IRUP = =® H ¯ IRUP ≠
,, P
9 P
PRGH
,P , ( ) IRUP = =® H ¯ IRUP ≠
,P
,9 ( P )
,
H
−IRUP = =® ¯ IRUP ≠
−IRUP = =® ¯ IRUP ≠
9,,,( P )
,
H
=
9,,,( P )
,
H
=
9,,,( P )
,
9,,( P )
,
H
IRUP = ° = ®− IRUP = ° IRUP ≠ ¯
H
PRGH
9 P , ( ) IRUP = =® H ¯IRUP ≠
IRUP = ° = ® IRUP = ° IRUP ≠ ¯
− IRUP = ° = ® IRUP = ° IRUP ≠ ¯
9,,,( P )
,
H
IRUP = ° = ® IRUP = °IRUP ≠ ¯
6XEVWLWXWLQJ HTV WR LQWR HT JLYHV IRU ν ≠ { } WKH ILQDO VROXWLRQ IRU WKH QRUPDOLVHG LQFUHPHQWDO GLVSODFHPHQWV LQ WKH FLUFOH IRU HDFK GHIRUPDWLRQPRGHDV
&+$37(5
° XU,( Uθ ) H = FRV (θ ) PRGH ® , °¯ Xθ ( Uθ ) H = − VLQ (θ )
° XU,,( Uθ ) H = VLQ (θ ) PRGH ® ,, °¯ Xθ ( Uθ ) H = FRV (θ )
° XU,,,( Uθ ) H = PRGH ® ,, °¯ Xθ ( Uθ ) H = U
,9 ° XU ( Uθ ) H = U FRV ( θ ) PRGH ® ,9 °¯ Xθ ( Uθ ) H = −U VLQ ( θ )
9 ° XU ( Uθ ) H = U VLQ ( θ ) PRGH ® 9 °¯ Xθ ( Uθ ) H = U FRV ( θ )
9, ° XU ( Uθ ) H = −U PRGH ® 9, °¯ Xθ ( Uθ ) H =
XU9,,( Uθ ) ª ( − ν ) U + º VLQ (θ ) + U VLQ ( θ ) » = « ° ¬« − ν H ° ¼» PRGH ® 9,, º ° Xθ ( Uθ ) ª ( − ν ) U − FRV (θ ) + U FRV ( θ ) » = «− ° ν H − ¬« ¼» ¯
XU9,,,( Uθ ) ª ( − ν ) U + º FRV (θ ) − U FRV ( θ ) » = « ° − H ν «¬ ° ¼» PRGH ® 9,,, º ° Xθ ( U θ ) ª ( − ν ) U − VLQ (θ ) + U VLQ ( θ ) » = « ° ν H − « »¼ ¬ ¯
LQ ZKLFK IRU PRGH DQG PRGH HT KDV EHHQ VXEVWLWXWHG IRU ω ( ) ZKLFK UHDGVIRU P = P
ω () =
− ν − ν = + ν − ν
)URPWKHHTXDWLRQVIRUWKHLQFUHPHQWDOGLVSODFHPHQWVLQHTV WR WKH DSSOLHG ERXQGDU\ FRQGLWLRQV LQ HTV WR FDQ EH UHWULHYHG E\ VXEVWLWXWLQJ U = )RUWKHXQLIRUPGHIRUPDWLRQPRGHVLHPRGHWRPRGHRQO\XQLTXHVROXWLRQV RFFXUDVLQWKHVHFDVHVWKHVROXWLRQLVLQGHSHQGHQWRQWKHPDWHULDOSDUDPHWHU ν Q ZKLFKLVUHSUHVHQWHGE\WKHFRQVWDQW ω ( ) GHILQHG LQHT 7KH GHIRUPDWLRQ PRGHV OHDGLQJ WR SRVVLEO\ QRQ²XQLTXH VROXWLRQV DUH RQO\ WKH KRUL]RQWDO DQG YHUWLFDO KRXUJODVV²OLNH PRGHV LH PRGH DQG PRGH DV WKH\ GHSHQG RQ ν DQG Q WKHUHIRUH RQ WKH FRQVWDQW ω ( ) ,Q HT LW ZDV VKRZQ WKDW WKH XQLTXHQHVV
,VRWURSLFOLQHDUHODVWLFLW\LQWKHFLUFXODUGRPDLQ
FULWHULRQ GHSHQGV RQ WKHVH SDUDPHWHUV 7KH QRQ²XQLTXH VROXWLRQV IRU LVRWURSLF OLQHDU HODVWLFLW\ LQ WKH FLUFXODU GRPDLQ DQG KRXUJODVV²OLNH ERXQGDU\ FRQGLWLRQV RFFXUIRU ω ( ) = − ZKLFKLVWKHFDVHIRUν = 7KHVH FRQFOXVLRQV DUH LQ DJUHHPHQW ZLWK WKH UHVXOWV RI /HZLV IRU WKH UHFWDQJXODU GRPDLQ 7KHUH QRQ²XQLTXH VROXWLRQV ZHUH IRXQG DURXQG WKH SRLQW ν = IRU KRXUJODVV GHIRUPDWLRQ PRGHV XVLQJ D VHPL²QXPHULFDO VROXWLRQ SURFHGXUH PRGH
ν=0.15
1
−0.5
ν=0.15
1
−0.5
−1
−0.5
0 x/R
0.5
1
PRGH
−1
−1
−0.5
ν=0.15
0.5
0 x/R
0.5
1
PRGH 1
−1
y/R
−0.5
1
−0.5
−0.5
0 x/R
0.5
1
PRGH 1
1
PRGH
ν=0.15
−0.5
−1 −1
0.5
0
−1
−1
0 x/R
0.5
0
−1
−0.5
ν=0.15
0.5
0
ν=0.15
0
−0.5
−1
PRGH
0.5
0
−1
y/R
y/R
0
−0.5
0 x/R
0.5
ν=0.15
1
−1
1
0.5
−0.5
0 x/R
0.5
1
PRGH
ν=0.15
0.5
y/R
y/R
0.5
y/R
y/R
0.5
1
PRGH
y/R
1
0
0
−0.5
−0.5
−1
−1
−1
−0.5
0 x/R
0.5
1
−1
−0.5
0 x/R
0.5
1
)LJXUH,OOXVWUDWLRQRIWKHVROXWLRQRIWKHQRUPDOLVHGLQFUHPHQWDOGLVSODFHPHQWYHFWRUILHOG X H IRUWKHHLJKWGHIRUPDWLRQPRGHVIRUν = DFFRUGLQJWRHTV WR
&+$37(5
$ YLVXDOLVDWLRQ RI WKH LQFUHPHQWDO GLVSODFHPHQW YHFWRU ILHOG X H IRU DOO HLJKW GHIRUPDWLRQPRGHVLVJLYHQLQ)LJXUHIRU3RLVVRQ·VUDWLRHTXDOWR ν = ,W FDQEHREVHUYHGWKDWWKHVROXWLRQDORQJWKHERXQGDU\GHVFULEHVWKHFRQGLWLRQVDV LPSRVHG7KHPDJQLWXGHRIWKHQRUPDOLVHGLQFUHPHQWDOGLVSODFHPHQW X H LQWKH QRGHVLVRQH )RU PRGH DW WKH ERWWRP WRS OHIW DQG ULJKW SRLQW RI WKH FLUFOH ERXQGDU\ WKH LQFUHPHQWDO GLVSODFHPHQW LV ]HUR ,Q WKH KRUL]RQWDO DQG YHUWLFDO VWUDLJKW OLQHV WKURXJK WKH FLUFOH FHQWUH RQO\ YHUWLFDO LQFUHPHQWDO GLVSODFHPHQWV RFFXU 7KH PD[LPXPLQFUHPHQWDOGLVSODFHPHQWRFFXUVLQWKHFLUFOHFHQWUH %HIRUH SHUIRUPLQJ D SDUDPHWULF VWXG\ WR DQDO\VH LQ GHWDLO WKH EHKDYLRXU RI WKH GHULYHG VROXWLRQ LQ WKH IROORZLQJ VHFWLRQ WKH VWUHVV UDWH DQG VWUDLQ UDWH ILHOGV FRUUHVSRQGLQJWRWKHHLJKWGHIRUPDWLRQPRGHVDUHHODERUDWHG
6WUDLQUDWHDQGVWUHVVUDWHWHQVRUILHOGV
,Q WKLV VHFWLRQ WKH VWUDLQ UDWH DQG VWUHVV UDWH ILHOGV FRUUHVSRQGLQJ WR WKH SUHYLRXVO\ GHULYHG LQFUHPHQWDO GLVSODFHPHQW ILHOGV GXH WR LQFUHPHQWDO QRGDO GLVSODFHPHQWV H DUH GHULYHG IRU WKH HLJKW GHIRUPDWLRQ PRGHV 7KH VWUDLQ UDWHV DUH GHILQHG DFFRUGLQJ WR HT DV εLM = ( X L M + X ML ) ZKHUH WKH VXSHUGRW LQGLFDWHVWKHPDWHULDOWLPHGHULYDWLYHDVGHILQHGLQ6HFWLRQHT 7KH\ FDQEHHODERUDWHGIRUWKHSRODUFRRUGLQDWHV\VWHPDQGSODQHVWUDLQVLWXDWLRQDV
εUU = X U U εθθ =
X U + Xθ θ X − Xθ Xθ U ε]] = DQGεUθ = Uθ + U U
ZKHUH X L LVWKHPDWHULDOWLPHGHULYDWLYHRIWKHLQFUHPHQWDOGLVSODFHPHQW XL GXH WR WKH QRGDO SUHVFULEHG YHORFLW\ H VHH )LJXUH 6XEVWLWXWLQJ WKH VROXWLRQV RI WKHLQFUHPHQWDOGLVSODFHPHQWILHOGVGHULYHGLQHTV WR LQWRHT JLYHV WKH QRUPDOLVHG VWUDLQ UDWH ILHOGV IRU WKH HLJKW GHIRUPDWLRQ PRGHV IRU ν ≠ { } DV PRGH
PRGH
PRGH
PRGH
ε UU, ( Uθ ) H 5
ε UU,, ( Uθ ) H 5
ε UU,,,( Uθ ) H 5
ε UU,9( Uθ ) H 5
=
=
=
, εθθ ( Uθ )
H 5 ,, εθθ ( Uθ )
H 5 ,,, εθθ ( Uθ )
H 5
= FRV ( θ )
=
=
=
ε ,]] ( Uθ ) H 5
ε ,,]] ( Uθ ) H 5 θ ) ε ,,, ]] ( U H 5 ,9 εθθ ( Uθ )
H 5
=
=
=
ε U,θ ( Uθ ) H 5
ε U,,θ ( Uθ ) H 5
ε U,,,θ ( Uθ ) H 5
=
=
=
= − FRV ( θ )
θ ) ε ,9 ]] ( U H 5
=
ε U,9θ ( Uθ ) H 5
= − VLQ ( θ )
,VRWURSLFOLQHDUHODVWLFLW\LQWKHFLUFXODUGRPDLQ
PRGH
ε UU9 ( Uθ ) H 5
9 εθθ ( Uθ )
= VLQ ( θ )
9 ε ]] ( Uθ )
= − VLQ ( θ )
H 5
H 5
=
ε U9θ ( Uθ ) H 5
= FRV ( θ )
PRGH
ε ( Uθ ) 9, UU
H 5
εθθ ( Uθ ) 9,
=
H 5
= −
ε ( Uθ ) 9, ]]
H 5
=
ε ( Uθ ) 9, Uθ
H 5
=
9,, ª − ν º εθθ ( Uθ ) = U « VLQ (θ ) + VLQ ( θ ) » = U ª¬VLQ (θ ) − VLQ ( θ ) º¼ H 5 H 5 ¬ − ν ¼ θ ) ª FRV (θ ) º ε]]9,,( Uθ ) εU9,, θ (U = = U « − + FRV ( θ ) » H 5 H 5 ¬ − ν ¼
PRGH
εUU9,,( Uθ )
9,,, ª − ν º εθθ ( Uθ ) = U « FRV (θ ) − FRV ( θ ) » = U ¬ªFRV (θ ) + FRV ( θ ) ¼º H 5 H 5 ¬ − ν ¼ θ ) ª VLQ (θ ) º ε]]9,,,( Uθ ) εU9,, θ (U = = U « + VLQ ( θ ) » H 5 H 5 ¬ − ν ¼
PRGH
εUU9,,,( Uθ )
7KHVWUHVVUDWHVIRULVRWURSLFOLQHDUHODVWLFLW\DUHGHILQHGDFFRUGLQJWRHT DV σ LM = * ( εLM + ν δ LMεNN ) 1RUPDOLVHG ZLWK UHVSHFW WR * WKH\ FDQ EH HODERUDWHG IRUWKHSRODUFRRUGLQDWHV\VWHPDQGSODQHVWUDLQVLWXDWLRQDV
σ UU *
= ( + ν ) εUU + ν εθθ
σθθ *
= ν εUU + ( + ν ) εθθ
σ ]] *
= ν ( εUU + εθθ ) DQG
σ Uθ
= εUθ *
6XEVWLWXWLQJWKHVROXWLRQVRIWKHVWUDLQILHOGLQWRHT JLYHVWKHQRUPDOLVHG VWUHVVILHOGVIRUWKHHLJKWGHIRUPDWLRQPRGHVIRUν ≠ { } DV PRGH
PRGH
PRGH
PRGH
σ UU, ( Uθ ) * H 5
σ UU,, ( Uθ ) * H 5
σ UU,,,( Uθ ) * H 5
σ UU,9( Uθ ) * H 5
=
=
=
, σ θθ ( Uθ )
* H 5 ,, σ θθ ( Uθ )
* H 5 ,,, σ θθ ( Uθ )
* H 5
= FRV ( θ )
=
=
=
σ ,]] ( Uθ ) * H 5
σ ,,]] ( Uθ ) * H 5 θ ) σ ,,, ]] ( U * H 5
,9 σ θθ ( Uθ )
* H 5
=
=
=
σ U,θ ( Uθ ) * H 5
σ U,,θ ( Uθ ) * H 5
σ U,,,θ ( Uθ ) * H 5
= − FRV ( θ )
=
=
=
θ ) σ ,9 ]] ( U * H 5
=
σ U,9θ ( Uθ ) * H 5
PRGH
σ UU9 ( Uθ ) * H 5
= VLQ ( θ )
9 σ θθ ( Uθ )
* H 5
= − VLQ ( θ )
9 σ ]] ( Uθ )
* H 5
=
σ U9θ ( Uθ ) * H 5
PRGH
= − VLQ ( θ )
= FRV ( θ )
σ ( Uθ ) 9, UU
* H 5
σ θθ ( Uθ ) 9,
=
* H 5
=
− − ν
σ
( Uθ ) =
9, ]]
* H 5
−ν − ν
σ
( Uθ ) =
9, Uθ
* H 5
&+$37(5
ª VLQ (θ ) º σθθ9,,( Uθ ) ª VLQ (θ ) º = U « + VLQ ( θ ) » = U « − VLQ ( θ ) » * H 5 * H 5 ¬ − ν ¼ ¬ − ν ¼ 9,, 9,, ª FRV (θ ) º σ ]] ( Uθ ) ν U VLQ (θ ) σ Uθ ( Uθ ) = = U « − + FRV ( θ ) » − ν * H 5 − ν * H 5 ¬ ¼
PRGH
σ UU9,,( Uθ )
ª FRV (θ ) º σθθ9,,,( Uθ ) ª FRV (θ ) º = U « − FRV ( θ ) » = U « + FRV ( θ ) » * H 5 − − * H 5 ν ν ¬ ¼ ¬ ¼ ª º VLQ σ ]]9,,,( Uθ ) ν U FRV (θ ) σ U9,,, θ θ U ( ) ( ) θ = = U « + VLQ ( θ ) » * H 5 − ν * H 5 ¬ − ν ¼
PRGH
σ UU9,,,( Uθ )
7R YLVXDOLVH WKH VWUDLQ UDWH DQG VWUHVV UDWH ILHOGV WKH SULQFLSDO VWUDLQ UDWH DQG VWUHVVUDWHWHQVRUVDUHFDOFXODWHGDVGHILQHGLQ6HFWLRQIRUWKHVWUHVVUDWHV DQG LQ 6HFWLRQ IRU WKH VWUDLQ UDWHV ERWK DFFRUGLQJ WR HTV DQG )RUWKHSODQHVWUDLQVLWXDWLRQWKHFRPSRQHQWVRIWKHSULQFLSDOVWUDLQUDWHWHQVRU ε DQGWKHRULHQWDWLRQRIWKHSULQFLSDOVWUDLQUDWHV ωε IROORZDV
ε =
εUU + εθθ
§ ε − ε · ± ¨ UU θθ ¸ + εUθ © ¹
ε = DQG WDQ ( ωε ) =
εUθ ε UU − εθθ
$QG IRU WKH FRPSRQHQWV RI WKH SULQFLSDO VWUHVV UDWH WHQVRU σ DQG WKH RULHQWDWLRQRIWKHSULQFLSDOVWUHVVUDWHV ωσ LWIROORZV
σ =
σ UU + σθθ
σ Uθ § σ − σθθ · ± ¨ UU ¸ + σ Uθ σ = ν (σ UU + σθθ ) WDQ ( ωσ ) = σ UU − σθθ © ¹
7KHQRUPDOLVHGSULQFLSDOVWUDLQUDWHVIROORZE\VXEVWLWXWLQJHTV WR LQWRHT )RUWKHHLJKWGHIRUPDWLRQPRGHVWKH\UHDG PRGH
PRGH
PRGH
PRGH
PRGH
PRGH
, ε
H 5 ,, ε
H 5 ,,, ε
H 5 ,9 ε
H 5 9 ε
H 5
ε9, H 5
=
=
=
= ± VLQ ( θ ) = ± FRV ( θ )
=
ε 9, H 5
ε,9 H 5
ε9 H 5
= −
=
=
ε9,
H 5
=
,VRWURSLFOLQHDUHODVWLFLW\LQWKHFLUFXODUGRPDLQ
PRGH
9,, ε
H 5
§ FRV (θ ) · − ν § − ν · U VLQ (θ ) ± U ¨ − FRV ( θ ) ¸ ¸ VLQ (θ ) + ¨ − ν © − ν ¹ © − ν ¹
=
PRGH
ε9,, H 5
=
9,,, ε
H 5
§ VLQ (θ ) · − ν § − ν · U FRV (θ ) ± U ¨ + VLQ ( θ ) ¸ ¸ FRV (θ ) + ¨ − ν © − ν ¹ © − ν ¹
=
ε9,,, H 5
=
7KHQRUPDOLVHGSULQFLSDOVWUHVVUDWHVIROORZE\VXEVWLWXWLQJHTV WR LQWRHT )RUWKHHLJKWGHIRUPDWLRQPRGHVWKH\UHDG PRGH
PRGH
PRGH
PRGH
PRGH
PRGH
PRGH
, σ
* H 5 ,, σ
* H 5 ,,, σ
* H 5 ,9 σ
* H 5 9 σ
* H 5
σ 9, * H 5 9,, σ
* H 5
=
=
=
σ ,9
= ± VLQ ( θ )
* H 5
σ 9
= ± FRV ( θ )
=
=
σ 9, * H 5
U VLQ (θ ) − ν
* H 5
=−
=
=
− ν
σ 9, * H 5
=−
ν − ν
· VLQ (θ ) § FRV (θ ) +¨ −FRV ( θ ) ¸ ( − ν ) © − ν ¹
± U
σ 9,, * H 5
=
PRGH
ν U VLQ (θ ) − ν
9,,, σ
* H 5
=
U FRV (θ ) − ν
· FRV(θ ) § VLQ (θ ) +¨ + VLQ ( θ ) ¸ − ν − ν ( ) © ¹
± U
σ 9,,, * H 5
=
ν U FRV (θ ) − ν
,Q)LJXUHWKHSORWRIWKHQRUPDOLVHGSULQFLSDOVWUDLQUDWHWHQVRUILHOG ε 5 H DQG LQ )LJXUH WKH SORW RI WKH QRUPDOLVHG SULQFLSDO VWUHVV UDWH WHQVRU ILHOG σ 5 ( *H ) IRU ν = LVVKRZQIRUPRGHVDQG)RUWKHILUVWWKUHHPRGHVWKH VWUDLQUDWHVDQGVWUHVVUDWHVDUHHTXDOWR]HUR)RUPRGHVWRWKHVWUDLQUDWHV DQGVWUHVVUDWHVDUHFRQVWDQW&RPSUHVVLRQLVGHQRWHGE\EOXHOLQHVZKLOHWHQVLRQ LVGHQRWHGE\UHGOLQHV )RU PRGH WKH SULQFLSDO VWUHVV UDWHV DQG VWUDLQ UDWHV DUH V\PPHWULF WR WKH YHUWLFDOD[LVDQGDQWL²V\PPHWULFWRWKHKRUL]RQWDOD[LV,QWKHXSSHUSDUWRIWKH
&+$37(5
PRGH 1
PRGH
ν=0.15
1
0.5 y/R
y/R
0.5
ν=0.15
0
−0.5
0
−0.5
−1
−1 −1
−0.5
0 x/R
0.5
1
−1
−0.5
0 x/R
0.5
1
)LJXUH,OOXVWUDWLRQRIWKHVROXWLRQRIWKHQRUPDOLVHGVWUDLQUDWHWHQVRUILHOG ε 5 H IRUWKH GHIRUPDWLRQPRGHVDQGIRU ν = DFFRUGLQJWRHTV WR 5HGOLQHV GHQRWHWHQVLRQEOXHOLQHVGHQRWHFRPSUHVVLRQ
PRGH 1
PRGH 1
ν=0.15
ν=0.15
0.5
y/R
0.5 y/R
σ
0
0
−0.5
−0.5
−1
−1 −1
−0.5
0 x/R
0.5
−1
1
−0.5
0 x/R
0.5
1
)LJXUH,OOXVWUDWLRQRIWKHVROXWLRQRIWKHQRUPDOLVHGSULQFLSDOVWUHVVUDWHWHQVRUILHOG σ 5 ( *H ) IRUWKHGHIRUPDWLRQPRGHVDQGIRU ν = DFFRUGLQJWRHTV DQG 5HGOLQHVGHQRWHWHQVLRQEOXHOLQHVGHQRWHFRPSUHVVLRQ
FLUFOH PDLQO\ WHQVLOH VWUHVVHV LQ KRUL]RQWDO GLUHFWLRQ RFFXU ZLWK D PD[LPXP PDJQLWXGH RI σ 5 ( *H ) = 7KH ORZHU SDUW LV PDLQO\ VXEMHFWHG WR KRUL]RQWDO FRPSUHVVLYH VWUHVVHV ZLWK VDPH PDJQLWXGH 7KH PD[LPXP PDJQLWXGH RI WKH SULQFLSDO VWUDLQ UDWHV LV ε 5 H = ZKLFK RFFXUV DW WKH WRS DV KRUL]RQWDO WHQVLRQ DQG YHUWLFDO FRPSUHVVLRQ DQG DW WKH ERWWRP YLFH YHUVD ,Q WKH FLUFOH FHQWUH VWUHVVHV DQG VWUDLQV DUH ]HUR 7KH SULQFLSDO GLUHFWLRQV RI WKH VWUHVV UDWHV DQG VWUDLQUDWHVDUHVKRZQWRFRLQFLGHDVH[SHFWHGIRULVRWURSLFOLQHDUHODVWLFLW\
,QYDULDQWVDQGVWUDLQUDWHHQHUJ\GLVWULEXWLRQ 7KH VWUDLQ UDWH DQG VWUHVV UDWH LQYDULDQWV FDQ EH FDOFXODWHG DV GHILQHG LQ 6HFWLRQ IRU WKH VWUHVV UDWHV DQG LQ 6HFWLRQ IRU WKH VWUDLQ UDWHV 7KH PDJQLWXGHVRIWKHLVRWURSLFDQGGHYLDWRULFVWUDLQUDWHWHQVRUVLQSULQFLSDOVWUDLQ UDWHVSDFHIRUWKHSODQHVWUDLQVLWXDWLRQIROORZIURPHTV DQG DQG DUHHODERUDWHGLQWHUPVRIWKHSULQFLSDOVWUDLQUDWHFRPSRQHQWVDV
ε(Y ) = ε + ε DQG ε(G ) =
(ε
− ε ) + ε + ε
,VRWURSLFOLQHDUHODVWLFLW\LQWKHFLUFXODUGRPDLQ
,Q )LJXUH WKH FRQWRXU SORWV RI WKH PDJQLWXGHV RI WKH QRUPDOLVHG YROXPHWULF G DQG GHYLDWRULF VWUDLQ UDWHV ε(Y ) 5 H DQG ε( ) 5 H IRU ν = DUH VKRZQ IRU GHIRUPDWLRQPRGHVDQG1RWHWKDWLQFRQWRXUSORWVZKLWHUHJLRQVPD\RFFXULI WKHFRQWRXUOLQHVKDYHDYLVLEOHGLVWDQFHZKLFKPHDQVWKDWWKHJUDGLHQWLVVPDOO 7KH PDJQLWXGHV RI WKH LVRWURSLF DQG GHYLDWRULF VWUHVV UDWH WHQVRUV LQ SULQFLSDO VWUHVVUDWHVSDFHIRUWKHSODQHVWUDLQVLWXDWLRQDUHH[SUHVVHGLQWKHVDPHZD\DV WKH VWUDLQ UDWH WHQVRUV WKXV IROORZ IURP HTV DQG DQG DUH HODERUDWHGLQWHUPVRIWKHSULQFLSDOVWUHVVUDWHFRPSRQHQWVDV
σ (P) =
σ + σ + σ
DQGσ (
G)
=
(σ
− σ ) + (σ − σ ) + (σ − σ )
,Q )LJXUH WKH FRQWRXU SORWV RI WKH PDJQLWXGHV RI WKH QRUPDOLVHG PHDQ DQG P G GHYLDWRULF VWUHVV UDWHV σ ( ) 5 ( *H ) DQG σ ( ) 5 ( *H ) IRU ν = DUH VKRZQ IRU GHIRUPDWLRQPRGHVDQG 7KHVWUDLQUDWHHQHUJ\FDQEHFDOFXODWHGDVGHILQHGLQ6HFWLRQ)RUWKHSODQH VWUDLQVLWXDWLRQDQGLVRWURSLFOLQHDUHODVWLFLW\WKHVWUDLQUDWHHQHUJ\IRULVRWURSLF DQGGHYLDWRULFGHIRUPDWLRQIROORZIURPHTV DQG DV P Y ( LVR : ( ) = σ ( )ε ( ) =
σ + σ + σ ) ( ε + ε )
( σ − σ − σ ) ε + ( σ − σ − σ ) ε GHY P Y DQG: ( ) = σ LMεLM − σ ( )ε ( ) =
(
)
ZKLOH DSSO\LQJ WKH FRD[LDOLW\ RI SULQFLSDO VWUDLQ DQG VWUHVV UDWHV IRU OLQHDU HODVWLFLW\,Q)LJXUHFRQWRXUSORWVRIWKHQRUPDOLVHGYROXPHWULFDQGGHYLDWRULF LVR GHY VWUDLQHQHUJ\ : ( ) 5 *H DQG : ( ) 5 *H IRUν = DUHVKRZQ PRGH PRGH
(
)
(
)
)LJXUH,OOXVWUDWLRQRIWKHQRUPDOLVHGYROXPHWULFWRS DQGGHYLDWRULFERWWRP VWUDLQ (Y ) (G) PDJQLWXGHV ε 5 H DQG ε 5 H IRUGHIRUPDWLRQPRGHVOHIW DQGULJKW IRU ν = DFFRUGLQJWRHT
&+$37(5
PRGH
PRGH
)LJXUH,OOXVWUDWLRQRIWKHQRUPDOLVHGPHDQWRS DQGGHYLDWRULFERWWRP VWUHVVPDJQLWXGHV (P) (G ) σ 5 ( *H ) DQG σ 5 ( *H ) IRUGHIRUPDWLRQPRGHVOHIW DQGULJKW IRU ν = DFFRUGLQJWRHT
PRGH
PRGH
)LJXUH,OOXVWUDWLRQRIWKHQRUPDOLVHGYROXPHWULFWRS DQGGHYLDWRULFULJKW VWUDLQUDWH ( LVR ) ( GHY ) HQHUJ\ : 5 *H DQG : 5 *H IRUGHIRUPDWLRQPRGHVOHIW DQG ULJKW IRU ν = DFFRUGLQJWRHT
(
)
(
)
,VRWURSLFOLQHDUHODVWLFLW\LQWKHFLUFXODUGRPDLQ
3DUDPHWULFVWXG\ 7RLQYHVWLJDWHWKHEHKDYLRXURIWKHVROXWLRQLQWKLVVHFWLRQDSDUDPHWULFVWXG\LV SHUIRUPHG 2QO\ GHIRUPDWLRQ PRGH ZLOO EH FRQVLGHUHG KHUH DV IRU PRGHVWR RQO\ XQLTXH VROXWLRQV RFFXU DV PHQWLRQHG EHIRUH LQ 6HFWLRQ DQG IRU PRGH WKH VDPH EHKDYLRXU RI WKH VROXWLRQ LV RFFXUULQJ DV IRU PRGH 7KH SDUDPHWULF VWXG\ LV FDUULHG RXW IRU D ZLGH SDUDPHWHU UDQJH RI 3RLVVRQ·V UDWLR 8VXDOO\ IRU OLQHDU HODVWLFLW\ 3RLVVRQ·V UDWLR ν EHWZHHQ DQG RFFXU +RZHYHU LQ HTXLYDOHQW OLQHDU HODVWLFLW\ YDOXHV RI 3RLVVRQ·V UDWLR ν EHWZHHQ DQG FDQ RFFXUZKHQDSSOLHGWRGLODWDQWJUDQXODUPDWHULDOVVHHIRUH[DPSOH0ROHQNDPS D DV HODERUDWHG LQ 6HFWLRQ VHH )LJXUH 7KLV LV DOVR WKH UDQJH RI VSHFLDO LQWHUHVW WR VWXG\ WKH VWDELOLW\ RI WKH VROXWLRQ DQG WKHUHIRUH VSHFLDO DWWHQWLRQ LV JLYHQ WR WKLV SDUDPHWHU UDQJH 7KH SDUDPHWULF VWXG\ LV FDUULHG RXW IRU GHIRUPDWLRQ PRGH ZLWK D VWHS²VL]H RI IRU YDOXHV RI 3RLVVRQ·V UDWLR RI DQG $V IRU QR XQLTXH VROXWLRQ H[LVWV WZR YDOXHVFORVHDERYHLH DQGEHORZLH DUHVWXGLHG ,Q)LJXUHWKHSORWRIWKHILHOGRIQRUPDOLVHGLQFUHPHQWDOGLVSODFHPHQWV X H LVJLYHQ1RWHWKDWWKHVFDOLQJIDFWRUGLIIHUVIRUWKHYDULRXVYDOXHVRIν IRUDFOHDU YLVLELOLW\ RI WKH YHFWRUV ,Q WKH UDQJH < ν < WKH PD[LPXP LQFUHPHQWDO GLVSODFHPHQWRFFXUVDWWKHFLUFOHFHQWUHZKLOHIRUYDOXHVRXWVLGHWKLVUDQJHWKH ν=0.45
1
−0.5
−0.5
0 x/R
0.5
1
−1 −1
ν=0.76
1
0.5
−0.5
0 x/R
0.5
1
−1
ν=0.9
1
y/R
0.5
0
−0.5
0
−0.5
0 x/R
0.5
1
0 x/R
0.5
1
0 x/R
0.5
1
ν=1.05
0
−0.5
−1
−1 −1
−0.5
0.5
−0.5
−1
0
−0.5
−1 −1
y/R
0
−0.5
−1
ν=0.74
0.5 y/R
0
1
1
0.5 y/R
y/R
0.5
ν=0.6
y/R
1
−1
−0.5
0 x/R
0.5
1
−1
−0.5
)LJXUH)LHOGRIQRUPDOLVHGLQFUHPHQWDOGLVSODFHPHQWV X H IRUGLVSODFHPHQWPRGHIRU ν = DQGSORWWHGZLWKGLIIHUHQWVFDOLQJIDFWRUV
&+$37(5
PD[LPXP RFFXUV DW WKH QRGHV 1RWH WKH ULJRURXV VZLWFK LQ GLUHFWLRQ RI WKH GLVSODFHPHQWV IURP ν = WR ν = :KHUHDV IRU ν = WKH LQFUHPHQWDO GLVSODFHPHQW LQ WKH FHQWUH LV GLUHFWHG YHUWLFDOO\ XSZDUGV ZLWK D PDJQLWXGH RI X H = DW ν = WKH GLUHFWLRQ FKDQJHV WR YHUWLFDOO\ GRZQZDUGV ZLWK D PDJQLWXGH RI X H = $ORQJ WKH ERXQGDU\ IRU DOO YDOXHV RI ν WKH LPSOLHG KRXUJODVV²OLNHERXQGDU\FRQGLWLRQFDQEHUHFRJQLVHG 7R VXPPDULVH WKH ILQGLQJV DERYH LQ )LJXUH WKH QRUPDOLVHG LQFUHPHQWDO GLVSODFHPHQWLQWKHFLUFOHFHQWUHLVSORWWHGDJDLQVW3RLVVRQ·VUDWLR ν LQWKHUDQJH WR)RUPRGHWKHPDJQLWXGHRIWKHQRUPDOLVHGLQFUHPHQWDOGLVSODFHPHQW LQWKHFLUFOHFHQWUHFDQEHH[SUHVVHGIROORZLQJIURPHT DV XFHQWUH = H − ν
7KH LQFUHPHQWDO GLVSODFHPHQW LQ WKH FLUFOH FHQWUH LV RULHQWHG DOZD\V LQ WKH \ − GLUHFWLRQ YHUWLFDO 7KH FRPSRQHQW LQ [ − GLUHFWLRQ KRUL]RQWDO LV ]HUR 7KHUHIRUH SRVLWLYH YDOXHV LQGLFDWH XSZDUG LQFUHPHQWDO GLVSODFHPHQW QHJDWLYH YDOXHVLQGLFDWHGRZQZDUGLQFUHPHQWDOGLVSODFHPHQW XFHQWUH H
ν
)LJXUH1RUPDOLVHGLQFUHPHQWDOGLVSODFHPHQW XFHQWUH H LQWKHFLUFOHFHQWUHIRUν EHWZHHQ DQG3RVLWLYHYDOXHVLQGLFDWHYHUWLFDOO\XSZDUGGLVSODFHPHQWQHJDWLYHYDOXHV LQGLFDWHYHUWLFDOO\GRZQZDUGGLVSODFHPHQW
,VRWURSLFOLQHDUHODVWLFLW\LQWKHFLUFXODUGRPDLQ
$VPHQWLRQHGEHIRUHLWFDQEHREVHUYHGWKDWDURXQG ν = WKHGLUHFWLRQRIWKH LQFUHPHQWDO GLVSODFHPHQW FKDQJHV ULJRURXVO\ 7KLV LQGLFDWHV WKH PDWKHPDWLFDO LQVWDELOLW\ RI WKH VROXWLRQ DURXQG WKH SRLQW ν = )RU D VPDOO FKDQJH LQ WKH LQSXW SDUDPHWHU ν D ODUJH FKDQJH LQ WKH UHVXOW LV REVHUYHG +RZHYHU DURXQG ν = DQG ν = D VPRRWK FRXUVH RI WKH LQFUHPHQWDO GLVSODFHPHQWV FDQ EH REVHUYHG,QWKHVHFDVHVWKHOLPLWYDOXHVIRUWKHLQFUHPHQWDOGLVSODFHPHQWVIURP ERWK VLGHV DUH FRQYHUJLQJ DQG WKH VROXWLRQ LV VWDEOH DURXQG WKHVH WZR SRLQWV 0DWKHPDWLFDOO\ERWKDVSHFWVFDQEHH[SUHVVHGDV X ν ↑ = X ν ↓ X ν ↑ = X ν ↓ DQG X ν ↑ ≠ X ν ↓
,Q )LJXUH WKH FRQWRXU SORWV RI WKH QRUPDOLVHG WRWDO VWUDLQ UDWH HQHUJ\ WRW : ( ) 5 *H WKH QRUPDOLVHG VWUDLQ UDWH HQHUJ\ GXH WR LVRWURSLF GHIRUPDWLRQ LVR ( : ) 5 *H DQG WKH QRUPDOLVHG VWUDLQ UDWH HQHUJ\ GXH WR GHYLDWRULF GHY GHIRUPDWLRQ : ( ) 5 *H DUH JLYHQ LQ WKH OHIW WKH PLGGOH DQG WKH ULJKW
( (
) )
(
)
FROXPQUHVSHFWLYHO\ LVR 7KH FRQWRXU OLQHV RI WKH LVRWURSLF VWUDLQ UDWH HQHUJ\ : ( ) 5 *H VKRZQ LQ WKH PLGGOH FROXPQ RI )LJXUH UXQ KRUL]RQWDOO\ 7KH LVRWURSLF VWUDLQ UDWH HQHUJ\UDWHLVGLUHFWO\UHODWHGWRWKHYROXPHWULFVWUDLQPHDVXUH$WWKHKRUL]RQWDO FHQWUH²OLQH LW LV DOZD\V ]HUR 7KH LVRWURSLF VWUDLQ UDWH HQHUJ\ LV SRVLWLYH IRU ν < ZKLOH IRU ν > LW LV QHJDWLYH LQ WKH ZKROH ILHOG )RU ν = DQG WKHYDOXHVRIWKHVWUDLQUDWHHQHUJ\DWWKHWRSDQGERWWRPRIWKHFLUFOHWHQG WRZDUGVLQILQLW\LQGLFDWLQJWKHLQVWDELOLW\DURXQGWKLVSRLQW1RVZLWFKLQVLJQLV REVHUYHGDURXQGν = 7KHPD[LPXPDQGPLQLPXPYDOXHVDUHDOZD\VDWWKH WRS DQG WKH ERWWRP RI WKH FLUFOH 7KH GHYLDWRULF VWUDLQ UDWH HQHUJ\ GHY : ( ) 5 *H VKRZQ LQ WKH ULJKW FROXPQ RI )LJXUH LV GLUHFWO\ UHODWHG WR WKHGHYLDWRULFVWUDLQUDWHPHDVXUHDQGUHPDLQVSRVLWLYHIRUDOOYDOXHVRI ν LQWKH ZKROH ILHOG 7KHUHIRUH WKH FRQWRXU OLQHV DUH DOPRVW KRUL]RQWDOO\ GLVWULEXWHG IRU ν < 5HDFKLQJ ν = WKHVH WXUQ WR EH FRQFHQWULF FLUFOHV )RU ν > WKH GLVWULEXWLRQWXUQVWREHYHUWLFDO7KHPD[LPXPDQGPLQLPXPYDOXHVDUHDWWKH WRSDQGERWWRPRIWKHFLUFOHIRU ν < DQGDWWKHOHIWDQGULJKWIRU ν > ,Q WKHFHQWUHWKHGHYLDWRULFVWUDLQUDWHHQHUJ\LVDOZD\V]HUR WRW 7KHWRWDOVWUDLQUDWHHQHUJ\ : ( ) 5 *H VKRZQLQWKHOHIWFROXPQRI)LJXUH LV WKH VXP RI ERWK WKH LVRWURSLF DQG GHYLDWRULF SDUWV )RU ν = WKH LVRWURSLF SDUW LV RQO\ D IUDFWLRQ RI WKH GHYLDWRULF FRQWULEXWLRQ $URXQG ν = WKHPD[LPXPDEVROXWHLVRWURSLFVWUDLQUDWHHQHUJ\SHUXQLWRIYROXPHLVVHYHUDO WLPHV ODUJHU WKDQ WKH FRUUHVSRQGLQJ PD[LPXP GHYLDWRULF VWUDLQ UDWH HQHUJ\ ZKLOHWKH\DUHRSSRVLWHLQVLJQ7KHUHIRUHWKHWRWDOVWUDLQUDWHHQHUJ\GRHVWHQG WR LQILQLW\ DW ν = EXW OHVV FOHDU WKDQ WKH LVRWURSLF VWUDLQ UDWH HQHUJ\ 7KH WRWDO VWUDLQ UDWH HQHUJ\ LV GLVWULEXWHG KRUL]RQWDOO\ IRU ν < WXUQLQJ WR FRQFHQWULF KRUL]RQWDO HOOLSVHV DW )RU ODUJHU YDOXHV WKH VWUDLQ UDWH HQHUJ\ LV GLVWULEXWHG ¶VWDU²VKDSHG· ZLWK PLQLPXP QHJDWLYH YDOXHV DW WKH WRS DQG WKH ERWWRPDQGPD[LPXPSRVLWLYH YDOXHVDWWKHOHIWDQGWKHULJKW$WWKHFHQWUHWKH WRWDOVWUDLQUDWHHQHUJ\LVHTXDOWR]HUR
(
(
)
(
)
)
&+$37(5
)LJXUH1RUPDOLVHGORFDOWRWDOOHIW LVRWURSLFPLGGOH DQGGHYLDWRULFULJKW VWUDLQUDWH (WRW ) ( LVR ) ( GHY ) 5 *H : 5 *H DQG : 5 *H HQHUJ\GLVWULEXWLRQV : UHVSHFWLYHO\IRUν = DQGDFFRUGLQJWRHT
(
)
(
)
(
)
,VRWURSLFOLQHDUHODVWLFLW\LQWKHFLUFXODUGRPDLQ
)LJXUHFRQWLQXHG 1RUPDOLVHGORFDOWRWDOOHIW LVRWURSLFPLGGOH DQGGHYLDWRULFULJKW (WRW ) ( LVR ) 5 *H : 5 *H DQG VWUDLQUDWHHQHUJ\GLVWULEXWLRQV : ( GHY ) : 5 *H UHVSHFWLYHO\IRUν = DQGDFFRUGLQJ WRHT
(
(
)
)
(
)
7RHYDOXDWHWKHDERYH²PHQWLRQHGILQGLQJVQH[WWKHLQWHJUDWHGVWUDLQUDWHHQHUJ\ : LV LQYHVWLJDWHG DV ZHOO ,W LV FDOFXODWHG E\ LQWHJUDWLQJ WKH ORFDO VWUDLQ UDWH HQHUJ\ : RYHUWKHZKROHFLUFXODUGRPDLQDVIROORZV := π 5
π 5
θ ³ ³ :UGUG
(
)
ZKLFKFDQEHQRUPDOLVHGDV :5 *H 7KHQRUPDOLVHGLQWHJUDWHGWRWDOVWUDLQ UDWH HQHUJ\ :WRW 5 *H LV FRQWULEXWHG E\ WKH LVRWURSLF SDUW :LVR 5 *H DQG WKH GHYLDWRULF SDUW :GHY 5 *H )LJXUH VKRZV WKH QRUPDOLVHG LQWHJUDWHGVWUDLQUDWHHQHUJ\YHUVXV3RLVVRQ·VUDWLRν WRYDOLGDWHWKHEHKDYLRXURI WKHVROXWLRQDURXQGWKHSRLQWVν = $URXQGν = DOOWKUHHYDOXHVWHQG DV\PSWRWLFDOO\ WR SOXV RU PLQXV LQILQLW\ UHVSHFWLYHO\ FRQILUPLQJ WKH PDWKH² PDWLFDO LQVWDELOLW\ DFFRUGLQJ WR WKH GHILQLWLRQ LQ 6HFWLRQ DURXQG WKLV SRLQW $W ν = DQG ν = WKH OLPLWV IURP DERYH DQG EHORZ WKHVH PDJQLWXGHV RI WKH 3RLVVRQ·VUDWLR ν UHDFKWKHVDPHYDOXHRIWKHWRWDOVWUDLQHQHUJ\7KHVROXWLRQLV FRQWLQXRXV WKHUH LQGLFDWLQJ WKH PDWKHPDWLFDO VWDELOLW\ DURXQG WKLV SRLQW 7KH QRUPDOLVHG LQWHJUDWHG GHYLDWRULF VWUDLQ UDWH HQHUJ\ LV SRVLWLYH LQ WKH ZKROH SDUDPHWHU UDQJH RI ν ZKHUHDV WKH QRUPDOLVHG LQWHJUDWHG LVRWURSLF VWUDLQ UDWH HQHUJ\ LV SRVLWLYH RQO\ IRU ν < )RU DOO GHIRUPDWLRQ PRGHV WKH DQDO\WLF H[SUHVVLRQV RI WKH QRUPDOLVHG LQWHJUDWHG VWUDLQ UDWH HQHUJ\ LQ WKH FLUFXODU GRPDLQFDQEHGHWHUPLQHGDV
(
)
(
)
(
)
PRGH
: WRW, = * ( H 5 )
PRGH
: WRW,, = * ( H 5 )
PRGH
: WRW,,, = * ( H 5 )
&+$37(5
PRGH
: WRW,9 = * ( H 5 )
PRGH
: WRW9 = * ( H 5 )
PRGH
: WRW9, = − ν * ( H 5 )
PRGH
( − ν ) : WRW9,, = − ν * ( H 5 )
PRGH
( − ν ) : WRW9,,, = − ν * ( H 5 )
7KH H[SUHVVLRQV DUH FRPSDUDEOH WR WKH HLJHQYDOXHV RI WKH HOHPHQW VWLIIQHVV PDWUL[ IRXQG E\ 0ROHQNDPS D IRU WKH LVRSDUDPHWULF IRXU²QRGH LVRWURSLF OLQHDUHODVWLFVTXDUHHOHPHQW : * ( H 5 )
:WRW :LVR :GHY
ν
(
)
*H DVDIXQFWLRQRIν )LJXUH1RUPDOLVHGLQWHJUDWHGWRWDOVWUDLQUDWHHQHUJ\ :WRW 5 VSOLWXSLQWRGHYLDWRULFSDUW :GHY 5 *H DQGLVRWURSLFSDUW :LVR 5 *H
(
)
(
)
,VRWURSLFOLQHDUHODVWLFLW\LQWKHFLUFXODUGRPDLQ
: WRW * ( H 5 )
θ = R
θ = R θ = R
ν
(
)
)LJXUH1RUPDOLVHGORFDOWRWDOVWUDLQUDWHHQHUJ\ :WRW 5 *H DVDIXQFWLRQRIν DWWKH ERXQGDU\IRUGLIIHUHQWYDOXHVRIWKHWDQJHQWLDODQJOH θ
7KH QRUPDOLVHG ORFDO VWUDLQ UDWH HQHUJ\ LV WKH ODUJHVW LQ DEVROXWH WHUPV DOZD\V DORQJ WKH ERXQGDU\ 7KHUHIRUH LQ )LJXUH WKH ORFDO YDOXH RI WKH QRUPDOLVHG WRWDO VWUDLQ UDWH HQHUJ\ DW WKH ERXQGDU\ LV VKRZQ IRU VHYHUDO YDOXHV RI WKH WDQJHQWLDO DQJOH θ ,W FDQ EH VHHQ WKDW IRU WKH ILUVW WLPH D QHJDWLYH VWUDLQ UDWH HQHUJ\RFFXUVIRUDYDOXHRI3RLVVRQ·VUDWLRRIDSSUR[LPDWHO\ν
&RQFOXVLRQ ,W FDQ EH FRQILUPHG LQ DJUHHPHQW ZLWK 0ROHQNDPS WKDW WKH KRXUJODVV GHIRUPDWLRQ PRGHV DUH WKH RQO\ RQHV OHDGLQJ WR LQVWDEOH DQG QRQ²XQLTXH VROXWLRQV+RZHYHUWKHUDQJHLQZKLFKVWDEOHVROXWLRQVFDQEHDFKLHYHGKDVEHHQ H[WHQGHG IRU WKH FLUFXODU GRPDLQ ZLWK WKH DQDO\WLFDO DSSURDFK DV SUHVHQWHG LQ WKLV FKDSWHU ZKHQ FRPSDUHG WR WKH QXPHULFDO VROXWLRQ IRU WKH UHFWDQJXODU GRPDLQ 7R FRPSDUH WKH UHVXOWV GHVFULEHG LQ WKLV FKDSWHU ZLWK WKH UHVXOWV REWDLQHG E\ 0ROHQNDPS D WKH VWUDLQ UDWH HQHUJ\ LQWHJUDWHG RYHU WKH ZKROH GRPDLQ ZDV FDOFXODWHG 7KH VWUDLQ UDWH HQHUJ\ LV FORVHO\ UHODWHG SURSRUWLRQDO WR WKH HLJHQYDOXHV RI WKH VWLIIQHVV PDWUL[ 7KH YDULDWLRQ RI WKH VWUDLQ UDWH HQHUJ\ DJDLQVW 3RLVVRQ·V UDWLR ZDV JLYHQ LQ )LJXUH ,Q WKLV ILJXUH D YHUWLFDO DV\PSWRWH FDQ EH LGHQWLILHG DW ν = 7KH FRXUVH RI WKH JUDSK LQ )LJXUH
&+$37(5
IROORZVFORVHO\WKHJUDSKLQ)LJXUH$OWKRXJKXVLQJWKHDQDO\WLFDODSSURDFK WKHUH DUH QR GLYHUJLQJ VROXWLRQV RFFXUULQJ LQ WKH DSSUR[LPDWH SDUDPHWHU UDQJH EHWZHHQDQGDVWKH\ZHUHREVHUYHGZLWKWKHQXPHULFDODSSURDFKIRUWKH UHFWDQJXODUGRPDLQ )RUWKHFLUFXODUGRPDLQLWLVVKRZQDQDO\WLFDOO\WKDWQRQ²XQLTXHVROXWLRQVH[LVW LI DQG RQO\ LI 3RLVVRQ·V UDWLR ν LV HTXDO WR RU IRU WKH WZR KRXUJODVV ERXQGDU\FRQGLWLRQV)RUDOORWKHUGHIRUPDWLRQPRGHVQRQ²XQLTXHVROXWLRQVH[LVW LI DQG RQO\ LI 3RLVVRQ·V UDWLR HTXDOV RU 7KH VROXWLRQ LV VKRZQ WR EH PDWKHPDWLFDOO\ XQVWDEOH DURXQG )RU DOO RWKHU YDOXHV RI 3RLVVRQ·V UDWLR WKH VROXWLRQ LV PDWKHPDWLFDOO\ VWDEOH 7KH FRPSOHWH DQDO\WLFDO VROXWLRQ LV JLYHQ IRU WKHZKROHSDUDPHWHUUDQJHLQWHUPVRIGLVSODFHPHQWVIRUDOOGHIRUPDWLRQPRGHV 6WUDLQDQGVWUHVVILHOGFDQEHGHULYHGWKHUHIURP 7KH SDUDPHWHU UDQJH IRU ZKLFK DFFXUDWH VROXWLRQV FDQ EH DFKLHYHG IRU WKH FLUFXODU GRPDLQ LV HQODUJHG FRPSDUHG WR WKH QXPHULFDO UHVXOWV IRU WKH UHFWDQJXODUGRPDLQ ,W PD\ EH QRWHG WKDW IRU QXPHULFDO DSSOLFDWLRQV WKH VROXWLRQV FORVH WR 3RLVVRQ·V UDWLR RI DQG DUH VWDEOH 7KDW PHDQV WKDW ZKLOH DSSURDFKLQJ WKHVH YDOXHV WKHLUXSSHUDQGORZHUOLPLWVDUHHTXDODQGPD\EHWUHDWHGDVLIXQLTXHVROXWLRQV IRUWKHVHSRLQWVH[LVW2QWKHRWKHUKDQGIRU3RLVVRQ·VUDWLRRI WKHVROXWLRQLV PDWKHPDWLFDOO\ XQVWDEOH DQG WKH XSSHU DQG ORZHU OLPLWV WHQG WR SOXV RU PLQXV LQILQLW\ UHVSHFWLYHO\ 7KDW PHDQV WKDW DURXQG WKLV YDOXH LW LV H[SHFWHG WKDW QXPHULFDO DSSOLFDWLRQV VXIIHU DV ZHOO IURP QXPHULFDO PDWKHPDWLFDO LQVWDELOLWLHV6R²FDOOHG¶ORFNLQJ·RFFXUVDVWKHWDQJHQWPRGDOVWLIIQHVVDSSURDFKHV LQILQLW\
&+$37(5 0RKU²&RXORPEHODVWR²SODVWLFLW\LQFOXGLQJKDUGHQLQJ LQWKHFLUFXODUGRPDLQ
$ VROXWLRQ SURFHGXUH IRU WKH SODQH VWUDLQ ERXQGDU\ YDOXH SUREOHP LQ WHUPV RI GLVSODFHPHQWV LV SURSRVHG IRU WKH FDVH RI 0RKU²&RXORPE HODVWR²SODVWLFLW\ LQ JHQHUDO VWUHVV VSDFH LQFOXGLQJ KDUGHQLQJ DQG VRIWHQLQJ IRU WKH FLUFXODU GRPDLQ 7KH ERXQGDU\ YDOXH SUREOHP FRQVLVWV RI WZR SDUWV WKH V\VWHP RI SDUWLDO GLIIHUHQWLDOHTXDWLRQVDQGDQDSSURSULDWHVHWRIERXQGDU\FRQGLWLRQV7KHV\VWHP RI SDUWLDO GLIIHUHQWLDO HTXDWLRQV LV GHULYHG IRU WKH FDVH RI SODQH VWUDLQ 0RKU² &RXORPE HODVWR²SODVWLFLW\ LQFOXGLQJ KDUGHQLQJ LQ JHQHUDO VWUHVV VSDFH LQ D FLUFXODU F\OLQGULFDO FRRUGLQDWH V\VWHP LQ 6HFWLRQ 7KH ERXQGDU\ FRQGLWLRQV RI'LULFKOHW²W\SHIRUWKHFLUFXODUGRPDLQDUHJLYHQLQ6HFWLRQVDQG
'HILQLWLRQRIERXQGDU\YDOXHSUREOHP
7KH ERXQGDU\ YDOXH SUREOHP FRQVLVWV RI WKH ILHOG HTXDWLRQ RI HTXLOLEULXP DV GHULYHG LQ 6HFWLRQ DQG WKH ERXQGDU\ FRQGLWLRQV DV GHULYHG LQ 6HFWLRQV DQG 7KH ERXQGDU\ YDOXH SUREOHP LV GHILQHG LQ WKH RSHQ FLUFXODU GRPDLQ Ω& ≤ U < 5 IRU 5 ∈ \ DQG ≤ θ < π ZLWKRXWHUERXQGDU\ ∂Ω& IRU U = 5
)LHOGHTXDWLRQV
,Q SRODU FRRUGLQDWH GHVFULSWLRQ WKH ILHOG HTXDWLRQ RI HTXLOLEULXP IRU 0RKU² &RXORPEHODVWR²SODVWLFLW\LQFOXGLQJKDUGHQLQJDVGHULYHGLQHT UHDGV
&+$37(5
α(θ ) U XU UU + α (θ ) XUθθ + α (θ ) U XU Uθ + α (θ ) U Xθ UU + α (θ ) Xθ θθ + α (θ ) U Xθ Uθ + ° + α(θ ) U XU U + α (θ ) XUθ + α (θ ) U Xθ U + α(θ ) Xθ θ + α(θ ) XU + α(θ ) Xθ = °° ® ° β(θ ) U XU UU + β(θ ) XUθθ + β(θ ) U XU Uθ + β(θ ) U Xθ UU + β(θ ) Xθ θθ + β (θ ) U Xθ Uθ + ° + β(θ ) U XU U + β(θ ) XUθ + β(θ ) U Xθ U + β(θ ) Xθ θ + β(θ ) XU + β(θ ) Xθ = °¯ LQZKLFKLQWKHJHQHUDOFDVHLHLQJHQHUDOVWUHVVVSDFH DOO α L βL ≠ 7KHFRHIIL² FLHQWV α L DQG βL IRU WKH FLUFXODU GRPDLQ DUH GHILQHG LQ HTV DQG $ FRPPDLQGLFDWHVSDUWLDOGLIIHUHQWLDWLRQZLWKUHVSHFWWRWKHPHQWLRQHGFRRUGLQDWH GLUHFWLRQ7KHFRPSRQHQWVRIWKHGLVSODFHPHQWYHFWRU ( XU Xθ ) ∈ \ GHSHQGRQWKH FRRUGLQDWHGLUHFWLRQV U DQG θ 7KHFRHIILFLHQWV α L ∈ \ DQG βL ∈ \ GHSHQGRQWKH ILYH LQGHSHQGHQW SDUDPHWHUV RI WKH DSSOLHG PDWHULDO PRGHO RI 0RKU²&RXORPE HODVWR²SODVWLFLW\LH3RLVVRQ·VUDWLR ν QRUPDOLVHGKDUGHQLQJPRGXOXV + DQJOH RI LQWHUQDO IULFWLRQ ϕ DQJOH RI GLODWDQF\ ψ DQG WKH LQLWLDO SULQFLSDO VWUHVV GLUHFWLRQ Ξ 7KH PDWHULDO SDUDPHWHUV DUH FRQVLGHUHG WR EH FRQVWDQW LQVLGH WKH GRPDLQ7KHQWKHFRHIILFLHQWV α L DQG βL DUHFRQVWDQWZLWKUHVSHFWWRWKHPDWHULDO SDUDPHWHUV+RZHYHUWKHGHSHQGHQF\RQWKHWDQJHQWLDODQJOH θ UHPDLQV
%RXQGDU\FRQGLWLRQV
7KHERXQGDU\FRQGLWLRQVDVGHULYHGLQ6HFWLRQVDQGUHDGVXPPDULVHG 3UHVFULEHGIXQFWLRQVRQWKHERXQGDU\ ∂Ω& DFFRUGLQJWRHT
XU ( 5θ ) = ϕU (θ ) DQGXθ ( 5θ ) = ϕθ (θ )
%RXQGHGQHVVDWWKHRULJLQDFFRUGLQJWRHT XU ( θ ) < ∞
XU U ( θ ) < ∞
Xθ ( θ ) < ∞ DQG Xθ U ( θ ) < ∞
3HULRGLFLW\FRQGLWLRQVDFFRUGLQJWRHTV DQG
XU ( U ) = XU ( Uπ ) DQGXUθ ( U ) = XUθ ( Uπ )
Xθ ( U ) = Xθ ( Uπ ) DQGXθ θ ( U ) = Xθ θ ( Uπ )
+HUHZLWKWKHERXQGDU\YDOXHSUREOHPIRU0RKU²&RXORPEHODVWR²SODVWLFLW\LQWKH FLUFXODUGRPDLQLVIXOO\GHILQHG
&RPSDULVRQZLWKVROXWLRQSURFHGXUHIRUOLQHDUHODVWLFLW\
,Q RUGHU WR HYDOXDWH WKH DSSOLHG VROXWLRQ SURFHGXUH IRU 0RKU²&RXORPE HODVWR² SODVWLFLW\ WKH FKRVHQ DSSURDFK LV FRPSDUHG WR WKH FDVH RI OLQHDU HODVWLFLW\ DV HODERUDWHG LQ &KDSWHU &RQVLGHU HT )RU WKH VSHFLDO FDVH RI OLQHDU HODVWLFLW\ WKH 3'(V FDQ HDVLO\ EH UHGXFHG E\ HYDOXDWLQJ WKH FRHIILFLHQWV α L DQG βL DFFRUGLQJWR$SSHQGL[$7KHQLWIROORZVIURPHT
0RKU²&RXORPEHODVWR²SODVWLFLW\LQFOXGLQJKDUGHQLQJLQWKHFLUFXODUGRPDLQ
° α U XU UU + α XUθθ + α U Xθ Uθ + α U XU U + α Xθ θ + α XU = ® °¯ β U XU Uθ + β U Xθ UU + β Xθ θθ + β XUθ + β U Xθ U + β Xθ =
,W FDQ EH FRQFOXGHG WKDW WKH HTXDWLRQV RFFXUULQJ LQ WKH VROXWLRQ SURFHGXUH GHYHORSHGIRU0RKU²&RXORPEHODVWR²SODVWLFLW\SHUIHFWO\UHGXFHWRWKHVSHFLDOFDVH RIOLQHDUHODVWLFLW\DVJLYHQE\HT 7KHERXQGDU\FRQGLWLRQVDUHLGHQWLFDOIRU ERWKFDVHVDVZHOO+RZHYHUWKHGLIIHUHQFHVEHWZHHQERWKVROXWLRQSURFHGXUHVDUH VLJQLILFDQW)RUOLQHDUHODVWLFLW\WKHFRHIILFLHQWV α L DQG βL DUHLQGHSHQGHQWRIWKH FRRUGLQDWH GLUHFWLRQ θ DQG IXUWKHU RQO\ GHSHQG RQ 3RLVVRQ·V UDWLR ν )XUWKHU² PRUH LW FDQ EH VHHQ WKDW IRU OLQHDU HODVWLFLW\ LQ ERWK HTXDWLRQV RI HT GLIIHUHQWLDOV ZKLFK RFFXU LQ RQH RI WKH HTXDWLRQV GR QRW RFFXU LQ WKH RWKHU RQH DQGYLFHYHUVD$OODVSHFWVOHDGWRDPRUHVWUDLJKWIRUZDUGVROXWLRQSURFHGXUHIRU HODVWLFLW\
)RXULHUVHULHVDSSURDFK
&RQVLGHU WKH V\VWHP RI SDUWLDO GLIIHUHQWLDO HTXDWLRQV GHILQHG LQ HT $ VROXWLRQSURFHGXUHLVSURSRVHGLQYROYLQJD)RXULHUVHULHVDSSURDFKFRPSDUDEOHWR WKH PHWKRG SURSRVHG LQ WKH SUHYLRXV FKDSWHU IRU OLQHDU HODVWLFLW\ 7KH VROXWLRQ KDVWREH π − SHULRGLFLQ θ 2QO\UHDOVROXWLRQVDUHFRQVLGHUHG7KHQWKHVROXWLRQ KDVWREHRIWKHIRUPRIDIXOO)RXULHUVHULHVLHDQLQILQLWHVXPRIVLQHDQGFRVLQH IXQFWLRQV ZLWK VXPPDWLRQ ZLWK UHVSHFW WR WKH LQGLFHV Q DQG P IURP ]HUR WR LQILQLW\ VHH HJ 6WUDXVV 7KHUHIRUH IRU WKH GLVSODFHPHQWV LQ UDGLDO GLUHFWLRQOHW ∞ X U ( U θ ) = D( U ) + ¦ ª¬DQ ( U ) FRV ( Qθ ) + EQ ( U ) VLQ ( Qθ ) º¼ Q =
$QGIRUWKHGLVSODFHPHQWVLQWDQJHQWLDOGLUHFWLRQOHW Xθ ( Uθ ) =
∞ F( U ) + ¦ ª¬FP( U ) FRV ( Pθ ) + GP( U ) VLQ ( Pθ ) º¼ P =
,Q ERWK VHULHV WKH LQGLFHV FRYHU WKH UDQJH Q P = ! 1RWH WKDW WKH FRHIILFLHQWV RI ERWK )RXULHU VHULHV DQ ( U ) EQ ( U ) F P ( U ) DQG G P ( U ) DUH QRW FRQVWDQW EXW IXQFWLRQV RI WKH LQGHSHQGHQW YDULDEOH U )XUWKHUPRUH LW LV QRWHG WKDWIRU Q P = RQO\WKHFRHIILFLHQWV D DQG F QHHGWREHFRQVLGHUHGVHSDUDWHO\ DV WKH\ DUH PXOWLSOLHG E\ FRV ( Qθ ) = FRV ( Pθ ) = IRU Q P = 7KH FRHIILFLHQWV E DQG G GR QRW RFFXU LQ HTV DQG DV WKH\ DUH PXOWLSOLHG E\ VLQ ( Qθ ) = VLQ ( Pθ ) = IRU Q P = ,Q WKH IROORZLQJ WKH DVVXPHG VROXWLRQ LQ HTV DQG LV VXEVWLWXWHG LQWR WKHILUVWHTXDWLRQRIWKHV\VWHPLQHT DQGHODERUDWHGLQGHWDLOWRGHULYHWZR HTXDWLRQVIRUWKHGHWHUPLQDWLRQRIWKHIRXUXQNQRZQFRHIILFLHQWV DQ EQ F P DQG G P IRU Q P = ! $IWHUZDUGV IRU WKH VHFRQG HTXDWLRQ RI WKH V\VWHP LQ
&+$37(5
HT WKHVDPHSURFHGXUHFDQEHIROORZHGZKLOHUHSODFLQJ αL ·VE\ βL ·VOHDGLQJ WR WZR DGGLWLRQDO HTXDWLRQV +RZHYHU WKH HODERUDWLRQ RI WKH VHFRQG HTXDWLRQ LV QRWJLYHQLQGHWDLO 7KH JHQHUDO VROXWLRQ JLYHQ LQ HTV DQG LV VXEVWLWXWHG LQWR WKH ILUVW HTXDWLRQRIHT ZKLFKOHDGVWR ∞ ∞ D′′ + αU ¦ ¬ªDQ′′FRV ( Qθ ) + EQ′′VLQ ( Qθ ) ¼º − α ¦ Q ¬ªDQ FRV ( Qθ ) + EQVLQ ( Qθ ) ¼º + Q = Q = ∞ ∞ D′ − α U ¦ Q ª¬DQ′ VLQ ( Qθ ) − EQ′ FRV ( Qθ ) º¼ + αU + αU ¦ ª¬DQ′ FRV ( Qθ ) + EQ′ VLQ ( Qθ ) º¼ + Q = Q =
αU
∞
− α ¦ Q ª¬DQVLQ ( Qθ ) − EQ FRV ( Qθ ) º¼ + α Q =
∞ D + α ¦ ª¬DQ FRV ( Qθ ) + EQVLQ ( Qθ ) º¼ + Q =
∞ ∞ F′′ + α U ¦ ª¬FP′′ FRV ( Pθ ) + GP′′ VLQ ( Pθ ) º¼ − α ¦ P ª¬FP FRV ( Pθ ) + GPVLQ ( Pθ ) º¼ + P = P = ∞ ∞ F′ − α U ¦ P ¬ªFP′ VLQ ( Pθ ) − GP′ FRV ( Pθ ) ¼º + α U + α U ¦ ¬ªFP′ FRV ( Pθ ) + GP′ VLQ ( Pθ ) ¼º + P = P =
+ α U
∞
− α ¦ P ¬ªFPVLQ ( Pθ ) − GP FRV ( Pθ ) ¼º + α P =
∞ F + α ¦ ¬ªFP FRV ( Pθ ) + GPVLQ ( Pθ ) ¼º = P =
1RWH WKDW WKH FRHIILFLHQWV α L L = DUH SHULRGLF IXQFWLRQV RI WKH LQGHSHQGHQW YDULDEOH θ LH α L = α L (θ ) DV LQGLFDWHG LQ HT GHILQHG IRU WKH PDWHULDO PRGHO RI 0RKU²&RXORPE HODVWR²SODVWLFLW\ LQ WKH FLUFXODU GRPDLQ LQ HTV DQG )XUWKHUPRUHQRWHWKDWGXHWRWKHIDFWWKDW DQ EQ FP DQG GP DUHIXQFWLRQVGHSHQGHQWRQ U WKHLUGHULYDWLYHVZLWKUHVSHFWWRWKLVYDULDEOH KDYHWREHWDNHQLQWRDFFRXQW7KHILUVWDQGVHFRQGRUGHURUGLQDU\GHULYDWLYHVRI WKH FRHIILFLHQWV ZLWK UHVSHFW WR U DUH GHILQHG IRU HJ DQ DV DQ′ = DQ U DQG DQ′′ = DQ UU DQGDQDORJRXVIRU EQ FP DQG GP $IWHUUHDUUDQJLQJHT DQGVRUWLQJIRUVLQHDQGFRVLQHIXQFWLRQVLWIROORZV ∞ ∞ Q P I ( Uθ ) + ¦ ª I( )( Uθ ) FRV ( Qθ ) º + ¦ ª I( )( Uθ ) FRV ( Pθ ) º + ¬ ¼ ¬ ¼ Q = P = ∞
∞
Q P + ¦ ª I( )( Uθ ) VLQ ( Qθ ) º + ¦ ª I( )( Uθ ) VLQ ( Pθ ) º = ¬ ¼ P= ¬ ¼ Q =
LQZKLFKWKHIXQFWLRQV I I( ) I( ) I( ) DQG I( ) DUHLQWURGXFHGDQGGHILQHGDV Q
P
Q
Q
I ( U θ ) = αD′′U + αD′ U + αD + α F ′′U + α F ′ U + αF I (
Q)
( U θ ) = αDQ′′U + αDQ′ U − Q α DQ + αDQ + QαEQ′ U + Qα EQ P I ( )( U θ ) = α F P′′ U + α F P′ U − P α F P + αF P + Pα G P′ U + PαG P Q I ( )( U θ ) = αEQ′′U + αEQ′ U − Q α EQ + αEQ − Qα DQ′ U − Qα DQ P I ( )( U θ ) = α G P′′ U + α G P′ U − P α G P + αG P − Pα F P′ U − PαF P
0RKU²&RXORPEHODVWR²SODVWLFLW\LQFOXGLQJKDUGHQLQJLQWKHFLUFXODUGRPDLQ
1RWHWKHSURSHUW\ I = I ( ) + I ( ) DVSRVVLEO\RILQWHUHVWIRUVLPSOLILFDWLRQVODWHU LQ WKH FKDSWHU 7KH FRHIILFLHQWV α L (θ ) DQG βL (θ ) DUH SHULRGLF IXQFWLRQV RI WKH LQGHSHQGHQW YDULDEOH θ )ROORZLQJ IURP WKHLU GHILQLWLRQ LQ HTV DQG WKH\FDQEHUHSUHVHQWHGE\VHULHVZLWKWKHUHOHYDQWWHUPV FRV ( Vθ ) DQG VLQ ( Vθ ) IRU V = ZLWKSUHFHGLQJFRQVWDQWFRHIILFLHQWV7KHQLWIROORZV
α L (θ ) = α L() + α L() FRV ( θ ) + α L() VLQ ( θ ) + α L() FRV ( θ ) + α L( ) VLQ ( θ ) DQG βL (θ ) = βL() + βL() FRV ( θ ) + βL() VLQ ( θ ) + βL() FRV ( θ ) + βL( ) VLQ ( θ )
LQ ZKLFK α L( ) DQG βL( ) L = ! M = DUH FRQVWDQW FRHIILFLHQWV GHSHQGLQJ RQO\ RQ WKH PDWHULDO SDUDPHWHUV ZKLFK DUH FRQVWDQW LQVLGH WKH M M GRPDLQ ,Q $SSHQGL[$ RI WKLV FKDSWHU WKH FRHIILFLHQWV α L( ) DQG βL( ) DUH HODERUDWHG DQG JLYHQ LQ GHWDLO 1RWH WKDW WKH GHILQLWLRQ LQ HT LV DQ H[DFW UHSUHVHQWDWLRQRIWKHFRHIILFLHQWV α L (θ ) DQG βL (θ ) 6XEVWLWXWLRQRIHT LQWR HT OHDGVIRUWKHILUVWIXQFWLRQIRUZKLFK Q P = WR M
M
I ( Uθ ) = ªα( ) + α( ) FRV ( θ ) + α( ) VLQ ( θ ) + α( ) FRV ( θ ) + α( ) VLQ ( θ ) º D′′U + ¬ ¼
+ ªα( ) + α( ) FRV ( θ ) + α( ) VLQ ( θ ) + α( ) FRV ( θ ) + α( ) VLQ ( θ ) º D′ U + ¬ ¼
( ) () ( ) ( ) ( ) + ªα + α FRV ( θ ) + α VLQ ( θ ) + α FRV ( θ ) + α VLQ ( θ ) º D + ¬ ¼
+ ªα ( ) + α ( ) FRV ( θ ) + α ( ) VLQ ( θ ) + α ( ) FRV ( θ ) + α ( ) VLQ ( θ ) º F′′U + ¬ ¼
+ ªα ( ) + α ( ) FRV ( θ ) + α ( ) VLQ ( θ ) + α ( ) FRV ( θ ) + α ( ) VLQ ( θ ) º F′ U + ¬ ¼
( ) () ( ) ( ) ( ) + ªα + α FRV ( θ ) + α VLQ ( θ ) + α FRV ( θ ) + α VLQ ( θ ) º F ¬ ¼
)RUWKHVHFRQGIXQFWLRQIRUZKLFK Q ≥ LWIROORZV I(
Q)
( Uθ ) = ª¬α() + α() FRV ( θ ) + α() VLQ ( θ ) + α() FRV ( θ ) + α() VLQ ( θ )º¼ DQ′′U +
− ªα ( ) + α ( ) FRV ( θ ) + α ( ) VLQ ( θ ) + α ( ) FRV ( θ ) + α ( ) VLQ ( θ ) º Q DQ + ¬ ¼ + ªα ( ) + α ( ) FRV ( θ ) + α ( ) VLQ ( θ ) + α ( ) FRV ( θ ) + α ( ) VLQ ( θ ) º QEQ′ U + ¬ ¼ + ªα( ) + α( ) FRV ( θ ) + α( ) VLQ ( θ ) + α( ) FRV ( θ ) + α( ) VLQ ( θ ) º DQ′ U + ¬ ¼
+ ªα ( ) + α ( ) FRV ( θ ) + α ( ) VLQ ( θ ) + α ( ) FRV ( θ ) + α ( ) VLQ ( θ ) º QEQ + ¬ ¼
() () () () ( ) + ªα + α FRV ( θ ) + α VLQ ( θ ) + α FRV ( θ ) + α VLQ ( θ ) º DQ ¬ ¼
( M)
( M)
M = WKHFRHIILFLHQWV α L DQG β L DUHQRWHTXDOWR]HUR 7KHQLWFDQEHVHHQWKDWWKHFRHIILFLHQWV α L DQG β L DUHLQGHSHQGHQWRIWKHFRRUGLQDWHGLUHFWLRQ θ
,QWKHFDVHRIOLQHDUHODVWLFLW\RQO\IRU
&+$37(5
)RUWKHWKLUGIXQFWLRQIRUZKLFK P ≥ LWIROORZV I(
P)
( Uθ ) = ª¬α () + α () FRV ( θ ) + α () VLQ ( θ ) + α () FRV ( θ ) + α () VLQ ( θ )º¼ FP′′ U +
− ªα ( ) + α ( ) FRV ( θ ) + α ( ) VLQ ( θ ) + α ( ) FRV ( θ ) + α ( ) VLQ ( θ ) º PFP + ¬ ¼ + ªα ( ) + α ( ) FRV ( θ ) + α ( ) VLQ ( θ ) + α ( ) FRV ( θ ) + α ( ) VLQ ( θ ) º PGP′ U + ¬ ¼ + ªα ( ) + α ( ) FRV ( θ ) + α ( ) VLQ ( θ ) + α ( ) FRV ( θ ) + α ( ) VLQ ( θ ) º FP′ U + ¬ ¼ () () () () ( ) + ªα + α FRV ( θ ) + α VLQ ( θ ) + α FRV ( θ ) + α VLQ ( θ ) º PGP + ¬ ¼ () () () () ( ) + ªα + α FRV ( θ ) + α VLQ ( θ ) + α FRV ( θ ) + α VLQ ( θ ) º FP ¬ ¼
)RUWKHIRXUWKIXQFWLRQIRUZKLFK Q ≥ LWIROORZV I(
Q)
( Uθ ) = ª¬α() + α() FRV ( θ ) + α() VLQ ( θ ) + α() FRV ( θ ) + α() VLQ ( θ )º¼ EQ′′U +
− ªα ( ) + α ( ) FRV ( θ ) + α ( ) VLQ ( θ ) + α ( ) FRV ( θ ) + α ( ) VLQ ( θ ) º QEQ + ¬ ¼
− ªα ( ) + α ( ) FRV ( θ ) + α ( ) VLQ ( θ ) + α ( ) FRV ( θ ) + α ( ) VLQ ( θ ) º QDQ′ U + ¬ ¼
+ ªα( ) + α( ) FRV ( θ ) + α( ) VLQ ( θ ) + α( ) FRV ( θ ) + α( ) VLQ ( θ ) º EQ′ U + ¬ ¼
− ªα ( ) + α ( ) FRV ( θ ) + α ( ) VLQ ( θ ) + α ( ) FRV ( θ ) + α ( ) VLQ ( θ ) º QDQ + ¬ ¼
( ) () ( ) ( ) ( ) + ªα + α FRV ( θ ) + α VLQ ( θ ) + α FRV ( θ ) + α VLQ ( θ ) º EQ ¬ ¼
)RUWKHILIWKIXQFWLRQIRUZKLFK P ≥ LWIROORZV I(
P)
( Uθ ) = ª¬α () + α () FRV ( θ ) + α () VLQ ( θ ) + α () FRV ( θ ) + α () VLQ ( θ )º¼ GP′′ U +
− ªα ( ) + α ( ) FRV ( θ ) + α ( ) VLQ ( θ ) + α ( ) FRV ( θ ) + α ( ) VLQ ( θ ) º PGP + ¬ ¼ () () () ( ) ( ) ª − α + α FRV ( θ ) + α VLQ ( θ ) + α FRV ( θ ) + α VLQ ( θ ) º PFP′ U + ¬ ¼ () () () ( ) ( ) ª + α + α FRV ( θ ) + α VLQ ( θ ) + α FRV ( θ ) + α VLQ ( θ ) º GP′ U + ¬ ¼ () () () ( ) ( ) ª º − α + α FRV ( θ ) + α VLQ ( θ ) + α FRV ( θ ) + α VLQ ( θ ) PFP + ¬ ¼ () () () ( ) ( ) ª + α + α FRV ( θ ) + α VLQ ( θ ) + α FRV ( θ ) + α VLQ ( θ ) º GP ¬ ¼
7RVROYHWKHSUREOHPRIWKHLQILQLWHVXPPDWLRQVIURP]HURWRLQILQLW\RILQGLFHV Q DQG P LQ HT XVH LV PDGH RI WKH RUWKRJRQDOLW\ RI WKH VLQH DQG FRVLQH IXQFWLRQV%\PXOWLSO\LQJHT E\HLWKHU FRV ( Nθ ) RU VLQ ( Nθ ) IRUIL[HGYDOXHV RI N = ! DQGDIWHUZDUGVLQWHJUDWLQJZLWKUHVSHFWWR θ IURP WR π IRU ,QWKHFDVHRIOLQHDUHODVWLFLW\WKHIXQFWLRQV
IL DUHIXQFWLRQVRIRQO\WKHFRRUGLQDWHGLUHFWLRQ U (Q) DQG FRQWDLQ RQO\ RQH XQNQRZQ IXQFWLRQ RI FRHIILFLHQWV UHVSHFWLYHO\ LH I = I ( D ) I = I ( DQ ) (P) (Q) (P) I = I ( GP ) I = I ( EQ ) DQG I = I ( FP ) 7KLVOHDGVWRDQXQFRXSOLQJIRUWKHGHWHUPLQDWLRQRIWKH XQNQRZQFRHIILFLHQWVDVVKRZQODWHULQWKLVFKDSWHU
0RKU²&RXORPEHODVWR²SODVWLFLW\LQFOXGLQJKDUGHQLQJLQWKHFLUFXODUGRPDLQ
HDFK N WZR HTXDWLRQV DULVH IRU WKH GHWHUPLQDWLRQ RI WKH FRHIILFLHQWV DQ EQ F P DQG G P IROORZLQJ IURP VROXWLRQ RI WKH ILUVW HTXDWLRQ RI WKH V\VWHP LQ HT 7ZRDGGLWLRQDOHTXDWLRQVIRUHDFK N DULVHIROORZLQJIURPWKHVHFRQGH[SUHVVLRQLQ HT ZKLFK LV QRW HODERUDWHG LQ GHWDLO KHUH EXW FDQ EH GRQH IROORZLQJ WKH VDPHSURFHGXUH7KHQIRXUHTXDWLRQVDUHDYDLODEOHWRVROYHIRUWKHIRXUXQNQRZQV DQ EQ F P DQG G P 7KHFDVH N = KDVWREHFRQVLGHUHGVHSDUDWHO\,QWRWDOWKHQ WKUHHFDVHVIROORZLQJIURPHT KDYHWREHGLVWLQJXLVKHGLH • FDVHN
=
• FDVHN
= ! DQGPXOWLSOLFDWLRQRIHT E\ FRV ( N θ )
• FDVHN
= ! DQGPXOWLSOLFDWLRQRIHT E\ VLQ ( N θ )
)RU WKH DSSOLFDWLRQ RI WKH VROXWLRQ SURFHGXUH DV PHQWLRQHG DERYH ILUVW FRQVLGHU WKHLQWHJUDOVRIWKHIROORZLQJWULJRQRPHWULFIXQFWLRQV7KHFDVHVUHOHYDQWGXULQJ WKHVXEVHTXHQWGHULYDWLRQVLQWKLVWKHVLVDUH Q N = ! DQG V = 1RWH LQSDUWLFXODUWKDWQHJDWLYHYDOXHVRIWKHLQGLFHV Q N DQG V GRQRWRFFXUDQGDUH WKHUHIRUHQRWFRQVLGHUHGLQWKHHODERUDWLRQV([SOLFLWO\IRUWKHVHFDVHVLWIROORZV π
³ VLQ (Vθ ) VLQ ( Qθ ) VLQ ( N θ )G θ = π
=
³
− VLQ ª¬( V − Q − N ) θ º¼ + VLQ ª¬( V − Q + N ) θ º¼ + VLQ ª¬( V + Q − N ) θ º¼ − VLQ ª¬( V + Q + N ) θ º¼
Gθ =
= IRU [Q = ! ∧ N = ! ∧ V = ] π
³ VLQ (Vθ ) FRV ( Qθ ) FRV ( N θ )Gθ = π
=
³
VLQ ª¬( V − Q − N ) θ º¼ + VLQ ª¬( V − Q + N ) θ º¼ + VLQ ª¬( V + Q − N ) θ º¼ + VLQ ª¬( V + Q + N ) θ º¼
Gθ =
= IRU [Q = ! ∧ N = ! ∧ V = ] π
³ FRV (Vθ ) VLQ ( Qθ ) FRV ( N θ )Gθ = π
=
³
− VLQ ª¬( V − Q − N ) θ º¼ − VLQ ª¬( V − Q + N )θ º¼ + VLQ ª¬( V + Q − N ) θ º¼ + VLQ ª¬( V + Q + N ) θ º¼
Gθ =
= IRU [Q = ! ∧ N = ! ∧ V = ] π
³ FRV (Vθ ) FRV ( Qθ ) VLQ ( N θ )Gθ = π
=
³
− VLQ ¬ª( V − Q − N ) θ ¼º + VLQ ¬ª( V − Q + N ) θ ¼º − VLQ ¬ª( V + Q − N ) θ ¼º + VLQ ¬ª( V + Q + N ) θ ¼º
= IRU [Q = ! ∧ N = ! ∧ V = ]
Gθ =
&+$37(5
π
³ FRV (Vθ ) VLQ ( Qθ ) VLQ ( N θ )Gθ = π
=
³
− FRV ª¬( V − Q − N ) θ º¼ + FRV ª¬( V − Q + N ) θ º¼ + FRV ª¬( V + Q − N )θ º¼ − FRV ª¬( V + Q + N ) θ º¼
π ° °π =® ° ° ¯
Gθ =
IRU [V = ∧ Q = N = !]
IRU [Q = ±N ± V ] ∧ [Q = ! ∧ N = ! ∧ V = ]
IRU [Q ≠ ±N ± V ] ∧ [Q = ! ∧ N = ! ∧ V = ] IRU ª¬( Q = ∧ N = !) ∨ ( N = ∧ Q = !) º¼ ∧ V =
π
³ VLQ (Vθ ) FRV ( Qθ ) VLQ ( N θ )Gθ = π
=
³
FRV ¬ª( V − Q − N ) θ ¼º − FRV ¬ª( V − Q + N ) θ ¼º + FRV ¬ª( V + Q − N ) θ ¼º − FRV ¬ª( V + Q + N ) θ ¼º
π ° °π =® ° ° ¯
Gθ =
IRU [Q = ∧ N = V = ] IRU [Q = ±N ± V ] ∧ [Q = ! ∧ N = ! ∧ V = ]
IRU [Q ≠ ± N ± V ] ∧ [Q = ! ∧ N = ! ∧ V = ] IRU ª¬( N = ∧ V = ) ∨ ( V = ∧ N = !) º¼ ∧ Q = !
π
³ VLQ (Vθ ) VLQ ( Qθ ) FRV ( N θ )Gθ = π
=
³
FRV ¬ª( V − Q − N ) θ ¼º + FRV ¬ª( V − Q + N ) θ ¼º − FRV ¬ª( V + Q − N ) θ ¼º − FRV ¬ª( V + Q + N ) θ ¼º
π ° °π =® ° ° ¯
Gθ =
IRU [ N = ∧ Q = V = ]
IRU [Q = ±N ± V ] ∧ [Q = ! ∧ N = ! ∧ V = ] IRU [Q ≠ ± N ± V ] ∧ [Q = ! ∧ N = ! ∧ V = ] IRU ¬ª( Q = ∧ V = ) ∨ ( V = ∧ Q = !) ¼º ∧ N = !
π
³ FRV (Vθ ) FRV ( Qθ ) FRV ( N θ )Gθ = π
=
³
FRV ª¬( V − Q − N ) θ º¼ + FRV ª¬( V − Q + N ) θ º¼ + FRV ª¬( V + Q − N ) θ º¼ + FRV ª¬( V + Q + N ) θ º¼
π ° °π =® ° ° ¯
Gθ =
IRU [Q = ∧ N = V = ] ∨ [ N = ∧ Q = V = ] ∨ [V = ∧ Q = N = !] IRU [Q = ± N ± V ] ∧ [Q = ! ∧ N = ! ∧ V = ] IRU [Q ≠ ±N ± V ] ∧ [Q = ! ∧ N = ! ∧ V = ] IRU [Q = ∧ N ≠ V ] ∨ [ N = ∧ Q ≠ V ] ∨ [V = ∧ Q ≠ N ]
0RKU²&RXORPEHODVWR²SODVWLFLW\LQFOXGLQJKDUGHQLQJLQWKHFLUFXODUGRPDLQ
)RUWKHHYDOXDWLRQRIWKHSUHYLRXVLQWHJUDOVUHFDOOWKDWWKHLQWHJUDWLRQRIWKHVLQH IXQFWLRQZLWKDUJXPHQW Qθ RQWKHLQWHUYDO [π ] DOZD\VOHDGVWRDUHVXOWHTXDO WR]HUR7KHLQWHJUDWLRQRIWKHFRVLQHIXQFWLRQZLWKDUJXPHQW Qθ RQWKHLQWHUYDO [π ] RQO\OHDGVIRU Q = WRDQRQ²]HURUHVXOWLH π
π
π IRUQ = IRUQ = !
³ VLQ ( Qθ )G θ = IRUQ = ! DQG ³ FRV ( Qθ )Gθ = ®¯
7KH HLJKW LQWHJUDOV LQ HT FDQ EH YHULILHG E\ FRQVLGHULQJ WKH V\PPHWU\ SURSHUWLHVRIWKHIXQFWLRQV(YHQIXQFWLRQVKDYHDFRQWULEXWLRQRGGIXQFWLRQVDUH ]HURDIWHULQWHJUDWLRQ7KHSURGXFWRIWZRHYHQIXQFWLRQVLVHYHQ7KHSURGXFWRI WZRRGGIXQFWLRQVLVHYHQ7KHSURGXFWRIDQRGGDQGDQHYHQIXQFWLRQLVRGG7KH FRVLQHIXQFWLRQLVHYHQDV I ( −[ ) = I ( [ ) WKHVLQHIXQFWLRQLVRGGDV I ( −[ ) = − I ( [ ) 0RUH GHWDLOV FDQ EH IRXQG LQ HJ %R\FH 7KH VROXWLRQ RI WKHVH LQWHJUDOV ZLOO EH XVHG LQ WKH IROORZLQJ IRU WKH HYDOXDWLRQ RI WKH WKUHH FDVHV DV GHILQHG LQ HT
&DVHN
,Q WKLV VHFWLRQ WKH ILUVW FDVH DV LQWURGXFHG LQ HT ZLOO EH WUHDWHG 0XOWLSOLFDWLRQ RI HT E\ FRV ( N θ ) = IRU IL[HG N = DQG LQWHJUDWLRQ ZLWK UHVSHFWWR θ IURP WR π JLYHV
π
π ∞
π ∞
( ) ( ) ³ I ( Uθ ) Gθ + ³ ¦ ª¬ I ( Uθ ) FRV ( Qθ )º¼ Gθ + ³ ¦ ª¬ I ( Uθ ) FRV (Pθ )º¼ Gθ + Q
P
Q =
π ∞
(Q)
+ ³ ¦ ªI ¬ Q =
P =
( Uθ ) VLQ ( Qθ )¼º Gθ +
π ∞
(P )
³ P¦= ¬ª I
( Uθ ) VLQ (Pθ )¼º Gθ =
)LUVWWKHILYHLQWHJUDOVLQHT ZLOOEHHYDOXDWHGVHSDUDWHO\ZKLOHXVLQJWKH UHVXOWV RI WKH HODERUDWHG LQWHJUDOV RI WULJRQRPHWULF IXQFWLRQV DV SUHVHQWHG LQ Q HT )RU WKH LQWHJUDOV LW IROORZV ZKLOH VXEVWLWXWLQJ WKH IXQFWLRQV I L ( )( U θ ) IROORZLQJIURPHTV WR π
( ) ³ I ( Uθ ) Gθ = π (α D′′U
)
( ) ( ) + α( ) D′ U + α D + α ( )F′′U + α ( )F′ U + α F
π ∞
( ) () ( ) ³ ¦ ª¬ I ( Uθ ) FRV ( Qθ )º¼ Gθ = π (α D′′ + α D′′ ) U
) + π ( α ( )E′ + α ( )E′ ) U + π (α ( ) D′ + α ( ) D′ ) U + π ( α ( )E + α ( )E ) + π (α ( ) D
Q
(
− π α ( ) D + α ( ) D +
Q =
π ∞
( ) () ( ) ³ ¦ ª¬ I ( Uθ ) FRV (Pθ )º¼ Gθ = π (α F′′ + α F′′ ) U
P
P =
(
()
( )
)
(
()
( )
)
(
)
( ) + α D
)
− π α ( )F + α ( )F +
(
()
()
) (
()
()
)
+ π α G′ + α G′ U + π α F′ + α F′ U + π α G + α G + π α F + α F
&+$37(5
π ∞
( ) () ( ) ³ ¦ ª¬ I ( Uθ ) VLQ ( Qθ )º¼ Gθ = π (α E′′ + α E′′ ) U
Q
Q =
(
()
)
()
(
()
(
)
()
)
− π α ( )E + α ( )E +
(
()
) (
( )
()
()
)
− π α D′ + α D′ U + π α E′ + α E′ U − π α D + α D + π α E + α E π ∞
( ) () ( ) ³ ¦ ª¬ I ( Uθ ) VLQ (Pθ )º¼ Gθ = π (α G′′ + α G′′ ) U
P
P =
(
)
(
)
(
)
− π α ( )G + α ( )G +
(
) (
)
() ( ) () ( ) − π α ( )F′ + α ( )F′ U + π α ( )G′ + α ( )G′ U − π α F + α F + π α G + α G
6XEVWLWXWLQJ WKH HYDOXDWHG LQWHJUDOV RI HT LQWR HT LW IROORZV DIWHU GLYLGLQJ E\ π DQG VRUWLQJ IRU FRHIILFLHQWV DL EL F L DQG G L ZKHUH L = IRU FDVH
(
)
(
)
ªα()D′′ + α()D′′ + α()D′′ º U + ªα( )D′ + −α () + α() D′ + −α () + α() D′ º U + ¬ ¼ ¬ ¼
(
)
(
)
() () ( ) + ªα D + −α ( ) − α ( ) + α D + −α ( ) − α ( ) + α D º + ¬ ¼
) E ′ ¼º U + + ª( −α ( ) + α ( ) + α ( ) ) E + ( −α ( ) + α ( ) + α ( ) ) E º + ¬ ¼ ( ) ( ) ( ) ( ) ( ) ( ) + ªα F ′′ + α F ′′ + α F ′′ º U + ªα F ′ + ( −α + α ) F ′ + ( −α ( ) + α ( ) ) F ′ º U + ¬ ¼ ¬ ¼ ( ) ( ) () () ( ) ( ) ( ) ª º + α F + ( −α − α + α ) F + ( −α − α + α ) F + ¬ ¼ ( ) ( ) ( ) ( ) ( ) ( ) ª º + ªα G ′′ + α G ′′º U + ( α + α ) G ′ + ( α + α ) G ′ U + ¬ ¼ ¬ ¼ ( ) ( ) ( ) ( ) ( ) ( ) + ª( −α + α + α )G + ( −α + α + α )G º = ¬ ¼ ()
(
( )
+ ªα E ′′ + α E ′′º U + ª α ¬ ¼ ¬
) E ′ + (α
+α
()
()
+α
()
()
(T LV WKH ILQDO HTXDWLRQ FRQVLGHULQJ WKH ILUVW HTXDWLRQ RI WKH 3'(V LQ HT IRU WKH GHWHUPLQDWLRQ RI WKH )RXULHU FRHIILFLHQWV IRU FDVH LH WKH M FRHIILFLHQWVZLWKLQGH[ Q P = LQHTV DQG 1RWHWKDW α L( ) DUHFRQVWDQW FRHIILFLHQWV DQG DL EL F L G L DQG WKHLU ILUVW DQG VHFRQG RUGHU GHULYDWLYHV DUH IXQFWLRQV GHSHQGHQW RQ U &RQVLGHULQJ WKH VHFRQG HTXDWLRQ RI WKH 3'(V LQ HT WKH VDPH SURFHGXUH FDQ EH IROORZHG ZKLOH UHSODFLQJ αL ·V E\ βL ·V LQ HT
0RKU²&RXORPEHODVWR²SODVWLFLW\LQFOXGLQJKDUGHQLQJLQWKHFLUFXODUGRPDLQ
&DVH0XOWLSOLFDWLRQE\FRVNθ DQGN «
,Q WKLV VHFWLRQ WKH VHFRQG FDVH DV LQWURGXFHG LQ HT ZLOO EH WUHDWHG 0XOWLSOLFDWLRQRIHT E\ FRV ( Nθ ) ZLWKIL[HG N = ! DQGLQWHJUDWLRQZLWK UHVSHFWWR θ IURP WR π JLYHV
π
³ I ( Uθ ) FRV ( Nθ ) Gθ +
+
π ∞
π ∞
( ) ( ) ³ ¦ ª¬ I ( Uθ ) FRV ( Qθ ) FRV ( Nθ )º¼ Gθ + ³ ¦ ª¬ I ( Uθ ) FRV (Pθ ) FRV ( Nθ )º¼ Gθ + Q
Q =
+
P
P =
π ∞
π ∞
( ) ( ) ³ ¦ ª¬ I ( Uθ ) VLQ ( Qθ ) FRV ( Nθ )º¼ Gθ + ³ ¦ ª¬ I ( Uθ ) VLQ (Pθ ) FRV ( Nθ )º¼ Gθ = Q
P
Q =
P =
)LUVWWKHILYHLQWHJUDOVLQHT ZLOOEHHYDOXDWHGVHSDUDWHO\ZKLOHXVLQJWKH UHVXOWV RI HT )RU WKH ILUVW LQWHJUDO LQ HT LW IROORZV ZKLOH VXEVWLWXWLQJWKHIXQFWLRQ I ( U θ ) IROORZLQJIURPHT π
³ I ( Uθ ) FRV ( Nθ ) Gθ =
π
=
³ {ª¬α
()
FRV ( θ ) + α( ) FRV ( θ ) º D′′U + ªα( ) FRV ( θ ) + α( ) FRV ( θ ) º D′ U + ¼ ¬ ¼
() () + ªα FRV ( θ ) + α FRV ( θ ) º D + ªα ( ) FRV ( θ ) + α ( ) FRV ( θ ) º F′′U + ¬ ¼ ¬ ¼
}
() ( ) + ªα ( ) FRV ( θ ) + α ( ) FRV ( θ ) º F′ U + F ªα FRV ( θ ) + α FRV ( θ ) º FRV ( Nθ ) Gθ = ¬ ¼ ¬ ¼
()
()
()
()
()
()
° α U D′′ + α UD′ + α D + α U F′′ + α UF′ + α F IRUN = =π ® ( ) ( ) ( ) () ( ) ( ) °¯ α U D′′ + α UD′ + α D + α U F′′ + α UF′ + α F IRUN =
(
)
() () = π α( )U D′′ + α( )UD′ + α D + α ( )U F′′ + α ( )UF′ + α F δ N +
(
)
( ) ( ) + π α( )U D′′ + α( )UD′ + α F δ N D + α ( )U F′′ + α ( )UF′ + α
DV RQO\ IRU N = DQG N = QRQ²]HUR WHUPV RFFXU 1RWH WKDW LQ WKH SUHYLRXV HODERUDWLRQXVHKDVEHHQPDGHRIWKHHODERUDWHGHLJKWKWULJRQRPHWULFLQWHJUDOLQ HT ,QWKLVLQWHJUDOWKHFDVHV Q = V = DQG N = ! DUHVLJQLILFDQW WDNLQJLQWRDFFRXQWWKHFRQGLWLRQ V = N
&+$37(5
)RU WKH VHFRQG LQWHJUDO LQ HT LW IROORZV ZKLOH VXEVWLWXWLQJ WKH IXQFWLRQ Q I ( )( U θ ) IROORZLQJIURPHT π ∞
( ) ³ ¦ ª¬ I ( Uθ ) FRV ( Qθ ) FRV ( Nθ )º¼ Gθ = Q
Q =
=
π ∞
³ ¦{ª¬α
( )
Q =
+ α( ) FRV ( θ ) + α( )VLQ ( θ ) + α( ) FRV ( θ ) + α( )VLQ ( θ ) º DQ′′U + ¼
− ªα( ) + α( ) FRV ( θ ) + α( )VLQ ( θ ) + α( ) FRV ( θ ) + α( )VLQ ( θ ) º QDQ + ¬ ¼
+ ªα( ) + α( ) FRV ( θ ) + α( )VLQ ( θ ) + α( ) FRV ( θ ) + α( )VLQ ( θ ) º QEQ′ U + ¬ ¼ ( ) () ( ) ( ) () ª º + α + α FRV ( θ ) + α VLQ ( θ ) + α FRV ( θ ) + α VLQ ( θ ) DQ′ U + ¬ ¼ + ªα( ) + α( ) FRV ( θ ) + α( )VLQ ( θ ) + α( ) FRV ( θ ) + α( )VLQ ( θ ) º QEQ + ¬ ¼
}
( ) () ( ) ( ) ( ) + ªα + α FRV ( θ ) + α VLQ ( θ ) + α FRV ( θ ) + α VLQ ( θ ) º DQ FRV ( Qθ ) FRV ( Nθ ) Gθ = ¬ ¼
π π = ªα( ) DN′′ +α( ) D±′′N± +α( ) D±′′N± º U − ªα( ) NDN +α( )( ±N ± ) D± N± +α( )( ±N ± ) D± N± º + ¬ ¼
¬
+
¼
π ª () ′ () π α NEN +α ( ±N ± ) E±′ N± +α( )( ±N ± ) E±′ N± º U + ªα( ) DN′ +α( )D±′ N± +α( ) D±′ N± º U + ¬ ¼ ¬ ¼
π π ( ) () ( ) DN +α D± N± +α D± N± º + ªα( ) NEN +α( )( ±N ± ) E± N± +α( )( ±N ± ) E± N± º + ªα ¬
¼
¬
¼
1RWHWKDWLQWKHSUHYLRXVHODERUDWLRQXVHKDVEHHQPDGHRIWKHHODERUDWHGVHFRQG DQG HLJKWK WULJRQRPHWULF LQWHJUDOV LQ HT ,Q WKHVH LQWHJUDOV WKH FDVHV N = ! Q = ! DQG V = DUH VLJQLILFDQW 7KHQ RQO\ IRU Q = ± N ± DQG Q = ±N ± QRQ²]HUR UHVXOWV HTXDO WR π RFFXU $OO PXOWLSOLFDWLRQV ZLWK VLQ ( θ ) DQG VLQ ( θ ) UHVXOWLQ ]HURWHUPVDQGPXOWLSOLFDWLRQVZLWK FRV ( θ ) DQG FRV ( θ ) RQO\IRU Q = ± N ± DQG Q = ±N ± UHVXOWLQQRQ²]HURWHUPV
0RKU²&RXORPEHODVWR²SODVWLFLW\LQFOXGLQJKDUGHQLQJLQWKHFLUFXODUGRPDLQ
)RU WKH WKLUG LQWHJUDO LQ HT LW IROORZV ZKLOH VXEVWLWXWLQJ WKH IXQFWLRQ P I ( )( U θ ) IROORZLQJIURPHT π ∞
( ) ³ ¦ ª¬ I ( Uθ ) FRV (Pθ ) FRV ( Nθ )º¼ Gθ = P
P=
=
π ∞
³ ¦ {¬ªα P=
()
+ α( ) FRV ( θ ) + α( )VLQ ( θ ) + α( ) FRV ( θ ) + α( )VLQ ( θ ) º FP′′ U + ¼
− ªα( ) + α( ) FRV ( θ ) + α( )VLQ ( θ ) + α( ) FRV ( θ ) + α( )VLQ ( θ ) º PFP + ¬ ¼
+ ªα( ) + α( ) FRV ( θ ) + α( )VLQ ( θ ) + α( ) FRV ( θ ) + α( )VLQ ( θ ) º PGP′ U + ¬ ¼ ( ) () ( ) ( ) () ª º + α + α FRV ( θ ) + α VLQ ( θ ) + α FRV ( θ ) + α VLQ ( θ ) FP′ U + ¬ ¼
( ) () ( ) () () + ªα + α FRV ( θ ) + α VLQ ( θ ) + α FRV ( θ ) + α VLQ ( θ ) º PGP + ¬ ¼
}
( ) () ( ) ( ) ( ) + ªα + α FRV ( θ ) + α VLQ ( θ ) + α FRV ( θ ) + α VLQ ( θ ) º FP FRV ( Pθ ) FRV ( Nθ ) Gθ = ¬ ¼
π π = ªα( )FN′′ +α( )F±′′N± +α( )F±′′N± º U − ªα( ) NFN +α( )( ±N ± ) F± N± +α( )( ±N ± ) F± N± º + ¬ ¼
¬
+
¼
π ª () ′ () π α NGN +α ( ±N ± ) G±′ N± +α( )( ±N ± ) G±′ N± º U + ªα( )FN′ +α( )F±′ N± +α( )F±′ N± º U + ¬ ¼ ¬ ¼
π () () NGN +α + ªα ( ±N ± ) G±N± +α()( ±N ± ) G±N± º + π ªα()FN +α()F±N± +α()F±N± º ¬
¼
¬
¼
1RWHWKDWLQWKHSUHYLRXVHODERUDWLRQXVHKDVEHHQPDGHRIWKHHODERUDWHGVHFRQG DQG HLJKWK WULJRQRPHWULF LQWHJUDOV LQ HT ,Q WKHVH LQWHJUDOV WKH FDVHV N = ! P = ! DQG V = DUH VLJQLILFDQW 7KHQ RQO\ IRU P = ± N ± DQG P = ±N ± QRQ²]HUR UHVXOWV HTXDO WR π RFFXU $OO PXOWLSOLFDWLRQV ZLWK VLQ ( θ ) DQG VLQ ( θ ) UHVXOWLQ ]HURWHUPVDQGPXOWLSOLFDWLRQVZLWK FRV ( θ ) DQG FRV ( θ ) RQO\IRU P = ± N ± DQG P = ±N ± UHVXOWLQQRQ²]HURWHUPV
&+$37(5
)RU WKH IRXUWK LQWHJUDO LQ HT LW IROORZV ZKLOH VXEVWLWXWLQJ WKH IXQFWLRQ Q I ( )( U θ ) IROORZLQJIURPHT π ∞
( ) ³ ¦ ª¬I ( U θ ) VLQ ( Qθ ) FRV ( N θ )º¼ Gθ = Q
Q =
=
π ∞
³ ¦ {¬ªα
()
P =
+ α( ) FRV ( θ ) + α( )VLQ ( θ ) + α( ) FRV ( θ ) + α( )VLQ ( θ ) º EQ′′U + ¼
− ªα( ) + α( ) FRV ( θ ) + α( )VLQ ( θ ) + α( ) FRV ( θ ) + α( )VLQ ( θ ) º Q EQ + ¬ ¼
− ªα( ) + α( ) FRV ( θ ) + α( )VLQ ( θ ) + α( ) FRV ( θ ) + α( )VLQ ( θ ) º QDQ′ U + ¬ ¼ ( ) () ( ) ( ) () ª + α + α FRV ( θ ) + α VLQ ( θ ) + α FRV ( θ ) + α VLQ ( θ ) º EQ′ U + ¬ ¼ − ªα( ) + α( ) FRV ( θ ) + α( )VLQ ( θ ) + α( ) FRV ( θ ) + α( )VLQ ( θ ) º QDQ + ¬ ¼
}
( ) () ( ) ( ) ( ) + ªα + α FRV ( θ ) + α VLQ ( θ ) + α FRV ( θ ) + α VLQ ( θ ) º EQ VLQ ( Qθ ) FRV ( N θ ) Gθ = ¬ ¼
π π = ªα( )E±′′N ± + α( )E±′′N ± º U − ªα( ) ( ±N ± ) E± N ± + α( ) ( ±N ± ) E± N ± º + ¬ ¼
¬
−
¼
π ª ( ) π α ±N ± ) D±′ N ± + α() ( ±N ± ) D±′ N ± ¼º U + ¬ªα()E±′ N ± + α()E±′ N ± ¼º U + ¬ (
π π ( ) () E± N ± + α E± N ± º − ªα( ) ( ±N ± ) D± N ± + α( ) ( ±N ± ) D± N ± º + ªα ¬ ¼ ¬ ¼
1RWHWKDWLQWKHSUHYLRXVHODERUDWLRQXVHKDVEHHQPDGHRIWKHHODERUDWHGWKLUG DQG VHYHQWK WULJRQRPHWULF LQWHJUDOV LQ HT ,Q WKHVH LQWHJUDOV WKH FDVHV N = ! Q = ! DQG V = DUH VLJQLILFDQW 7KHQ RQO\ IRU Q = ± N ± DQG Q = ±N ± QRQ²]HUR UHVXOWV HTXDO WR π RFFXU $OO PXOWLSOLFDWLRQV ZLWK FRV ( θ ) DQG FRV ( θ ) UHVXOWLQ ]HURWHUPVDQGPXOWLSOLFDWLRQVZLWK VLQ ( θ ) DQG VLQ ( θ ) RQO\IRU Q = ± N ± DQG Q = ±N ± UHVXOWLQQRQ²]HURWHUPV
0RKU²&RXORPEHODVWR²SODVWLFLW\LQFOXGLQJKDUGHQLQJLQWKHFLUFXODUGRPDLQ
)RU WKH ILIWK LQWHJUDO LQ HT LW IROORZV ZKLOH VXEVWLWXWLQJ WKH IXQFWLRQ P I ( )( U θ ) IROORZLQJIURPHT π ∞
( ) ³ ¦ ª¬ I ( Uθ ) VLQ (Pθ ) FRV ( Nθ )º¼ Gθ = P
P=
=
π ∞
³ ¦ {¬ªα P=
()
+ α( ) FRV ( θ ) + α( )VLQ ( θ ) + α( ) FRV ( θ ) + α( )VLQ ( θ ) º GP′′ U + ¼
− ªα( ) + α( ) FRV ( θ ) + α( )VLQ ( θ ) + α( ) FRV ( θ ) + α( )VLQ ( θ ) º PGP + ¬ ¼ () () ( ) ( ) () ª − α + α FRV ( θ ) + α VLQ ( θ ) + α FRV ( θ ) + α VLQ ( θ ) º PFP′ U + ¬ ¼ ( ) () ( ) ( ) () ª + α + α FRV ( θ ) + α VLQ ( θ ) + α FRV ( θ ) + α VLQ ( θ ) º GP′ U + ¬ ¼
() () ( ) ( ) () FRV ( θ ) + α VLQ ( θ ) + α FRV ( θ ) + α VLQ ( θ ) º PFP + − ªα + α ¬ ¼
}
( ) () ( ) ( ) ( ) FRV ( θ ) + α VLQ ( θ ) + α FRV ( θ ) + α VLQ ( θ ) º GP VLQ ( Pθ ) FRV ( Nθ ) Gθ = + ªα + α ¬ ¼
=
π ª () ′′ π α G + α( )G±′′N± º U − ªα( ) ( ±N ± ) G± N± + α( ) ( ±N ± ) G± N± º + ¬ ± N ± ¼
¬
¼
π π − ªα( ) ( ±N ± ) F±′ N± + α( ) ( ±N ± ) F±′ N± º U + ªα( )G±′ N± + α( )G±′ N± º U + ¬ ¼ ¬ ¼
π ( ) − ªα ( ±N ± ) F±N± + α() ( ±N ± ) F± N± º¼ + 𠪬α()G±N± + α()G±N± º¼ ¬
1RWHWKDWLQWKHSUHYLRXVHODERUDWLRQXVHKDVEHHQPDGHRIWKHHODERUDWHGWKLUG DQG VHYHQWK WULJRQRPHWULF LQWHJUDOV LQ HT ,Q WKHVH LQWHJUDOV WKH FDVHV N = ! P = ! DQG V = DUHVLJQLILFDQW7KHQRQO\IRU P = ±N ± DQG P = ±N ± QRQ²]HUR UHVXOWV HTXDO WR π RFFXU $OO PXOWLSOLFDWLRQV ZLWK FRV ( θ ) DQG FRV ( θ ) UHVXOWLQ ]HURWHUPVDQGPXOWLSOLFDWLRQVZLWK VLQ ( θ ) DQG VLQ ( θ ) RQO\IRU P = ±N ± DQG P = ±N ± UHVXOWLQQRQ²]HURWHUPV
&+$37(5
6XEVWLWXWLQJ WKH HYDOXDWHG LQWHJUDOV RI HTV WR LQWR HT LW IROORZV DIWHU GLYLGLQJ E\ π DQG VRUWLQJ IRU FRHIILFLHQWV DL EL F L DQG G L IRU FDVHLQZKLFK N = !
(α ( )U D′′ + α ( )UD′ + α ( )D + α ( )U F′′ + α ( )UF′ + α ( )F ) δ + + (α ( )U D′′ + α ( )UD′ + α ( ) D + α ( )U F′′ + α ( )UF′ + α ( )F ) δ
()
()
( )
N
+
N
+ ªα DN′′ + α D±′′N ± + α D±′′N ± º U + ¬ ¼
(
+ ªα( ) DN′ + α( ) − ( ±N ± ) α ( ¬
(
( ) − Nα ( + α
(
)
)
) D′
± N ±
(
) D′
+ α( ) − ( ±N ± ) α (
)
± N ±
) D + (α ( ) − ( ± N ± ) α ( ) − ( ± N ± ) α ( ) ) D
N
( ) + α − ( ± N ± ) α ( ) − ( ±N ± ) α (
)
)D
± N ±
ºU + ¼
+
+
± N ±
+ ªα( )E±′′N ± + α( )E±′′N ± º U + ¬ ¼ ( ) ( ) + ªNα EN′ + α + ( ±N ± ) α ( ) E±′ N ± + α( ) + ( ±N ± ) α ( ) E±′ N ± º U + ¬ ¼
(
(
)
(
)
( ) + Nα ( )EN + α + ( ±N ± ) α ( ) − ( ±N ± ) α (
(
( ) + α + ( ±N ± ) α ( ) − ( ±N ± ) α (
)
)
)E
)E
± N ±
+
+
± N ±
+ ªα ( )FN′′ + α ( )F±′′N ± + α ( )F±′′N ± º U + ¬ ¼ ( ) ( ) + ªα FN′ + α − ( ±N ± ) α ( ) F±′ N ± + α ( ) − ( ±N ± ) α ( ) F±′ N ± º U + ¬ ¼
(
(
)
()
()
+ α − Nα
(
) F + (α
()
N
(
()
− ( ±N ± ) α − ( ±N ± ) α
( ) ( ) + α − ( ± N ± ) α − ( ±N ± ) α (
)
()
)
)F
± N ±
)F
± N ±
+
+
+ ªα ( )G±′′N ± + α ( )G±′′N ± º U + ¬ ¼
(
)
(
+ ªNα ( )GN′ + α ( ) + ( ±N ± ) α ( ) G±′ N ± + α ( ) + ( ±N ± ) α ( ¬
(
)
( ) ( ) () GN + α + Nα + ( ±N ± ) α − ( ±N ± ) α (
(
( ) ( ) + α + ( ±N ± ) α − ( ±N ± ) α (
)
)G
± N ±
)
)G
± N ±
) G′
± N ±
ºU + ¼
+
=
7KH FRHIILFLHQWV DL EL F L DQG G L DUH )RXULHU FRHIILFLHQWV DV LQWURGXFHG LQ HTV DQG LQZKLFKLQGLFHV Q DQG P UHVSHFWLYHO\KDYHEHHQUHSODFHGE\ LQGH[ L ZLWK L ≥ DQG E = G = )XUWKHUPRUH LW LV QRWHG WKDW LQ HT E\ XVLQJ WKH ± VLJQ HLJKW FDVHV DUH LQYROYHG LH L = N + L = N + L = N − L = N − L = −N + L = −N + L = −N − DQG L = −N − )RUIXUWKHUHODERUDWLRQRI HT WKHUHIRUH GLVWLQFWLRQ KDV WR EH PDGH EHWZHHQ WKH VSHFLDO FDVHV N = DQGWKHUHJXODUFDVH N ≥ DVRQO\FRHIILFLHQWVZLWKLQGLFHVODUJHURU HTXDOWR]HURDUHDOORZHGIRUWKHSUHVHQWFDVH
0RKU²&RXORPEHODVWR²SODVWLFLW\LQFOXGLQJKDUGHQLQJLQWKHFLUFXODUGRPDLQ
,Q7DEOHLWLVLQGLFDWHGIRUZKLFK N = RU N ≥ WKHFRHIILFLHQWV DL EL F L DQG G L UHPDLQ LQ HT 1RWH WKDW WKH LQGLFHV IRU L = −N ± V DUH DOZD\V QHJDWLYH IRU HDFK N ≥ DQG DUH WKHUHIRUH DOZD\V RPLWWHG 7KH LQGLFHV IRU L = N DQG L = + N ± V DUH DOZD\V SRVLWLYH IRU HDFK N ≥ DQG KHQFH UHPDLQ LQ WKH HTXDWLRQ LQGH[ L = ±N ± V
N =
N =
N =
N ≥
N =
N
L =
\HV
L =
\HV
L =
\HV
L =
\HV
L ≥
\HV
+N +
L =
\HV
L =
\HV
L =
\HV
L =
\HV
L ≥
\HV
+N +
L =
\HV
L =
\HV
L =
\HV
L =
\HV
L ≥
\HV
+N −
L = −
QR
L =
\HV
L =
\HV
L =
\HV
L ≥
\HV
+N −
L = −
QR
L = −
QR
L = −
QR
L =
\HV
L ≥
\HV
−N +
L =
\HV
L =
\HV
L = −
QR
L = −
QR
L ≤ −
QR
−N +
L =
\HV
L =
\HV
L =
\HV
L =
\HV
L ≤ −
QR
−N −
L = −
QR
L = −
QR
L = −
QR
L = −
QR
L ≤ −
QR
−N −
L = −
QR
L = −
QR
L = −
QR
L = −
QR
L ≤ −
QR
7DEOH (ODERUDWLRQ RI LQGLFHV L = ± N ± V IRU N = RU N ≥ DQG V = IRU ZKLFK LQGH[UHPDLQVODUJHURUHTXDOWR]HUR¶\HV·UHSUHVHQWVWKHFDVH ± N ± V ≥ ZKLOH¶QR· UHSUHVHQWVWKHFDVH ± N ± V <
&+$37(5
)RUWKHUHJXODUFDVHLH N ≥ IURPHT DQGXVLQJWKHUHVXOWVRI7DEOH LWWKHQIROORZV
(
)
ªα () D′′ + α () D′′ + D′′ + α () D′′ + D′′ º U + ªα() DN′ + α() − ( N + ) α() DN′+ + ¬ N ( N+ N− ) ( N+ N− ) ¼ ¬
(
)
(
)
(
)
+ α( ) − ( N − ) α( ) DN′− + α( ) − ( N + ) α( ) DN′+ + α( ) − ( N − ) α( ) DN′− º U + ¼
(
()
) (
()
()
( )
()
()
+ α − ( N + ) α − ( N + ) α
) D + (α
()
N+
()
)
(
()
)
+ α − N α DN + α − ( N + ) α − ( N + ) α DN+ + α − ( N − ) α( ) − ( N − ) α( ) DN− +
(
( )
()
()
− ( N − ) α − ( N − ) α
)D
+
N−
( ) + (α ( ) + ( N − ) α ( ) ) E′ + (α ( ) + ( N + ) α ( ) ) E′ + (α ( ) + ( N − ) α ( ) ) E′
+ ªα( ) (EN′′+ + EN′′− ) + α( ) (EN′′+ + EN′′− ) º U + ªNα( )EN′ + α( ) + ( N + ) α( ) EN′+ + ¬ ¼ ¬
(
N−
N+
)
(
N−
ºU + ¼
)
+ Nα( )EN + α( ) + ( N + ) α( ) − ( N + ) α( ) EN+ + α( ) + ( N − ) α( ) − ( N − ) α( ) EN− +
(
)
(
)
+ α( ) + ( N + ) α( ) − ( N + ) α( ) EN+ + α( ) + ( N − ) α( ) − ( N − ) α( ) EN− +
(
)
+ ªα FN′′ + α ( FN′′+ + FN′′− ) + α ( FN′′+ + FN′′− ) º U + ªα FN′ + α − ( N + ) α( ) FN′+ + ¬ ¼ ¬
( )
()
()
(
)
()
(
)
()
(
)
+ α( ) − ( N − ) α( ) FN′− + α( ) − ( N + ) α( ) FN′+ + α( ) − ( N − ) α( ) FN′− º U + ¼
(
) (
)
(
)
+ α( ) − α( ) N FN + α( ) − ( N + ) α( ) − ( N + ) α( ) FN+ + α( ) − ( N − ) α( ) − ( N − ) α( ) FN− +
(
()
()
()
)
(
()
()
()
)
+ α − ( N + ) α − ( N + ) α FN+ + α − ( N − ) α − ( N − ) α FN− +
) G′ + + (α ( ) + ( N − ) α ( ) ) G′ + (α ( ) + ( N + ) α ( ) ) G′ + (α ( ) + ( N − ) α ( ) ) G′ º U + ¼ ()
+ ªα ¬
( GN′′+ + GN′′− ) + α ( GN′′+ + GN′′− )º¼ U + ª¬Nα ()
()
(
() N
()
()
()
G′ + α + ( N + ) α
N+
)
()
(
()
()
N+
N−
)
+ Nα GN + α + ( N + ) α − ( N + ) α GN+ + α + ( N − ) α − ( N − ) α( ) GN− +
(
()
N−
(
)
(
)
+ α( ) + ( N + ) α( ) − ( N + ) α( ) GN+ + α( ) + ( N − ) α( ) − ( N − ) α( ) GN− =
)RU N = HT FDQEHHODERUDWHGHTXLYDOHQWO\ZKLFKLVJLYHQLQGHWDLO LQ$SSHQGL['RIWKHWKHVLVDQGLWLVUHIHUUHGWRWKHHODERUDWLRQVLQHT DQG WKHIROORZLQJ(T LVWKHILQDOHTXDWLRQFRQVLGHULQJWKHILUVWHTXDWLRQRIWKH 3'(VLQHT IRUWKHGHWHUPLQDWLRQRIWKH)RXULHUFRHIILFLHQWVIRUFDVHLH WKH ILUVW HTXDWLRQ IRU WKH FRHIILFLHQWV ZLWK LQGLFHV Q P = ! LQ HTV M DQG 1RWH WKDW α L( ) DFFRUGLQJ WR HT DUH FRQVWDQW FRHIILFLHQWV )XUWKHUPRUH DL EL F L G L DFFRUGLQJ WR HTV DQG DQG WKHLU ILUVW DQG VHFRQG RUGHU GHULYDWLYHV DUH IXQFWLRQV GHSHQGHQW RQ U &RQVLGHULQJ WKH VHFRQG HTXDWLRQ RI WKH 3'(V LQ HT WKH VDPH SURFHGXUH FDQ EH IROORZHG ZKLOH UHSODFLQJ αL ·VE\ βL ·VLQHT
0RKU²&RXORPEHODVWR²SODVWLFLW\LQFOXGLQJKDUGHQLQJLQWKHFLUFXODUGRPDLQ
&DVH0XOWLSOLFDWLRQE\VLQNθ DQGN «
,Q WKLV VHFWLRQ WKH WKLUG FDVH DV LQWURGXFHG LQ HT ZLOO EH WUHDWHG 0XOWLSOLFDWLRQRIHT E\ VLQ ( Nθ ) ZLWKIL[HG N = ! DQGLQWHJUDWLRQZLWK UHVSHFWWR θ IURP WR π JLYHV
π
³ I ( Uθ ) VLQ ( Nθ ) Gθ +
+
π ∞
π ∞
( ) ( ) ³ ¦ ª¬ I ( Uθ ) FRV ( Qθ ) VLQ ( Nθ )º¼ Gθ + ³ ¦ ª¬ I ( Uθ ) FRV (Pθ ) VLQ ( Nθ )º¼ Gθ + Q
Q =
+
P
P =
π ∞
π ∞
( ) ( ) ³ ¦ ª¬ I ( Uθ ) VLQ ( Qθ ) VLQ ( Nθ )º¼ Gθ + ³ ¦ ª¬ I ( Uθ ) VLQ (Pθ ) VLQ ( Nθ )º¼ Gθ = Q
P
Q =
P =
)LUVWWKHILYHLQWHJUDOVLQHT ZLOOEHHYDOXDWHGVHSDUDWHO\ZKLOHXVLQJWKH UHVXOWV RI HT )RU WKH ILUVW LQWHJUDO LQ HT LW IROORZV ZKLOH VXEVWLWXWLQJWKHIXQFWLRQ I ( U θ ) IROORZLQJIURPHT π
³ I ( Uθ ) VLQ ( Nθ ) Gθ =
π
=
³ {ª¬α
( )
VLQ ( θ ) + α( )VLQ ( θ ) º D′′U + ªα( )VLQ ( θ ) + α( )VLQ ( θ ) º D′ U + ¼ ¬ ¼
() ( ) + ªα VLQ ( θ ) + α VLQ ( θ ) º D + ªα ( )VLQ ( θ ) + α ( )VLQ ( θ ) º F′′U + ¬ ¼ ¬ ¼
}
() ( ) + ªα ( )VLQ ( θ ) + α ( )VLQ ( θ ) º F′ U + ªα VLQ ( θ ) + α VLQ ( θ ) º F VLQ ( Nθ ) Gθ = ¬ ¼ ¬ ¼
()
()
( )
()
()
()
° α U D′′ + α UD′ + α D + α U F′′ + α UF′ + α F IRUN = =π ® ( ) ( ) ( ) ( ) ( ) ( ) °¯ α U D′′ + α UD′ + α D + α U F′′ + α UF′ + α F IRUN =
(
)
( ) ( ) = π α( )U D′′ + α( )UD′ + α D + α ( )U F′′ + α ( )UF′ + α F δ N +
(
)
( ) ( ) + π α( )U D′′ + α( )UD′ + α D + α ( )U F′′ + α ( )UF′ + α F δ N
DV RQO\ IRU N = DQG N = QRQ²]HUR WHUPV RFFXU 1RWH WKDW LQ WKH SUHYLRXV HODERUDWLRQXVHKDVEHHQPDGHRIWKHHODERUDWHGHLJKWKWULJRQRPHWULFLQWHJUDOLQ HT ,QWKLVLQWHJUDOWKHFDVHV Q = V = DQG N = ! DUHVLJQLILFDQW WDNLQJLQWRDFFRXQWWKHFRQGLWLRQ V = N
&+$37(5
)RU WKH VHFRQG LQWHJUDO LQ HT LW IROORZV ZKLOH VXEVWLWXWLQJ WKH IXQFWLRQ Q I ( )( U θ ) IROORZLQJIURPHT π ∞
( ) ³ ¦ ª¬I ( U θ ) FRV ( Qθ ) VLQ ( N θ )º¼ Gθ = Q
Q =
=
π ∞
³ ¦{¬ªα
( )
Q =
+ α( ) FRV ( θ ) + α( )VLQ ( θ ) + α( ) FRV ( θ ) + α( )VLQ ( θ ) º DQ′′U + ¼
− ªα( ) + α( ) FRV ( θ ) + α( )VLQ ( θ ) + α( ) FRV ( θ ) + α( )VLQ ( θ ) º Q DQ + ¬ ¼
+ ªα( ) + α( ) FRV ( θ ) + α( )VLQ ( θ ) + α( ) FRV ( θ ) + α( )VLQ ( θ ) º QEQ′ U + ¬ ¼ ( ) () ( ) ( ) () ª + α + α FRV ( θ ) + α VLQ ( θ ) + α FRV ( θ ) + α VLQ ( θ ) º DQ′ U + ¬ ¼ + ªα( ) + α( ) FRV ( θ ) + α( )VLQ ( θ ) + α( ) FRV ( θ ) + α( )VLQ ( θ ) º QEQ + ¬ ¼
}
( ) () ( ) ( ) ( ) + ªα + α FRV ( θ ) + α VLQ ( θ ) + α FRV ( θ ) + α VLQ ( θ ) º DQ FRV ( Qθ ) VLQ ( N θ )Gθ = ¬ ¼
π π = ªα( )D±′′N ± + α( )D±′′N ± º U − ªα( ) ( ±N ± ) D± N ± + α( ) ( ±N ± ) D± N ± º + ¬ ¼
¬
+
¼
π ª ( ) π α ±N ± ) E±′ N ± + α() ( ±N ± ) E±′ N ± º¼ U + ª¬α()D±′ N ± + α()D±′ N ± º¼ U + ¬ (
π π ( ) () D± N ± + α D± N ± º + ªα( ) ( ±N ± ) E± N ± + α( ) ( ±N ± ) E± N ± º + ªα ¬ ¼ ¬ ¼
1RWHWKDWLQWKHSUHYLRXVHODERUDWLRQXVHKDVEHHQPDGHRIWKHHODERUDWHGIRXUWK DQG VL[WK WULJRQRPHWULF LQWHJUDOV LQ HT ,Q WKHVH LQWHJUDOV WKH FDVHV N = ! Q = ! DQG V = DUH VLJQLILFDQW 7KHQ RQO\ IRU Q = ± N ± DQG Q = ±N ± QRQ²]HUR UHVXOWV HTXDO WR π RFFXU $OO PXOWLSOLFDWLRQV ZLWK FRV ( θ ) DQG FRV ( θ ) UHVXOWLQ ]HURWHUPVDQGPXOWLSOLFDWLRQVZLWK VLQ ( θ ) DQG VLQ ( θ ) RQO\IRU Q = ± N ± DQG Q = ±N ± UHVXOWLQQRQ²]HURWHUPV
0RKU²&RXORPEHODVWR²SODVWLFLW\LQFOXGLQJKDUGHQLQJLQWKHFLUFXODUGRPDLQ
)RU WKH WKLUG LQWHJUDO LQ HT LW IROORZV ZKLOH VXEVWLWXWLQJ WKH IXQFWLRQ P I ( )( U θ ) IROORZLQJIURPHT π ∞
( ) ³ ¦ ª¬ I ( Uθ ) FRV (Pθ ) VLQ ( Nθ )º¼ Gθ = P
P=
=
π ∞
³ ¦ {¬ªα P=
()
+ α( ) FRV ( θ ) + α( )VLQ ( θ ) + α( ) FRV ( θ ) + α( )VLQ ( θ ) º FP′′ U + ¼
− ªα( ) + α( ) FRV ( θ ) + α( )VLQ ( θ ) + α( ) FRV ( θ ) + α( )VLQ ( θ ) º PFP + ¬ ¼
+ ªα( ) + α( ) FRV ( θ ) + α( )VLQ ( θ ) + α( ) FRV ( θ ) + α( )VLQ ( θ ) º PGP′ U + ¬ ¼ ( ) () ( ) ( ) () ª º + α + α FRV ( θ ) + α VLQ ( θ ) + α FRV ( θ ) + α VLQ ( θ ) FP′ U + ¬ ¼
( ) () ( ) () () + ªα + α FRV ( θ ) + α VLQ ( θ ) + α FRV ( θ ) + α VLQ ( θ ) º PGP + ¬ ¼
}
( ) () ( ) ( ) ( ) + ªα + α FRV ( θ ) + α VLQ ( θ ) + α FRV ( θ ) + α VLQ ( θ ) º FP FRV ( Pθ ) VLQ ( Nθ ) Gθ = ¬ ¼
π π = ªα( )F±′′N± + α( )F±′′N± º U − ªα( ) ( ±N ± ) F± N± + α( ) ( ±N ± ) F± N± º + ¬ ¼
¬
+
¼
π ª ( ) π α ±N ± ) G±′ N± + α() ( ±N ± ) G±′ N± ¼º U + ¬ªα()F±′ N± + α()F±′ N± ¼º U + ¬ (
π ( ) + ªα ( ±N ± ) G±N± + α() ( ±N ± ) G±N± º¼ + 𠪬α()F±N± + α()F±N± º¼ ¬
1RWHWKDWLQWKHSUHYLRXVHODERUDWLRQXVHKDVEHHQPDGHRIWKHHODERUDWHGIRXUWK DQG VL[WK WULJRQRPHWULF LQWHJUDOV LQ HT ,Q WKHVH LQWHJUDOV WKH FDVHV N = ! P = ! DQG V = DUH VLJQLILFDQW 7KHQ RQO\ IRU P = ± N ± DQG P = ±N ± QRQ²]HUR UHVXOWV HTXDO WR π RFFXU $OO PXOWLSOLFDWLRQV ZLWK FRV ( θ ) DQG FRV ( θ ) UHVXOWLQ ]HURWHUPVDQGPXOWLSOLFDWLRQVZLWK VLQ ( θ ) DQG VLQ ( θ ) RQO\IRU P = ± N ± DQG P = ±N ± UHVXOWLQQRQ²]HURWHUPV
&+$37(5
)RU WKH IRXUWK LQWHJUDO LQ HT LW IROORZV ZKLOH VXEVWLWXWLQJ WKH IXQFWLRQ Q I ( )( U θ ) IROORZLQJIURPHT π ∞
( ) ³ ¦ ª¬ I ( Uθ ) VLQ ( Qθ ) VLQ ( Nθ )º¼ Gθ = Q
Q=
=
π ∞
³ ¦{ª¬α
( )
Q=
+ α( ) FRV ( θ ) + α( )VLQ ( θ ) + α( ) FRV ( θ ) + α( )VLQ ( θ ) º EQ′′U + ¼
− ªα( ) + α( ) FRV ( θ ) + α( )VLQ ( θ ) + α( ) FRV ( θ ) + α( )VLQ ( θ ) º QEQ + ¬ ¼
− ªα( ) + α( ) FRV ( θ ) + α( )VLQ ( θ ) + α( ) FRV ( θ ) + α( )VLQ ( θ ) º QDQ′ U + ¬ ¼ ( ) () ( ) ( ) ( ) ª + α + α FRV ( θ ) + α VLQ ( θ ) + α FRV ( θ ) + α VLQ ( θ ) º EQ′ U + ¬ ¼ − ªα( ) + α( ) FRV ( θ ) + α( )VLQ ( θ ) + α( ) FRV ( θ ) + α( )VLQ ( θ ) º QDQ + ¬ ¼
}
( ) () ( ) + ªα + α FRV ( θ ) + α VLQ ( θ ) + α( ) FRV ( θ ) + α( )VLQ ( θ ) º EQ VLQ ( Qθ ) VLQ ( Nθ ) Gθ = ¬ ¼
π π = ªα( )EN′′ + α( )E±′′N± + α( )E±′′N± º U − ªα( ) NEN + α( )( ±N ± ) E± N± + α( )( ±N ± ) E± N± º + ¬ ¼
¬
−
¼
π ª ( ) ′ π α NDN + α( )( ±N ± ) D±′ N± + α( )( ±N ± ) D±′ N± º U + ªα( )EN′ + α( )E±′ N± + α( )E±′ N± º U + ¬ ¼ ¬ ¼
π π ( ) () − ªα( ) NDN + α( )( ±N ± ) D± N± + α( )( ±N ± ) D± N± º + ªα EN + α E± N± + α( )E±N± º ¬
¼
¬
¼
1RWH WKDW LQ WKH SUHYLRXV HODERUDWLRQ XVH KDV EHHQ PDGH RI WKH HODERUDWHG ILUVW DQG ILIWK WULJRQRPHWULF LQWHJUDOV LQ HT ,Q WKHVH LQWHJUDOV WKH FDVHV N = ! Q = ! DQG V = DUH VLJQLILFDQW 7KHQ RQO\ IRU Q = ± N ± DQG Q = ±N ± QRQ²]HUR UHVXOWV HTXDO WR π RFFXU $OO PXOWLSOLFDWLRQV ZLWK VLQ ( θ ) DQG VLQ ( θ ) UHVXOWLQ ]HURWHUPVDQGPXOWLSOLFDWLRQVZLWK FRV ( θ ) DQG FRV ( θ ) RQO\IRU Q = ± N ± DQG Q = ±N ± UHVXOWLQQRQ²]HURWHUPV
0RKU²&RXORPEHODVWR²SODVWLFLW\LQFOXGLQJKDUGHQLQJLQWKHFLUFXODUGRPDLQ
)RU WKH ILIWK LQWHJUDO LQ HT LW IROORZV ZKLOH VXEVWLWXWLQJ WKH IXQFWLRQ P I ( )( U θ ) IROORZLQJIURPHT π ∞
( ) ³ ¦ ª¬ I ( Uθ ) VLQ (Pθ ) VLQ ( Nθ )º¼ Gθ = P
P=
=
π ∞
³ ¦{¬ªα P=
( )
+ α( ) FRV ( θ ) + α( )VLQ ( θ ) + α( ) FRV ( θ ) + α( )VLQ ( θ ) º GP′′ U + ¼
− ªα( ) + α( ) FRV ( θ ) + α( )VLQ ( θ ) + α( ) FRV ( θ ) + α( )VLQ ( θ ) º PGP + ¬ ¼
− ªα( ) + α( ) FRV ( θ ) + α( )VLQ ( θ ) + α( ) FRV ( θ ) + α( )VLQ ( θ ) º PFP′ U + ¬ ¼ ( ) () ( ) ( ) () ª + α + α FRV ( θ ) + α VLQ ( θ ) + α FRV ( θ ) + α VLQ ( θ ) º GP′ U + ¬ ¼ ( ) () ( ) ( ) − ªα + α FRV ( θ ) + α VLQ ( θ ) + α FRV ( θ ) + α( )VLQ ( θ ) º PFP + ¬ ¼
}
( ) () ( ) ( ) + ªα + α FRV ( θ ) + α VLQ ( θ ) + α( ) FRV ( θ ) + α VLQ ( θ ) º GP VLQ ( Pθ ) VLQ ( Nθ ) Gθ = ¬ ¼
π π = ªα( )GN′′ + α( )G±′′N± + α( )G±′′N± º U − ªα( ) NGN + α( )( ±N ± ) G±N± + α( )( ±N ± ) G±N± º + ¬ ¼
¬
−
¼
π ª ( ) ′ π α NF + α( )( ±N ± ) F±′ N± + α( )( ±N ± ) F±′ N± º U + ªα( )GN′ + α( )G±′ N± + α( )G±′ N± º U + ¬ N ¼ ¬ ¼
π ( ) () NFN + α − ªα ( ±N ± ) F±N± + α()( ±N ± ) F±N± º + π ªα()GN + α()G±N± + α()G±N± º ¬
¼
¬
¼
1RWH WKDW LQ WKH SUHYLRXV HODERUDWLRQ XVH KDV EHHQ PDGH RI WKH HODERUDWHG ILUVW DQG ILIWK WULJRQRPHWULF LQWHJUDOV LQ HT ,Q WKHVH LQWHJUDOV WKH FDVHV N = ! P = ! DQG V = DUHVLJQLILFDQW7KHQRQO\IRU P = ±N ± DQG P = ±N ± QRQ²]HUR UHVXOWV HTXDO WR π RFFXU $OO PXOWLSOLFDWLRQV ZLWK VLQ ( θ ) DQG VLQ ( θ ) UHVXOWLQ ]HURWHUPVDQGPXOWLSOLFDWLRQVZLWK FRV ( θ ) DQG FRV ( θ ) RQO\IRU P = ±N ± DQG P = ±N ± UHVXOWLQQRQ²]HURWHUPV
&+$37(5
6XEVWLWXWLQJ WKH HYDOXDWHG LQWHJUDOV RI HTV WR LQWR HT LW IROORZV DIWHU GLYLGLQJ E\ π DQG VRUWLQJ IRU FRHIILFLHQWV DL EL F L DQG G L IRU FDVHLQZKLFK N = !
(α ( )U D′′ + α ( )UD′ + α ( )D + α ( )U F′′ + α ( )UF′ + α ( )F ) δ + + (α ( )U D′′ + α ( )UD′ + α ( ) D + α ( )U F′′ + α ( )UF′ + α ( )F ) δ
()
( )
N
+
N
+ ªα D±′′N ± + α D±′′N ± º U + ¬ ¼
(
)
(
) D′
+ ª −Nα ( ) DN′ + α( ) − ( ± N ± ) α ( ) D±′ N ± + α( ) − ( ±N ± ) α ( ¬
(
( ) − ( ±N ± ) α ( ) − ( ± N ± ) α ( − Nα ( ) DN + α
(
( ) + α − ( ±N ± ) α ( ) − ( ±N ± ) α (
)
)
)D
± N ±
)
)D
± N ±
± N ±
ºU + ¼
+
+
+ ªα( )EN′′ + α( )E±′′N ± + α( )E±′′N ± º U + ¬ ¼ ( ) ( ) + ªα EN′ + α + ( ± N ± ) α ( ) E±′ N ± + α( ) + ( ±N ± ) α ( ) E±′ N ± º U + ¬ ¼
(
(
)
( ) + α − Nα (
(
)
(
)
) E + (α ( ) + ( ± N ± ) α ( ) − ( ± N ± ) α ( ) ) E
N
( ) + α + ( ±N ± ) α ( ) − ( ±N ± ) α (
)
)E
± N ±
± N ±
+
+
+ ªα ( )F±′′N ± + α ( )F±′′N ± º U + ¬ ¼ ( ) ( ) + ª −Nα FN′ + α − ( ±N ± ) α ( ) F±′ N ± + α ( ) − ( ± N ± ) α ( ) F±′ N ± º U + ¬ ¼
(
()
(
)
( )
(
()
)
()
− Nα FN + α − ( ±N ± ) α − ( ±N ± ) α
(
( ) ( ) + α − ( ±N ± ) α − ( ±N ± ) α (
)
)F
± N ±
)F
± N ±
+
+
+ ªα ( )GN′′ + α ( )G±′′N ± + α ( )G±′′N ± º U + ¬ ¼
(
+ ªα ( )GN′ + α ( ) + ( ± N ± ) α ( ¬
(
( ) + α − Nα (
(
)
)
) G′
± N ±
) G′
)
± N ±
) G + (α ( ) + ( ± N ± ) α ( ) − ( ± N ± ) α ( ) ) G N
( ) ( ) + α + ( ±N ± ) α − ( ±N ± ) α (
(
+ α ( ) + ( ±N ± ) α (
)
)G
± N ±
± N ±
ºU + ¼
+
=
7KH FRHIILFLHQWV DL EL F L DQG G L DUH )RXULHU FRHIILFLHQWV DV LQWURGXFHG LQ HTV DQG LQZKLFKLQGLFHV Q DQG P UHVSHFWLYHO\KDYHEHHQUHSODFHGE\ LQGH[ L ZLWK L ≥ DQG E = G = )XUWKHUPRUH LW LV QRWHG WKDW LQ HT E\ XVLQJ WKH ± VLJQ HLJKW FDVHV DUH LQYROYHG LH L = N + L = N + L = N − L = N − L = −N + L = −N + L = −N − DQG L = −N − )RUIXUWKHUHODERUDWLRQRI HT WKHUHIRUH GLVWLQFWLRQ KDV WR EH PDGH EHWZHHQ WKH VSHFLDO FDVHV N = DQGWKHUHJXODUFDVH N ≥ DVRQO\FRHIILFLHQWVZLWKLQGLFHVODUJHURU
0RKU²&RXORPEHODVWR²SODVWLFLW\LQFOXGLQJKDUGHQLQJLQWKHFLUFXODUGRPDLQ
HTXDO WR ]HUR DUH DOORZHG IRU WKH SUHVHQW FDVH 7KLV LV LQ DQDORJ\ ZLWK WKH HODERUDWLRQVIRUFDVHDVSUHVHQWHGLQ6HFWLRQ ,Q7DEOHLWLVLQGLFDWHGIRUZKLFK N = ! WKHFRHIILFLHQWV DL EL F L DQG G L UHPDLQLQHT )RUWKHUHJXODUFDVHLH N ≥ IURPHT DQGXVLQJWKH UHVXOWVRI7DEOHLWWKHQIROORZV
( ) + (α( ) − ( N − ) α( ) ) D′ + (α( ) − ( N + ) α( ) ) D′ + (α( ) − ( N − ) α( ) ) D′
ªα() ( DN′′+ + DN′′− ) + α() ( DN′′+ + DN′′− ) º U + ª−Nα() DN′ + α() − ( N + ) α() DN′+ + ¬ ¼ ¬
(
N−
N+
)
(
N−
ºU + ¼
)
− Nα( ) DN + α( ) − ( N + ) α( ) − ( N + ) α( ) DN+ + α( ) − ( N − ) α( ) − ( N − ) α( ) DN− +
(
)
(
)
+ α( ) − ( N + ) α( ) − ( N + ) α( ) DN+ + α( ) − ( N − ) α( ) − ( N − ) α( ) DN− +
(
)
+ ªα( )EN′′ + α( ) (EN′′+ + EN′′− ) + α( ) (EN′′+ + EN′′− ) º U + ªα( )EN′ + α( ) + ( N + ) α( ) EN′+ + ¬ ¼ ¬
(
()
()
+ α + ( N − ) α
(
)E′ + (α
()
N−
) (
()
+ ( N + ) α
)E′ + (α
()
N+
()
+ ( N − ) α
)
(
)E′
N−
ºU + ¼
)
+ α( ) − Nα( ) EN + α( ) + ( N + ) α( ) − ( N + ) α( ) EN+ + α( ) + ( N − ) α( ) − ( N − ) α( ) EN− +
(
)
(
)
+ α( ) + ( N + ) α( ) − ( N + ) α( ) EN+ + α( ) + ( N − ) α( ) − ( N − ) α( ) EN− +
()
+ ªα ¬
( FN′′+ + FN′′− ) + α ( FN′′+ + FN′′− )¼º U + ¬ª−Nα ( )
(
(
() N
)
(
( )
()
F′ + α − ( N + ) α
)
(
)
(
) F′
+
N+
)
+ α( ) − ( N − ) α( ) FN′− + α( ) − ( N + ) α( ) FN′+ + α( ) − ( N − ) α( ) FN′− º U + ¼
(
)
− Nα( ) FN + α( ) − ( N + ) α( ) − ( N + ) α( ) FN+ + α( ) − ( N − ) α( ) − ( N − ) α( ) FN− +
(
( )
()
()
+ α − ( N + ) α − ( N + ) α
) F + (α
()
N+
()
()
− ( N − ) α − ( N − ) α
)F
N−
(
+
)
+ ªα( ) GN′′ + α( ) ( GN′′+ + GN′′− ) + α( ) ( GN′′+ + GN′′− ) º U + ªα( ) GN′ + α( ) + ( N + ) α( ) GN′+ + ¬ ¼ ¬
(
)
(
)
(
)
+ α( ) + ( N − ) α( ) GN′− + α( ) + ( N + ) α( ) GN′+ + α( ) + ( N − ) α( ) GN′− º U + ¼
(
) (
)
(
)
+ α( ) − Nα( ) GN + α( ) + ( N + ) α( ) − ( N + ) α( ) GN+ + α( ) + ( N − ) α( ) − ( N − ) α( ) GN− +
(
)
(
)
+ α( ) + ( N + ) α( ) − ( N + ) α( ) GN+ + α( ) + ( N − ) α( ) − ( N − ) α( ) GN− =
)RU N = HT FDQEHHODERUDWHGHTXLYDOHQWO\ZKLFKLVJLYHQLQGHWDLO LQ$SSHQGL[(RIWKHWKHVLVDQGLWLVUHIHUUHGWRWKHHODERUDWLRQVLQHT DQG WKHIROORZLQJ(T LVWKHILQDOHTXDWLRQFRQVLGHULQJWKHILUVWHTXDWLRQRIWKH 3'(VLQHT IRUWKHGHWHUPLQDWLRQRIWKH)RXULHUFRHIILFLHQWVIRUFDVHLH WKH VHFRQG HTXDWLRQ IRU WKH FRHIILFLHQWV ZLWK LQGLFHV Q P = ! LQ HTV M DQG 1RWH WKDW α L( ) DFFRUGLQJ WR HT DUH FRQVWDQW FRHIILFLHQWV )XUWKHUPRUH DL EL F L G L DFFRUGLQJ WR HTV DQG DQG WKHLU ILUVW DQG VHFRQG RUGHU GHULYDWLYHV DUH IXQFWLRQV GHSHQGHQW RQ U &RQVLGHULQJ WKH VHFRQG
&+$37(5
HTXDWLRQ RI WKH 3'( LQ HT WKH VDPH SURFHGXUH FDQ EH IROORZHG ZKLOH UHSODFLQJ αL ·VE\ βL ·VLQHT
&RPSDULVRQZLWKVROXWLRQSURFHGXUHIRUOLQHDUHODVWLFLW\
,Q RUGHU WR HYDOXDWH WKH DSSOLHG VROXWLRQ SURFHGXUH IRU 0RKU²&RXORPE HODVWR² SODVWLFLW\ WKH FKRVHQ DSSURDFK LV FRPSDUHG WR WKH FDVH RI OLQHDU HODVWLFLW\ DV HODERUDWHG LQ &KDSWHU &RQVLGHU HTV DQG )RU WKH VSHFLDO FDVH RI OLQHDU HODVWLFLW\ WKH\ FDQ HDVLO\ EH UHGXFHG E\ FDQFHOOLQJ DOO WHUPV M LQYROYLQJFRHIILFLHQWV α L( ) IRU M ≠ ZKLFKDUHHTXDOWR]HURIRUOLQHDUHODVWLFLW\DV HODERUDWHG LQ $SSHQGL[$ 7KHQ LW IROORZV IRU WKH WKUHH FDVHV IURP HTV DQG
α() D′′ U + α() D′ U + α() D = IRUN =
(
)
α() DN′′ U + ª¬α() DN′ + Nα ()GN′ º¼ U + α( ) − Nα ( ) DN + Nα()GN = IRUN ≥
(
)
α()EN′′ U + ¬ªα()EN′ − Nα ()FN′ ¼º U + α() − Nα ( ) EN − Nα( )FN = IRUN ≥ 7KH VDPH SURFHGXUH FDQ EH IROORZHG WR GHWHUPLQH WKH HTXDWLRQV LQYROYLQJ M FRHIILFLHQWV βL( ) IRUZKLFKIROORZV
β()F′′ U + β()F′ U + β()F = IRUN =
(
)
β()FN′′ U + ª¬Nβ()EN′ + β()FN′ º¼ U + Nβ()EN + β( ) − β() N FN = IRUN ≥
(
)
β()GN′′ U + ª¬ −Nβ() DN′ + β()GN′ º¼ U − Nβ() DN + β( ) − N β() GN = IRUN ≥ 6XEVWLWXWLQJ WKH UHPDLQLQJ FRHIILFLHQWV α L( ) DQG βL( ) IROORZLQJ IURP $SSHQGL[$ HTV DQG FDQEHHODERUDWHGDIWHUVRPHUHDUUDQJHPHQWDV
U D′′ + UD′ − D = IRUN = ° ° ′′ ′ º¼ − (+ν ) + N DN + N ª¬(+ ν ) UGN′ − ( + ν ) GN º¼ = IRUN ≥ ª U D + ν ( ) ® ¬ N + UDN ° °¯ ª¬U GN′′ + UGN′ º¼ − ª¬ + (+ν ) N º¼ GN − N ¬ª(+ ν ) UDN′ + ( + ν ) DN ¼º = IRUN ≥
(
)
U F′′ + UF′ − F = IRUN = ° ° ® (+ν ) ª¬U EN′′ + UEN′ º¼ − (+ν ) + N EN − N ª¬(+ ν ) UFN′ − ( + ν ) FN º¼ = IRUN ≥ ° °¯ ª¬U FN′′ + UFN′ º¼ − ª¬ + (+ν ) N º¼ FN + N ª¬(+ ν ) UEN′ + ( + ν ) EN º¼ = IRUN ≥
(
)
7RFRPSDUHWKHVHHTXDWLRQVWRWKHRQHVGHULYHGIRUOLQHDUHODVWLFLW\LQ&KDSWHU ILUVWUHFDOOWKHDVVXPHGIRUPRIWKHVROXWLRQRIWKHGLVSODFHPHQWILHOGIRUHODVWR² SODVWLFLW\ DV GHILQHG LQ HTV DQG LQ ZKLFK IRXU XQNQRZQ U − GHSHQGHQW IXQFWLRQVRFFXULHWKHIXQFWLRQV DQ( U ) EQ( U ) FQ( U ) DQG GQ( U ) QDPHO\
0RKU²&RXORPEHODVWR²SODVWLFLW\LQFOXGLQJKDUGHQLQJLQWKHFLUFXODUGRPDLQ
∞ HS °XU ( Uθ ) = D( U ) + ¦ ¬ªDQ( U ) FRV ( Qθ ) + EQ( U ) VLQ ( Qθ ) ¼º ° Q = ® ∞ HS °Xθ ( Uθ ) = F( U ) + ªFQ( U ) FRV ( Qθ ) + GQ( U ) VLQ ( Qθ ) º ¦ ¬ ¼ °¯ Q =
7KDW PHDQV WKDW IRU HODVWR²SODVWLFLW\ IRXU XQNQRZQ IXQFWLRQV DUH DYDLODEOH WR VROYH WKH ERXQGDU\ YDOXH SUREOHP 1RWH WKDW IRU WKH WZR²GLPHQVLRQDO SUREOHP LH U DQG θ LQYROYLQJWZRXQNQRZQVLHWKHGLVSODFHPHQWV XU DQG Xθ LQGHHG IRXU XQNQRZQV DUH QHFHVVDU\ WR EH DEOH WR VDWLVI\ WKH ERXQGDU\ FRQGLWLRQV )RU HODVWLFLW\ KRZHYHU RQO\ WZR XQNQRZQ U − GHSHQGHQW IXQFWLRQV RFFXU LQ WKH DVVXPHGIRUPRIWKHVROXWLRQDVGHILQHGLQHTV DQG LHWKHIXQFWLRQV Q Q IU( )( U ) DQG Iθ( )( U ) $IWHU KDYLQJ VROYHG WKH VHSDUDWHG θ − GHSHQGHQW SUREOHP IRU Q Q HODVWLFLW\VHH6HFWLRQ WZRDGGLWLRQDOFRQVWDQWVLH F( ) DQG F( ) LQHT DUH LQWURGXFHG DV ZHOO DV WKH DUELWUDU\ VHSDUDWLRQ FRQVWDQW µ LQ HT 7KHQHTV DQG FDQEHUHZULWWHQDV HO F( ) ∞ (Q ) Q ª (Q ) Q () + ¦ IU ( U ) F FRV ( Qθ ) − F( ) VLQ ( Qθ ) º °XU ( Uθ ) = IU ( U ) ¼ Q = µ¬ ° ® () ∞ °XHO Uθ = I ( ) U F + (Q ) (Q ) (Q) ª º ) θ ( ) θ ( ¦ Iθ ( U ) ¬F FRV ( Qθ ) + F VLQ ( Qθ )¼ P= ¯°
7KHLQLWLDOO\UHGXFHGQXPEHURIXQNQRZQVLQWKHDVVXPHGHODVWLFVROXWLRQLVWKHQ Q Q UHVROYHG E\ FRQVWDQWV F( ) DQG F( ) $GGLWLRQDOO\ WKH DX[LOLDU\ VHSDUDWLRQ FRQVWDQW µ RFFXUV ZKLFK LV UHGXQGDQW LQ WKH HODVWLF VROXWLRQ SURFHGXUH VHH 6HFWLRQ 7KH VHSDUDWLRQ FRQVWDQW LV WKHUHIRUH QRW QHFHVVDU\ LQ WKH HODVWR² SODVWLFVROXWLRQSURFHGXUH 7RFRPSDUHWKHUHVXOWVGHULYHGLQHT ZLWKWKHHODVWLFVROXWLRQLQHT FRQVLGHUWKHIROORZLQJUHODWLRQVIRUHDFK N = Q (Q ) Q (Q ) (Q) (Q) °°DN( U ) = F µ IU ( U ) GN( U ) = F Iθ ( U ) DQGµ = Q ® °EN( U ) = −F(Q ) Q IU(Q )( U ) FN( U ) = F(Q ) Iθ(Q )( U ) DQGµ = −Q °¯ µ
ZKLFK FDQ HDVLO\ EH GHULYHG E\ FRPSDULQJ HTV DQG 7KHQ LW FDQ EH VHHQWKDWIRU N ≥ HT LVFRPSOHWHO\LGHQWLFDOZLWKHT )RU N = Q = WKHUHVXOWVRIHT FDQEHFRPSDUHGZLWKHT ,W FDQ EH FRQFOXGHG WKDW WKH HTXDWLRQV RFFXUULQJ LQ WKH VROXWLRQ SURFHGXUH GHYHORSHGIRU0RKU²&RXORPEHODVWR²SODVWLFLW\SHUIHFWO\UHGXFHWRWKHVSHFLDOFDVH RIOLQHDUHODVWLFLW\1RWHWKDWWKHVHSDUDWLRQFRQVWDQW µ LVQRWDSSHDULQJLQWKH HODVWR²SODVWLF VROXWLRQ SURFHGXUH DV LW LV RQO\ XVHG DV DQ DX[LOLDU\ UHGXQGDQW FRQVWDQW LQ WKH HODVWLF VROXWLRQ SURFHGXUH ,W PD\ EH QRWHG DV ZHOO WKDW LQ WKH HODVWR²SODVWLFVROXWLRQSURFHGXUHIRXU U − GHSHQGHQWVROXWLRQVDQGWKHUHIRUHIRXU FRQVWDQWV DQ EQ FQ DQG GQ KDYH WR EH GHWHUPLQHG ZKHUHDV IRU HODVWLFLW\ RQO\ Q Q WZRRIWKHP F( ) DQG F( ) RFFXULQGHSHQGHQWO\
&+$37(5
7KH GLIIHUHQFHV EHWZHHQ ERWK VROXWLRQ SURFHGXUHV DUH VLJQLILFDQW 7KH HODVWR² SODVWLF HTXDWLRQV DUH UHFXUVLYH ZKLFK PHDQV WKDW IRU HDFK Q SUHYLRXV DQG IROORZLQJLQGLFHVKDYHWREHWDNHQLQWRDFFRXQWDQGWKHUHIRUHDOOHTXDWLRQVKDYH WREHVROYHGVLPXOWDQHRXVO\)RUHODVWLFLW\WKHHTXDWLRQVFDQEHVROYHGIRUHDFK Q LQGHSHQGHQWO\VHHHT 0RUHRYHULQWKHHODVWR²SODVWLFVROXWLRQSURFHGXUH DOO IRXU FRHIILFLHQWV RFFXU LQ HDFK RI WKH IRXU HTXDWLRQV WR VROYH )RU HODVWLFLW\ KRZHYHUWKHUHDUHWZRVHWVRIWZRHTXDWLRQVVHHHT WREHVROYHGHDFKVHW IRUWKHGHWHUPLQDWLRQRIWZRFRHIILFLHQWVLQGHSHQGHQWO\
)RUPXODWLRQRIJOREDOPDWUL[SUREOHP
,QWKHSUHVHQWVHFWLRQWKHVROXWLRQRIHTV DQG IRUWKHGHWHUPL² QDWLRQRIWKH)RXULHUFRHIILFLHQWV DL EL F L DQG G L LVGHULYHG7KHVHHTXDWLRQV GHILQH DQ LQILQLWH GLPHQVLRQDO V\VWHP RI VHFRQG²RUGHU RUGLQDU\ GLIIHUHQWLDO HTXDWLRQV2'(V ZLWKYDULDEOHFRHIILFLHQWVGHSHQGLQJRQ U RIWKHIRUP
U Nj T′′ ( U ) + U nj T′ ( U ) + ǍT ( U ) =
LQ ZKLFK WKH YHFWRU IXQFWLRQ T ( U ) RI LQILQLWH OHQJWK FRQWDLQV WKH XQNQRZQ IXQFWLRQVRIFRHIILFLHQWV DL ( U ) EL ( U ) FL ( U ) DQG GL ( U ) IRU L = ! 7KHPDWULFHV Nj nj DQG Ǎ DUH PDWULFHV RI LQILQLWH VL]H ZLWK UHDO FRQVWDQWV DQG U > LV WKH GHSHQGHQW YDULDEOH (T LV NQRZQ LQ OLWHUDWXUH DV WKH (XOHU HTXDWLRQ RU HTXLGLPHQVLRQDOHTXDWLRQ1RWHWKHRQO\ SRLQWRIGLVFRQWLQXLW\IRU U = ZKLFK LVDUHJXODUVLQJXODUSRLQWDVHODERUDWHGLQ6HFWLRQVWDUWLQJDWHT 7R VROYHWKHLQILQLWHV\VWHPRI2'(VWZRWUDQVIRUPDWLRQVDUHDSSOLHG$SSO\LQJWKH ILUVW WUDQVIRUPDWLRQ WKH V\VWHP RI VHFRQG²RUGHU 2'(V ZLWK YDULDEOH FRHIILFLHQWV LV UHZULWWHQ DV D V\VWHP RI VHFRQG²RUGHU 2'(V ZLWK FRQVWDQW FRHIILFLHQWV :LWK WKH VHFRQG WUDQVIRUPDWLRQ WKH UHVXOWLQJ HTXDWLRQV DUH UHZULWWHQ DV D V\VWHP RI ILUVW²RUGHU 2'(V ZLWK FRQVWDQW FRHIILFLHQWV 7KHUHDIWHU VWDQGDUG VROXWLRQ SURFHGXUHVDUHDSSOLHGWRVROYHWKHVHHTXDWLRQV
7UDQVIRUPDWLRQWRV\VWHPRIILUVW²RUGHU2'(V
,Q WKLV VHFWLRQ WKH VHFRQG²RUGHU 2'(V VHH HT ZLWK YDULDEOH FRHIILFLHQWV IROORZLQJ IURP HTV DQG DUH WUDQVIRUPHG WR V\VWHPV RI ILUVW² RUGHU 2'(V ZLWK FRQVWDQW FRHIILFLHQWV )LUVW FRQVLGHU WKH WUDQVIRUPDWLRQ RI WKH GHSHQGHQWYDULDEOH U > IRUZKLFKWKHIROORZLQJUHODWLRQVDUHLQWURGXFHG
DL ( U ) = D L ( ρ ) EL ( U ) = EL ( ρ ) FL ( U ) = FL ( ρ ) DQGGL ( U ) = GL ( ρ ) LQZKLFK ρ = OQ ( U ) 7KHQIURPWKHUHODWLRQVLQHT LWIROORZV
7KLVHTXDWLRQLVFRPSDUDEOHWRHT ZKLFKRFFXUVIRUOLQHDUHODVWLFLW\
0RKU²&RXORPEHODVWR²SODVWLFLW\LQFOXGLQJKDUGHQLQJLQWKHFLUFXODUGRPDLQ
GDL ( U ) GU
=
G DL ( U ) GU
GD L ( ρ ) RUUDL′( U ) = D L′( ρ ) U Gρ
=
G D L ( ρ ) GD L ( ρ ) − RUU DL′′( U ) = D L′′( ρ ) − D L′( ρ ) U Gρ U Gρ
DQG DQDORJRXV IRU WKH RWKHU FRHIILFLHQWV EL FL DQG GL 1RWH WKDW WKH WUDQVIRUPDWLRQ LV QRW UHJXODU IRU U = IRU ZKLFK D VLQJXODU SRLQW RFFXUV 6XEVWLWXWLQJ HTV DQG LQWR HTV DQG WKH 2'(V ZLWKYDULDEOHFRHIILFLHQWVIROORZLQJIURPHT FDQEHUHZULWWHQDV2'(VZLWK FRQVWDQWFRHIILFLHQWVRIWKHIRUP
Nj T ′′ ( ρ ) + ( nj − Nj ) T ′ ( ρ ) + ǍT ( ρ ) =
LQZKLFKWKHYHFWRUIXQFWLRQ T ( ρ ) RILQILQLWHVL]HFRQWDLQVWKHXQNQRZQIXQFWLRQV RIFRHIILFLHQWV D L ( ρ ) EL ( ρ ) FL ( ρ ) DQG GL ( ρ ) IRUHDFK L = ! DQG ρ = OQ ( U ) LV WKHGHSHQGHQWYDULDEOHDIWHUDSSO\LQJWKHWUDQVIRUPDWLRQ T ( U ) = T ( ρ ) )RUWKHVHFRQGWUDQVIRUPDWLRQWKHIROORZLQJUHODWLRQVDUHLQWURGXFHG HL ( ρ ) = D L′( ρ )
IL ( ρ ) = EL′( ρ )
J L ( ρ ) = FL′( ρ ) DQGKL ( ρ ) = GL′( ρ )
)URPHT LWIROORZV D L′′( ρ ) = HL′( ρ ) EL′′( ρ ) = IL′( ρ ) FL′′( ρ ) = J L′( ρ ) DQGGL′′( ρ ) = KL′( ρ )
7KHQ VXEVWLWXWLQJ HTV DQG LQWR HT LW IROORZV IRU WKH WUDQVIRUPDWLRQRIWKHVHFRQG²RUGHUGHULYDWLYHVRIWKH)RXULHUFRHIILFLHQWV U DL′′ = D L′′ − D L′ = HL′ − HL U EL′′ = EL′′ − EL′ = IL′ − IL U FL′′ = FL′′ − FL′ = J L′ − J L DQG U GL′′ = GL′′ − GL′ = KL′ − KL
6XEVWLWXWLQJHTV DQG LQWRHT LWIROORZVIRUWKHWUDQVIRUPDWLRQ RIWKHILUVW²RUGHUGHULYDWLYHVRIWKH)RXULHUFRHIILFLHQWV UDL′ = D L′ = HL UEL′ = EL′ = IL UFL′ = FL′ = J L DQGUGL′ = GL′ = KL
$QG IURP HT LW IROORZV GLUHFWO\ IRU WKH WUDQVIRUPDWLRQ RI WKH )RXULHU FRHIILFLHQWV DL = D L EL = EL FL = FL DQGGL = GL
6XEVWLWXWLQJ HTV WR LQWR HTV DQG WKH VHFRQG² RUGHU 2'(V FDQ EH UHZULWWHQ DV V\VWHPV RI ILUVW²RUGHU 2'(V ZLWK FRQVWDQW FRHIILFLHQWVZKLFKZLOOEHHODERUDWHGLQWKHIROORZLQJIRUWKHWKUHHGLIIHUHQWFDVHV
&+$37(5
)RU FDVH LH N = DFFRUGLQJ WR 6HFWLRQ DIWHU VXEVWLWXWLQJ HTV WR LQWRHT LWIROORZV
α() H′ + α() H′ + α() H′ + α() I′ + α() I′ + α ( ) J ′ + α () J ′ + α () J ′ + α ()K′ + α ()K′ +
(
) ( ) ( ) ( ) ( ) + ( −α + α + α ) E + ( −α + α + α ) E + + α ( )F + ( −α ( ) − α ( ) + α ( ) ) F + ( −α ( ) − α ( ) + α ( ) ) F + + ( −α ( ) + α ( ) + α ( ) ) G + ( −α ( ) + α ( ) + α ( ) ) G + + ( −α ( ) + α ( ) ) H + ( −α ( ) − α ( ) + α ( ) ) H + ( −α ( ) − α ( ) + α ( ) ) H + + ( −α ( ) + α ( ) + α ( ) ) I + ( −α ( ) + α ( ) + α ( ) ) I + + ( −α ( ) + α ( ) ) J + ( −α ( ) − α ( ) + α ( ) ) J + ( −α ( ) − α ( ) + α ( ) ) J + + ( −α ( ) + α ( ) + α ( ) ) K + ( −α ( ) + α ( ) + α ( ) ) K = () () () + α D + −α ( ) − α ( ) + α D + −α ( ) − α ( ) + α D +
()
()
()
0RKU²&RXORPEHODVWR²SODVWLFLW\LQFOXGLQJKDUGHQLQJLQWKHFLUFXODUGRPDLQ
)RU FDVH LH PXOWLSOLFDWLRQ E\ FRV ( Nθ ) IRU N = ! DFFRUGLQJ WR 6HFWLRQ DIWHU VXEVWLWXWLQJ HTV WR LQWR HT LW IROORZV IRU WKHUHJXODUFDVH N ≥
(
)
(
) (K′
α( ) HN′ + α( ) ( HN′+ + HN′− ) + α( ) ( HN′+ + HN′− ) + α( ) IN′+ + IN′− + α( ) IN′+ + IN′− +
( )
()
()
+ α J N′ + α ( J N′+ + J N′− ) + α
(
( )
) (
( JN′+ + JN′− ) + α
()
()
()
N+
)
)
()
+ KN′− + α
(
N+
()
)
+ KN′− +
( )
)
+ α − N α DN + α − ( N + ) α − ( N + ) α DN+ + α − ( N + ) α − ( N + ) α( ) DN+ +
(
( )
(K′
()
) D + (α − (N − )α − (N − ) α ) D + + Nα E + (α + ( N + ) α − ( N + ) α ) E + (α + ( N + ) α − ( N + ) α ) E + + (α + ( N − ) α − ( N − ) α ) E + (α + ( N − ) α − ( N − ) α ) E + + (α − α N ) F + (α − ( N + ) α − ( N + ) α ) F + (α − ( N + ) α − ( N + ) α ) F + (α − ( N − ) α − ( N − ) α ) F + (α − ( N − ) α − ( N − ) α ) F + + Nα G + (α + ( N + ) α − ( N + ) α ) G + (α + ( N + ) α − ( N + ) α ) G + + (α + ( N − ) α − ( N − ) α ) G + (α + ( N − ) α − ( N − ) α ) G + ()
( )
()
+ α − ( N − ) α − ( N − ) α () N
()
()
()
()
N
()
( ) N
( )
()
) (
()
()
()
()
()
()
(
()
N+
+
N−
( )
()
N+
()
)
()
()
()
()
N−
()
()
()
N−
()
()
()
N+
N−
N+
()
()
()
()
()
N−
()
()
( )
()
()
N+
N−
( )
( )
( )
()
()
( )
()
()
N−
()
( )
(
()
N+
N−
()
)
+ −α + α HN + −α + α − ( N + ) α HN+ + −α + α − ( N + ) α HN+ +
(
()
()
()
)
(
()
()
()
)
+ −α + α − ( N − ) α HN− + −α + α − ( N − ) α HN− + ( )
(
(
()
( )
()
)
(
()
)
(
()
()
)
+ Nα IN + −α + α + ( N + ) α IN+ + −α + α + ( N + ) α( ) IN+ +
( )
( )
()
( )
()
+ −α + α + ( N − ) α IN− + −α + α + ( N − ) α
(
)
(
)
) I
N−
+
(
)
+ −α( ) + α( ) J N + −α( ) + α( ) − ( N + ) α( ) J N+ + −α( ) + α( ) − ( N + ) α( ) J N+ +
(
) J + ( −α +α − ( N − )α ) J + + Nα ( ) K + ( −α ( ) + α ( ) + ( N + ) α ( ) ) K + ( −α ( ) + α ( ) + ( N + ) α ( ) ) K + ( −α ( ) + α ( ) + ( N − ) α ( ) ) K + ( −α ( ) + α ( ) + ( N − ) α ( ) ) K = ()
()
()
+ −α + α − ( N − ) α
N
N−
N−
()
()
N+
()
N−
N+
+
N−
)RU N = HT FDQ EH HODERUDWHG HTXLYDOHQWO\ WDNLQJ LQWR DFFRXQW WKH UHVXOWVRI7DEOHLQZKLFKLWLVLQGLFDWHGIRUZKLFK N = WKHFRHIILFLHQWV UHPDLQLQWKHHTXDWLRQ,Q$SSHQGL['WKHRULJLQDOHTXDWLRQVDUHJLYHQ
&+$37(5
)RU FDVH LH PXOWLSOLFDWLRQ E\ VLQ ( Nθ ) IRU N = ! DFFRUGLQJ WR 6HFWLRQ DIWHU VXEVWLWXWLQJ HTV WR LQWR HT LW IROORZV IRU WKHUHJXODUFDVH N ≥
(
)
(
) (K′
α() ( HN′+ + HN′− ) + α() ( HN′+ + HN′− ) + α() IN′ + α() IN′+ + IN′− + α() IN′+ + IN′− + ( )
+ α
()
( )
( JN′+ + JN′− ) + α ( JN′+ + JN′− ) + α
(
()
()
()
(
()
)
()
KN′ + α KN′+ + KN′− + α
) ) D + (α
(
()
()
N+
()
)
+ KN′− +
()
N−
+
)
− Nα DN + α − ( N + ) α − ( N + ) α DN+ + α − ( N + ) α − ( N + ) α DN+ +
(
( )
()
()
+ α − ( N − ) α − ( N − ) α
()
N−
()
− ( N − ) α − ( N − ) α
) (
(
( )
)
) D
(
)
+ α( ) − Nα( ) EN + α( ) + ( N + ) α( ) − ( N + ) α( ) EN+ + α( ) + ( N + ) α( ) − ( N + ) α( ) EN+ +
(
)
(
)
+ α( ) + ( N − ) α( ) − ( N − ) α( ) EN− + α( ) + ( N − ) α( ) − ( N − ) α( ) EN− +
(
()
()
( )
()
()
)
(
()
+ α − ( N − ) α − ( N − ) α
) F + (α
()
N−
()
()
( )
− ( N − ) α − ( N − ) α
) (
(
()
)
− Nα FN + α − ( N + ) α − ( N + ) α FN+ + α − ( N + ) α − ( N + ) α( ) FN+ +
(
()
)
) F
N−
+
(
)
+ α( ) − Nα( ) GN + α( ) + ( N + ) α( ) − ( N + ) α( ) GN+ + α( ) + ( N + ) α( ) − ( N + ) α( ) GN+ +
(
)
(
)
+ α( ) + ( N − ) α( ) − ( N − ) α( ) GN− + α( ) + ( N − ) α( ) − ( N − ) α( ) GN− +
(
()
()
( )
()
)
(
()
( )
()
)
− Nα HN + −α + α − ( N + ) α HN+ + −α + α − ( N + ) α HN+ +
(
()
( )
()
)
(
( )
()
()
)
+ −α + α − ( N − ) α HN− + −α + α − ( N − ) α HN−
(
( )
( )
+ −α + α
(
) I + ( −α N
()
()
( )
+ α + ( N + ) α
) I + ( −α N+
()
)
+ α( ) + ( N + ) α( ) IN+ +
) I + ( −α + α + ( N − )α ) I + − Nα ( ) J + ( −α ( ) + α ( ) − ( N + ) α ( ) ) J + ( −α ( ) + α ( ) − ( N + ) α ( ) ) J + + ( −α ( ) + α ( ) − ( N − ) α ( ) ) J + ( −α ( ) + α ( ) − ( N − ) α ( ) ) J + + ( −α ( ) + α ( ) ) K + ( −α ( ) + α ( ) + ( N + ) α ( ) ) K + ( −α ( ) + α ( ) + ( N + ) α ( ) ) K + ( −α ( ) + α ( ) + ( N − ) α ( ) ) K + ( −α ( ) + α ( ) + ( N − ) α ( ) ) K = ()
()
()
+ −α + α + ( N − ) α
N
N
N−
N−
()
()
N−
N+
N+
N−
()
N−
N+
N+
+
N−
)RU N = HT FDQ EH HODERUDWHG HTXLYDOHQWO\ WDNLQJ LQWR DFFRXQW WKH UHVXOWVRI7DEOHLQZKLFKLWLVLQGLFDWHGIRUZKLFK N = WKHFRHIILFLHQWV UHPDLQLQWKHHTXDWLRQ,Q$SSHQGL[(WKHLQLWLDOHTXDWLRQVDUHJLYHQ M 1RWHLQHTV WR WKDW α L( ) DUHFRQVWDQWFRHIILFLHQWVDQG D L EL FL GL HL IL J L KL DQG WKHLU ILUVW RUGHU GHULYDWLYHV DUH IXQFWLRQV GHSHQGHQW RQ U ,Q WKH IROORZLQJ 6HFWLRQ HTV WR ZLOO EH UHIRUPXODWHG DV PDWUL[ HTXDWLRQV
0RKU²&RXORPEHODVWR²SODVWLFLW\LQFOXGLQJKDUGHQLQJLQWKHFLUFXODUGRPDLQ
&RPSRVLWLRQRIPDWUL[HTXDWLRQV
)RUHDFKYDOXHRI N = ! WKHSUREOHPVVWDWHGLQHTV WR FDQEH UHIRUPXODWHGDVPDWUL[HTXDWLRQV,QRUGHUWRFRPSRVHWKHPDWUL[HTXDWLRQVLWLV QRWHG WKDW HDFK RI WKH HTV WR JHQHUDOO\ FDQ EH UHZULWWHQ LQ WKH IROORZLQJIRUPIRUHDFK N QDPHO\
¦ $ ( )[ ′( ) = ¦ %( )[ ( ) L N
L
L N
L
L
L
ZKHUH WKH LQGH[ L UHSUHVHQWV WKH ILYH RFFXUULQJ VXEVFULSWV RI L = ± N ± V > LH L = N L = N + L = N − L = N + DQG L = N − IRUHDFK N = ! ,QHT WKHYHFWRURIXQNQRZQV [ (L ) DQGLWVGHULYDWLYH [ ′(L ) DUHGHILQHGDV § D L ( ρ ) · § D L′( ρ ) · ¨ ¸ ¨ ¸ ¨ EL ( ρ ) ¸ ¨ EL′( ρ ) ¸ ¨ F ( ρ ) ¸ ¨ F′( ρ ) ¸ ¨ L ¸ ¨ L ¸ ¨ GL ( ρ ) ¸ ¨ GL′( ρ ) ¸ [ (L )( ρ ) = ¨ ¸ DQG[ ′(L )( ρ ) = ¨ ¸ IRUL > ¨ HL ( ρ ) ¸ ¨ HL′( ρ ) ¸ ¨ I ( ρ ) ¸ ¨ I′( ρ ) ¸ ¨ L ¸ ¨ L ¸ ¨ J L ( ρ ) ¸ ¨ J L′( ρ ) ¸ ¨¨ ¸¸ ¨¨ ¸¸ © KL ( ρ ) ¹ © KL′( ρ ) ¹
LQ ZKLFK WKH VFDODU IXQFWLRQV D L ( ρ ) WR KL ( ρ ) DV GHILQHG LQ HTV DQG DQGWKHLUGHULYDWLYHV D L′( ρ ) WR KL′( ρ ) DVGHILQHGLQHTV DQG RFFXU L ,Q HT GLIIHUHQW PDWULFHV $ (N ) DUH RFFXUULQJ ZKLFK DUH UHODWHG WR WKH L GHULYDWLYH RI WKH YHFWRU RI XQNQRZQV [ ′(L ) )XUWKHUPRUH GLIIHUHQW PDWULFHV %(N ) DUH RFFXUULQJ ZKLFK DUH UHODWHG WR WKH YHFWRU RI XQNQRZQV [ (L ) LWVHOI ,W FDQ EH VHHQIURPHTV WR WKDWIRU L = N ± L = N ± DQG L = N UHVSHFWLYHO\WKH L L L L =N ± VDPH PDWULFHV IRU $ (N ) DQG %(N ) RFFXU 7KH\ FDQ EH UHSUHVHQWHG E\ $ (N ) = 0 (L ) L = N ± (L ) L = N (L ) L = N ± ( N ± ) (L ) L = N ± ( N ± ) (L ) L = N ( N ) $ N = 0 $ N = 0 DQG %N = 1 %N = 1 %N = 1 )RUWKHUHJXODU FDVHLH N ≥ LWWKHQIROORZVIURPHT
0 [ ′( N ± ) + 0 [ ′( N ±) + 0 [ ′( N ) = 1(
N ± )
N ± N [ ( N ± ) + 1( ) [ ( N ±) + 1( ) [ ( N )
+RZHYHUUHFDOOWKDWLUUHJXODUFDVHVKDYHWREHGLVWLQJXLVKHGIRU N = DV ZDV IRXQG GXULQJ WKH HODERUDWLRQV LQ WKH SUHYLRXV VHFWLRQV DQG VKRZQ LQ 7DEOH (L ) (L ) Ø Ø 7KHVH LUUHJXODU FDVHV ZLOO EH HPERGLHG E\ PDWULFHV 0 DQG 1 IRU N = DVHODERUDWHGLQGHWDLOODWHU 'HVSLWH WKH JHQHUDO QDWXUH RI HT QHYHUWKHOHVV DQRWKHU VSHFLDO FDVH PXVW EHUHFRJQL]HGDVZHOO1DPHO\LQHTV DQG WKH)RXULHUFRHIILFLHQWV E( U ) DQG G( U ) GRQRWRFFXULPSO\LQJZLWKHT WLOODQGLQFOXGLQJHT WKDW DOVR E( ρ ) G( ρ ) WKHLU GHULYDWLYHV E′ ( ρ ) G′ ( ρ ) EXW DOVR WKH UHODWHG TXDQWLWLHV I( ρ ) K( ρ ) DQG I′( ρ ) K′ ( ρ ) GR QRW RFFXU HLWKHU &RQVHTXHQWO\ IRU LQGH[ L =
&+$37(5
WKH − FRPSRQHQW YHFWRUV [ (L ) DQG [ ′(L ) LQ HT QHHG WR EH UHGXFHG WR WKH IROORZLQJ − FRPSRQHQWYHFWRUV § D ( ρ ) · § D ′ ( ρ ) · ¨ ¸ ¨ ¸ F( ρ ) ¸ F′ ( ρ ) ¸ [Ø ( )( ρ ) = ¨ DQG[Ø ′( )( ρ ) = ¨ IRUL = ¨ H( ρ ) ¸ ¨ H′ ( ρ ) ¸ ¨¨ ¸¸ ¨¨ ¸¸ © J ( ρ ) ¹ © J ′ ( ρ ) ¹
1H[WFRQVLGHULQJDOVRHT ZKLOHUHFRJQL]LQJWKDWDOOPDWULFHV $ (N ) DQG %(N ) IRU L > KDYHHLJKWFROXPQVIRUWKHVSHFLDOFDVHRI L = WKHQXPEHURIFROXPQV RIDOOPDWULFHV $ (N ) DQG %(N ) PXVWUHGXFHWRIRXU )XUWKHUPRUH LW VKRXOG EH QRWHG WKDW IRU HT WR EH VROYDEOH WKH QXPEHU RI HTXDWLRQV KDV WR EH HTXDO WR WKH QXPEHU RI XQNQRZQV 7KLV LPSOLHV WKDW GXH WR WKH QRQ²RFFXUUHQFH RI E( ρ ) G( ρ ) I( ρ ) DQG K( ρ ) DQG WKHLU GHULYDWLYHV LQ HT IRU L = DOVR IRXU HTXDWLRQV KDYH WR EH HOLPLQDWHG ZKLFK ZLOO EH FRQVLGHUHGLQGHWDLOODWHU ,Q 7DEOH LW LV HODERUDWHG IROORZLQJ IURP HTV WR ZKLFK PDWULFHV L $ (N ) RFFXU LQ HT LQYROYLQJ ERWK UHJXODU PDWULFHV 0 DQG LUUHJXODU (L ) Ø PDWULFHV 0 1RWH WKDW WKLV WDEOH LV FORVHO\ UHODWHG WR WKH HDUOLHU GHULYHG L UHVXOWVDVSUHVHQWHGLQ7DEOH6LPLODUO\ODWHULQ7DEOHWKHPDWULFHV %(N ) LQ HT ZLOOEHHODERUDWHG Ø (L ) DSSHDU IRU LQGLFHV L = N ≥ $V FDQ EH VHHQ LQ 7DEOH PDWULFHV 0 DQG 0 L ( ) Ø DSSHDUIRULQGLFHV L = ± N ± ≥ DQGPDWULFHV 0 DQG 0 Ø (L ) PDWULFHV 0 DQG 0 DSSHDUIRULQGLFHV L = ± N ± ≥ 1RWHWKDWWKHPDWULFHV 0 DUHLQGHSHQGHQWRQ (L ) Ø N H[FHSWIRUWKHLQGLFDWHGLUUHJXODUFDVHV 0 LQWKHEHJLQQLQJRIWKH)RXULHU VHULHVIRU N = N = N = N = N = N = N ≥ LQGH[ (L ) (L ) (L ) (L ) (L ) (L ) L = ±N ± V L L L L L L $N $N $N $N $N $N L
N
+N +
Ø () 0 Ø () 0
+N +
+N −
L
0
0
0
0
N
0
0
0
0
0
N
0
Ø () 0
0
0
0
N
0
QD
²
²
0 Ø () 0
²
0
N²
0
+N −
²
QD
²
²
²
²
²
²
0 Ø () 0
N²
0
−N +
QD
0
Ø () 0
²
²
²
²
²
²
−N +
QD
0
0
0
Ø () 0
²
²
−N −
²
QD
²
²
²
²
²
²
²
²
²
²
−N −
²
QD
²
²
²
²
²
²
²
²
²
²
(L )
7DEOH 'HILQLWLRQ RI PDWULFHV $ N IRU LQGLFHV L = ± N ± V IRU V = LQYROYLQJ UHJXODU Ø ( L ) IRU N = UHVSHFWLYHO\ PDWULFHV 0 IRU N ≥ DQGLUUHJXODUPDWULFHV 0
0RKU²&RXORPEHODVWR²SODVWLFLW\LQFOXGLQJKDUGHQLQJLQWKHFLUFXODUGRPDLQ
,QWKHIROORZLQJHODERUDWLRQRIUHJXODUPDWULFHV 0 RFFXUULQJLQ7DEOHWKH ILUVW IRXU URZV UHSUHVHQW HT DFFRUGLQJ WR WKH VHFRQG WUDQVIRUPDWLRQ UXOH 5RZVDQGUHSUHVHQWWKHHODERUDWLRQRIWKHILUVWH[SUHVVLRQLQHT LHRQO\ M FRHIILFLHQWV α L( ) RFFXU 7KH\ FRQWDLQ HTV DQG UHVSHFWLYHO\ WKXV FRQFHUQLQJ WKH PXOWLSOLFDWLRQ E\ FRVLQH FDVH DQG VLQH FDVH 5RZV DQG UHSUHVHQW WKH HODERUDWLRQ RI WKH VHFRQG H[SUHVVLRQ LQ HT LH RQO\ M FRHIILFLHQWV βL( ) RFFXU7KHVHHTXDWLRQVFDQEHGHULYHGE\UHSODFLQJDOOFRHIILFLHQWV ( M) α L LQURZVDQGE\FRHIILFLHQWV βL( M ) LQURZVDQG 7KHUHJXODU × − PDWULFHV 0 0 DQG 0 WKHQFDQEHHODERUDWHGDV
ª « « « « « 0 = « « « « « « ¬« ª « « « « « 0 = « « « « « « «¬
α (
()
α
α(
()
β
)
)
β(
β(
()
()
)
α ()
α
α
α(
α() α ()
)
)
β(
)
β()
β()
β(
)
β()
β()
º »» » » » » » α ( ) » » » » β( ) ¼»
IRUL = N DQGN ≥
º »» » » L = N + DQGN ≥ » ° IRU ® L = N − DQGN ≥ α () » » ° L = −N + DQGN = ¯ α () » » β() » » β() »¼
º » » » » L = N + DQGN ≥ » ° IRU ® L = N − DQGN ≥ α ( ) » » ° L = −N + DQGN = ¯ α () » » β( ) » » β() ¼»
DQG ª « « « « « 0 = « « « « « « ¬«
α(
)
α( ) α ()
α(
)
α() α ( )
β(
)
β( )
β()
β(
)
β()
β( )
(L ) Ø ZLOOEHHODERUDWHGLQGHWDLOODWHURQLQWKLVFKDSWHU 7KHLUUHJXODUPDWULFHV 0
&+$37(5
L = ±N ± V
N =
N =
LQGH[
L
N
+N +
(L )
%N Ø () 1
L
(L )
%N ( )
1
1 1
()
+N +
+N −
²
QD
²
²
+N −
²
QD
²
²
()
( )
N =
N =
(L )
(L )
(L )
L
Ø () 1 Ø () 1
N = %N ()
1
1
() ()
L
%N ()
1
1
() ( )
1
1 Ø () 1
²
²
Ø () 1
L
%N ()
1
1
() ()
N ≥
L N
(L )
%N (N)
1 ( N+ )
N
1
N
1
( N+ )
1
1
N²
1
²
²
1 Ø () 1
N²
1
²
²
²
²
²
( )
()
( N− )
( N− )
−N +
QD
1
−N +
QD
1
1
1
Ø () 1
²
²
−N −
²
QD
²
²
²
²
²
²
²
²
²
²
−N −
²
QD
²
²
²
²
²
²
²
²
²
²
()
()
( )
²
(L )
7DEOH 'HILQLWLRQ RI PDWULFHV % N IRU LQGLFHV L = ± N ± V IRU V = LQYROYLQJ UHJXODU (L ) Ø ( L ) IRU N = UHVSHFWLYHO\ PDWULFHV 1 IRU N ≥ DQGLUUHJXODUPDWULFHV 1
,Q 7DEOH LW LV HODERUDWHG IROORZLQJ IURP HTV WR ZKLFK PDWULFHV L (L ) DQG LUUHJXODU %(N ) RFFXU LQ HT LQYROYLQJ ERWK UHJXODU PDWULFHV 1 L ( ) Ø 1RWHWKDWWKLVWDEOHLVFORVHO\UHODWHGWRWKHHDUOLHUGHULYHGUHVXOWV PDWULFHV 1 DVSUHVHQWHGLQ7DEOHVDQG L Ø (L ) DSSHDU IRU LQGLFHV L = N ≥ $V FDQ EH VHHQ LQ 7DEOH PDWULFHV 1( ) DQG 1 L L Ø ( ) DSSHDUIRULQGLFHV L = ± N ± ≥ DQGPDWULFHV 1(L ) DQG 1 Ø (L ) PDWULFHV 1 ( ) DQG 1 L L () () Ø DSSHDU IRU LQGLFHV L = ± N ± ≥ 1RWH WKDW WKH PDWULFHV 1 DQG 1 DUH GHSHQGHQWRQ N (L ) $V EHIRUH LQ WKH IROORZLQJ HODERUDWLRQ RI UHJXODU PDWULFHV 1 RFFXUULQJ LQ 7DEOH WKH ILUVW IRXU URZV UHSUHVHQW HT DFFRUGLQJ WR WKH VHFRQG WUDQVIRUPDWLRQ UXOH 5RZV DQG UHSUHVHQW WKH HODERUDWLRQ RI WKH ILUVW M H[SUHVVLRQ LQ HT LH RQO\ FRHIILFLHQWV α L( ) RFFXU 7KH\ FRQWDLQ HTV DQG UHVSHFWLYHO\WKXVFRQFHUQLQJWKHPXOWLSOLFDWLRQE\FRVLQHFDVH DQG VLQHFDVH 5RZVDQGUHSUHVHQWWKHHODERUDWLRQRIWKHVHFRQGH[SUHVVLRQLQ M HT LH RQO\ FRHIILFLHQWV βL( ) RFFXU 7KHVH HTXDWLRQV FDQ EH GHULYHG E\ M ( M) UHSODFLQJDOOFRHIILFLHQWV α L LQURZVDQGE\FRHIILFLHQWV βL( ) LQURZVDQG
0RKU²&RXORPEHODVWR²SODVWLFLW\LQFOXGLQJKDUGHQLQJLQWKHFLUFXODUGRPDLQ
7KHUHJXODU × − PDWULFHV 1( ) 1 ( ) DQG 1( ) WKHQFDQEHHODERUDWHGDV L
L
L
ª º « » « » « » « » « » (L ) 1 = « () () −Lα( ) −Lα( ) −Lα( ) −Lα( ) » L α − α Lα( ) − α( ) α() − α() α() − α() « » ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) « Lα α − α α − α » L α − α Lα L α − α Lα Lα « » ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) «L β − β β − β β − β −Lβ −Lβ −Lβ −Lβ( ) » L β − β « » ( ) β() − β() β() − β() ¼» L β( ) − β( ) Lβ( ) L β( ) − β( ) Lβ( ) Lβ( ) «¬ Lβ IRUL = NDQGN ≥
ª « « « « « L 1( ) = − « () α − Lα() − Lα() « «α() − Lα() − Lα() « « β( ) − Lβ() − L β() « () () ( ) «¬β − Lβ − L β "
"
" "
α() + Lα() − Lα() α() − Lα() − Lα() α() + Lα() − Lα() α() + Lα() − Lα() α() − Lα() − Lα() α() + Lα() − Lα() β() + Lβ() − L β() β() − Lβ() − L β() β() + Lβ() − L β()
" "
()
()
()
( )
" −α + α + Lα
−α + α − Lα
"−β() + β() + Lβ() " −β () + β () + Lβ ()
−β( ) + β( ) − Lβ(
" −α + α + Lα
º » » » » L = N + DQGN ≥ » ° IRU ® L = N − DQGN ≥ −α( ) + α( ) + Lα( ) » » ° L = −N + DQGN = ¯ −α( ) + α( ) + Lα( ) » » −β( ) + β( ) + Lβ( ) » () () ( ) » −β + β + Lβ »¼
( )
( )
−α( ) + α( ) − Lα( ) " −β( ) + β( ) − Lβ( ) "
β() + Lβ() − L β() β() − Lβ() − L β() β() + Lβ() − L β() −β() + β() − Lβ() "
"
" −α( ) + α( ) − Lα( ) "
()
−α + α( ) − Lα( )
( )
( )
()
)
( )
( )
()
−β + β − Lβ
DQG ª « « « « « L 1( ) =− « () α − Lα() − Lα() α() + Lα() − Lα() α() − Lα() − Lα() α() + Lα() − Lα() « «α() − Lα() − Lα() α() + Lα() − Lα() α() − Lα() − Lα() α() + Lα() − Lα() « « β( ) − Lβ() − L β() β() + Lβ() − L β() β() − Lβ() − L β() β() + Lβ() − L β() « ( ) () ( ) β() + Lβ() − L β() β() − Lβ() − L β() β() + Lβ() − L β() «¬β − Lβ − L β
"
" "
" −α( ) + α( ) − Lα( ) " −α( ) + α( ) − Lα( ) " −β( ) + β( ) − Lβ( ) "
−β( ) + β( ) − Lβ( ) "
&+$37(5
"
"
"
"
( )
( )
()
( )
( )
()
()
−α + α( ) − Lα( )
" −α + α + Lα " −α( ) + α( ) + Lα( )
º » » » » L = N+ DQGN ≥ » ° ( ) ( ) () » IRU ® L = N− DQGN ≥ −α + α + Lα » ° L =−N+ DQGN = ¯ −α( ) + α( ) + Lα( ) » » ( ) ( ) ( ) −β + β + Lβ » » −β( ) + β( ) + Lβ( ) »¼
−α( ) + α( ) − Lα( )
()
()
( )
"−β + β + Lβ −β + β − Lβ "−β () + β () + Lβ () −β () + β () − Lβ ()
1H[W WKH VSHFLDO FDVH IRU N = DV H[SUHVVHG E\ HT DQG OHDGLQJ ILQDOO\ WR HT LVFRQVLGHUHG)RUWKDWFDVHHT FDQEHHODERUDWHGDV
Ø () [Ø ′ + 0 Ø () [ ′ + 0 Ø ( ) [ ′ = 1 Ø ( ) [Ø + 1 Ø () [ + 1 Ø ( ) [ 0 () () ( ) () () ( )
Ø () 0 Ø () 0 Ø ( ) DFFRUGLQJWR7DEOHDQG 1 Ø ( ) LQZKLFKWKHLUUHJXODUPDWULFHV 0 Ø ( ) 1 Ø ( ) DFFRUGLQJ WR 7DEOH DUH LQYROYHG ,Q WKH IROORZLQJ HODERUDWLRQ RI 1 WKHVH LUUHJXODU PDWULFHV WKH ILUVW WZR URZV UHSUHVHQW WKH ILUVW DQG WKLUG H[SUHVVLRQVRIHT DFFRUGLQJWRWKHVHFRQGWUDQVIRUPDWLRQUXOHDVIRU N = RQO\WKHFRHIILFLHQWV D ′ ( ρ ) DQG F′ ( ρ ) RFFXU7KHH[SUHVVLRQLQHT LVXVHGWR FRPSRVH URZ 7KH H[SUHVVLRQ LQ URZ FDQ EH GHULYHG E\ UHSODFLQJ DOO M M FRHIILFLHQWV α L( ) LQURZE\FRHIILFLHQWV βL( ) 7KHWHUPVRQWKHOHIWKDQGVLGHRIHT FDQEHHODERUDWHGDV ª « Ø ( ) [Ø ′ = « 0 () « « ¬«
ª « Ø () [ ′ = « 0 () « « ¬«
DQG
α(
)
β(
)
º § D ′ ( ρ ) · »» ¨ F′ ( ρ ) ¸ ¨ ¸ IRUL = N DQGN = α ( ) » ¨ H′ ( ρ ) ¸ »¨ ¸ β ( ) ¼» ¨© J ′ ( ρ ) ¹¸
()
α
()
α
α ()
β(
β()
β ()
)
§ D ′ ( ρ ) · ¨ ¸ ¨ E′ ( ρ ) ¸ º ¨ F′ ( ρ ) ¸ ¨ ¸ »» ¨ G′ ( ρ ) ¸ ¨ ¸ IRUL = N + DQGN = α () » ¨ H′ ( ρ ) ¸ » β () ¼» ¨¨ I′( ρ ) ¸¸ ¨ J ′ ( ρ ) ¸ ¨¨ ¸¸ © K′ ( ρ ) ¹
0RKU²&RXORPEHODVWR²SODVWLFLW\LQFOXGLQJKDUGHQLQJLQWKHFLUFXODUGRPDLQ
ª « Ø ( ) [ ′ = « 0 ( ) « « ¬«
()
()
α
α ()
β()
β ()
α
β(
)
§ D ′ ( ρ ) · ¨ ¸ ¨ E′ ( ρ ) ¸ º ¨ F′ ( ρ ) ¸ ¨ ¸ »» ¨ G′ ( ρ ) ¸ ¨ ¸ IRUL = N + DQGN = α () » ¨ H′ ( ρ ) ¸ » β () ¼» ¨¨ I′( ρ ) ¸¸ ¨ J ′ ( ρ ) ¸ ¨¨ ¸¸ © K′ ( ρ ) ¹
,WLVQRWHGWKDWWKHLUUHJXODUYHFWRU [Ø ′( ) IRU L = RQO\FRQWDLQVIRXUFRPSRQHQWV Ø () DVTXDUH × − PDWUL[+RZHYHUWKH DFFRUGLQJWRHT PDNLQJPDWUL[ 0 UHJXODUYHFWRUV [ ′() DQG [ ′( ) DUHFRPSRVHGRIHLJKWFRPSRQHQWVWKXVUHVXOWLQJIRU Ø () DQG 0 Ø ( ) LQDVL]HRIIRXUURZVDQGHLJKWFROXPQV PDWULFHV 0 7KHWHUPVRQWKHULJKWKDQGVLGHRIHT FDQEHHODERUDWHGDV
ª « () Ø Ø 1 [() = «« () −α « () ¬« − β
( ) −α
α() − α()
− β( )
β() − β()
º § D ( ρ ) · »¨ ¸ » ¨ F( ρ ) ¸ IRUL = N DQGN = α () − α () » ¨ H( ρ ) ¸ »¨ ¸ β() − β() ¼» ©¨ J ( ρ ) ¹¸
ª " « " « ( ) Ø [Ø =− 1 ( ) «α () − α () − α () α () + α () − α () α () − α () − α () α () + α () − α () −α () + α () − α () " « «¬β() − β() − β() β() + β() − β() β() − β() − β() β() + β() − β() −β() + β() − β() "
"
"
"−α( ) + α( ) + α( )
−α( ) + α( ) − α( )
"−β() + β() + β() −β() + β() − β()
§ D( ρ ) · ¨ ¸ ¨E( ρ ) ¸ º ¨ F( ρ ) ¸ ¸ »¨ » ¨ G( ρ ) ¸ IRUL =N +DQGN = ¸ ¨ −α( ) + α( ) + α( ) » ¨ H( ρ ) ¸ » ¸ ¨ −β( ) + β( ) + β( ) »¼ ¨ I( ρ ) ¸ ¨ J( ρ ) ¸ ¨¨ ¸¸ © K( ρ ) ¹
DQG ª " « " Ø () [Ø =− « 1 () «α() −α() −α() α() +α() −α() α() −α() −α() α() +α() −α() −α() +α() −α() " « «¬β() −β() −β() β() +β() −β() β() −β() −β() β() +β() −β() −β() + β() −β() "
&+$37(5
"
" "−α( ) +α( ) + α( ) −α( ) +α( ) − α( ) "−β() + β() + β() −β() + β() − β()
§ D( ρ ) · ¨ ¸ ¨E( ρ ) ¸ º ¨ F( ρ ) ¸ ¸ »¨ » ¨ G( ρ ) ¸ IRUL =N +DQGN = ¸ ¨ −α( ) +α( ) + α( ) » ¨ H( ρ ) ¸ » ¸ ¨ −β( ) + β( ) + β( ) ¼» ¨ I( ρ ) ¸ ¨ J ( ρ ) ¸ ¨¨ ¸¸ © K( ρ ) ¹
,WLVQRWHGWKDWWKHLUUHJXODUYHFWRU [Ø ( ) IRU L = RQO\FRQWDLQVIRXUFRPSRQHQWV Ø ( ) DVTXDUH × − PDWUL[+RZHYHUWKH DFFRUGLQJWRHT PDNLQJPDWUL[ 1 UHJXODUYHFWRUV [ () DQG [ ( ) DUHFRPSRVHGRIHLJKWFRPSRQHQWVWKXVUHVXOWLQJIRU Ø () DQG 1 Ø ( ) LQDVL]HRIIRXUURZVDQGHLJKWFROXPQV PDWULFHV 1 1H[W WKH LUUHJXODU WHUPV IRU N = DQG L = DUH FRQVLGHUHG )RU WKDW FDVH WKH Ø () DFFRUGLQJ WR 7DEOH DQG 1 Ø ( ) DFFRUGLQJ WR 7DEOH LUUHJXODU PDWULFHV 0 DUHLQYROYHG7KH\FDQEHHODERUDWHGDV ª « « « « « Ø () [Ø ′ = « 0 () « « « « « «¬
α(
)
α(
)
β(
)
β(
)
º »» » § D ′ ρ · » ( ) » ¨ F′ ρ ¸ ¨ ( ) ¸ IRU L = N − DQGN = ® α () » ¨ H′ ( ρ ) ¸ ¯L = −N + » ¸¸ ( ) » ¨¨ ′ α © J( ρ ) ¹ » β() » » β() »¼
DQG
ª « « « « « Ø () [Ø = − « () 1 () α α() « ( ) «α α() « « β( ) β() « ( ) () ¬« β β
()
−α + α( )
−α( ) + α(
)
− β( ) + β(
)
− β( ) + β(
º » » » § D ρ · » ¨ ( ) ¸ » ¨ F( ρ ) ¸ L = N − IRU ® DQGN = −α ( ) + α ( ) » ¨ H( ρ ) ¸ ¯L = −N + »¨ ¸ −α ( ) + α ( ) » ¨© J ( ρ ) ¹¸ » − β( ) + β( ) » » − β( ) + β( ) ¼»
)
%RWK PDWULFHV LQYROYH HLJKW URZV DQG IRXU FROXPQV WKH ODWWHU FRUUHVSRQGLQJ WR WKH IRXU FRPSRQHQWV LQ WKH LUUHJXODU YHFWRUV [Ø ′( ) DQG [Ø ( ) IRU L = DFFRUGLQJ WR HT
0RKU²&RXORPEHODVWR²SODVWLFLW\LQFOXGLQJKDUGHQLQJLQWKHFLUFXODUGRPDLQ
)LQDOO\WKHLUUHJXODUWHUPVIRU N = DQG L = DUHFRQVLGHUHG)RUWKDWFDVHWKH Ø () DFFRUGLQJ WR 7DEOH DQG 1 Ø ( ) DFFRUGLQJ WR 7DEOH LUUHJXODU PDWULFHV 0 DUHLQYROYHG7KH\FDQEHHODERUDWHGDV ª « « « « « () Ø Ø 0 [ ′( ) = « « « « « « «¬
α(
)
α(
)
β(
)
β(
)
º »» » § D ′ ( ρ ) · » » ¨ F′ ( ρ ) ¸ ¨ ¸ IRU L = N − DQGN = ® α () » ¨ H′ ( ρ ) ¸ ¯L = −N + »¨ ¸ α ( ) » ¨© J ′ ( ρ ) ¹¸ » β() » » β( ) »¼
DQG
ª « « « « « Ø ( ) [Ø = − « () 1 () α α() « ( ) «α α( ) « « β( ) β() « ( ) ( ) ¬« β β
º » » » § D ρ · » ¨ ( ) ¸ » ¨ F( ρ ) ¸ L = N − IRU ® DQGN = −α ( ) + α ( ) » ¨ H( ρ ) ¸ ¯L = −N + »¨ ¸ −α ( ) + α ( ) » ¨© J ( ρ ) ¹¸ » − β ( ) + β( ) » » − β( ) + β( ) ¼»
()
−α + α(
)
−α( ) + α(
)
− β( ) + β(
)
− β( ) + β(
)
%RWK PDWULFHV LQYROYH HLJKW URZV DQG IRXU FROXPQV WKH ODWWHU FRUUHVSRQGLQJ WR WKH IRXU FRPSRQHQWV LQ WKH LUUHJXODU YHFWRUV [Ø ′( ) DQG [Ø ( ) IRU L = DFFRUGLQJ WR HT 1RZ IRU HDFK N = ! D PDWUL[ HTXDWLRQ IRU WKH SUREOHP GHILQHG E\ HTV WR FDQ EH IRUPXODWHG DFFRUGLQJ WR HT 7KHUHIRUH (L ) Ø VXEVWLWXWLQJ WKH UHJXODU PDWULFHV 0 DQG WKH LUUHJXODU PDWULFHV 0 L () DFFRUGLQJ WR 7DEOH DQG UHJXODU PDWULFHV 1 DQG WKH LUUHJXODU PDWULFHV (L ) Ø DFFRUGLQJWR7DEOHLQWRHT WKHQUHVXOWVIRUWKHVL[GLIIHUHQWFDVHV 1 UHJDUGLQJYDOXHVRI N LQ
IRUN =
Ø ( ) [Ø ′ + 0 Ø () [ ′ + 0 Ø ( ) [ ′ = 1 Ø ( ) [Ø + 1 Ø () [ + 1 Ø ( ) [ 0 () () ( ) () () ( )
IRUN =
( 0 + 0 ) [ ′() + ( 0 + 0 ) [ ′() + 0[ ′() =
(
)
(
)
= 1( ) + 1( ) [ () + 1( ) + 1( ) [ () + 1( ) [ ()
&+$37(5
IRUN =
Ø ( ) [Ø ′ + ( 0 + 0 ) [ ′ + 0 [ ′ + 0[ ′ = 0 () () ( ) ()
(
)
Ø () [Ø + 1() + 1() [ + 1 ( ) [ + 1( ) [ = 1 () ( ) ( ) () IRUN =
( 0 + 0 ) [ ′() + 0[ ′() + 0[ ′() + 0[ ′() =
(
)
= 1( ) + 1( ) [ () + 1( ) [ () + 1( ) [ () + 1( ) [ ( )
IRUN =
Ø ( ) [Ø ′ + 0 [ ′ + 0[ ′ + 0 [ ′ + 0 [ ′ = 0 () () ( ) () () Ø ( ) [Ø + 1 () [ + 1( ) [ + 1 ( ) [ + 1( ) [ = 1 () () ( ) () ()
IRUN ≥
0[ ′( N − ) + 0[ ′( N −) + 0[ ′( N ) + 0 [ ′( N +) + 0 [ ′( N + ) = = 1(
N − )
N − N N + N + [ ( N − ) + 1 ( ) [ ( N −) + 1( ) [ ( N ) + 1 ( ) [ ( N +) + 1( ) [ ( N + )
1RWHWKDWIURPWKHH[SUHVVLRQVLQHT LWFDQEHVHHQWKDWWZRLQGHSHQGHQW SUREOHPV H[LVW 7KH ILUVW SUREOHP UHODWHV WR HYHQ YDOXHV RI N IRU ZKLFK RQO\ YHFWRUVRIXQNQRZQV [ (L ) ZLWKHYHQLQGLFHV L RFFXU7KHVHFRQGSUREOHPUHODWHVWR RGGYDOXHVRI N IRUZKLFKRQO\YHFWRUVRIXQNQRZQV [ (L ) ZLWKRGGLQGLFHV L RFFXU %RWK SUREOHPV FDQ WKHUHIRUH EH VROYHG FRQVHFXWLYHO\ DQG LQGHSHQGHQWO\ $V IRU WKH GHWHUPLQDWLRQ RI WKH YHFWRUV RI XQNQRZQV [ (L ) WKH V\VWHP RI HTXDWLRQV LQ HT ZLOO EH VROYHG QXPHULFDOO\ WKLV OHDGV WR D VLJQLILFDQW UHGXFWLRQ RI WKH FRPSXWDWLRQDOSRZHUQHHGHGWRVROYHWKHSUREOHP
7UXQFDWLRQRI)RXULHUVHULHV
)RU WKH QXPHULFDO VROXWLRQ RI WKH V\VWHP RI HTXDWLRQV SUHVHQWHG LQ HT D PD[LPXP YDOXH N = NPD[ KDV WR EH LQWURGXFHG 7KLV PD[LPXP YDOXH NPD[ LQGLFDWHV WKH PD[LPXP YDOXH RI WKH LQGLFHV Q DQG P LQ WKH )RXULHU VHULHV LQ HTV DQG 7KLV WUXQFDWLRQ ZLOO OHDG WR DQ HUURU ZLWK UHVSHFW WR WKH DFFXUDF\ RI WKH VROXWLRQ ZKLFK ZLOO EH LQYHVWLJDWHG LQ WKH VXEVHTXHQW 6HFWLRQ 7KHUH DOVR D PD[LPXP QXPHULFDO YDOXH IRU NPD[ ZLOO EH SURSRVHG ZKLFKZLOOVLJQLILFDQWO\LQIOXHQFHWKHUHTXLUHGFRPSXWDWLRQDOSRZHUWRVROYHWKH SUREOHPIRUQXPHULFDOGHWHUPLQDWLRQRIFRHIILFLHQWVRIWKH)RXULHUVHULHV$WWKH XSSHU OLPLW RI WKH ILQLWH )RXULHU VHULHV WKHQ DOVR WKH FDVHV NPD[ NPD[ − NPD[ − DQG NPD[ − KDYHWREHGLVWLQJXLVKHGQDPHO\
IRUN ≤ NPD[ −
0[ ′( N − ) + 0[ ′( N −) + 0[ ′( N ) + 0 [ ′( N +) + 0 [ ′( N + ) = = 1(
N − )
IRUN = NPD[ −
N − N N + N + [ ( N − ) + 1 ( ) [ ( N −) + 1( ) [ ( N ) + 1 ( ) [ ( N +) + 1( ) [ ( N + )
0 [ ′( NPD[ − ) + 0 [ ′( NPD[ −) + 0[ ′( NPD[ −) + 0 [ ′( NPD[ −) = = 1( PD[ N
− )
− − − N N N [ ( NPD[ − ) + 1 ( PD[ ) [ ( NPD[ −) + 1( PD[ ) [ ( NPD[ −) + 1( PD[ ) [ ( NPD[ −)
0RKU²&RXORPEHODVWR²SODVWLFLW\LQFOXGLQJKDUGHQLQJLQWKHFLUFXODUGRPDLQ
IRUN = NPD[ −
0 [ ′( NPD[ −) + 0 [ ′( NPD[ − ) + 0[ ′( NPD[ −) + 0 [ ′( NPD[ ) = = 1( PD[ N
IRUN = NPD[ −
− )
− − N N N [ ( NPD[ − ) + 1 ( PD[ ) [ ( NPD[ − ) + 1( PD[ ) [ ( NPD[ −) + 1( PD[ ) [ ( NPD[ )
0[ ′( NPD[ −) + 0 [ ′( NPD[ −) + 0[ ′( NPD[ −) = = 1( PD[ N
IRUN = NPD[
− )
− − N N [ ( NPD[ −) + 1 ( PD[ ) [ ( NPD[ −) + 1( PD[ ) [ ( NPD[ −)
0 [ ′( NPD[ − ) + 0[ ′( NPD[ −) + 0[ ′( NPD[ ) = = 1( PD[ N
− )
− N N [ ( NPD[ − ) + 1 ( PD[ ) [ ( NPD[ −) + 1( ) [ ( NPD[ )
,W LV FKRVHQ WR GHILQH NPD[ DV DQ RGG QXPEHU IRU FRQYHQLHQFH ,Q WKLV ZD\ WKH SUREOHPIRUHYHQ N ZLOOFRQVLVWRI NPD[ HTXDWLRQVDQGWKHSUREOHPIRURGG N ZLOO FRQVLVWRI ( NPD[ +) HTXDWLRQV
)RUPXODWLRQRIJOREDOPDWUL[SUREOHP
(TV DQG DUH IRUPXODWHG IRU HDFK RFFXUULQJ N VHSDUDWHO\ +RZHYHU WKHVHHTXDWLRQVFDQEHFRPELQHGWRIRUPDJOREDOPDWUL[SUREOHPIRUDOOYDOXHVRI N WRJHWKHU$VPHQWLRQHGSUHYLRXVO\WZRLQGHSHQGHQWSUREOHPVH[LVWLHRQHIRU HYHQYDOXHVRI N DQGRQHIRURGGYDOXHVRI N ,QWKHIROORZLQJIRUPXODWLRQRIWKH JOREDO PDWUL[ SUREOHP WKLV ZLOO EH DFFRXQWHG IRU E\ XVLQJ VXEVFULSW $ IRU WKH GHILQLWLRQ RI WKH SUREOHP IRU HYHQ YDOXHV RI N DQG VXEVFULSW % IRU RGG YDOXHV RI N ,WLVFKRVHQWROHWWKHPD[LPXPLQGH[LQWKHHYHQFDVHWREH NPD[ − LQRUGHUWR JHWPDWULFHVRIWKHVL]H NPD[ ZKLOHIRUWKHRGGFDVHWKHPDWULFHVZLOORQO\EHIRXU HTXDWLRQV ODUJHU QDPHO\ RI WKH VL]H ( NPD[ +) 7KHUHIRUH NPD[ LQ WKH IROORZLQJ KDVWREHDQRGGQXPEHU1RWHWKDW NPD[ FRUUHVSRQGVWRWKHPD[LPXPLQGLFHV Q DQG P RIWKH)RXULHUVHULHVLQHTV DQG 7KHFKRLFHWRWDNHWKHRGGFDVH OHDGLQJ IRU WKH GHWHUPLQDWLRQ RI NPD[ LV DUELWUDU\ EXW KDV QR LQIOXHQFH RQ WKH UHVXOWV 1RWH WKDW GXH WR WKH LQWURGXFWLRQ RI WZR LQGHSHQGHQW FDVHV IRU HYHQ DQG RGG YDOXHV RI N WKH VL]H RI WKH JOREDO SUREOHP DUH UHGXFHG WR NPD[ DQG ( NPD[ +) UHVSHFWLYHO\ ZKLFK ZLOO DOVR UHGXFH FRPSXWDWLRQDO WLPH DQG DFFXUDF\ RI WKH QXPHULFDOVROXWLRQSURFHGXUH
&+$37(5
&RPSLODWLRQ RI WKH JOREDO SUREOHP IROORZLQJ IURP HTV DQG IRU HYHQ LQGLFHV N = ! NPD[ − DQG NPD[ LVDQRGGQXPEHUOHDGVWR Ø () Ø () ª0 0 « () Ø 0 + 0 «0 « Ø () 0 «0 « 0 « « « « # # « « « « « « « ¬
Ø () 0
Ø () Ø () ª1 1 « () () () Ø 1 +1 «1 « Ø () 1( ) «1 « 1( ) « « =« # « # « « « « « « ¬«
"
0 0
"
0 0 0
"
0 0 0 0 "
0 0 0 0 0 "
#
#
º § [Ø ′() · »¨ ¸ » ¨ [ ′() ¸ »¨ ¸ » ¨ [ ′() ¸ »¨ ¸ » ¨ [ ′() ¸ » ¨ [ ′( N) ¸ »¨ ¸= # »¨ # ¸ »¨ ¸ »¨ [ ′( NPD[ −) ¸ »¨ ¸ 0»¨ [ ′( NPD[ −) ¸ »¨ ¸ 0»¨ [ ′( NPD[ −) ¸ 0 »¼ ©¨ [ ′( NPD[ −) ¹¸
#
#
#
#
# % #
" 0 0 0
" 0 0 0
" 0 0 0
" 0 0
Ø () 1
"
1( )
1( )
"
1( )
1( ) 1( )
"
1( )
1( ) 1( ) 1(
( N−)
( N−)
)
"
( N)
( N+)
( N+)
"
#
#
#
1 #
1 #
1 #
1 #
#
%
" 1( NPD[−) 1( NPD[−) 1( NPD[−) " 1(NPD[−) 1( NPD[−) 1( NPD[−) " 1( NPD[−) 1( NPD[−) 1( NPD[−) N − N − " 1( PD[ ) 1( PD[ )
1
º § [Ø () · ¸ »¨ » ¨ [ () ¸ ¸ »¨ » ¨ [ () ¸ ¨ ¸ » ¨ [ () ¸ » » ¨ [ ( N) ¸ ¸ »¨ # »¨ # ¸ ¨ ¸ » ¨ [ ( NPD[−) ¸ » ¸ N − ¨ 1( PD[ ) » ¨ [ ( NPD[−) ¸ » N − 1( PD[ ) » ¨ [ ( NPD[−) ¸ ¸ »¨ N − 1( PD[ ) »¼ ©¨ [ ( NPD[−) ¹¸
ZKLFKFDQEHZULWWHQV\PEROLFDOO\DV 0$ [ $′ = 1$ [ $
ZKLFKDOVRGHILQHVWKHJOREDOYHFWRURIXQNQRZQV [ $ DQGLWVGHULYDWLYHDQGWKH PDWULFHV 0$ DQG 1$ 7KHJOREDOPDWULFHV 0$ DQG 1$ DUHERWKVTXDUHPDWULFHV RIVL]H NPD[ 7KHJOREDOYHFWRU [ $ KDVWKHOHQJWK NPD[ ,QHT WKHUHJXODU (L ) Ø () 1 Ø ( ) DUH DQG LUUHJXODU VXE²PDWULFHV 0 1 DUH × − PDWULFHV 0 ( ) ( ) ( ) ( ) ( ) ( ) Ø 0 Ø 1 Ø 1 Ø DUH × − PDWULFHV 0 Ø 0 Ø 1 Ø ( ) 1 Ø ( ) × − PDWULFHV 0 DUH × − PDWULFHV ZKLFK DUH DOO GHILQHG LQ HTV WR DQG LV WKH ]HUR²PDWUL[7KHVXE²YHFWRUV [ (L ) DQG [ ′(L ) L > KDYHWKHOHQJWK VXE²YHFWRUV [Ø ( ) DQG [Ø ′( ) KDYH WKH OHQJWK DQG DUH GHILQHG LQ HTV DQG UHVSHFWLYHO\
0RKU²&RXORPEHODVWR²SODVWLFLW\LQFOXGLQJKDUGHQLQJLQWKHFLUFXODUGRPDLQ
&RPSLODWLRQ RI WKH JOREDO SUREOHP IROORZLQJ IURP HTV DQG IRU RGG LQGLFHV N = ! NPD[ DQG NPD[ LVDQRGGQXPEHUOHDGVWR
ª0 + 0 0 + 0 « 0 «0 + 0 « 0 0 « « 0 « « # # « « « « « « « ¬ ()
()
()
()
ª1 +1 1 +1 « () () 1( ) «1 +1 « () 1( ) « 1 « N− 1( ) « =« # # « « « « « « « ¬
() "
0 0
"
0 0 0
"
0 0 0 0 "
#
#
#
0
#
#
#
#
%
" 0 0 0
" 0 0 0
" 0 0 0
"
()
1
()
1
()
1
( N−)
0 0
º § [ (′) · »¨ ¸ » ¨ [ (′) ¸ »¨ ¸ » ¨ [ (′) ¸ » » ¨¨ [ (′N) ¸¸ # »¨ # ¸ = »¨ ¸ » ¨ [ (′NPD[ −) ¸ »¨ ¸ 0 » ¨ [ (′NPD[ −) ¸ »¨ ¸ 0 » ¨ [ (′NPD[ −) ¸ »¨ ¸ 0 ¼ © [ (′NPD[ ) ¹
"
()
"
()
()
"
( N+)
"
%
#
#
#
1
1
( N)
1
( N+)
1 #
1 #
1 #
1 #
" 1( NPD[−) 1( NPD[ −) 1( NPD[ −) " 1(NPD[−) 1( NPD[ −) 1( NPD[ −) " 1( NPD[−) 1( NPD[ −) 1( NPD[ −) N − N − " 1( PD[ ) 1( PD[ )
º§ [ () · ¸ »¨ » ¨ [ () ¸ ¸ »¨ » ¨ [ () ¸ » ¨ [ ( N) ¸ ¸ »¨ # » ¨ # ¸ ¸ »¨ » ¨ [ ( NPD[−) ¸ ¸ »¨ N 1( PD[ ) » ¨ [ ( NPD[−) ¸ ¸ »¨ N 1( PD[ ) » ¨ [ ( NPD[−) ¸ N 1( PD[ ) ¼» ©¨ [ ( NPD[ ) ¹¸
ZKLFKFDQEHZULWWHQV\PEROLFDOO\DV 0% [ %′ = 1% [ %
ZKLFKDOVRGHILQHVWKHJOREDOYHFWRURIXQNQRZQV [ % DQGLWVGHULYDWLYHDQGWKH PDWULFHV 0% DQG 1% 7KHJOREDOPDWULFHV 0% DQG 1% DUHERWKVTXDUHPDWULFHV RIVL]H ( NPD[ +) 7KHJOREDOYHFWRU [ % KDVWKHOHQJWK ( NPD[ +) ,QHT WKH (L ) UHJXODU VXE²PDWULFHV 0 DQG 1 DUH × − PDWULFHV GHILQHG LQ HTV WR DQG LV WKH × − ]HUR²PDWUL[ 7KH VXE²YHFWRUV [ (L ) DQG [ ′(L ) L ≥ KDYHWKHOHQJWK DQGDUHGHILQHGLQHT )URP HTV DQG LW FDQ EH VHHQ WKDW WKH JOREDO PDWULFHV 0 DQG 1 KDYH D ZHOO²GHILQHG VWUXFWXUH IRU ERWK HYHQ DQG RGG LQGLFHV N +RZHYHU LW LV QRWHG WKDW WKH UHJXODU VWUXFWXUH VWDUWV DW D FHUWDLQ LQGH[ N DV IRU N = LUUHJXODUFDVHVPD\RFFXUDVHODERUDWHGSUHYLRXVO\VHHHJHT 7KHJOREDO L PDWUL[ 0 LVEXLOWXSE\VXEPDWULFHV $ (N ) ZKLFKFRQFHUQLQJWKHUHJXODUSDUWDUH
&+$37(5
UHJXODUPDWULFHV
UDQJHRIURZV N
(L )
% N = 1
(L )
%N = 1
(L )
%N = 1
(L )
%N = 1
(L )
%N = 1
$ N = 0 $ N = 0 $ N = 0 $ N = 0 $ N = 0
UDQJHRIFROXPQV L
RII²GLDJRQDOV
≤ N ≤ NPD[
L = N
GLDJRQDO
≤ N ≤ NPD[ −
L = N +
XSSHU²
(L )
(L )
(L )
(L )
(L )
(L )
≤ N ≤ NPD[
L = N −
ORZHU²
(L )
(L )
≤ N ≤ NPD[ −
L = N +
XSSHU²
(L )
(L )
≤ N ≤ NPD[
L = N −
ORZHU² (L )
7DEOH 6SHFLILFDWLRQRIUDQJHVRIWKHUHJXODUPDWULFHV 0 DQG 1 LQWKHJOREDOPDWULFHV 0 DQG 1 ZKHUH NPD[ LVDQRGGQXPEHU
UHSUHVHQWHG E\ UHJXODU PDWULFHV 0 DFFRUGLQJ WR HTV DQG DQG L 7DEOH7KHJOREDOPDWUL[ 1 LVEXLOWXSE\VXEPDWULFHV %(N ) ZKLFKFRQFHUQLQJ (L ) DFFRUGLQJ WR WKH UHJXODU SDUW DUH UHSUHVHQWHG E\ UHJXODU PDWULFHV 1 HTV DQG DQG7DEOH ,Q7DEOHWKHVWUXFWXUHRIWKHUHJXODUSDUWRIWKHJOREDOPDWULFHV 0 DQG 1 LV VXPPDULVHG 7KH UDQJHV RI LQGLFHV N UHSUHVHQWLQJ WKHLU URZV DQG LQGLFHV L UHSUHVHQWLQJ WKHLU FROXPQV DUH LQGLFDWHG IRU ZKLFK WKH UHJXODU VWUXFWXUH LV L DSSOLFDEOH 6XEPDWULFHV 0 DQG 1( ) DSSHDU RQ WKH GLDJRQDOV RI WKH JOREDO (L ) PDWULFHVVXEPDWULFHV 0 DQG 1 DSSHDURQWKHXSSHU²DQGORZHU²GLDJRQDO L DQGVXEPDWULFHV 0 DQG 1( ) DSSHDURQWKHXSSHU²DQGORZHU²GLDJRQDO
&RPSDULVRQZLWKVROXWLRQSURFHGXUHIRUOLQHDUHODVWLFLW\
,Q RUGHU WR HYDOXDWH WKH DSSOLHG VROXWLRQ SURFHGXUH IRU 0RKU²&RXORPE HODVWR² SODVWLFLW\ WKH FKRVHQ DSSURDFK LV FRPSDUHG WR WKH FDVH RI OLQHDU HODVWLFLW\ DV HODERUDWHGLQ&KDSWHU&RQVLGHUHT )RUOLQHDUHODVWLFLW\WKHVHHTXDWLRQV N FDQHDVLO\EHVLPSOLILHGDVRQO\PDWULFHV 0 DQG 1( ) RFFXU7KLVFDQEHYHULILHG M E\ LQVSHFWLQJ HTV WR ZKLOH UHDOLVLQJ WKDW RQO\ FRHIILFLHQWV α L( ) DQG ( M) βL IRU M = RFFXU7KHQIURPHT LWIROORZV Ø () Ø Ø () Ø ° 0 [ (′ ) = 1 [ () IRUN = ® (N) °¯ 0 [ (′N ) = 1 [ ( N ) IRUN ≥
$IWHUHODERUDWLRQIRU N = LWIROORZV ª « Ø ( ) [Ø ′ = « 0 () « « «¬
α(
)
º § D ′ ( ρ ) · ª « »» ¨ F′ ( ρ ) ¸ ¨ ¸ DQG1 Ø ( ) [Ø = « () « » ¨ H′ ( ρ ) ¸ −α ( ) »¨ « ¸ «¬ β ( ) »¼ ¨© J ′ ( ρ ) ¹¸
$IWHUHODERUDWLRQIRU N ≥ LWIROORZV
− β( )
º § D ( ρ ) · »» ¨ F( ρ ) ¸ ¨ ¸ » ¨ H( ρ ) ¸ »¨ ¸¸ ¨ »¼ © J ( ρ ) ¹
0RKU²&RXORPEHODVWR²SODVWLFLW\LQFOXGLQJKDUGHQLQJLQWKHFLUFXODUGRPDLQ
ª « « « « « 0[ ′( N ) = « « « « « « «¬
α(
)
α(
)
β(
)
º § D ′ ρ · ) N( »» ¨ E′ ρ ¸ ¨ N( ) ¸ » ¨ F′ ρ ¸ » N( ) » ¨ G ′ ρ ¸ ¨ N( ) ¸ » ¨ HN′ ( ρ ) ¸ »¨ ¸ » ¨ IN′( ρ ) ¸ »¨ ¸ » ¨ J N′ ( ρ ) ¸ » ¨ ′ ¸ β( ) »¼ © KN ( ρ ) ¹
DQG º § D ( ρ ) · ª N « »» ¨ E ( ρ ) ¸ « N ¨ ¸ « » ¨ F ( ρ ) ¸ « »¨ N » G ( ρ ) ¸ « N ¨ N ¸ 1( ) [ ( N) = « () () ( ) −Nα −Nα( ) » ¨ HN( ρ ) ¸ N α − α « »¨ ¸ « » ¨ IN( ρ ) ¸ Nα( ) − α( ) Nα( ) Nα( ) « » ¨ ¸ « −Nβ( ) −Nβ( ) » ¨ J N( ρ ) ¸ N β( ) − β( ) ¨ ¸ « » ( ) ¼» © KN( ρ ) ¹ N β( ) − β( ) Nβ( ) ¬« Nβ
)URP HT LW FDQ EH VHHQ WKDW IRU OLQHDU HODVWLFLW\ WKH SUHYLRXVO\ UHFXUVLYH V\VWHPRIHTXDWLRQVVHHHT LVXQFRXSOHG)RUHDFKLQGH[ N WKHHTXDWLRQV FDQEHVROYHGLQGHSHQGHQWO\DQGFRQVHFXWLYHO\ 6XEVWLWXWLQJ HTV DQG LQWR HT OHDGV IRU OLQHDU HODVWLFLW\ WR D V\VWHPRIHLJKWHTXDWLRQVIRU N ≥ DV
D N′ ( ρ ) = HN ( ρ ) ° ° EN′ ( ρ ) = IN ( ρ ) ° F ′ ( ρ ) = J ( ρ ) N ° N ° GN′ ( ρ ) = KN ( ρ ) °° () () () () () ® α HN′ ( ρ ) = N α − α D N ( ρ ) − Nα GN ( ρ ) − Nα KN ( ρ ) ° () () ° α( ) IN′( ρ ) = Nα ( ) − α EN ( ρ ) + Nα FN ( ρ ) + Nα ( ) J N ( ρ ) ° ° β ( ) J ′ ( ρ ) = −N β ( )E ( ρ ) + N β ( ) − β ( ) F ( ρ ) − N β ( ) I ( ρ ) N N N ° N ° () ( ) ( ) ( ) ( ) °¯ β KN′ ( ρ ) = N β D N ( ρ ) + N β − β GN ( ρ ) + N β HN ( ρ )
( (
) )
(
(
)
)
,WFDQEHVHHQWKDWWKHILUVWIRXUHTXDWLRQVDUHH[DFWO\UHSUHVHQWLQJWKHDSSOLHG WUDQVIRUPDWLRQ UXOH DV SUHVHQWHG LQ HT ZKLFK ZDV XVHG WR WUDQVIRUP WKH V\VWHPRIIRXUVHFRQG²RUGHU2'(·VWRDV\VWHPRIHLJKWILUVW²RUGHU2'(·V
&+$37(5
*HQHUDOVROXWLRQRIJOREDOPDWUL[SUREOHP
6XPPDULVHG WKH WZR JOREDO SUREOHPV GHILQHG E\ HTV DQG KDYH WKH IROORZLQJVWUXFWXUHIRUWKHFDVHVRIHYHQDQGRGGYDOXHVRI N QDPHO\ 0$ [ ′$ = 1$ [ $ IRUN = NPD[ −DQG 0% [ %′ = 1% [ % IRUN = … NPD[
LQZKLFK 0$ 0% 1$ 1% DQG [ $ [ % DUHJOREDOTXDQWLWLHVGHILQHGLQHTV DQG DQG NPD[ LV DQ RGG QXPEHU VHH 6HFWLRQ 7KH SUREOHP VWDWHG LQ HT FDQ EH VROYHG ZLWK VWDQGDUG SURFHGXUHV DYDLODEOH IRU WKH VROXWLRQ RI V\VWHPV RI ILUVW²RUGHU RUGLQDU\ GLIIHUHQWLDO HTXDWLRQV ZLWK FRQVWDQW FRHIILFLHQWV )RUWKHSUHVHQWFDVHWKHVROXWLRQSURFHGXUHZLOOEHHODERUDWHGEULHIO\'HWDLOVFDQ EHIRXQGLQHJ%R\FH )URPHT LWIROORZV −
−
[ ′$ = 0$ 1$ [ $ = . $ [ $ DQG[ ′% = 0% 1% [ % = .% [ %
ZKLFK GHILQHV WKH ERWK VTXDUH PDWULFHV . $ RI VL]H NPD[ × NPD[ DQG .% RI VL]H ( NPD[ +) × ( NPD[ +) IRU WKH HYHQ DQG WKH RGG FDVH UHVSHFWLYHO\ 7KHVH VTXDUH PDWULFHVKDYHFRQVWDQWFRHIILFLHQWV+RZHYHULWPD\EHQRWHGWKDWWKH\DUHQRQ² V\PPHWULF7RFRQVWUXFWWKHJHQHUDOVROXWLRQRIERWKOLQHDUV\VWHPVLQHT VROXWLRQVDUHDVVXPHGRIWKHIRUP
[ $ ( ρ ) = ξ $ H[S (τ $ ρ ) DQG[ % ( ρ ) = ξ % H[S (τ % ρ )
ZKHUH WKH H[SRQHQWV τ $ DQG τ % DQG WKH FRQVWDQW YHFWRUV ξ $ DQG ξ % DUH WR EH GHWHUPLQHG 7KH VROXWLRQ LV H[SUHVVHG LQ WHUPV RI WKH GHSHQGHQW YDULDEOH ρ ZKLFK ZDV LQWURGXFHG E\ WKH WUDQVIRUPDWLRQ DV GHILQHG LQ HT ρ = OQ ( U ) 6XEVWLWXWLQJHT LQWRWKHOLQHDUV\VWHPVLQHT JLYHV
τ $ ξ $ H[S (τ $ ρ ) = . $ ξ $ H[S (τ $ ρ ) DQGτ % ξ % H[S (τ % ρ ) = . % ξ % H[S (τ % ρ )
8SRQFDQFHOOLQJWKHQRQ²]HURVFDODUIDFWRUV H[S (τ $ ρ ) DQG H[S (τ% ρ ) DIWHUVRPH UHDUUDQJHPHQWLWIROORZV
( .$ − τ $ , ) ξ $ = DQG ( . % − τ % , ) ξ % =
7KXV WR VROYH WKH V\VWHP RI 2'(V LQ HT WKH V\VWHPV RI DOJHEUDLF HTXDWLRQVLQHT KDYHWREHVROYHG7KHVHODWWHUSUREOHPVDUHSUHFLVHO\WKH RQHV WKDW GHWHUPLQH WKH HLJHQYDOXHV DQG HLJHQYHFWRUV RI WKH PDWULFHV . $ DQG . % 7KHUHIRUH WKH YHFWRUV [ $ DQG [ % DV JLYHQ E\ HT DUH VROXWLRQV RI HT SURYLGHGWKDW τ $ DQG τ % DUHHLJHQYDOXHVDQG ξ $ DQG ξ % DUHDVVRFLDWHG HLJHQYHFWRUV RI WKH FRHIILFLHQW PDWULFHV . $ DQG . % 7KH HLJHQYDOXHV RI VTXDUH PDWULFHV . $ DQG . % DUH
τ $( M ) IRUM = NPD[ DQGτ %( M ) IRUM = ( NPD[ +) ZLWKDVVRFLDWHGQRUPDOLVHG HLJHQYHFWRUVRIERWKJOREDOSUREOHPVLH
0RKU²&RXORPEHODVWR²SODVWLFLW\LQFOXGLQJKDUGHQLQJLQWKHFLUFXODUGRPDLQ
§ ξ %( M) · · ¨ ¸ ¸ ξ %( M) ¸ ¸ ( M) ¨ ¸ IRUM = ( NPD[ + ) ¸ IRUM =NPD[ DQGξ % = ¨ # ¨ ¸ ¸ ¨ ξ ( M) ¸ ¸ ¹ © % ( NPD[ +) ¹
§ ξ $( M) ¨ ¨ ξ ( M) M ξ($ ) = ¨ $ ¨ # ¨ ξ ( M) © $ NPD[
7KHHLJHQYHFWRUVKDYHOHQJWK NPD[ IRUWKHHYHQFDVHDQG ( NPD[ + ) IRUWKHRGG FDVH UHVSHFWLYHO\ $V WKH PDWULFHV . $ DQG . % DUH QRQ²V\PPHWULF FRPSOH[ FRQMXJDWHHLJHQYDOXHVFDQRFFXU+RZHYHUDVWKHPDWUL[FRPSRQHQWVDUHUHDOLI FRPSOH[ HLJHQYDOXHV DSSHDU WKH\ PXVW RFFXU LQ FRQMXJDWHG SDLUV $ SDLU RI FRPSOH[FRQMXJDWHGHLJHQYDOXHVFDQEHZULWWHQDV ° τ $( M ) = τ $( M ) + L τ$( M ) ° τ %( M ) = τ %( M ) + L τ%( M ) DQG ® ( M +) ® ( M +) ( M) ( M) ( M) ( M) ¯° τ $ = τ $ − L τ$ ¯° τ % = τ % − L τ%
LQZKLFK τ $( ) τ$( ) DQG τ %( ) τ%( ) DUHUHDOVFDODUV7KHFRUUHVSRQGLQJSDLURIFRPSOH[ FRQMXJDWHGHLJHQYHFWRUVFDQEHZULWWHQDV M
M
M
M
° ξ($M ) = ξ $( M ) + L ξ ($M ) ° ξ(%M ) = ξ%( M ) + L ξ (%M ) DQG ® ( M +) ® ( M +) ( M) ( M) ( M) ( M) ¯° ξ $ = ξ $ − L ξ $ ¯° ξ % = ξ% − L ξ %
LQZKLFK ξ $( ) ξ ($ ) DQG ξ%( ) ξ (% ) DUHUHDOYHFWRUV7KHUHIRUHIRUWKHVXSSRVHGVROXWLRQ RIWKHIRUPDVJLYHQLQHT WZRFDVHVKDYHWREHGLVWLQJXLVKHGLHFDVH,IRU ZKLFKDVLQJOHGLVWLQFWUHDOHLJHQYDOXH RFFXUVDVJLYHQE\HT DQGFDVH,, IRUZKLFKDSDLURIFRPSOH[FRQMXJDWHGHLJHQYDOXHVRFFXUVDVJLYHQE\HT )RUERWKFDVHVWKHJHQHUDOVROXWLRQZLOOEHHODERUDWHGLQWKHIROORZLQJ &DVH,²UHDOHLJHQYDOXHV )RUDVLQJOHGLVWLQFWUHDOHLJHQYDOXHWKHJHQHUDOVROXWLRQRIWKHSUREOHPVWDWHGLQ HT UHDGVIROORZLQJIURPHT M
M
M
(
M
)
(
)
M M M M M M M M [ ($ )( ρ ) = F($ ) ξ($ ) H[S τ $( ) ρ DQG[ (% )( ρ ) = F%( ) ξ(% ) H[S τ %( ) ρ
LQ ZKLFK F ($ ) DQG F%( ) DUH FRQVWDQW FRHIILFLHQWV RU PRGDO ZHLJKWV ZKLFK FDQ EH GHWHUPLQHG DIWHU DSSOLFDWLRQ RI WKH ERXQGDU\ FRQGLWLRQV $IWHU EDFN WUDQVIRUPDWLRQWRWKHGHSHQGHQWYDULDEOH U DFFRUGLQJWRHT LH ρ = OQ ( U ) IURPHT LWIROORZV M
M
( M)
( M)
[($ )( U ) = F ($ ) ξ($ ) Uτ $ DQG[(% )( U ) = F%( ) ξ(% ) Uτ % M
M
M
M
M
M
7KHGHWHUPLQDWLRQRIWKHUHPDLQLQJFRHIILFLHQWV F ($ ) DQG F%( ) ZLOOEHHODERUDWHGLQ WKHIROORZLQJ6HFWLRQ M
M
&+$37(5
&DVH,,²FRPSOH[FRQMXJDWHGHLJHQYDOXHV )RUDSDLURIFRPSOH[FRQMXJDWHGHLJHQYDOXHVWKHJHQHUDOVROXWLRQRIWKHSUREOHP VWDWHGLQHT UHDGVIROORZLQJIURPHT
(
)
(
)
(
)
[ ( M )( ρ ) = F ( M ) H[S τ ( M ) ρ ª ξ ( M ) FRV τ ( M ) ρ − ξ ( M ) VLQ τ ( M ) ρ º $ $ $ $ $ ° $ ¬ $ ¼ ® M + ( ) ( M +) ( M) ( M) ( M) ( M) ( M) ª °[ ( ρ ) = F $ H[S τ $ ρ ¬ ξ $ VLQ τ$ ρ + ξ $ FRV τ$ ρ ¯ $ [ ( M )( ρ ) = F ( M ) H[S τ ( M ) ρ ª ξ ( M ) FRV τ ( M ) ρ − ξ ( M ) VLQ τ ( M ) ρ º % % % % % ° % ¬ % ¼ ® M + ( ) ( M +) ( M) ( M) ( M) ( M) ( M) ª °[ % ( ρ ) = F% H[S τ % ρ ξ % VLQ τ% ρ + ξ % FRV τ% ρ ¬ ¯
(
)
(
(
)
(
(
)
)
(
)
(
(
)
)¼º
DQG
)
(
)º¼
LQ ZKLFK F ($ ) DQG F%( ) DUH FRQVWDQW FRHIILFLHQWV ZKLFK FDQ EH GHWHUPLQHG DIWHU DSSOLFDWLRQ RI WKH ERXQGDU\ FRQGLWLRQV 7KH GHULYDWLRQ RI WKH H[SUHVVLRQV LQ HT FDQ EH IRXQG HJ LQ 6HFWLRQ RI %R\FH $IWHU EDFN WUDQVIRUPDWLRQWRWKHGHSHQGHQWYDULDEOH U DFFRUGLQJWRHT LH ρ = OQ ( U ) IURPHT LWIROORZV M
M
(
)
(
)
[( M )( U ) = F( M ) Uτ $( M) ª ξ ( M ) FRV τ ( M ) OQ U − ξ ( M ) VLQ τ ( M ) OQ U º $ $ $ $ ° $ ¬ $ ¼ DQG ® M + ( M) + M M M M ( ) ( ) τ$ ª ( ) ( ) ( ) ( M) °[ $ ( U ) = F $ U ξ $ VLQ τ$ OQ U + ξ $ FRV τ$ OQ U º ¬ ¼ ¯
(
)
(
M τ %( )
)
(
)
(
)
[( M )( U ) = F( M ) U ª ξ ( M ) FRV τ ( M ) OQ U − ξ ( M ) VLQ τ ( M ) OQ U º % % % % ° % ¬ % ¼ ® M + M) ( ( ) ( M +) τ % ª ( M ) ( M) ( M) ( M) ° [ % ( U ) = F% U ξ VLQ τ% OQ U + ξ % FRV τ% OQ U º ¬ % ¼ ¯
(
)
(
)
7KHGHWHUPLQDWLRQRIWKHUHPDLQLQJFRHIILFLHQWV F ($ ) DQG F%( ) ZLOOEHHODERUDWHGLQ 6HFWLRQ $WWKLVSRLQWLWLVQRWHGWKDWWKHSK\VLFDO FRQGLWLRQRIERXQGHGQHVVDWWKHRULJLQ DV GHILQHG LQ HT KDV WR EH VDWLVILHG 7KHUHIRUH RQO\ UHDO SDUWV RI WKH M HLJHQYDOXHV τ ( ) ≥ KDYH WR EH WDNHQ LQWR FRQVLGHUDWLRQ DQG WKH FRHIILFLHQWV IRU M UHDOSDUWVRIWKHHLJHQYDOXHV τ ( ) < DUHDFFRUGLQJO\]HUR 7KH FRPSOHWH JHQHUDO VROXWLRQV [ $ ( U ) DQG [ % ( U ) RI ERWK LQGHSHQGHQW SUREOHPV IRU HYHQ DQG RGG YDOXHV RI N IROORZ E\ VXPPDWLRQ RI DOO HLJHQPRGHV RI HLWKHU HT IRUUHDOHLJHQYDOXHVRUHT IRUFRPSOH[FRQMXJDWHGHLJHQYDOXHV DV M
NPD[
NPD[
( M)
( NPD[ +)
[ $ ( U ) = ¦ [($ )( U ) = ¦ F($ ) ξ($ ) Uτ $ DQG[ % ( U ) = M =
M
M =
M
M
¦ M =
M
( NPD[ +)
[(% )( U ) = M
¦
( M)
F%( ) ξ(% ) Uτ % M
M
M =
LQ ZKLFK WKH JOREDO YHFWRUV [ $ ( U ) DQG [ % ( U ) DUH GHILQHG LQ DJUHHPHQW ZLWK HTV DQG ZKHUHWKH\ZHUHGHILQHGLQWHUPVRIYDULDEOH ρ $IWHUEDFN WUDQVIRUPDWLRQWRWKHYDULDEOH U WKH\UHDG
0RKU²&RXORPEHODVWR²SODVWLFLW\LQFOXGLQJKDUGHQLQJLQWKHFLUFXODUGRPDLQ
§ DL ( U ) · ¨ ¸ § [Ø ( )( U ) · § [ ()( U ) · ¨ EL ( U ) ¸ ¨ ¸ ¨ ¸ ¨ FL ( U ) ¸ ¨ [ ( )( U ) ¸ ¨ [ ( )( U ) ¸ ¨ ¸ ¨ ¸ ¨ ¸ # # ¸ DQG[ U = ¨ ¸ LQZKLFK[ U = ¨ GL ( U ) ¸ [ $ ( U ) = ¨¨ ( ) ( ) % L ( ) ¨ H (U ) ¸ ¨[ [ U ¸ U ¸ ¨ L ¸ ¨ ( NHYHQ )( ) ¸ ¨ ( NRGG )( ) ¸ ¨ IL ( U ) ¸ ¨ ¸ ¨ ¸ # # ¨J U ¸ ¨ ¸ ¨ ¸ ¨ [ ( N −)( U ) ¸ ¨ ¸ ¨ L( ) ¸ © PD[ ¹ © [ ( NPD[ )( U ) ¹ ¨ KL ( U ) ¸ © ¹ § D ( U ) · ¸ ¨ F ( U ) ¸ DQG[Ø ( )( U ) = ¨ ¨ H ( U ) ¸ ¨¨ ¸¸ © J( U ) ¹
IRU WKH YHFWRUV [(L )( U ) IRU L > DQG [Ø ( )( U ) LQ DJUHHPHQW ZLWK WKH GHILQLWLRQV LQ HTV DQG UHVSHFWLYHO\)RUWKHFDVHRIHYHQYDOXHVRI N WKHVR²FDOOHG IXQGDPHQWDOPDWUL[ 3$ ( U ) LVLQWURGXFHGDV ª ξ () Uτ $() « $ () « ξ () Uτ $ $ 3$ ( U ) = « « # « τ $( ) ( ) «ξ ¬ $ NPD[ U
ξ $() Uτ
() $
º » » " ξ $ NPD[ U » » % # » NPD[ τ$ » U " ξ $ NPD[ NPD[ ¼ "
( ) τ $( ) $
ξ U
PD[
NPD[ $
τ $ NPD[
#
ξ $() N Uτ
ξ $ N Uτ
( ) $
PD[
( M)
ZKRVHFROXPQVDUHWKHVROXWLRQYHFWRUV ξ ($ )Uτ $ 7KHRFFXUUHQFHRISDLUVRIFRPSOH[ FRQMXJDWHGVROXWLRQVKDVWREHWDNHQLQWRDFFRXQWDVLQGLFDWHGLQ )RUWKHFDVHRIRGGYDOXHVRI N WKHIXQGDPHQWDOPDWUL[ 3% ( U ) UHDGV M
ª ξ () Uτ %() % « « () τ %() « ξ % U 3% ( U ) = « # « « () «ξ %() ( N +)Uτ % PD[ ¬
ξ %() Uτ
( ) %
ξ %() Uτ
( ) %
#
ξ %() ( N
PD[
( )
+)
Uτ %
N + +) τ %( PD[ )
º » ( NPD[ +) » N + " ξ %(PD[ )Uτ % » » % # » » ( NPD[ +) N +) τ% » " ξ %(PD[ ( NPD[ +)U ¼ "
ξ %(N
PD[
U
( M)
( M)
( M)
ZKRVHFROXPQVDUHWKHVROXWLRQYHFWRUV ξ(% )Uτ % 7KHVROXWLRQV ξ($ )Uτ $ DQG ξ(% )Uτ % LQ HT DUHOLQHDUO\LQGHSHQGHQWDWDSRLQW U IRU < U ≤ 5 LIDQGRQO\LI M
GHW ¬ª3$ ( U ) ¼º ≠ DQG GHW ¬ª3% ( U ) ¼º ≠
M
M
ZKLFKDUHWKHVR²FDOOHG:URQVNLDQVRIWKHVROXWLRQV7KHVHDUHWKHGHWHUPLQDQWV ( M) ( M) M M RI WKH IXQGDPHQWDO PDWULFHV LQ ZKLFK WKH VROXWLRQV ξ($ )Uτ $ DQG ξ(% )Uτ % DUH FROOHFWHGLQLWVFROXPQV7KHVHIXQGDPHQWDOPDWULFHVDUHVTXDUHPDWULFHV
&+$37(5
8VLQJ WKH IXQGDPHQWDO PDWULFHV 3$ ( U ) DQG 3% ( U ) WKH JHQHUDO VROXWLRQV RI WKH WZR JOREDO PDWUL[ SUREOHPV JLYHQ LQ HT IRU HYHQ DQG RGG YDOXHV RI N IROORZLQJIURPHT FDQEHZULWWHQYHU\FRPSDFWO\DV
[ $ ( U ) = 3$ ( U ) F$ DQG[ % ( U ) = 3% ( U ) F%
7KH YHFWRUV RI FRHIILFLHQWV F$ DQG F% FRQVLVW RI WKH FRQVWDQW FRPSRQHQWV N + F ($ ) ! F $NPD[ DQG F%( ) ! F%( PD[ ) ZKLFK DUH VWLOO DUELWUDU\ FRHIILFLHQWV 7KH YHFWRUV F$ DQG F% FDQ EH FKRVHQ VXFK DV WR VDWLVI\ WKH GHVLUHG SUHVFULEHG ERXQGDU\ FRQGLWLRQVZKLFKLVHODERUDWHGLQ6HFWLRQ7KHJOREDOVROXWLRQLQHT LV XVHGWRFRQVWUXFWWKHVROXWLRQRIWKHGLVSODFHPHQWILHOGLQWKHFLUFXODUGRPDLQDV HODERUDWHGLQ6HFWLRQ
)LUVWGHULYDWLYHVRIJHQHUDOVROXWLRQ
7RFRQVWUXFWWKHVROXWLRQRIWKHVWUDLQUDWHILHOGLQWKHFLUFXODUGRPDLQDVZLOOEH HODERUDWHGLQ6HFWLRQWKHILUVWGHULYDWLYHRIWKHJHQHUDOVROXWLRQLQHT QHHGV WR EH GHWHUPLQHG 7KH ILUVW GHULYDWLYH RI WKH JHQHUDO VROXWLRQ RI WKH WZR JOREDO PDWUL[ SUREOHPV DV GHULYHG LQ WKH SUHYLRXV VHFWLRQ FDQ EH FDOFXODWHG IROORZLQJIURPHTV DQG DV [′$ ( U ) = 3$′ ( U ) F$ =
¦ [′( ) = ¦ F( ) ξ( ) ( Uτ
NPD[
NPD[
M
$
M =
( NPD[ +)
¦
[′% ( U ) = 3%′ ( U ) F% =
M $
M $
M =
( NPD[ +)
( M)
[′% =
M =
¦
( M) ( M)
F% ξ %
M =
)′ DQG ′ (U )
( M) $
τ %( ) M
LQ ZKLFK 3$′ ( U ) DQG 3%′ ( U ) DUH WKH ILUVW GHULYDWLYHV RI WKH IXQGDPHQWDO PDWULFHV M M 3$ ( U ) DQG 3% ( U ) DVGHILQHGLQHTV DQG 7KHYHFWRUV [′$( ) DQG [′%( ) DUHWKHVROXWLRQVIRUHDFKHLJHQPRGHZKLFKIROORZIURPHT 7KH FRUUHVSRQGLQJ ILUVW RUGHU GHULYDWLYH RI WKH JHQHUDO VROXWLRQ IRU D VLQJOH GLVWLQFWUHDOHLJHQYDOXHWKHQFDQEHHODERUDWHGIROORZLQJIURPHT DV M M M M [′$( )( U ) = F($ ) ξ($ )τ $( )U
(τ ( ) −) DQG[′( M ) M $
%
( U ) = F%( M )ξ(%M )τ %( M )U (
τ %( ) − M
)
7KH FRUUHVSRQGLQJ ILUVW RUGHU GHULYDWLYH RI WKH VROXWLRQV IRU D SDLU RI FRPSOH[ FRQMXJDWHGHLJHQYDOXHVWKHQFDQEHHODERUDWHGIROORZLQJIURPHT DV M M [′$( %) ( U ) = F( )U
{
(τ ( ) −) τ ( M ) ª ξ ( M ) FRV τ ( M ) OQ U − ξ ( M ) VLQ τ ( M ) OQ U º + ( ) ( )¼ ¬ M
( ) ( )} ) τ ( ) ª ξ ( ) VLQ τ ( ) OQ U + ξ ( ) FRV τ ( ) OQ U º + ( )¼ { ¬ ( ) +τ ( ) ª ξ ( ) FRV (τ ( ) OQ U ) − ξ ( ) VLQ (τ ( ) OQ U ) º} ¬ ¼
M M M M M −τ ( ) ª ξ ( ) VLQ τ ( ) OQ U + ξ ( ) FRV τ ( ) OQ U º DQG ¬ ¼
M + M + [′$( % )( U ) = F( )U
(
τ ( M ) −
M
M
M
M
M
M
M
M
M
M
0RKU²&RXORPEHODVWR²SODVWLFLW\LQFOXGLQJKDUGHQLQJLQWKHFLUFXODUGRPDLQ
&RPSDULVRQZLWKVROXWLRQSURFHGXUHIRUOLQHDUHODVWLFLW\
,Q RUGHU WR HYDOXDWH WKH DSSOLHG VROXWLRQ SURFHGXUH IRU 0RKU²&RXORPE HODVWR² SODVWLFLW\ WKH FKRVHQ DSSURDFK LV FRPSDUHG WR WKH FDVH RI OLQHDU HODVWLFLW\ DV HODERUDWHGLQ&KDSWHU&RQVLGHUHT 6ROYLQJOHDGVWR [ (′ ) = 0− 1( ) [ () = . ( ) [ () IRUN = ° ® (N) (N) − °¯ [ (′N ) = 0 1 [ ( N ) = . [ ( N ) IRUN ≥
7KHLQYHUVLRQRIPDWUL[ 0 LVVWUDLJKWIRUZDUGIRUOLQHDUHODVWLFLW\DVDGLDJRQDO N PDWUL[ LV LQYROYHG LQ WKLV FDVH 7KHQ PDWUL[ . ( ) IROORZV IRU N ≥ ZKLOH VXEVWLWXWLQJHTV DQG DV
ª « « « « « « Nα ()−α () « ( ) α « N .( ) = « « « « « « « « Nβ () « ( ) «¬ β
Nα
α()
Nα( )
Nα( )−α( )
Nα( )
( )
( )
α
α
( )
( )
Nβ
N β − β
β
β
( )
( )
( )
−
−
( )
−
N β( )− β( )
Nβ(
β
β
( )
( )
α ( )
Nβ
β()
)
( )
º » » » » » Nα ( ) » − () » α » » » » » » » » » » ¼»
DQGIRU N = ª « .( ) = « « « ¬
º »» » » ¼
7KH IRXU HLJHQYDOXHV RI . ( ) IROORZ IURP HT ZKLOH VXEVWLWXWLQJ WKH M M UHPDLQLQJFRHIILFLHQWV α L( ) DQG βL( ) DVJLYHQLQ$SSHQGL[$IRU N ≥ N
τ ( N ) = N + τ ( N ) = N − τ ( N ) = −N + τ ( N ) = −N −
)RU N = LWIROORZVGLUHFWO\IURPHT
τ ( ) = τ ( ) = − τ ( ) = τ ( ) = −
,WFDQEHFRQFOXGHGWKDWWKHDSSOLHGVROXWLRQSURFHGXUHIRUHODVWR²SODVWLFLW\OHDGV IRUWKHOLPLWLQJFDVHRI + → ∞ WRWKHVDPHUHVXOWVDVDFKLHYHGIRUHODVWLFLW\
&+$37(5
&KDUDFWHULVWLFVRIJHQHUDOVROXWLRQ
7R VWXG\ WKH PDWKHPDWLFDO SURSHUWLHV RI WKH JHQHUDO VROXWLRQ DV JLYHQ E\ HT ILUVWWKHHLJHQYDOXHV τ ( M ) DVGHILQHGE\HT DUHLQYHVWLJDWHG7ZR DVSHFWV DUH FRQVLGHUHG LH WKH LQIOXHQFH RI WKH PD[LPXP QXPEHU RI )RXULHU WHUPVLQGLFDWHGE\ NPD[ DVDFRQVHTXHQFHRIWKHWUXQFDWLRQRIWKHLQILQLWHV\VWHP RIHTXDWLRQVDVGHILQHGLQHT DQGWKHLQIOXHQFHRIWKHGHJUHHRISODVWLFLW\ LQGLFDWHG E\ WKH QRUPDOLVHG KDUGHQLQJ PRGXOXV + )RU + → ∞ WKH VROXWLRQ DQGWKHUHIRUHWKHHLJHQYDOXHVIRUHODVWR²SODVWLFPDWHULDOLQWKLVFKDSWHUVKRXOG FRQYHUJH WR WKH HLJHQYDOXHV RI WKH SXUHO\ HODVWLF PDWHULDO DV SUHVHQWHG LQ &KDSWHU LQ HT )XUWKHUPRUH WKH HLJHQYDOXHV DUH FRPSDUHG WR WKH HLJHQYDOXHVIRUOLQHDUHODVWLFLW\
,QIOXHQFHRIGHJUHHRISODVWLFLW\
,Q RUGHU WR VWXG\ WKH EHKDYLRXU RI WKH HLJHQYDOXHV GHSHQGLQJ RQ WKH GHJUHH RI SODVWLFLW\DQDUELWUDU\JHQHUDOPDWHULDOSDUDPHWHUVHWLVFKRVHQQDPHO\ ² ² ² ² ²
3RLVVRQ·VUDWLRν = PRELOLVHGIULFWLRQDQJOH ϕP = R GLODWLRQDQJOHψ = R LQLWLDOSULQFLSDOVWUHVVGLUHFWLRQ Ξ = R DQG PD[LPXPQXPEHURIWHUPVLQWUXQFDWHG)RXULHUVHULHV NPD[ =
7KHHLJHQYDOXHVDUHFDOFXODWHGIRUFDVH % LHRGGLQGLFHV Q P = N RIWKH)RXULHU VHULHV ZKLFK LV VLJQLILFDQW IRU GHIRUPDWLRQ PRGHV DQG DV ZLOO EH VKRZQ M IXUWKHU RQ LQ 6HFWLRQ 7KH HLJHQYDOXHV τ %( ) DUH FDOFXODWHG IRU D PD[LPXP QXPEHU RI WHUPV LQ WKH WUXQFDWHG )RXULHU RI NPD[ = ZKLFK UHVXOWV LQ HLJHQYDOXHV ZLWK SRVLWLYH UHDO SDUW DQG HLJHQYDOXHV ZLWK QHJDWLYH UHDO SDUW ZKLFKZLOOEHOHIWRXWDVWKH\YLRODWHWKHERXQGHGQHVVSURSHUWLHVRIWKHVROXWLRQ HT DV LQGLFDWHG HDUOLHU DIWHU HT ,Q 7DEOH WKH UHDO DQG M LPDJLQDU\SDUWVIRUWKHILUVWHLJHQYDOXHV τ %( ) ZLWKSRVLWLYHUHDOSDUWDUHVKRZQ IRU ILYH GLIIHUHQW GHJUHHV RI SODVWLFLW\ ZKLFK DUH UHSUHVHQWHG E\ WKH QRUPDOLVHG KDUGHQLQJPRGXOXV + 0RUHRYHUWKHHLJHQYDOXHVIRUOLQHDUHODVWLFLW\IROORZLQJ IURPHT DUHJLYHQLQWKHODVWFROXPQ ,W FDQ EH VHHQ IURP 7DEOH WKDW IRU WKH OLPLWLQJ FDVH + = ZKLFK UHSUHVHQWVSXUHHODVWLFLW\WKHVROXWLRQLVH[DFWO\HTXDOWRWKHVROXWLRQDVGHULYHG LQ &KDSWHU DQG VKRZQ LQ WKH ODVW FROXPQ RI WKH WDEOH $OO HLJHQYDOXHV IRU HODVWLFLW\ DUH UHDO YDOXHG LQWHJHU QXPEHUV ZKLFK LV LQ DJUHHPHQW ZLWK WKH Q DQDO\WLFDO VROXWLRQ SUHVHQWHG LQ HT ZKLFK UHDGV τ ( ) = ± Q ± )RU HODVWR² SODVWLF PDWHULDO EHKDYLRXU SDUW RI WKH HLJHQYDOXHV DUH UHDO QXPEHUV VHH JUH\ M VKDGHGSDUWVLQ7DEOHIRUZKLFK ,P τ %( ) = DQGSDUWRIWKHHLJHQYDOXHVDUH FRPSOH[QXPEHUVLQYROYLQJUHDODQGLPDJLQDU\SDUWV
( )
+ =
+ =
+ =
+ =
( M ) ,P(τ M ) 5H(τ M ) ,P(τ M ) 5H(τ M ) ,P(τ M ) 5H(τ M ) ,P(τ M ) 5H(τ M ) ,P(τ M ) ( )
N M
+ =
5H τ %
( ) %
( ) %
( ) %
( ) %
( ) %
( ) %
( ) %
( ) %
( ) %
(M)
HODVWLFLW\
0RKU²&RXORPEHODVWR²SODVWLFLW\LQFOXGLQJKDUGHQLQJLQWKHFLUFXODUGRPDLQ
7DEOH 5HDO DQG LPDJLQDU\ SDUWV RI ILUVW HLJHQYDOXHV τ % ZLWK SRVLWLYH UHDO SDUW IRU GLIIHUHQWGHJUHHVRISODVWLFLW\UHSUHVHQWHGE\WKHQRUPDOLVHGKDUGHQLQJPRGXOXV + (M ) IRU NPD[ = 3XUHO\UHDOHLJHQYDOXHVZLWK ,P τ % = DUHVKDGHGJUH\,QWKHODVW FROXPQWKHHLJHQYDOXHVIRUOLQHDUHODVWLFLW\DUHJLYHQIROORZLQJIURPHT
( )
&+$37(5
)RU SXUHO\ HODVWLF PDWHULDO EHKDYLRXU LH + = WKH ILUVW HLJHQYDOXH LV H[DFWO\HTXDOWR]HUR)RULQFUHDVLQJGHJUHHRISODVWLFLW\LHGHFUHDVLQJYDOXHRI + WKH ILUVW WZR HLJHQYDOXHV ELIXUFDWH IURP ]HUR 7KH ELIXUFDWLRQ RFFXUV FRQWLQXRXVO\ 7KLV ELIXUFDWLRQ LV LQYHUVHO\ SURSRUWLRQDO WR WKH YDOXH RI WKH QRUPDOLVHG KDUGHQLQJ PRGXOXV + 7KHVH ILUVW WZR HLJHQYDOXHV XQGHU FRQVLGHUDWLRQDUHSRVLWLYHDQGUHDOYDOXHGIRUDQ\GHJUHHRISODVWLFLW\,IFRPSOH[ KLJKHURUGHUHLJHQYDOXHVRFFXUDVLWLVWKHFDVHIRULQFUHDVLQJGHJUHHRISODVWLFLW\ WKH\ RFFXU DV FRPSOH[ FRQMXJDWHG SDLUV 7KH QXPEHU RI FRPSOH[ FRQMXJDWHG HLJHQYDOXHVLQFUHDVHVZLWKLQFUHDVLQJGHJUHHRISODVWLFLW\)XUWKHUPRUHLWFDQEH REVHUYHGWKDWQRSXUHO\LPDJLQDU\HLJHQYDOXHVRFFXUIRUDQ\FDVH ,W FDQ EH FRQFOXGHG WKDW WKH EHKDYLRXU RI WKH HLJHQYDOXHV LV FRQWLQXRXV DQG UHJXODU LQ WKH FRQVLGHUHG UDQJH RI PDWHULDO SDUDPHWHUV 7KH ELIXUFDWLRQ RI WKH ILUVWWZRHLJHQYDOXHVIURP]HURZLOOEHGLVFXVVHGLQWKHODWHU6HFWLRQ
,QIOXHQFHRIWUXQFDWLRQRI)RXULHUVHULHV
,Q RUGHU WR VWXG\ WKH EHKDYLRXU RI WKH HLJHQYDOXHV GHSHQGLQJ RQ WKH PD[LPXP QXPEHU RI WHUPV LQ WKH WUXQFDWHG )RXULHU VHULHV NPD[ DQ DUELWUDU\ JHQHUDO PDWHULDOSDUDPHWHUVHWLVFKRVHQQDPHO\ ² ² ² ² ²
3RLVVRQ·VUDWLRν = PRELOLVHGIULFWLRQDQJOH ϕP = R GLODWLRQDQJOHψ = R QRUPDOLVHGKDUGHQLQJPRGXOXV + = DQG LQLWLDOSULQFLSDOVWUHVVGLUHFWLRQ Ξ = R
7KHHLJHQYDOXHVDUHFDOFXODWHGIRUFDVH % LHRGGLQGLFHV Q P = N RIWKH)RXULHU M VHULHV,Q7DEOHWKHUHDODQGLPDJLQDU\SDUWVIRUWKHILUVWHLJHQYDOXHV τ %( ) ZLWK SRVLWLYH UHDO SDUW DUH VKRZQ IRU GLIIHUHQW PD[LPXP QXPEHUV RI )RXULHU WHUPV NPD[ ,W FDQ EH VHHQ WKDW WKH ORZHU RUGHU HLJHQYDOXHV DUH QRW LQIOXHQFHG VLJQLILFDQWO\ E\ WKH PD[LPXP QXPEHU RI )RXULHU WHUPV 7KDW PHDQV WKDW WKH ELIXUFDWLRQ RI WKH ]HUR HLJHQYDOXH LV QRW D FRQVHTXHQFH RI WKH WUXQFDWLRQ RI WKH )RXULHUVHULHV)XUWKHUPRUHLWFDQEHFRQFOXGHGWKDWIRUYDOXHVRI NPD[ ≥ WKH ILUVWHLJHQYDOXHVDUHLGHQWLFDOZLWKLQDFRQVLGHUHGDFFXUDF\RI − +HUHZLWK D UHVWULFWLRQ RI WKH PD[LPXP QXPEHU RI )RXULHU WHUPV WR NPD[ = IRU WKH DQDO\VHV LQ IROORZLQJ VHFWLRQV FDQ EH MXVWLILHG 1RWH WKDW PDWHULDO SDUDPHWHUV DSSURDFKLQJWKHSDUDPHWHUOLPLWVHJ + < DUHQRWLQYHVWLJDWHG\HWEXWZLOO IROORZLQ6HFWLRQVDQG
0RKU²&RXORPEHODVWR²SODVWLFLW\LQFOXGLQJKDUGHQLQJLQWKHFLUFXODUGRPDLQ
NPD[ =
N M
( ) (M)
5H τ %
( ) ( M)
,P τ %
NPD[ =
( ) (M)
5H τ %
( ) ( M)
,P τ %
NPD[ =
( ) (M)
5H τ %
( ) ( M)
,P τ %
NPD[ =
( (M) )
5H τ %
( ( M) )
,P τ %
(M)
7DEOH 5HDO DQG LPDJLQDU\ SDUWV RI ILUVW HLJHQYDOXHV τ % ZLWK SRVLWLYH UHDO SDUW IRU GLIIHUHQW PD[LPXP QXPEHU RI WHUPV LQ WUXQFDWHG )RXULHU VHULHV NPD[ IRU + = (M) 3XUHO\UHDOHLJHQYDOXHVZLWK ,P τ % = DUHVKDGHGJUH\
( )
&+$37(5
$SSOLFDWLRQRIGLVSODFHPHQWERXQGDU\FRQGLWLRQV
,Q WKLV VHFWLRQ WKH FRHIILFLHQW YHFWRUV F$ DQG F% RFFXUULQJ LQ WKH JHQHUDO VROXWLRQ RI WKH JOREDO PDWUL[ SUREOHP LQ HT DUH GHWHUPLQHG $VVXPLQJ WKDW WKH FRQGLWLRQV RI OLQHDU LQGHSHQGHQF\ LQ HT DUH VDWLVILHG WKH H[SUHVVLRQVLQHT ERWKIRUPDIXQGDPHQWDOVHWRIVROXWLRQVRIWKHJOREDO PDWUL[SUREOHPLQHT 7KHFRHIILFLHQWYHFWRUV F$ DQG F% LQHT FDQ EH FKRVHQ VXFK DV WR VDWLVI\ WKH GHVLUHG SUHVFULEHG ERXQGDU\ FRQGLWLRQV +HQFH DWWKHERXQGDU\ U = 5 F$ DQG F% PXVWVDWLVI\
[ $ ( 5 ) = 3$ ( 5 ) F$ DQG[ % ( 5 ) = 3% ( 5 ) F%
1RWH WKDW VROXWLRQV ZLWK QHJDWLYH UHDO SDUWV RI WKH HLJHQYDOXHV DUH OHIW RXW DV WKH\ GR QRW VDWLVI\ WKH ERXQGHGQHVV FRQGLWLRQV 7KHUHIRUH VLQFH 3$ DQG 3% DUH QRQ²VLQJXODUIRUHDFK U = 5 LHRQO\GLVWLQFWHLJHQYDOXHVRFFXUWKHFRHIILFLHQWV FDQEHGHWHUPLQHGDV
F$ = 3$−( 5 ) [ $ ( 5 ) DQGF% = 3%−( 5 ) [ % ( 5 )
7KHQVXEVWLWXWLQJWKHUHVXOWVRIHT LQWRWKHDVVXPHGVROXWLRQDFFRUGLQJWR HT IRUWKHFRPSOHWHVROXWLRQRIWKHERXQGDU\YDOXHSUREOHPIRUHYHQDQG RGGYDOXHVRI N UHVSHFWLYHO\LWIROORZV
[ $ ( U ) = 3$ ( U ) 3$−( 5 ) [ $ ( 5 ) DQG[ % ( U ) = 3% ( U ) 3%−( 5 ) [ % ( 5 )
+RZHYHU IRU WKH QXPHULFDO LPSOHPHQWDWLRQ LW LV PRUH FRQYHQLHQW WR VROYH HT E\ URZ UHGXFWLRQ DQG WKHQ VXEVWLWXWH IRU F$ DQG F% LQ HT UDWKHUWKDQFRPSXWLQJWKHLQYHUVHDQGXVHHT $VLQGLFDWHGLQHT IRUHDFKLQGH[ L > HLJKWVROXWLRQV DL ( U ) EL ( U ) FL ( U ) GL ( U ) HL ( U ) IL ( U ) JL ( U ) DQG KL ( U ) DUH QRZ GHWHUPLQHG E\ HT ZKLOH IRU LQGH[ L = WKH IRXU VROXWLRQV D( U ) F( U ) H( U ) DQG J( U ) DUHREWDLQHG5HFDOOWKDWWKHLQGH[ L UHSUHVHQWVWKH LQGLFHV Q DQG P RI WKH )RXULHU VHULHV LQ HTV DQG +RZHYHU IRU L > WKH VROXWLRQV HL ( U ) IL ( U ) JL ( U ) DQG KL ( U ) DUH RQO\ DX[LOLDU\ IXQFWLRQV QHHGHG SUHYLRXVO\IRUWKHWUDQVIRUPDWLRQDSSOLHGLQHT DQGDUHWKHUHIRUHLQVLJQL² ILFDQWIRUWKHVROXWLRQRIWKH)RXULHUVHULHVLWVHOI6LPLODUO\IRU L = WKHVROXWLRQV H( U ) DQG J( U ) DUHQRWQHHGHG,QWKHIROORZLQJWKHUHGXFHGVROXWLRQQHHGHGIRU WKHIXOOGHVFULSWLRQRIWKH)RXULHUVHULHVLQHTV DQG LVHODERUDWHG 7KH U − GHSHQGHQWVROXWLRQRIWKH)RXULHUVHULHVLQHTV DQG IRUHDFK Q DQG P LQWHUPVRI DQ( U ) EQ( U ) FP( U ) DQG GP( U ) FDQEHFDSWXUHGE\WKHIROORZLQJ YHFWRU I(L )( U ) IRU L > QDPHO\ § IL()( U ) · § DQ( ()U ) · ¨ ¸ ¨ ¸ § I()( U ) · § D( ()U ) · ¨ IL( )( U ) ¸ ¨ EQ( U ) ¸ ¸ = [Ø ( U ) I (L )( U ) = ¨ () ¸ = ¨ ¸ = [Ø (L )( U ) DQGIØ()( U ) = ¨ () ¸ = ¨ ¨ I ( U ) ¸ ¨ F( U ) ¸ ( ) ¨ IL ( U ) ¸ ¨ FP( U ) ¸ © ¹ © ¹ ¨ () ¸ ¨ ¸ © IL ( U ) ¹ © GP( U ) ¹
0RKU²&RXORPEHODVWR²SODVWLFLW\LQFOXGLQJKDUGHQLQJLQWKHFLUFXODUGRPDLQ
LQZKLFKWKHUHGXFHGYHFWRUV [Ø (L ) ( U ) IRU L > DQG [Ø ( ) ( U ) IROORZIURPHT E\ UHGXFLQJWKHYHFWRUV [(L )( U ) DQG [( )( U ) WRWKHLUILUVWIRXURUWZRURZVUHVSHFWLYHO\ )ROORZLQJIURPHT WKLVUHVXOWVLQJOREDOYHFWRUVIRUHYHQDQGRGGYDOXHVRI N DV
§ IØ()( U ) · § I()( U ) · ¨ ¸ ¨ ¸ I()( U ) ¸ ¨ I( )( U ) ¸ Ø ¨ − Ø $ ( 5 ) [Ø $ ( 5 ) DQG I% ( U ) = Ø Ø − I$( U ) = ¨ ¸ = 3$ ( U ) 3 ¨ ¸ = 3% ( U ) 3% ( 5 ) [Ø % ( 5 ) # # ¨ ¸ ¨ ¸ ¨I ¸ ¨ I N (U ) ¸ U ( ) © ( PD[ ) ¹ © ( NPD[ −) ¹ Ø Ø LQ ZKLFK WKH UHGXFHG VTXDUH PDWULFHV 3$ ( U ) DQG 3% ( U ) DUH LQWURGXFHG 7KH\ IROORZ IURP HTV DQG E\ FDQFHOOLQJ FRUUHVSRQGLQJ URZV DQG FROXPQV )XUWKHUPRUH WKH UHGXFHG YHFWRUV [Ø $ ( U ) DQG [Ø % ( U ) DUH LQWURGXFHG ZKLFKIROORZIURPHT E\FDQFHOOLQJFRUUHVSRQGLQJURZV 7KH θ − GHSHQGHQWVROXWLRQRIWKH)RXULHUVHULHVLQHTV DQG IRUHDFK Q DQG P FDQEHFDSWXUHGE\WKHIROORZLQJYHFWRU J (L )(θ ) IRU L > QDPHO\
§ JQ()(θ ) · § FRV ( Qθ ) · ¸ ¨ ¸ ¨ § J()(θ ) · § ¨ JQ( )(θ ) ¸ ¨ VLQ ( Qθ ) ¸ J (L )(θ ) = ¨ () ¸ = ¨ ¸ DQGJØ ( )(θ ) = ¨ () ¸ = ¨ ¨ ¸ ¨ JP (θ ) ¸ ¨ FRV ( Pθ ) ¸ © J (θ ) ¹ © ¸ ¨ ( ) ¸ ¨¨ © JP (θ ) ¹ © VLQ ( Pθ ) ¹¸
· ¸ ¹
7KLVUHVXOWVLQJOREDOYHFWRUVIRUHYHQDQGRGGYDOXHVRI N DV § JØ ( )(θ ) · § J ()(θ ) · ¨ ¸ ¨ ¸ ¨ J ()(θ ) ¸ ¨ J ()(θ ) ¸ J $ (θ ) = ¨ ¸ DQGJ % (θ ) = ¨ ¸ # # ¨ ¸ ¨ ¸ ¨ J N − (θ ) ¸ ¨ J N (θ ) ¸ © ( PD[ ) ¹ © ( PD[ ) ¹
7KHQWKHWRWDOVROXWLRQRIWKH)RXULHUVHULHVLQHTV DQG FDQEHGHULYHG E\PXOWLSO\LQJWKHUHVXOWVRIHTV DQG 7KLVUHVXOWVIRUWKH)RXULHU FRPSRQHQWVRIWKHGLVSODFHPHQWYHFWRUIRU L = Q P IRU L > LQ
§ XU(L) · § I (L) J (L) · ¨ ()¸ ¨ () () ¸ ¨ X( ) ¸ ¨ I ( ) J ( ) ¸ § XU() · § I () J () · U (L ) ( )¸ ¨ ( ) ( )¸ (L ) (L ) ¸ ¨ ¸ ¨ Ø ()( Uθ ) = ¨ DQGX = X(L )( Uθ ) = = ¨ X( ) ¸ ¨ I ( ) J ( ) ¸ ¨ X() ¸ ¨ I () J () ¸ © θ () ¹ © () () ¹ ¨ θ (L ) ¸ ¨ (L ) (L ) ¸ ¨¨ Xθ((L)) ¸¸ ¨¨ I((L) ) J((L)) ¸¸ © ¹ © ¹
%\ PXOWLSO\LQJ WKH UHVXOWV RI HTV DQG WKH HYHQ DQG RGG )RXULHU FRPSRQHQWVFDQEHVWRUHGLQWKHIROORZLQJYHFWRUVQDPHO\
&+$37(5
§ · § I()J () · IØ( )JØ () ¨ ¸ ¨ ¸ ¨ ¸ I( )J ( ) ¨ I ()J () ¸ DQG U θ = U θ = X $ ( Uθ ) = I $ ( U ) J $ (θ ) = ¨ X I J ) %( ) %( ) ¨ ¸ %( ¸ # # ¨ ¸ ¨ ¸ ¨I ¸ ¨ I( N )J ( N ) ¸ J PD[ ¹ © PD[ © ( NPD[ −) ( NPD[ −) ¹ LQZKLFK I $ ( U ) DQG I% ( U ) DFFRUGLQJWRHT DQG J $ (θ ) DQG J % (θ ) DFFRUGLQJ WRHT RFFXU7KHWRWDOVROXWLRQRIWKHUDGLDODQGWDQJHQWLDOFRPSRQHQWVRI WKHGLVSODFHPHQWILHOGWKHQUHDGV
XU ( Uθ ) =
NPD[
NPD[
¦ ª¬ I(( ) ) J(( )) + I(( ) ) J(( )) º¼ DQGXθ ( Uθ ) = ¦ ª¬ I(( ) ) J(( )) + I(( ) ) J(( )) º¼ L
L
L
L
L =
L
L
L
L
L =
+HUHZLWKWKHVROXWLRQRIWKHERXQGDU\YDOXHSUREOHPIRU0RKU²&RXORPEHODVWR² SODVWLFLW\ LQ WKH FLUFXODU GRPDLQ LV GHULYHG ,W UHPDLQV WR GHWHUPLQH WKH FRHIILFLHQWV VHH HT RFFXUULQJ LQ WKLV JHQHUDO VROXWLRQ WR VDWLVI\ WKH ERXQGDU\FRQGLWLRQVZKLFKZLOOEHHODERUDWHGLQWKHIROORZLQJVHFWLRQ
'LVSODFHPHQWYHFWRUILHOG
,QWKLVVHFWLRQWKHUHPDLQLQJFRHIILFLHQWVRFFXUULQJLQWKHJHQHUDOVROXWLRQRIWKH LQFUHPHQWDO GLVSODFHPHQW ILHOG DV JLYHQ LQ HT DUH GHWHUPLQHG 7KH\ FDQ EHGHWHUPLQHGE\GHILQLQJWKHIXQFWLRQVIRUWKHSUHVFULEHGGLVSODFHPHQWVDWWKH FLUFOHERXQGDU\ ∂Ω& FKDUDFWHULVHGE\WKHIXQFWLRQV ϕU (θ ) DQG ϕθ (θ ) DVGHILQHGLQ HT 2QWKHRXWHUFLUFOHERXQGDU\ U = 5 WKHERXQGDU\FRQGLWLRQVUHDG
XU ( 5θ ) = ϕU (θ ) DQGXθ ( 5θ ) = ϕθ (θ )
6XEVWLWXWLQJHTV DQG LQWRHT JLYHV XU ( 5θ ) = Xθ ( 5θ ) =
D( 5 ) F( 5 )
∞
+ ¦ ª¬DQ( 5 ) FRV ( Qθ ) + EQ( 5 ) VLQ ( Qθ ) º¼ = ϕU (θ ) Q = ∞
+ ¦ ª¬FP( 5 ) FRV ( Pθ ) + GP( 5 ) VLQ ( Pθ ) º¼ = ϕθ (θ ) P =
7R VROYH IRU WKH LQILQLWH VXPPDWLRQV RI LQGLFHV Q DQG P LQ HT XVH LV PDGH RI WKH RUWKRJRQDOLW\ RI WKH VLQH DQG FRVLQH IXQFWLRQV %\ PXOWLSO\LQJ HT E\ HLWKHU FRV ( Nθ ) RU VLQ ( Nθ ) DQG DIWHUZDUGV LQWHJUDWLQJ IURP WR π IRU HDFK N WZR HTXDWLRQV DULVH IRU WKH GHWHUPLQDWLRQ RI FRHIILFLHQWV DQ EQ FP DQG GP 7KHFDVH N = KDVWREHFRQVLGHUHGVHSDUDWHO\DVLVGRQHILUVWLQWKH IROORZLQJ 0XOWLSOLFDWLRQRIHT E\ DQGLQWHJUDWLRQZLWKUHVSHFWWR θ IURP WR π DQGGLYLGLQJE\ π OHDGVWR
0RKU²&RXORPEHODVWR²SODVWLFLW\LQFOXGLQJKDUGHQLQJLQWKHFLUFXODUGRPDLQ
D( 5 ) =
π
³ ϕU(θ ) Gθ DQGF( 5 ) =
π
π
π
³ ϕθ (θ ) Gθ
0XOWLSOLFDWLRQ RI HT E\ FRV ( Nθ ) IRU N = ! LQWHJUDWLRQ ZLWK UHVSHFW WR θ IURP WR π DQGGLYLGLQJE\ π OHDGVWR DN ( 5 ) =
π
³ ϕU(θ ) FRV ( Nθ ) Gθ DQGFN( 5 ) =
π
π
³ ϕθ (θ ) FRV ( Nθ ) Gθ
π
0XOWLSOLFDWLRQ RI HT E\ VLQ ( Nθ ) IRU N = ! LQWHJUDWLRQ ZLWK UHVSHFW WR θ IURP WR π DQGGLYLGLQJE\ π OHDGVWR EN ( 5 ) =
π
π
³ ϕU(θ ) VLQ ( Nθ ) Gθ DQGGN( 5 ) =
π
³ ϕθ (θ ) VLQ ( Nθ ) Gθ
π
,Q6HFWLRQLWZDVVKRZQWKDWHLJKWGLIIHUHQWW\SHVRIGHIRUPDWLRQPRGHVFDQ EH GLVWLQJXLVKHG )RU WKH FLUFXODU GRPDLQ WKH IXQFWLRQV ϕU (θ ) DQG ϕθ (θ ) ZHUH GHILQHG LQ HTV WR IRU WKH HLJKW GHIRUPDWLRQ PRGHV LQ ZKLFK WKH SUHVFULEHG QRGDO LQFUHPHQWDO GLVSODFHPHQW H LV LQYROYHG 1RUPDOLVHG ZLWK UHVSHFWWRWKHSUHVFULEHGQRGDOLQFUHPHQWDOGLVSODFHPHQW H WKH\UHDG
PRGH ϕU,(θ ) H = FRV (θ ) DQG ϕθ, (θ ) H = − VLQ (θ )
PRGH ϕU,,(θ ) H = VLQ (θ ) DQG ϕθ,,(θ ) H = FRV (θ )
PRGH ϕU,,,(θ ) H = DQG ϕθ,,,(θ ) H =
PRGH ϕU,9 (θ ) H = FRV ( θ ) DQG ϕθ,9 (θ ) H = − VLQ ( θ )
PRGH ϕU9 (θ ) H = VLQ ( θ ) DQG ϕθ9 (θ ) H = FRV ( θ )
PRGH ϕU9,(θ ) H = −DQG ϕθ9,(θ ) H =
PRGH
PRGH
ϕU9,,(θ ) H
ϕU9,,,(θ ) H
= =
VLQ (θ ) + VLQ ( θ )
DQG
FRV (θ ) − FRV ( θ )
ϕθ9,,(θ )
DQG
H
=
ϕθ9,,,(θ ) H
− FRV (θ ) + FRV ( θ )
=
VLQ (θ ) + VLQ ( θ )
,Q)LJXUHWKHERXQGDU\FRQGLWLRQVDUHLOOXVWUDWHGIRUWKHFLUFXODUGRPDLQ7KH ILUVW WKUHH PRGHV GHVFULEH ULJLG GHIRUPDWLRQ WUDQVODWLRQ DQG URWDWLRQ PRGHV WR GHVFULEH XQLIRUP GHIRUPDWLRQ VWUHWFKLQJ VKHDULQJ DQG FRPSUHVVLRQ DQG PRGHV DQG GHVFULEH WKH QRQ²XQLIRUP KRXUJODVV GHIRUPDWLRQ PRGHV ZKLFK PD\ SRVVLEO\ OHDG WR QRQ²XQLTXH RU XQVWDEOH VROXWLRQV RI WKH ERXQGDU\ YDOXH SUREOHP $IWHU VXEVWLWXWLQJ HTV WR LQWR HTV WR WKH FRHIILFLHQWVDWWKHERXQGDU\DUHGHWHUPLQHGDVJLYHQLQ7DEOH1RWHWKDWWKH\ DUHQRUPDOLVHGZLWKUHVSHFWWRWKHSUHVFULEHGQRGDOLQFUHPHQWDOGLVSODFHPHQW H
&+$37(5
D ( 5 ) H
F( 5 ) H
DN ( 5 ) H
EN ( 5 ) H
FN ( 5 ) H
GN ( 5 ) H
PRGH
D =
G =
PRGH
E =
F =
PRGH
PRGH
D =
G = −
PRGH
E =
F =
PRGH
²
PRGH
E =
F = −
E =
F =
PRGH
D = D = −
G = G = −
7DEOH (ODERUDWHG QRUPDOLVHG FRHIILFLHQWV DN H EN H FN H DQG GN H DFFRUGLQJ WR HTV DQG DWWKHFLUFOHERXQGDU\ U = 5 IRUWKHHLJKWGHIRUPDWLRQPRGHV
)URP7DEOHLWFDQEHVHHQWKDWIRUPRGHVDQGQRQ²]HURFRHIILFLHQWVDW WKH ERXQGDU\ RQO\ RFFXU IRU RGG LQGLFHV LH N = 7KDW PHDQV WKDW IRU WKH VROXWLRQRIWKHERXQGDU\YDOXHSUREOHPRQO\WKHRGGSDUWRIWKHVROXWLRQKDVWREH FRQVLGHUHG DQG DOO FRHIILFLHQWV RI WKH HYHQ SDUW DUH HTXDO WR ]HUR 6LPLODUO\ IRU PRGHVDQGQRQ²]HURFRHIILFLHQWVRQO\RFFXUIRUHYHQLQGLFHVLH N = &RUUHVSRQGLQJO\ RQO\ WKH HYHQ SDUW RI WKH VROXWLRQ KDV WR EH FRQVLGHUHG DV DOO FRHIILFLHQWVIRURGGLQGLFHVDUHHTXDOWR]HUR )RU WKH QRQ²XQLIRUP GLVSODFHPHQW PRGH KRUL]RQWDO KRXU²JODVVLQJ WKH UHVXOWLQJQRUPDOLVHGLQFUHPHQWDOGLVSODFHPHQWILHOGLVHODERUDWHGDVDQH[DPSOH 7KHUHIRUHWKHYDOXHV E( 5 ) H = E( 5 ) H = DQG F( 5 ) H = −F( 5 ) H = − ZLWKDOO UHPDLQLQJ FRHIILFLHQWV HTXDO WR ]HUR IROORZLQJ IURP 7DEOH IRU PRGH DUH VXEVWLWXWHGLQWRWKHVROXWLRQYHFWRUV I $ ( U ) DQG I% ( U ) IROORZLQJIURPHT ,Q HT WKHQRUPDOLVHGYHFWRUV [Ø $ ( 5 ) H DQG [Ø % ( 5 ) H RFFXUZKLFKUHDGIRUWKH SDUWLFXODUFDVHRIPRGHIROORZLQJIURPHT §§ · · ¨¨ ¸ ¸ § §· · ¨ ¨ E = ¸ ¸ ¨¨ ¸ ¸ ¨ ¨ F = − ¸ ¸ ¨ © ¹ N = ¸ ¨¨ ¸ ¸ ¨ §· ¸ ¨© ¹ N = ¸ ¨¨ ¸ ¸ ¨ ¸ ¨ ¨¸ ¸ · ¨§ ¸ ¨ ¸ ¨ ¸ ¨¸ ¨ E = ¸ [Ø 9,, [Ø 9,, $ (5) % (5) ¨ ¸ ¨ ¸ ¸ = ¨ ¸ =¨ DQG ¨ ¸ ¨ ¸ H H © ¹N = ¸ ¨ F = ¸ ¨ ¸ ¸ ¨ ¨© # ¹ ¨ ¸ N = ¸ ¨ ¨ ¸ # ¸ ¨ ¨ ( NHYHQ ) ¸ ¨ ¸ ¨ # ¸ N ( RGG ) ¨ ¸ ¨ ¸ ¨ ¸ ¨ ( N −) ¸ # PD[ © ¹ ¨ ¸ ¨ ¸ ( NPD[ ) © ¹
0RKU²&RXORPEHODVWR²SODVWLFLW\LQFOXGLQJKDUGHQLQJLQWKHFLUFXODUGRPDLQ
6XEVWLWXWLQJHT LQWRHT JLYHVWKHQRUPDOLVHGYHFWRUV I $9,,( U ) H DQG I%9,,( U ) H DQG WKH QRUPDOLVHG LQFUHPHQWDO GLVSODFHPHQWV XU9,,( Uθ ) H DQG Xθ9,,( Uθ ) H FDQEHFDOFXODWHGDFFRUGLQJWRHT N M
+ =
+ =
+ =
+ =
+ =
7DEOH &RHIILFLHQWV F%9,,( M ) RI ILUVW HLJHQYDOXHV IRU GLIIHUHQW GHJUHHV RI SODVWLFLW\ UHSUHVHQWHGE\WKHQRUPDOLVHGKDUGHQLQJPRGXOXV + IRU NPD[ = DQGGLVSODFHPHQW PRGH9,,KRUL]RQWDOKRXU²JODVVLQJ
&+$37(5
7RLQYHVWLJDWHWKHJHQHUDOEHKDYLRXURIWKHVROXWLRQRIWKHGLVSODFHPHQWILHOGIRU 9,, M GLVSODFHPHQW PRGH WKH UHVXOWLQJ FRHIILFLHQWV F% ( ) LQ WKH VROXWLRQ IROORZLQJ IURP HT DUH LQVSHFWHG $JDLQ WKH LQIOXHQFH RI WKH GHJUHH RI SODVWLFLW\ UHSUHVHQWHG E\ WKH QRUPDOLVHG KDUGHQLQJ PRGXOXV + LV FRQVLGHUHG ,Q 7DEOH WKH ILUVW FRHIILFLHQWV DUH OLVWHG IRU GLVSODFHPHQW PRGH DQG PDWHULDO SDUDPHWHUV DFFRUGLQJ WR 6HFWLRQ IRU GLIIHUHQW YDOXHV RI WKH QRUPDOLVHG KDUGHQLQJPRGXOXV + ,WFDQEHVHHQWKDWIRUSXUHHODVWLFLW\LH + → ∞ RQO\ WKH ILUVW VL[ FRHIILFLHQWV JLYH D FRQWULEXWLRQ WR WKH VROXWLRQ DQG DOO RWKHU FRHIILFLHQWV DUH HTXDO WR ]HUR 7KLV LV LQ DJUHHPHQW ZLWK WKH DQDO\WLFDO VROXWLRQ GHULYHG LQ &KDSWHU LQ HT )XUWKHUPRUH LW FDQ EH REVHUYHG WKDW IRU LQFUHDVLQJ GHJUHH RI SODVWLFLW\ WKH QXPEHU RI FRHIILFLHQWV WKDW DUH QRW HTXDO WR ]HURLVLQFUHDVLQJ7KLVLQFUHDVHLQWKHQXPEHURIVLJQLILFDQWFRHIILFLHQWVKDSSHQV FRQWLQXRXVO\ 1RWH WKDW IRU GLVSODFHPHQW PRGH YHUWLFDO KRXU²JODVVLQJ HTXLYDOHQWUHVXOWVFDQEHIRXQG 7KHVROXWLRQIRUWKHQRQ²XQLIRUPGHIRUPDWLRQPRGHVDQGLVLOOXVWUDWHGIRUWKH IROORZLQJ PDWHULDO SDUDPHWHU VHW ORFDWHG LQ WKH UDQJH RI SUDFWLFDO LQWHUHVW DV VXPPDULVHGLQ7DEOHQDPHO\ ² ² ² ² ²
3RLVVRQ·VUDWLRν = PRELOLVHGIULFWLRQDQJOH ϕP = R GLODWLRQDQJOHψ = R QRUPDOLVHGKDUGHQLQJPRGXOXV + = DQG LQLWLDOSULQFLSDOVWUHVVGLUHFWLRQ Ξ = R
7KHUHVXOWLVVKRZQLQ)LJXUHLQWHUPVRIWKHQRUPDOLVHGLQFUHPHQWDOHODVWR² SODVWLFGLVSODFHPHQWILHOGXHS H 7KHPD[LPXPLQFUHPHQWDOGLVSODFHPHQWRFFXUV DW WKH QRGHV ZKHUH WKH GLVSODFHPHQW DW WKH ERXQGDU\ LV DSSOLHG ,Q WKH FLUFOH
1
1
0.5
0.5 y/R [−]
y/R [−]
0
0
−0.5
−0.5
−1
−1 −1
−0.5
0 x/R [−]
0.5
1
−1
−0.5
0 x/R [−]
0.5
1
)LJXUH ,OOXVWUDWLRQ RI WKH QRUPDOLVHG LQFUHPHQWDO HODVWR²SODVWLF GLVSODFHPHQW ILHOG XHS H 5HVXOWV IRU KRXUJODVV W\SHV RI ERXQGDU\ GLVSODFHPHQWV PRGH OHIW DQG PRGH ULJKW
0RKU²&RXORPEHODVWR²SODVWLFLW\LQFOXGLQJKDUGHQLQJLQWKHFLUFXODUGRPDLQ
FHQWUH WKH LQFUHPHQWDO GLVSODFHPHQWV DUH GLUHFWHG YHUWLFDOO\ XSZDUGV OHIW DQG KRUL]RQWDOO\ ULJKWZDUGV ULJKW UHVSHFWLYHO\ )RU WKH UHPDLQLQJ GHIRUPDWLRQ PRGHV WKH LQFUHPHQWDO GLVSODFHPHQW ILHOG FDQ EH GHWHUPLQHG HTXLYDOHQWO\ +RZHYHUWKHVHUHVXOWVDUHQRWVKRZQKHUH
6WUDLQUDWHDQGVWUHVVUDWHWHQVRUILHOGVDQGLQYDULDQWV
,Q WKLV VHFWLRQ WKH VWUDLQ UDWH DQG VWUHVV UDWH ILHOGV FRUUHVSRQGLQJ WR WKH SUHYLRXVO\ GHULYHG LQFUHPHQWDO GLVSODFHPHQW ILHOGV GXH WR LQFUHPHQWDO QRGDO GLVSODFHPHQWV H DUHGHULYHG7KHVWUDLQUDWHVDUHGHILQHGDFFRUGLQJWRHT DV εLM = ( X L M + X ML ) ZKHUHWKHVXSHUGRWLQGLFDWHVWKHPDWHULDOWLPHGHULYDWLYHDV GHILQHG LQ 6HFWLRQ HT 7KH\ FDQ EH HODERUDWHG IRU WKH SRODU FRRUGLQDWHV\VWHPDQGSODQHVWUDLQVLWXDWLRQDV
εUU = X U U εθθ =
X U + Xθ θ X − Xθ Xθ U ε]] = DQGεUθ = Uθ + U U
ZKHUH X L LVWKHPDWHULDOWLPHGHULYDWLYHRIWKHLQFUHPHQWDOGLVSODFHPHQW XL GXH WR WKH QRGDO SUHVFULEHG YHORFLW\ H VHH )LJXUH 7KHQ WKH JUDGLHQWV RI WKH UDGLDO DQG WDQJHQWLDO GLVSODFHPHQWV XU DQG Xθ DFFRUGLQJ WR HT DV RFFXUULQJ LQ HT DUH REWDLQHG E\ DSSO\LQJ WKH SDUWLDO GLIIHUHQWLDOV ZLWK UHVSHFWWR U DQG θ RIWKHGLVSODFHPHQWILHOG 7KH ILUVW²RUGHU VSDWLDO GHULYDWLYHV RI WKH U − GHSHQGHQW VROXWLRQ IRU HDFK RI WKH HYHQ DQG RGG )RXULHU FRPSRQHQWV DUH GHULYHG LQ HTV DQG 7KH ILUVW²RUGHUGHULYDWLYHVRIWKH θ − GHSHQGHQWVROXWLRQDFFRUGLQJWRHT UHDG IRU L >
§ −Q VLQ ( Qθ ) · ¨ ¸ Q FRV ( Qθ ) ¸ §· DQGJ ′( )(θ ) = ¨ ¸ J ′(L )(θ ) = ¨ ¨ −P VLQ ( Pθ ) ¸ ©¹ ¨¨ ¸¸ FRV P P θ ( )¹ ©
7KHQIRUWKHSDUWLDOGHULYDWLYHVRFFXUULQJLQHT LWIROORZVIURPHT XU U =
L =
Xθ U =
ª
′
¦ «( I ( ) )
NPD[
¬
L
( ) )′ J ( ) º»¼
JL( ) + IL(
L
XU θ =
ª
′
¦ «I ( ) ( J( ) )
NPD[ L =
¬
L
L
+ IL(
)
( J ( ) )′ º»¼
L
NPD[ ª ( ) ′ ( ) ª ′ º ′ ′º JL + IL( ) JL( ) » DQGXθ θ = ¦ « IL( ) JL( ) + IL( ) JL( ) » ¦ « IL L = ¬ L = ¼ ¬ ¼
NPD[
( )
( )
( )
( )
6XEVWLWXWLQJ HT LQWR WKH GHILQLWLRQ RI WKH VWUDLQ UDWHV LQ HT WKH QRUPDOLVHGVWUDLQUDWHV εLM 5 H FDQEHFDOFXODWHG 7KHVWUHVVUDWHVIRU0RKU²&RXORPEHODVWR²SODVWLFLW\DUHGHILQHGLQ6HFWLRQ HS HS εLM 7KH HODVWR²SODVWLF VWLIIQHVV WHQVRU 'LMNO LV GHILQHG DFFRUGLQJ WR DV σ LM = 'LMNO
&+$37(5
HT 7KHQ LW IROORZV IRU WKH VWUHVV²VWUDLQ UDWH UHODWLRQ IRU SODQH GHIRUPDWLRQ IRU 0RKU²&RXORPE HODVWR²SODVWLFLW\ QRUPDOLVHG ZLWK UHVSHFW WR * IRUWKHSRODUFRRUGLQDWHV\VWHPDFFRUGLQJWRHT § σ UUHS ¨ HS ¨ σθθ ¨ σ ]]HS ¨¨ HS © σ Uθ
* · ¸ * ¸ = * ¸ ¸¸ * ¹
ν ν ª + ν « ν + ν ν « « ν ν +ν « ¬
º § εUUHS · ¨ ¸ »» ¨ εθθHS ¸ + » ¨ ¸ ¨ ¸ » ¼ ¨© εUHSθ ¹¸
ª − ( − ΝΦ )( − ΝΨ ) ( + ΝΦ )( − ΝΨ ) « − ( + ΝΦ )( + ΝΨ ) « ( − ΝΦ )( + ΝΨ ) + HS « ' « « ¬
º § ε HS · » UU » ¨ εθθHS ¸ ¨ ¸ » » ¨ ¸ ¨¨ HS ¸¸ »¼ © εUθ ¹
6XEVWLWXWLQJ WKH VWUDLQ UDWHV UHVXOWLQJ IURP HT LQWR HT WKH QRUPDOLVHGVWUHVVUDWHV σ LM 5 ( *H ) DUHGHWHUPLQHG )RU GLVSODFHPHQW PRGH KRUL]RQWDO KRXU²JODVVLQJ DV DQ H[DPSOH WKH FRUUHV² SRQGLQJ LQ²SODQH SULQFLSDO VWUDLQ UDWH DQG VWUHVV UDWH ILHOGV DUH HODERUDWHG IRU WKHVDPHPDWHULDOSDUDPHWHUVHWDVPHQWLRQHGDERYHLQ6HFWLRQ7KHUHVXOWLV VKRZQLQ)LJXUH7KHQRUPDOLVHGLQ²SODQHSULQFLSDOVWUDLQUDWHILHOG εHS 5 H RIWKHVDPHIRUPDVGHILQHGLQHT LVJLYHQRQWKHOHIW7KHQRUPDOLVHGLQ² SODQH SULQFLSDO VWUHVV²UDWH ILHOG σ HS 5 ( *H ) RI WKH VDPH IRUP DV GHILQHG LQ HT LVJLYHQRQWKHULJKW7KHPD[LPXPYDOXHVRIWKHSULQFLSDOVWUDLQUDWH DQGVWUHVVUDWHRFFXUDWWKHWRSDQGWKHERWWRPRIWKHFLUFOH7KHSULQFLSDOVWUDLQ UDWHV DQG VWUHVV UDWHV DUH GLUHFWHG H[DFWO\ KRUL]RQWDOO\ DQG YHUWLFDOO\ DW WKH YHUWLFDOD[LVWKURXJKWKHFLUFOHFHQWUH2QWKHKRUL]RQWDOD[LVWKURXJKWKHFLUFOH FHQWUHWKHSULQFLSDOVWUDLQUDWHVDQGVWUHVVUDWHVDUHURWDWHGE\GHJUHHVDQG WHQVLRQDO DQG FRPSUHVVLRQDO FRPSRQHQW DUH HTXDO WR HDFK RWKHU \HW WKH\ DUH UHODWLYHO\ VPDOO FRPSDUHG WR WKH PD[LPXP YDOXH DW WKH WRS DQG ERWWRP RI WKH FLUFOH7KHPD[LPXPPDJQLWXGHVRIWKHVWUDLQUDWHVDQGVWUHVVUDWHVRFFXUDORQJ WKHFLUFOHERXQGDU\$WWKHWRSWKHPD[LPXPWHQVLOHVWUDLQUDWHVDQGVWUHVVUDWHV RFFXU 7KHUH WKH FRPSUHVVLYH VWUHVV UDWHV DUH UHODWLYHO\ VPDOO ZKLOVW WKH FRPSUHVVLYH VWUDLQ UDWHV DUH RI FRPSDUDEOH PDJQLWXGH $W WKH ERWWRP WKH PD[LPXP FRPSUHVVLYH VWUDLQ UDWHV DQG VWUHVV UDWHV RFFXU 7KHUH WKH WHQVLOH VWUHVVUDWHVDUHUHODWLYHO\VPDOOZKLOVWWKHWHQVLOHVWUDLQUDWHVDUHRIFRPSDUDEOH PDJQLWXGH1RWHWKDWWKHRULHQWDWLRQRIWKHSULQFLSDOVWUHVVUDWHVLVGLIIHUHQWWR WKH RULHQWDWLRQ RI WKH SULQFLSDO VWUDLQ UDWHV )RU WKH PDWHULDO PRGHO RI 0RKU² &RXORPE HODVWR²SODVWLFLW\ DV IRUPXODWHG LQ WKLV WKHVLV WKLV LV FDXVHG E\ WKH FRD[LDOLW\RIWKHGLUHFWLRQVRISULQFLSDOVWUHVVHVDQGSULQFLSDOSODVWLFVWUDLQUDWHV DQG DOVR RI WKH GLUHFWLRQV RI SULQFLSDO VWUHVV UDWHV DQG SULQFLSDO HODVWLF VWUDLQ UDWHV)RUPRUHGHWDLOVRQQRQ²FRD[LDOSODVWLFLW\PRGHOVLWLVUHIHUUHGWRHJ −@ Ξ >GHJ@ + > −@ ΦΨ > − @
(
(
)
(
)
(
)
)
(
)
(
)
VHW$
≤ ν <
VHW%
≤ Ξ ≤
VHW&
− ≤ + ≤ +
VHW'
²
0.45 ≤ ΦΨ ≤ 0.90
R
R
7DEOH 3DUDPHWHU VHWV IRU 0RKU²&RXORPE HODVWR²SODVWLF PDWHULDO EHKDYLRXU IRU SDUDPHWULF VWXGLHVDVSHUIRUPHGLQ6HFWLRQVWR
&+$37(5
,Q WKH IROORZLQJ VHFWLRQV WKH SDUDPHWHU VWXGLHV DV LQGLFDWHG LQ 7DEOH DUH SUHVHQWHG)RUDOOFDOFXODWLRQVDPD[LPXPQXPEHURI)RXULHUWHUPVRI NPD[ = LVXVHGDVPRWLYDWHGLQWKHSUHYLRXV6HFWLRQ7KHUHVXOWVDUHSUHVHQWHGIRU WKHQRQ²XQLIRUPGHIRUPDWLRQPRGHKRUL]RQWDOKRXUJODVVLQJ 9DULDWLRQRI3RLVVRQ·VUDWLR ,QWKLVVHFWLRQWKHLQIOXHQFHRI3RLVVRQ·VUDWLR ν RQWKHEHKDYLRXURIWKHVROXWLRQ LV LOOXVWUDWHG 7KH SDUDPHWHUV DUH FKRVHQ DFFRUGLQJ WR VHW $ LQ 7DEOH 3RLVVRQ·VUDWLRν LVYDULHGLQWKHUDQJHEHWZHHQDQG7KHUHVXOWVDUHVKRZQ LQ )LJXUH DV SRLQWHG RXW EHIRUH LQ WHUPV RI WKH QRUPDOLVHG PD[LPXP DQG PLQLPXP YDOXHV RI ORFDO VWUDLQ UDWHV VWUHVV UDWHV DQG VWUDLQ UDWH HQHUJ\ DQG PRUHRYHUWKHLQWHJUDWHGVWUDLQUDWHHQHUJ\DOOGHILQHGLQ7DEOH
D
Isotropic/deviatoric strain rate ε
ep
[−]
E
2.5
Isotropic/deviatoric stress rate σep [−]
4
(v)
max ε
(m)
max σ
(m)
(v)
min ε
2
min σ
3
(d)
max ε
max σ(d) (d)
(d)
min ε
1.5
1
1 0.5
0
0
−1
−0.5
−2
−1
min σ
2
−3
0
0.05
0.1
0.15 0.2 0.25 0.3 Poisson’s ratio, nu [−]
0.35
0.4
0.45
0.5
0
0.05
0.1
0.15 0.2 0.25 0.3 Poisson’s ratio, nu [−]
0.35
0.4
0.45
0.5
F
Total/isotropic/deviatoric energy W [−] strain rate
ep
G
4.5
(tot)
Integrated strain energy W
ep
[−]
5
(tot)
W
max W
min W(tot)
4
min W(iso) (dev)
3
max W
min W(dev)
2.5
(dev)
W
4 3.5 3 2.5
2 1.5
2
1
1.5
0.5
1
0
0.5
−0.5
W(iso)
4.5
max W(iso)
3.5
0
0.1
0.2 0.3 Poisson’s ratio, nu [−]
0.4
0
0.5
0
0.05
0.1
0.15 0.2 0.25 0.3 Poisson’s ratio, nu [−]
0.35
0.4
0.45
0.5
)LJXUH9DULDWLRQRIVHYHUDOFKDUDFWHULVWLFVYHUVXV3RLVVRQ·VUDWLRν IRUIL[HGYDOXHV RIGHJUHHRIGLODWLRQ ΦΨ = QRUPDOLVHGKDUGHQLQJPRGXOXV + = DQG R LQLWLDOSULQFLSDOVWUHVVGLUHFWLRQ Ξ= D PD[LPXPDQGPLQLPXPORFDOYDOXHVRIQRUPDOLVHGLVRWURSLFDQG GHYLDWRULFVWUDLQUDWH ε (Y ) 5 H DQG ε ( G ) 5 H E PD[LPXPDQGPLQLPXPORFDOYDOXHVRIQRUPDOLVHGPHDQDQGGHYLDWRULF VWUHVVUDWH σ ( P ) 5 ( *H ) DQG σ ( G ) 5 ( *H ) F PD[LPXPDQGPLQLPXPORFDOYDOXHVRIQRUPDOLVHGWRWDOLVRWURSLFDQG WRW GHYLDWRULFVWUDLQUDWHHQHUJ\ : ( ) 5 *H : ( LVR ) 5 *H DQG : ( GHY ) 5 *H G QRUPDOLVHGWRWDOLVRWURSLFDQGGHYLDWRULFLQWHJUDWHGVWUDLQUDWHHQHUJ\ GHY : (WRW ) 5 *H : ( LVR ) 5 *H DQG : ( ) 5 *H
(
)
(
)
(
(
)
)
(
(
)
)
0RKU²&RXORPEHODVWR²SODVWLFLW\LQFOXGLQJKDUGHQLQJLQWKHFLUFXODUGRPDLQ
,Q )LJXUH DOO SUHVHQWHG VROXWLRQV VKRZ D VPRRWK GHYHORSPHQW ZLWKRXW DV\PSWRWLF EHKDYLRXU XS WR D YDOXH RI ν RI DSSUR[LPDWHO\ )RU ν JHWWLQJ FORVHU WR LW FDQ EH VHHQ WKDW WKH YROXPHWULF VWUDLQ UDWH DQG LVRWURSLF VWUDLQ UDWH HQHUJ\ DSSURDFK ]HUR DV H[SHFWHG IRU WKH LQFRPSUHVVLEOH EHKDYLRXU RI WKH PDWHULDO DW WKLV VWDWH $W WKH VDPH WLPH WKH GHYLDWRULF VWUDLQ UDWH HQHUJ\ LV LQFUHDVLQJ IRU ν DSSURDFKLQJ 7KH PLQLPXP GHYLDWRULF YDOXHV RI WKH VWUDLQ UDWH VWUHVV UDWH DQG VWUDLQ UDWH HQHUJ\ DUH ]HUR IRU WKH ZKROH SDUDPHWHU UDQJH XQGHU FRQVLGHUDWLRQ )RU ν DSSURDFKLQJ WKH WKHRUHWLFDO YDOXH RI LUUHJXODULWLHV FDQ EH QRWHG SUREDEO\ GXH WR QXPHULFDO DFFXUDF\ OLPLWV RI WKH VROXWLRQSURFHGXUH7KHVHUHVXOWVFRQILUPWKDWWKHSURSRVHGVROXWLRQSURFHGXUHLV UHOLDEOHDQGUHSUHVHQWWKHH[SHFWHGPDWHULDOEHKDYLRXU ,WFDQEHFRQFOXGHGWKDWLQWKHSDUDPHWHUUDQJHRISUDFWLFDOLQWHUHVWIRU3RLVVRQ·V UDWLR ν EHWZHHQ DQG WKH SUHVHQWHG VROXWLRQV KDUGO\ VKRZ DQ\ YDULDWLRQ DQG FRQVHTXHQWO\ FDQ KDUGO\ DIIHFW WKH VWDELOLW\ DQG XQLTXHQHVV )RU YDOXHV RI 3RLVVRQ·VUDWLR ν ODUJHUWKDQWKHSUHVHQWHGVROXWLRQVJHWLQVWDEOHDQGIRUD YDOXHRI ν = WKHVROXWLRQVDUHQRQ²XQLTXHDVGHVFULEHGIRUOLQHDUHODVWLFLW\LQ 6HFWLRQVDQG 9DULDWLRQRILQLWLDOSULQFLSDOVWUHVVGLUHFWLRQ ,Q WKLV VHFWLRQ WKH LQIOXHQFH RI WKH LQLWLDO SULQFLSDO VWUHVV GLUHFWLRQ Ξ RQ WKH EHKDYLRXURIWKHVROXWLRQLVLOOXVWUDWHG7KHRULHQWDWLRQRIWKHSULQFLSDOVWUHVVHV ZLWKUHVSHFWWRWKHUHIHUHQFHFRRUGLQDWHV\VWHPLVLOOXVWUDWHGLQ)LJXUHVDQG 7KHUHPDLQLQJSDUDPHWHUVDUHFKRVHQDFFRUGLQJWRVHW%LQ7DEOH )LUVW LQ )LJXUH WKH ORFDO GLVWULEXWLRQ RI WKH QRUPDOLVHG WRWDO VWUDLQ UDWH WRW HQHUJ\ :HS( ) 5 *H LVVKRZQIRUSDUDPHWHUVHW%ZKLFKDOVRFRUUHVSRQGVWR VWUHVV VWDWH LQ WKH SUHYLRXVO\ PHQWLRQHG WULD[LDO WHVW VHH 7DEOH 7KH
(
)
Ξ
Ξ
Ξ
Ξ
Ξ
Ξ
)LJXUH,OOXVWUDWLRQRIWKHHODVWR²SODVWLFQRUPDOLVHGWRWDOVWUDLQUDWHHQHUJ\GLVWULEXWLRQ :HS(WRW ) 5 *H 5HVXOWVIRUYDU\LQJLQLWLDOSULQFLSDOVWUHVVGLUHFWLRQVIRUKRXUJODVV W\SHPRGH RIERXQGDU\GLVSODFHPHQWV
(
)
&+$37(5
D
Isotropic/deviatoric strain rate εep [−]
E
2.5
(v)
min ε
2
Isotropic/deviatoric stress rate σep [−]
3
max ε(v)
max σ(m) (m)
min σ
2.5
(d)
(d)
max ε
1.5
2
(d)
min ε
1
(d)
min σ
1.5
0.5
1
0
0.5
−0.5
0
−1
−0.5
−1.5 −2
max σ
−1
0
20
F
40
60 80 100 120 principal stress direction, xi [deg]
140
Total/isotropic/deviatoric strain rate energy W
ep
160
[−]
−1.5
180
0
20
40
60 80 100 120 principal stress direction, xi [deg]
G
3
140
160
180
Integrated strain energy Wep [−]
3.5
max W(tot)
(tot)
W
(tot)
min W
2.5
W(iso)
3
(iso)
max W
W(dev)
min W(iso) 2
2.5
(dev)
max W
(dev)
min W 1.5
2
1
1.5
0.5
1
0
0.5
−0.5
0
20
40
60 80 100 120 principal stress direction, xi [deg]
140
160
0
180
0
20
40
60 80 100 120 principal stress direction, xi [deg]
140
160
180
)LJXUH9DULDWLRQRIVHYHUDOFKDUDFWHULVWLFVYHUVXVLQLWLDOSULQFLSDOVWUHVVGLUHFWLRQ Ξ IRU IL[HGYDOXHVRI3RLVVRQ·VUDWLRν = GHJUHHRIGLODWLRQ ΦΨ = DQGQRUPDOLVHG KDUGHQLQJPRGXOXV + = D PD[LPXPDQGPLQLPXPORFDOYDOXHVRIQRUPDOLVHGLVRWURSLFDQG GHYLDWRULFVWUDLQUDWH ε (Y ) 5 H DQG ε ( G ) 5 H E PD[LPXPDQGPLQLPXPORFDOYDOXHVRIQRUPDOLVHGPHDQDQGGHYLDWRULF VWUHVVUDWH σ ( P ) 5 ( *H ) DQG σ ( G ) 5 ( *H ) F PD[LPXPDQGPLQLPXPORFDOYDOXHVRIQRUPDOLVHGWRWDOLVRWURSLFDQGGHYLDWRULF WRW VWUDLQUDWHHQHUJ\ : ( ) 5 *H : ( LVR ) 5 *H DQG : ( GHY ) 5 *H G QRUPDOLVHGWRWDOLVRWURSLFDQGGHYLDWRULFLQWHJUDWHGVWUDLQUDWHHQHUJ\ ( GHY ) 5 *H : (WRW ) 5 *H : ( LVR ) 5 *H DQG :
(
(
)
(
)
)
(
)
(
(
)
)
LQLWLDO SULQFLSDO VWUHVV GLUHFWLRQ LV YDULHG EHWZHHQ R DQG R LQ VWHSV RI R 7KHQLQ)LJXUHWKHLQLWLDOSULQFLSDOVWUHVVGLUHFWLRQ Ξ LVYDULHGLQWKHUDQJH EHWZHHQDQG7KHUHVXOWVDUHVKRZQLQWHUPVRIWKHQRUPDOLVHGPD[LPXP DQG PLQLPXP YDOXHV RI ORFDO VWUDLQ UDWHV VWUHVV UDWHV DQG VWUDLQ UDWH HQHUJ\ DQGPRUHRYHUWKHLQWHJUDWHGVWUDLQUDWHHQHUJ\DOOGHILQHGLQ7DEOH ,Q )LJXUH DOO SUHVHQWHG VROXWLRQV VKRZ D VPRRWK GHYHORSPHQW ZLWKRXW DV\PSWRWLF EHKDYLRXU RQ WKH ZKROH SDUDPHWHU UDQJH XQGHU FRQVLGHUDWLRQ ,Q )LJXUH E DQG F DW Ξ = R DQ DEUXSW FKDQJH LQ WKH GHYLDWRULF VWUHVV UDWH RFFXUV ZKLFK LV DOVR DSSDUHQW LQ WKH ORFDO YDOXH RI WKH VWUDLQ UDWH HQHUJ\ 7KLV HIIHFW LV FDXVHG E\ WKH LQIOXHQFH RI WKH LQLWLDO SULQFLSDO VWUHVV GLUHFWLRQ RQ WKH UHVXOWLQJ SULQFLSDO VWUHVV UDWHV )RU WKH LQWHJUDWHG VWUDLQ UDWH HQHUJ\ KRZHYHU WKLV DEUXSW FKDQJH GLVDSSHDUV GXH WR WKH LQWHJUDWLRQ RYHU WKH ZKROH GRPDLQ ZKLFKUHPRYHVWKHLQIOXHQFHRIRULHQWDWLRQVDQGORFDOYDOXHV
0RKU²&RXORPEHODVWR²SODVWLFLW\LQFOXGLQJKDUGHQLQJLQWKHFLUFXODUGRPDLQ
7KH SUHVHQWHG VROXWLRQV DUH V\PPHWULF DURXQG Ξ = R DQG 7KH GHYLDWRULFVWUHVVUDWHKDVLWVPLQLPXPIRU Ξ = R DQGLWVPD[LPXPIRU Ξ = R DQG 7KH PLQLPXP GHYLDWRULF YDOXHV RI WKH VWUDLQ UDWH VWUHVV UDWH DQG VWUDLQ UDWH HQHUJ\ DUH ]HUR IRU WKH ZKROH SDUDPHWHU UDQJH XQGHU FRQVLGHUDWLRQ 7KHPD[LPXPDQGPLQLPXPYROXPHWULFYDOXHVRIWKHVWUDLQUDWHDQGVWUHVVUDWH DUH V\PPHWULF DURXQG WKH ]HUR²D[LV 7KHVH UHVXOWV FRQILUP WKDW WKH SUHVHQWHG VROXWLRQ SURFHGXUH LV UHOLDEOH DQG UHSUHVHQWV WKH H[SHFWHG PDWHULDO EHKDYLRXU 0RUHRYHU DV IRU DQ LQLWLDO SULQFLSDO VWUHVV GLUHFWLRQ RI Ξ = R WKH SUHVHQWHG VROXWLRQV DUH DURXQG WKH PHDQ EHWZHHQ PD[LPXP DQG PLQLPXP RFFXUULQJ YDOXHVWKHIROORZLQJSDUDPHWULFVWXGLHVDUHFDUULHGRXWIRU Ξ = R ,WFDQEHFRQFOXGHGWKDWLQWKHFRQVLGHUHGSDUDPHWHUUDQJHRIWKHLQLWLDOSULQFLSDO VWUHVV GLUHFWLRQ EHWZHHQ Ξ = R DQG WKH SUHVHQWHG VROXWLRQV VKRZ VRPH YDULDWLRQV EXW QHYHUWKHOHVV WKH\ DUH FRQWLQXRXV DQG ERXQGHG DQG FRQVHTXHQWO\ FDQKDUGO\DIIHFWWKHVWDELOLW\DQGXQLTXHQHVV 9DULDWLRQRIQRUPDOLVHGKDUGHQLQJPRGXOXV ,Q WKLV VHFWLRQ WKH LQIOXHQFH RI WKH QRUPDOLVHG KDUGHQLQJ PRGXOXV Η RQ WKH EHKDYLRXU RI WKH VROXWLRQ LV LOOXVWUDWHG 7KH SDUDPHWHUV DUH FKRVHQ DFFRUGLQJ WR VHW&LQ7DEOH7KHQRUPDOLVHGKDUGHQLQJPRGXOXV Η LVYDULHGLQWKHUDQJH EHWZHHQDQG²7KHUHVXOWVDUHVKRZQLQ)LJXUHDVSRLQWHGRXWEHIRUH LQWHUPVRIWKHQRUPDOLVHGPD[LPXPDQGPLQLPXPYDOXHVRIORFDOVWUDLQUDWHV VWUHVV UDWHV DQG VWUDLQ UDWH HQHUJ\ DQG PRUHRYHU WKH LQWHJUDWHG VWUDLQ UDWH HQHUJ\DOOGHILQHGLQ7DEOH ,Q)LJXUHDOOSUHVHQWHGVROXWLRQVVKRZDVPRRWKGHYHORSPHQWIRUGHFUHDVLQJ YDOXHVRIWKHQRUPDOLVHGKDUGHQLQJPRGXOXVXSWRDYDOXHRIDERXW]HURVWDUWLQJ DW ODUJH SRVLWLYH YDOXHV )RU IXUWKHU GHFUHDVLQJ KDUGHQLQJ PRGXOXV WKH ORFDO YDOXHVRIWKHVWUDLQUDWHDQGVWUHVVUDWHLQYDULDQWVWHQGWRLQILQLW\$WDYDOXHRI DERXW + = − D YHUWLFDO DV\PSWRWH FDQ EH UHFRJQLVHG $W WKH VDPH WLPH WKH ORFDO GHYLDWRULF VWUDLQ UDWH HQHUJ\ WHQGV WR PLQXV LQILQLW\ )LJXUH F ZKLOH WKH LVRWURSLF SDUW LV VPDOO (YDOXDWLQJ WKH QXPHULFDO UHVXOWV LW LV REVHUYHG WKDW DSSURDFKLQJ WKH YDOXH RI DERXW + = − ]HUR HLJHQYDOXHV RI WKH JOREDO PDWUL[ . VHH HT RFFXU 7KDW UHVXOWV LQ D VWUDLQ UDWH HQHUJ\ WHQGLQJ WR PLQXV LQILQLW\ $QDO\VLQJ WKH LQWHJUDWHG VWUDLQ UDWH HQHUJ\ WKH VDPH EHKDYLRXU LV REVHUYHGLHWKHLQWHJUDWHGGHYLDWRULFVWUDLQUDWHHQHUJ\WHQGVWRPLQXVLQILQLW\ 7R IXUWKHU FODULI\ WKH VROXWLRQ DOVR WKH EHKDYLRXU IRU LQFUHDVLQJ YDOXHV RI WKH KDUGHQLQJ PRGXOXV VWDUWLQJ DW ODUJH QHJDWLYH YDOXHV LV VWXGLHG +RZHYHU LW LV QRWHG WKDW WKLV DSSURDFK GRHV QRW UHSUHVHQW WKH SK\VLFDO EHKDYLRXU RI WKH PDWHULDO)RULQFUHDVLQJYDOXHVRIWKHKDUGHQLQJXSWRDYDOXHRIDERXW + = − D VPRRWK GHYHORSPHQW RI DOO SUHVHQWHG VROXWLRQV FDQ EH REVHUYHG )RU IXUWKHU LQFUHDVLQJYDOXHVXSWRDERXW + = − LUUHJXODULWLHVFDQEHQRWHGSUREDEO\GXH WR QXPHULFDO DFFXUDF\ OLPLWV RI WKH VROXWLRQ SURFHGXUH $W D YDOXH RI DERXW + = − D YHUWLFDO DV\PSWRWH RFFXUV (YDOXDWLQJ WKH QXPHULFDO UHVXOWV LW LV
&+$37(5
D
Isotropic/deviatoric strain rate εep [−]
5
E
Isotropic/deviatoric stress rate σep [−]
15
max ε(v)
(m)
max σ
(v)
4 3
(m)
min ε
min σ
max ε(d)
max σ(d)
(d)
min ε
(d)
min σ
10
2 1 5 0 −1 0
−2 −3 −4 −50
F
−40
−30 −20 −10 0 10 20 30 normalised hardening modulus H/G, H0 [−]
Total/isotropic/deviatoric energy W strain rate
ep
[−]
40
−5 −50
50
12
−30 −20 −10 0 10 20 30 normalised hardening modulus H/G, H0 [−]
G
Integrated strain energy W
ep
40
50
[−]
16
max W(tot) min W(tot)
10
−40
W(tot) (iso)
14
W
(iso)
W(dev)
max W
12
(iso)
min W
8
(dev)
max W
10
(dev)
min W
6
8 4 6 2 4 0
2
−2 −4 −50
0
0 normalised hardening modulus H/G, H0 [−]
−2 −50
50
−40
−30
−20 −10 0 10 20 30 normalised hardening modulus H/G, H0 [−]
40
50
)LJXUH9DULDWLRQRIVHYHUDOFKDUDFWHULVWLFYHUVXVQRUPDOLVHGKDUGHQLQJPRGXOXV + IRU IL[HGYDOXHVRI3RLVVRQ·VUDWLRν = GHJUHHRIGLODWLRQ ΦΨ = DQGLQLWLDO R SULQFLSDOVWUHVVGLUHFWLRQ Ξ= D PD[LPXPDQGPLQLPXPORFDOYDOXHVRIQRUPDOLVHGLVRWURSLFDQG GHYLDWRULFVWUDLQUDWH ε (Y ) 5 H DQG ε ( G ) 5 H E PD[LPXPDQGPLQLPXPORFDOYDOXHVRIQRUPDOLVHGPHDQDQGGHYLDWRULF VWUHVVUDWH σ ( P ) 5 ( *H ) DQG σ ( G ) 5 ( *H ) F PD[LPXPDQGPLQLPXPORFDOYDOXHVRIQRUPDOLVHGWRWDOLVRWURSLFDQGGHYLDWRULF WRW VWUDLQUDWHHQHUJ\ : ( ) 5 *H : ( LVR ) 5 *H DQG : ( GHY ) 5 *H G QRUPDOLVHGWRWDOLVRWURSLFDQGGHYLDWRULFLQWHJUDWHGVWUDLQUDWHHQHUJ\ GHY : (WRW ) 5 *H : ( LVR ) 5 *H DQG : ( ) 5 *H
(
(
)
(
)
)
(
)
(
(
)
)
DJDLQREVHUYHGWKDWDSSURDFKLQJWKHYDOXHRIDERXW + = − ]HURHLJHQYDOXHVRI WKHJOREDOPDWUL[ . VHHHT RFFXU )RU ODUJH SRVLWLYH DQG ODUJH QHJDWLYH YDOXHV RI WKH QRUPDOLVHG KDUGHQLQJ PRGXOXVWKHVROXWLRQDSSURDFKHVWKHOLPLWYDOXHVDVIRXQGIRUOLQHDUHODVWLFLW\DV VKRZQLQ&KDSWHU ,W FDQ EH FRQFOXGHG WKDW IRU WKH VKRZQ SDUDPHWHU FRPELQDWLRQ WKH VROXWLRQ LV VWDEOH DQG XQLTXH IRU YDOXHV RI WKH QRUPDOLVHG KDUGHQLQJ PRGXOXV ODUJHU WKDQ DSSUR[LPDWHO\ + = − RU VPDOOHU WKDQ DSSUR[LPDWHO\ + = − +RZHYHU IRU RWKHUSDUDPHWHUFRPELQDWLRQVWKHVHOLPLWVPD\EHDGMXVWHG,Q6HFWLRQ WKH LQIOXHQFHRIWKHQRUPDOLVHGKDUGHQLQJPRGXOXV + RQWKHVWDELOLW\RIWKHVROXWLRQ ZLOOEHLQYHVWLJDWHGLQPRUHGHWDLODQGWKHDSSURSULDWHSDUDPHWHUOLPLWVZLOOEH HODERUDWHG
0RKU²&RXORPEHODVWR²SODVWLFLW\LQFOXGLQJKDUGHQLQJLQWKHFLUFXODUGRPDLQ
9DULDWLRQRIGHJUHHRIGLODWLRQ ,QWKLVVHFWLRQWKHLQIOXHQFHRIWKHGHJUHHRIGLODWLRQ ΦΨ RQWKHEHKDYLRXURIWKH VROXWLRQ LV LOOXVWUDWHG 7KH SDUDPHWHUV DUH FKRVHQ DFFRUGLQJ WR VHW ' LQ 7DEOH 7KH GHJUHH RI GLODWLRQ LV YDULHG LQ WKH UDQJH EHWZHHQ DQG 7KH UHVXOWVDUHVKRZQLQ)LJXUHDVSRLQWHGRXWEHIRUHLQWHUPVRIWKHQRUPDOLVHG PD[LPXPDQGPLQLPXPYDOXHVRIORFDOVWUDLQUDWHVVWUHVVUDWHVDQGVWUDLQUDWH HQHUJ\DQGPRUHRYHUWKHLQWHJUDWHGVWUDLQUDWHHQHUJ\DOOGHILQHGLQ7DEOH ,Q )LJXUH DOO SUHVHQWHG VROXWLRQV VKRZ D VPRRWK GHYHORSPHQW ZLWKRXW DV\PSWRWLF EHKDYLRXU ZKLOH GHFUHDVLQJ WKH GHJUHH RI GLODWLRQ ΦΨ IURP WR D YDOXH RI DSSUR[LPDWHO\ )RU ΦΨ JHWWLQJ VPDOOHU LW FDQ EH VHHQ WKDW WKH LQWHJUDWHG LVRWURSLF VWUDLQ UDWH HQHUJ\ DSSURDFK ]HUR DW WKLV VWDWH $W WKH VDPH WLPHWKHLQWHJUDWHGGHYLDWRULFVWUDLQUDWHHQHUJ\LVGHFUHDVLQJVLJQLILFDQWO\7KH PLQLPXPGHYLDWRULFYDOXHVRIWKHVWUDLQUDWHVWUHVVUDWHDQGVWUDLQUDWHHQHUJ\ DUH ]HUR IRU WKH ZKROH SDUDPHWHU UDQJH XQGHU FRQVLGHUDWLRQ 7KH PLQLPXP
D
Isotropic/deviatoric strain rate εep [−]
E
4
(v)
min ε
3
Isotropic/deviatoric stress rate σep [−]
2.5
max ε(v)
max σ(m) min σ(m)
2
max ε(d)
max σ(d)
(d)
min ε
2
min σ(d)
1.5 1
1 0.5 0 0 −1
−0.5
−2
−1
−3 0.45
0.5
F
0.55
0.6
0.65 0.7 0.75 degree of dilation ΦΨ
0.8
Total/isotropic/deviatoric energy W strain rate
ep
0.85
[−]
−1.5 0.45
0.9
0.5
0.55
0.6
G
3
0.65 0.7 0.75 degree of dilation ΦΨ
0.8
0.85
0.9
Integrated strain energy Wep [−]
2.5
(tot)
(tot)
max W
W
(tot)
2.5
W(iso)
min W
max W(iso)
2
W(dev)
2
(iso)
min W
max W(dev)
1.5
1.5
(dev)
min W
1 0.5
1
0 0.5
−0.5 −1
0
−1.5 −2 0.45
0.5
0.55
0.6 0.65 0.7 0.75 degree of dilation ΦΨ
0.8
0.85
−0.5 0.45
0.9
0.5
0.55
0.6
0.65 0.7 0.75 degree of dilation ΦΨ
0.8
0.85
0.9
)LJXUH9DULDWLRQRIVHYHUDOFKDUDFWHULVWLFVYHUVXVGHJUHHRIGLODWLRQ ΦΨ IRUIL[HGYDOXHVRI 3RLVVRQ·VUDWLRν = QRUPDOLVHGKDUGHQLQJPRGXOXV + = − DQGLQLWLDO R SULQFLSDOVWUHVVGLUHFWLRQ Ξ = D PD[LPXPDQGPLQLPXPORFDOYDOXHVRIQRUPDOLVHGLVRWURSLFDQG GHYLDWRULFVWUDLQUDWH ε (Y ) 5 H DQG ε ( G ) 5 H E PD[LPXPDQGPLQLPXPORFDOYDOXHVRIQRUPDOLVHGPHDQDQGGHYLDWRULF VWUHVVUDWH σ ( P ) 5 ( *H ) DQG σ ( G ) 5 ( *H ) F PD[LPXPDQGPLQLPXPORFDOYDOXHVRIQRUPDOLVHGWRWDOLVRWURSLFDQGGHYLDWRULF WRW VWUDLQUDWHHQHUJ\ : ( ) 5 *H : ( LVR ) 5 *H DQG : ( GHY ) 5 *H G QRUPDOLVHGWRWDOLVRWURSLFDQGGHYLDWRULFLQWHJUDWHGVWUDLQUDWHHQHUJ\ GHY : (WRW ) 5 *H : ( LVR ) 5 *H DQG : ( ) 5 *H
(
(
)
(
)
)
(
)
(
(
)
)
&+$37(5
GHYLDWRULFYDOXHVRIWKHVWUDLQUDWHVWUHVVUDWHDQGVWUDLQUDWHHQHUJ\DUH]HURIRU WKH ZKROH SDUDPHWHU UDQJH XQGHU FRQVLGHUDWLRQ 7KH PD[LPXP DQG PLQLPXP YROXPHWULF YDOXHV RI WKH VWUDLQ UDWH DQG VWUHVV UDWH DUH V\PPHWULF DURXQG WKH ]HUR²D[LV7KHVHUHVXOWVFRQILUPWKDWWKHSURSRVHGVROXWLRQSURFHGXUHLVUHOLDEOH DQG UHSUHVHQW WKH H[SHFWHG PDWHULDO EHKDYLRXU LQ WKH SDUDPHWHU UDQJH IRU ΦΨ ODUJHUWKDQDSSUR[LPDWHO\ ,W FDQ EH FRQFOXGHG WKDW IRU WKH VKRZQ SDUDPHWHU FRPELQDWLRQ WKH VROXWLRQ LV VWDEOH DQG XQLTXH IRU YDOXHV RI WKH GHJUHH RI GLODWLRQ ΦΨ ODUJHU WKDQ DSSUR[LPDWHO\ +RZHYHU IRU RWKHU SDUDPHWHU FRPELQDWLRQV WKLV OLPLW PD\ EH DGMXVWHG ,Q 6HFWLRQ WKH LQIOXHQFH RI WKH GHJUHH RI GLODWLRQ ΦΨ RQ WKH VWDELOLW\ RI WKH VROXWLRQ ZLOO EH LQYHVWLJDWHG LQ PRUH GHWDLO DQG WKH DSSURSULDWH SDUDPHWHUOLPLWVZLOOEHHODERUDWHG
3DUDPHWHUOLPLWV ,QWKLVVHFWLRQWKHSDUDPHWHUOLPLWVIRUZKLFKDXQLTXHDQGVWDEOHVROXWLRQRIWKH ERXQGDU\ YDOXH SUREOHP RI 0RKU²&RXORPE HODVWR²SODVWLFLW\ LQ WKH FLUFXODU GRPDLQIRUWKHQRQ²XQLIRUPKRXUJODVVPRGHVFDQEHREWDLQHGDUHGHWHUPLQHG,Q WKH SUHYLRXV VHFWLRQ LW ZDV VKRZQ WKDW E\ LQYHVWLJDWLQJ WKH YDOXH RI WKH QRUPDOLVHG LQWHJUDWHG HODVWR²SODVWLF VWUDLQ UDWH HQHUJ\ WKH EHKDYLRXU RI WKH VROXWLRQ FDQ EH VWXGLHG 7KH LQWHJUDWHG HODVWR²SODVWLF VWUDLQ UDWH HQHUJ\ LV FDOFXODWHG LQ D SDUDPHWULF VWXG\ IRU VHYHUDO SDUDPHWHU VHWV ,Q WKH SUHYLRXV VHFWLRQLWLVVKRZQWKDWWKHXQLTXHQHVVDQGVWDELOLW\LVPDLQO\GHWHUPLQHGE\WKH GHJUHHRIGLODWLRQ ΦΨ DQGWKHQRUPDOLVHGKDUGHQLQJPRGXOXV + 7KHUHIRUHLQ WKLV VWXG\ 3RLVVRQ·V UDWLR ν LV NHSW FRQVWDQW DW DQG WKH LQLWLDO SULQFLSDO VWUHVVGLUHFWLRQ Ξ LVIL[HGDW R DVSRLQWHGRXWLQ6HFWLRQVDQG6HYHQ SDUDPHWHUYDULDWLRQVIRU + DQGIRXUYDULDWLRQVIRU ΦΨ DUHFDUULHGRXWDVVKRZQ LQ7DEOH 7KHYDULDWLRQRISDUDPHWHUVLVDOVRLQGLFDWHGLQ)LJXUH7KHUHWKHYDULDWLRQ RI SDUDPHWHU ΦΨ LV LQGLFDWHG E\ KRUL]RQWDO JUHHQ OLQHV DQG WKH YDULDWLRQ RI SDUDPHWHU + LVLQGLFDWHGE\YHUWLFDOEOXHOLQHV$OVRWKHVL[VWUHVVVWDWHVRIWKH WULD[LDOWHVWGDWDJLYHQLQ7DEOHDQGWKHSDUDPHWULFVWXGLHVIRUVHWV&DQG' LQWKHSUHYLRXV6HFWLRQ7DEOH DUHLQGLFDWHG ,Q)LJXUHLWLVLQGLFDWHGIRUZKLFKSDUDPHWHUVWKHLQWHJUDWHGHODVWR²SODVWLF VWUDLQ UDWH HQHUJ\ :HS LV WHQGLQJ WR LQILQLW\ 7KLV PHDQV WKDW WKH ERXQGDU\ YDOXH SUREOHP KDV QR VROXWLRQ ,Q WKH ODVW FROXPQ RI 7DEOH WKH QXPHULFDO YDOXHV DUH VXPPDULVHG ,Q )LJXUH WKH DUHD LV KLJKOLJKWHG IRU ZKLFK WKH ERXQGDU\YDOXHSUREOHPKDVQRVROXWLRQ,WFDQEHVHHQWKDWIRUERXQGHGGRPDLQV WKHUHH[LVWVDUDQJHRISDUDPHWHUVIRUZKLFKQRVROXWLRQH[LVWVZKLOHLQFRQWUDU\ IRU ORFDO PDWHULDO VWDELOLW\ WKH SDUDPHWHU OLPLWV LV UHVWULFWHG WR D VLQJOH VHW DV GHULYHG LQ &KDSWHU VHH )LJXUH %RWK DUHLQGLFDWHGLQ )LJXUH E\ WKH KDWFKHG VXUIDFH IRU ERXQGHG GRPDLQV DQG WKH VWUDLJKW OLQH IRU ORFDO PDWHULDO VWDELOLW\ UHVSHFWLYHO\ 7KH VHQVLWLYLW\ RI WKH UHVXOWV LQ )LJXUH IRU WKH
0RKU²&RXORPEHODVWR²SODVWLFLW\LQFOXGLQJKDUGHQLQJLQWKHFLUFXODUGRPDLQ
YDULDWLRQ RI WKH 3RLVVRQ·V UDWLR LQ WKH SUDFWLFDO UDQJH < ν < LV PDUJLQDO VHH )LJXUH 7KH GHSHQGHQFH RQ WKH LQLWLDO SULQFLSDO VWUHVV GLUHFWLRQ ≤ Ξ ≤ π PD\ EH PRUH VLJQLILFDQW VHH )LJXUH EXW UHPDLQV OLPLWHG 7KHVH WZR SDUDPHWHUV PD\ VKLIW WKH OLPLWV VOLJKWO\ LQ WKH SODQH VKRZQ LQ )LJXUH EXWGRQRWOHDGWRDGGLWLRQDOSKHQRPHQDRUUHVWULFWLRQV
+ [ −]
ΦΨ [ − ]
QRVROXWLRQIRU
VHW
YDU\LQJ
² < + < ²
VHW
YDU\LQJ
² < + < ²
VHW
YDU\LQJ
² < + < ²
VHW
YDU\LQJ
² < + < ²
VHW
YDU\LQJ
² < + < ²
VHW
YDU\LQJ
²
² < + < ²
VHW
YDU\LQJ
²
< + < ²
VHW
YDU\LQJ
ΦΨ < ²
VHW
²
YDU\LQJ
ΦΨ < ²
VHW
²
YDU\LQJ
ΦΨ <
VHW
²
YDU\LQJ
ΦΨ <
VHW
VHW
VHW VHW
VHW
VHW
VHWVHW&
7DEOH 3DUDPHWHUYDULDWLRQVIRUGHWHUPLQDWLRQRISDUDPHWHUOLPLWV
ν =
:HS → ±∞ VHW
VHW VHWVHW'
VHW
+
ΦΨ
)LJXUH,OOXVWUDWLRQRISDUDPHWHUUDQJHVRIQRUPDOLVHGKDUGHQLQJPRGXOXV + DQGGHJUHHRI GLODWLRQ ΦΨ WKH QRUPDOLVHG LQWHJUDWHG HODVWR²SODVWLF VWUDLQ UDWH HQHUJ\ :HS LV WHQGLQJ WR LQILQLW\ IRU D IL[HG YDOXH RI 3RLVVRQ·V UDWLR ν = DQG LQLWLDO SULQFLSDO R VWUHVVGLUHFWLRQ Ξ =
&+$37(5
'LVFXVVLRQRIVROXWLRQFORVHWRRULJLQ ,Q 6HFWLRQ WKH FKDUDFWHULVWLFV RI WKH JHQHUDO VROXWLRQ RI WKH ERXQGDU\ YDOXH SUREOHPZHUHLQYHVWLJDWHGE\HYDOXDWLQJLWVHLJHQYDOXHVDVGHILQHGLQHT ,W ZDV FRQFOXGHG WKDW WKH HLJHQYDOXHV RI WKH IXQGDPHQWDO HTXDWLRQ KDYH D UHJXODU EHKDYLRXU DQG GHSHQG FRQWLQXRXVO\ RQ WKH LQSXW SDUDPHWHUV LH WKH PDWHULDO SURSHUWLHV )XUWKHUPRUH LW ZDV VKRZ WKDW WKH VROXWLRQ RI WKH HLJHQYDOXHVLVQRWLQIOXHQFHGVLJQLILFDQWO\E\WUXQFDWLQJWKH)RXULHUVHULHVGXHWR WKHLQWURGXFWLRQRIDPD[LPXPVL]HRIWKHJOREDOPDWUL[ +RZHYHU LW ZDV REVHUYHG WKDW WKH ILUVW WZR HLJHQYDOXHV ELIXUFDWH IURP ]HUR WR < τ %( ) τ %( ) < IRU LQFUHDVLQJ GHJUHH RI SODVWLFLW\ VHH 7DEOH 'XH WR WKH ELIXUFDWLRQRIWKHVHILUVWWZRHLJHQYDOXHVZKLFKDUHH[DFWO\HTXDOWR]HURIRUSXUH HODVWLFLW\WKHVROXWLRQFKDQJHVLWVFKDUDFWHU7RLOOXVWUDWHWKLVFRQVLGHUWKHILUVW WHUP RI WKH )RXULHU VHULHV IROORZLQJ IURP HT 7KLV WHUP LV FRQVWDQW IRU SXUHHODVWLFLW\EXWHYROYHVWRDIXQFWLRQGHSHQGLQJRQ U IRULQFUHDVLQJGHJUHHRI SODVWLFLW\LH
° F%() ξ(%) = FRQVWIRUτ %() = LH+ → ∞ () [(% ) = F%( ) ξ(% )Uτ % = ® () () () τ () °¯ F% ξ % U % IRU < τ % < LH+ ≠ ∞
7KH LQIOXHQFH RI WKLV WHUP RQ WKH VROXWLRQ GHSHQGV RQ WKH PDJQLWXGH RI WKH HLJHQYDOXHDQGWKHGLVWDQFHWRWKHRULJLQDVVXPLQJWKDWWKHFRHIILFLHQW F%( ) ≠ LV () ERXQGHG ,Q )LJXUH IRU GLIIHUHQW HLJHQYDOXHV τ % WKH EHKDYLRXU RI WKH VROXWLRQLVLOOXVWUDWHGZLWKUHVSHFWWRWKHQRUPDOLVHGGLVWDQFHWRWKHRULJLQ U 5 )RU τ %( ) = D FRQVWDQW IXQFWLRQ LV UHWULHYHG DQG IRU τ %( ) = WKH OLQHDU EHKDYLRXU () FDQ EH REVHUYHG )RU < τ % < LW FDQ EH VHHQ WKDW WKH VROXWLRQ LQ WKH RULJLQ U = LV HTXDO WR ]HUR +RZHYHU WKH VPDOOHU WKH HLJHQYDOXH WKH ODUJHU WKH JUDGLHQWFORVHWRWKHRULJLQ 1 0.9
()
U τ
5
0.8
τ %()
0.7
0 0.01
0.6
0.05
0.5
0.1
0.4
0.25
0.3
0.5
0.2
0.75
0.1
1
0 0
0.1
0.2
0.3
0.4
0.5 U 5
0.6
0.7
0.8
0.9
1
)LJXUH%HKDYLRXU RI WKH VROXWLRQ RI WKH GLVSODFHPHQW ILHOG GHSHQGLQJ RQ WKH QRUPDOLVHG GLVWDQFHWRWKHRULJLQ U 5 IRUGLIIHUHQWHLJHQYDOXHV τ %() EHWZHHQDQG
0RKU²&RXORPEHODVWR²SODVWLFLW\LQFOXGLQJKDUGHQLQJLQWKHFLUFXODUGRPDLQ
7R LQYHVWLJDWH WKH EHKDYLRXU RI WKH ILUVW GHULYDWLYH ZLWK UHVSHFW WR U RI WKH JHQHUDO VROXWLRQ FRQVLGHU WKH U − GHSHQGHQW SDUW RI WKH VROXWLRQ DV JLYHQ E\ HT IRUUHDOHLJHQYDOXHV7KHILUVWWHUPRIWKH)RXULHUVHULHVIROORZLQJIURP HT ZKLFKLV]HURIRUSXUHHODVWLFLW\HYROYHVWRDIXQFWLRQGHSHQGLQJRQ U IRULQFUHDVLQJGHJUHHRISODVWLFLW\LH [′%( ) = F%( ) ξ(% )τ %( )U
()
(τ ( ) −) = ° IRUτ % = LH+ → ∞ ® τ ( ) −) ° F () ξ()τ ()U ( IRU < τ ( ) < LH+ %
¯
%
%
%
%
%
≠ ∞
7KH LQIOXHQFH RI WKLV WHUP RQ WKH VROXWLRQ GHSHQGV RQ WKH PDJQLWXGH RI WKH HLJHQYDOXHDQGWKHGLVWDQFHWRWKHRULJLQDVVXPLQJWKDWWKHFRHIILFLHQW F%( ) ≠ LV ERXQGHG ,Q )LJXUH IRU GLIIHUHQW HLJHQYDOXHV τ %( ) WKH EHKDYLRXU RI WKH VROXWLRQ LV LOOXVWUDWHGZLWKUHVSHFWWRWKHQRUPDOLVHGGLVWDQFHWRWKHRULJLQ U 5 )RU τ %( ) = D FRQVWDQWYDOXHRI]HURLVUHWULHYHGDQGIRU τ %( ) = WKHFRQVWDQWEHKDYLRXUFDQEH () REVHUYHG )RU < τ % < LW FDQ EH VHHQ WKDW WKH VROXWLRQ LV WHQGLQJ WR LQILQLW\ ZKLOH DSSURDFKLQJ WKH RULJLQ $V D FRQVHTXHQFH WKDW PHDQV WKDW FORVH WR WKH RULJLQ WKH VHFRQG FRQGLWLRQ RI ERXQGHGQHVV RI WKH ILUVW SDUWLDO GHULYDWLYHV ZLWK UHVSHFWWR U RIWKHJHQHUDOVROXWLRQLH XU U DQG Xθ U DVGHILQHGLQHT FDQQRW EHVDWLVILHG ,Q WKH IROORZLQJ WZR VXEVHFWLRQV WZR UHDVRQV DQG SRWHQWLDO DOWHUQDWLYHV RU UHPHGLHV DUH GLVFXVVHG EULHIO\ WR UHVROYH WKH HQFRXQWHUHG SUREOHP RI WKH EHKDYLRXURIWKHVROXWLRQRIWKHERXQGDU\YDOXHSUREOHPFORVHWRWKHRULJLQ 5 4.5
§ U ·τ − τ¨ ¸ ©5¹
4
τ %()
3.5
0 0.01
3
0.05
2.5
0.1
2
0.25
1.5
0.5
1
0.75
0.5
1
0 0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1
U 5 )LJXUH%HKDYLRXU RI WKH VROXWLRQ RI WKH VWUDLQ UDWH ILHOG GHSHQGLQJ RQ WKH QRUPDOLVHG GLVWDQFHWRWKHRULJLQ U 5 IRUGLIIHUHQWHLJHQYDOXHV τ %() EHWZHHQDQG
&+$37(5
3HUWXUEDWLRQDQGUHJXODULVDWLRQRIGLIIHUHQWLDOHTXDWLRQV &RQVLGHU WKH V\VWHP RI SDUWLDO GLIIHUHQWLDO HTXDWLRQV DV JLYHQ E\ HT )RU SXUHHODVWLFLW\RQO\VRPHFRHIILFLHQWVDUHQRQ²]HURZKHUHDVIRULQFUHDVLQJGHJUHH RI SODVWLFLW\ DOO FRHIILFLHQWV DUH JHWWLQJ QRQ²]HUR DQG EHFRPLQJ RI ODUJHU PDJQLWXGH :LWK WKLV LQFUHDVLQJ QXPEHU RI FRHIILFLHQWV WKH W\SH RI GLIIHUHQWLDO HTXDWLRQ LV FKDQJLQJ DV LQGLFDWHG LQ SUHYLRXV VHFWLRQV )XUWKHUPRUH IRU SXUH HODVWLFLW\ WKH JOREDO V\VWHP LQ HT LV GLDJRQDO DOO RII²GLDJRQDO PDWUL[ FRPSRQHQWV DUH HTXDO WR ]HUR VHH HT )RU LQFUHDVLQJ GHJUHH RI SODVWLFLW\ WKH RII²GLDJRQDO FRPSRQHQWV EHFRPH QRQ²]HUR DQG WKHLU LQIOXHQFH RQ WKH VROXWLRQRIWKHHLJHQYDOXHVLVLQFUHDVLQJ $SRVVLEOHDSSURDFKPD\EHWRXVHWKHH[DFWVROXWLRQRIWKHGLIIHUHQWLDOHTXDWLRQV IRUOLQHDUHODVWLFLW\DQGWRDSSO\SHUWXUEDWLRQPHWKRGVHJ2·0DOOH\ 7KH FRQFHSWLVLOOXVWUDWHGXVLQJDVLPSOHH[DPSOH&RQVLGHUWKHUHIRUHIRULQVWDQFHWKH IROORZLQJVHFRQG²RUGHURUGLQDU\GLIIHUHQWLDOHTXDWLRQ
ε
G \ G\ + + \ = G[ G[
IRU DQ\ ε ≠ $VVXPH D VROXWLRQ RI WKH IRUP \ = FH λ [ LQYROYLQJ DUELWUDU\ FRHIILFLHQWV F DQG HLJHQYDOXHV λ 7KH FKDUDFWHULVWLF HTXDWLRQ IRU WKH GHWHUPLQDWLRQRIWKHHLJHQYDOXHV λ DQGLWVVROXWLRQWKHQUHDGV
ελ + λ + =
λ =
− ± − ε IRUε ≠ ε
)RU ε = WKHHLJHQYDOXHVFDQEHGHWHUPLQHGVWUDLJKWIRUZDUGDV
λ + =
λ = −IRUε =
:LWK WKLV H[DPSOH LW FDQ EH VHHQ WKDW DQ LQLWLDOO\ VLQJOH HLJHQYDOXH ZKLFK LV HTXDOWR²IRU ε = GLYHUJHVWRDGRXEOHHLJHQYDOXHIRU ε ≠ 7KHLGHDQRZLVWR XVHWKHVROXWLRQRIWKHVLPSOHSUREOHPLQHT WRDSSUR[LPDWHWKHVROXWLRQ RIWKHFRPSOHWHSUREOHPLQHT IRUUHODWLYHO\VPDOOYDOXHVRI ε LH ε 8VLQJWKHSHUWXUEDWLRQWKHRU\WKHVROXWLRQLQHT FDQEHDSSUR[LPDWHGIRU ε 7KHILUVWDSSUR[LPDWHVROXWLRQFDQEHIRXQGE\DVVXPLQJDVROXWLRQIRU λ RIWKHIRUP
λ λ + ελ + ε λ + !
LQ ZKLFK λ λ λ ! DUH XQNQRZQ VFDODUV 6XEVWLWXWLQJ HT LQWR WKH ILUVW H[SUHVVLRQRIHT ZKLOVWVRUWLQJIRUWKHSRZHUVRI ε JLYHV
ε ( λ + ελ + !) + ( λ + ελ + !) + =
⇔
λ + + ( λ + λ ) ε + λ λε + λε + ! =
7RVROYHWKLVHTXDWLRQIRUWKHGHWHUPLQDWLRQRIVFDODUV λ λ λ ! RQO\WHUPVRI WKHRUGHU ε DQG ε DUHNHSWDQGDVWKLVHTXDWLRQPXVWKROGIRUDOOSRZHUVRI ε LW FDQ EH VHSDUDWHG LQWR WKH WZR VLPXOWDQHRXV HTXDWLRQV λ + = DQG
0RKU²&RXORPEHODVWR²SODVWLFLW\LQFOXGLQJKDUGHQLQJLQWKHFLUFXODUGRPDLQ
λ + λ = 7KHQ LW IROORZV HDVLO\ WKDW ( λ λ ) = ( − −) 6XEVWLWXWLQJ WKLV UHVXOW EDFNLQWRHT OHDGVWRWKHILUVWDSSUR[LPDWHVROXWLRQIRU λ IRU ε DV λ − − ε
)RU ε = WKLV VROXWLRQ DOVR FRUUHVSRQGV WR WKH VROXWLRQ RIWKH LQLWLDO SUREOHPDV JLYHQLQHT +RZHYHUVLQFHDW ε = WKHVROXWLRQGLYHUJHVFRQFHSWVRIWKH VLQJXODU SHUWXUEDWLRQ WKHRU\ KDYH WR EH XVHG HJ 2·0DOOH\ 7R ILQG WKH VHFRQG DSSUR[LPDWH VROXWLRQ IRU ε ILUVW WKH IXQFWLRQ λ LV UHVFDOHG /HW λ = ]ε −ϑ VXFKWKDWLQWHUPVRI ] WKHVROXWLRQVWD\VILQLWH7KLVPHDQVWKDWWKH H[SRQHQW ϑ KDVWREHFKRVHQLQVXFKZD\WRPDWFKWKHUDWHDWZKLFKWKHVROXWLRQV GLYHUJH,QWHUPVRI ] HT WKHQUHDGV
ε (−ϑ ) ] + ε −ϑ ] + =
7RUHDFKWKHVR²FDOOHG¶VLJQLILFDQWGHJHQHUDWLRQ·WKHYDOXHIRU ϑ KDVWREHFKRVHQ VXFK WKDW WKH H[SRQHQW RI ε LQ WKH SUHIDFWRU RI WKH WHUP SURSRUWLRQDO WR ] LV HTXDO WR WKH H[SRQHQW RI ε LQ WKH SUHIDFWRU RI WKH WHUP SURSRUWLRQDO WR ] LH ϑ = ,I ϑ LVFKRVHQODUJHUWKHQWKHWZRVROXWLRQVZLOOFROODSVHWR]HURLQWHUPV RI ] DQGWKH\ZLOOEHFRPHGHJHQHUDWHZLWKWKHVROXWLRQZKLFKLVIRXQGDERYH,I ϑ LV FKRVHQ VPDOOHU WKHQ WKH WZR VROXWLRQV ZLOO VWLOO GLYHUJH WR LQILQLW\ 6XEVWLWXWLQJ ϑ = LQWRHT WKHQJLYHVDIWHUPXOWLSOLFDWLRQE\ ε
] + ] + ε =
7KLV HTXDWLRQ FDQ QRZ EH VROYHG XVLQJ WKH RUGLQDU\ SHUWXUEDWLRQ WKHRU\ LQ WKH VDPH ZD\ DV WKH UHJXODU H[SDQVLRQ IRU λ ZDV REWDLQHG 6LQFH WKH H[SDQVLRQ SDUDPHWHUQRZDJDLQLV ε OHWWKHDVVXPHGDSSUR[LPDWHVROXWLRQEH
] ] + ε ] + ε ] + !
LQ ZKLFK ] ] ] ! DUH XQNQRZQ VFDODUV 6XEVWLWXWLRQ RI HT LQWR HT ZKLOVWVRUWLQJIRUWKHSRZHUVRI ε JLYHV
( ] + ε ] + !)
+ ( ] + ε ] + !) + ε =
⇔
(]
)
+ ] + ( ] ] + ] + ) ε + ]ε + ! =
7RVROYHWKLVHTXDWLRQIRUWKHGHWHUPLQDWLRQRIVFDODUV ] ] ] ! RQO\WHUPVRI WKHRUGHU ε DQG ε DUHNHSWDQGDVWKLVHTXDWLRQPXVWKROGIRUDOOSRZHUVRI ε LW FDQ EH VHSDUDWHG LQWR WKH WZR VLPXOWDQHRXV HTXDWLRQV ] ] + ] + = DQG ] + ] = 7KHQLWIROORZVHDVLO\WKDW ( ] ] ) = ( −) RU ( ] ] ) = ( −) 7KHILUVW VROXWLRQ ( ] ] ) = ( −) KDV WR EH GLVUHJDUGHG DV WKLV FDVH FRUUHVSRQGV WR WKH RULJLQDOUHJXODUVROXWLRQZKLFKDSSHDUVWREH]HURIRU ε = EHFDXVHLQWKHOLPLW ε → WKH UHVFDOLQJ ZRXOG EH ZLWK DQ LQILQLWH DPRXQW 7KH RWKHU VROXWLRQ LV ( ] ] ) = ( −) 6XEVWLWXWLQJ WKLV UHVXOW EDFN LQWR HT OHDGV WR WKH DSSUR[LPDWHVROXWLRQIRU ] IRU ε DV
] − + ε
&+$37(5
,QWHUPVRI λ ZKLFKZDVVFDOHGDV λ = ]ε −ϑ WKHVROXWLRQLVWKXVJLYHQDV
λ = ( − + ε ) ε − = − ε
6XPPDULVHG IRU WKH SUREOHP VWDWHG LQ WKH ILUVW H[SUHVVLRQ RI HT WKH H[DFWVROXWLRQLV
λ =
− + − ε − − − ε DQGλ = ε ε
ZKLOHWKHWZRDSSUR[LPDWHVROXWLRQVIROORZLQJIURPHTV DQG UHDG IRU ε
λ − − ε DQGλ − ε
$ FRPSDULVRQ RI ERWK VROXWLRQV LV VKRZQ LQ )LJXUH ,W FDQ EH VHHQ WKDW IRU ε WKH WZR VROXWLRQV DUH DSSUR[LPDWHO\ HTXDO 0RUHRYHU LW LV FOHDU WKDW WKH WZRVROXWLRQVGRQRWFRQYHUJHWRDVLQJOHYDOXHIRU ε → 7KHILUVWHLJHQYDOXHLV FRQWLQXRXV IRU ε → ± ZKLOH WKH VHFRQG HLJHQYDOXH LV WHQGLQJ WR −∞ IRU ε → + DQG WHQGLQJ WR +∞ IRU ε → − +RZHYHU WKH VROXWLRQ IRU WKH VHFRQG HLJHQYDOXH PLJKWEHDSSUR[LPDWHGRUVPRRWKHQHG DURXQG ε = 5HWXUQLQJ WR WKH RULJLQDO SUREOHP DV GHILQHG LQ HT WKH H[DFW DQG DSSUR[LPDWHVROXWLRQVRIWKH2'(FDQWKHQEHZULWWHQDV § · −+ − ε −− − ε [ [ ¨ − ¸ [ − + ε [ ε ° + F( ε ) H ε IRUε ≠ DQG\ = °F( ε ) H ( ) + F( ε ) H© ε ¹ IRUε ≠ \ = ®F( ε ) H ® °¯F( ) H − [ IRUε = °¯F( ) H − [ IRUε =
LQZKLFK F( ε ) DQG F( ε ) DUHFRQVWDQWFRHIILFLHQWVGHSHQGLQJRQWKHYDOXHRI ε -0.6
20
-0.8
15 10
-1
5 -1.2
λ λ
λ λ
0
-1.4 -5 -1.6 -1.8
-10
λ λ
lambda1 -15
-1-eps -2 -0.25
-0.2
-0.15
-0.1
-0.05
0
ε
0.05
0.1
0.15
0.2
0.25
-20 -0.25
λ
lambda2
λ
-1-1/eps
-0.2
-0.15
-0.1
-0.05
0
ε
0.05
0.1
0.15
0.2
0.25
)LJXUH&RPSDULVRQRIWKHVROXWLRQIRUWKHHLJHQYDOXHV λ OHIW DQG λ ULJKW IRUWKHH[DFW VROXWLRQ PHWKRG UHG OLQHV DFFRUGLQJ WR HT DQG WKH DSSUR[LPDWH VROXWLRQ PHWKRGEOXHOLQHV XVLQJWKHSHUWXUEDWLRQWKHRU\DFFRUGLQJWRHT
0RKU²&RXORPEHODVWR²SODVWLFLW\LQFOXGLQJKDUGHQLQJLQWKHFLUFXODUGRPDLQ
ε =
\
ε ε ε ε ε ε ε ε ε ε ε
\
\
\
ε↑
ε↑
\
= = = = = = = = = = =
[ )LJXUH$SSUR[LPDWH VROXWLRQ DFFRUGLQJ WR HT RI WKH 3'( LQ HT IRU GLIIHUHQW YDOXHVRI ≤ ε
7KH DSSUR[LPDWH VROXWLRQ LV LOOXVWUDWHG LQ )LJXUH IRU GLIIHUHQW YDOXHV RI ≤ ε )RU ε = RQHVLQJOHVROXWLRQFDQEHLGHQWLILHG)RUVPDOOYDOXHVRI ε WKH VROXWLRQ \ LV DOPRVW LGHQWLFDO WR WKH VROXWLRQ IRU ε = )RU LQFUHDVLQJ YDOXHV RI ε WKH VROXWLRQ \ LV GHYLDWLQJ IURP WKH VROXWLRQ IRU ε = ZKLOH WKH LQIOXHQFHIRUODUJHUYDOXHVRI [ LVPRUHVLJQLILFDQW)RU [ = ERWKVROXWLRQVDUH LGHQWLFDO DQG HTXDO WR 5HJDUGLQJ VROXWLRQ \ LW FDQ EH VHHQ WKDW IRU VPDOO YDOXHVRI ε WKHVROXWLRQLVDOPRVWRQWKHZKROHVKRZQLQWHUYDORI [ HTXDOWR]HUR ZLWK D ODUJH JUDGLHQW FORVH WR WKH RULJLQ [ = )RU LQFUHDVLQJ YDOXHV RI ε WKH LQIOXHQFH LH PDJQLWXGH RI WKH VROXWLRQ \ LV LQFUHDVLQJ WKDW PHDQV LW LV GHYLDWLQJ IURP 6LPXOWDQHRXVO\ DOVR LWV UDQJH RI LQIOXHQFH LV LQFUHDVLQJ LH DOVRIRUODUJHUYDOXHVRI [ WKHVROXWLRQ \ LVJHWWLQJDVLJQLILFDQWLQIOXHQFH7KLV EHKDYLRXU LV FRPSDUDEOH WR WKH EHKDYLRXU RI WKH VROXWLRQ IRU WKH GLVSODFHPHQW ERXQGDU\YDOXHSUREOHPRIHODVWR²SODVWLFLW\DVVKRZQLQ)LJXUH 7KH SUHVHQWHG VROXWLRQ WHFKQLTXH RI XVLQJ D SHUWXUEDWLRQ PHWKRG LQFOXGLQJ DQ DSSUR[LPDWLRQRUVPRRWKHQLQJ IRUXQOLPLWHGHLJHQYDOXHVVHHPVWREHSURPLVLQJ WRVROYHWKHV\VWHPRI3'(VIRUHODVWR²SODVWLFLW\DVJLYHQE\HT 7KHLQLWLDO V\VWHPRI3'(VZRXOGEHWKHV\VWHPIRUOLQHDUHODVWLFLW\DVJLYHQE\HT 7KH DGGLWLRQDO WHUPV IRU HODVWR²SODVWLFLW\ ZLWK FRUUHVSRQGLQJ IDFWRUV GHWHUPLQHG E\ WKH FRHIILFLHQWV α DQG β GHILQH WKH GHJUHH KRZ PXFK WKH RULJLQDO V\VWHP LV SHUWXUEHG &RQFHSWXDOO\ WKH SHUWXUEHG V\VWHP RI 3'(V IROORZLQJ IURP HT ZRXOGUHDG
(
) (
( )
)
(
)
αHO + ε α U XU UU + α HO + ε α XUθθ + ε α U XU Uθ + ε α U Xθ UU + ε α Xθ θθ + α HO + ε α U Xθ Uθ + ° HO ° + αHO + ε α U XU U + ε α XUθ + ε α U Xθ U + α + ε α Xθ θ + αHO + ε α XU + ε α Xθ = ° ® ° ε β U XU UU + ε β XUθθ + βHO + ε β U XU Uθ + βHO + ε β U Xθ UU + βHO + ε β Xθ θθ + ε β U Xθ Uθ + ° ° + ε β U XU U + βHO + ε β XUθ + βHO + ε β U Xθ U + ε β Xθ θ + ε β XU + βHO + ε β Xθ = ¯
(
(
(
)
)
(
(
)
)
)
(
(
)
)
(
)
&+$37(5
LQ ZKLFK WKH SHUWXUEDWLRQ FRHIILFLHQWV ε α (L ) DQG ε β (L ) RFFXU )RU ε D(L ) = ε β (L ) = WKLV V\VWHPUHGXFHVWRWKHV\VWHPIRUOLQHDUHODVWLFLW\DVJLYHQLQHT +RZHYHUWKHTXHVWLRQDULVHVKRZODUJHWKHSHUWXUEDWLRQRIWKHLQLWLDOV\VWHPRI 3'(V LV GHSHQGLQJ RQ WKH GHJUHH RI SODVWLFLW\ ZKLFK LV H[SUHVVHG E\ WKH QRUPDOLVHG KDUGHQLQJ PRGXOXV + )URP 7DEOH LW FDQ EH VHHQ E\ LQYHVWLJDWLQJ WKH HLJHQYDOXHV WKDW IRU D GHFUHDVLQJ YDOXH RI + WKH V\VWHP RI 3'(V WR VROYH IRU HODVWR²SODVWLFLW\ LV JUDGXDOO\ GHYLDWLQJ IURP WKH V\VWHP RI 3'(VIRUHODVWLFLW\2ULQRWKHUZRUGVIRUGHFUHDVLQJ + WKHPDJQLWXGHVRI ε α (L ) DQG ε β (L ) DUH LQFUHDVLQJ 7KLV GHJUHH RI GHYLDWLRQ KDV WR EH TXDQWLILHG 7KH HODERUDWLRQRIWKHSURSRVHGSHUWXUEDWLRQPHWKRGDSSOLHGWRWKHV\VWHPRI3'(V IRUHODVWR²SODVWLFLW\ZLOOQRWEHFRQVLGHUHGZLWKLQWKLVWKHVLVEXWLQFOXGHGLQWKH UHFRPPHQGDWLRQVIRUIXUWKHUUHVHDUFK $GDSWHGFRHIILFLHQWV &RQVLGHUWKHERXQGDU\YDOXHSUREOHPRI0RKU²&RXORPEHODVWR²SODVWLFLW\DQGLWV M VROXWLRQDVJLYHQLQHTV RU LQZKLFKWKHHLJHQYDOXHV τ ( ) DFFRUGLQJ WRHT RFFXU$VGLVFXVVHGSUHYLRXVO\FORVHWRWKHRULJLQWKHILUVWGHULYDWLYH M ZLWKUHVSHFWWR U RIWKLVVROXWLRQLVQRWERXQGHGIRUHLJHQYDOXHV < τ ( ) < DVFDQ EHVHHQLQHTV RU 7RLOOXVWUDWHWKLVSURSHUW\FRQVLGHUWKHVROXWLRQ RI WKH HLJHQYDOXHV DV SUHVHQWHG LQ 7DEOH IRU WKH PDWHULDO SDUDPHWHU VHW DV JLYHQ LQ 6HFWLRQ )URP WKLV WDEOH LW FDQ EH VHHQ WKDW WKH HLJHQYDOXHV IRU M = DQG M = OHDGWRXQERXQGHGILUVWRUGHUGHULYDWLYHVRIWKHVROXWLRQFORVHWR M WKHRULJLQDVIRUWKHVHWZRYDOXHV < 5H τ %( ) < $OVRQRWHLQWKLVWDEOHWKDWWKLV SURSHUW\KROGVIRUWKHHODVWR²SODVWLFFDVHIRUDOO + ≠ ∞ +RZHYHUWKHVLJQLILFDQFH IRU LQFUHDVLQJ YDOXHV RI + LV GHFUHDVLQJ ZLWK WKH OLPLWLQJ FDVH IRU OLQHDU HODVWLFLW\IRUZKLFK + → ∞ +HQFHIRUHODVWLFLW\QRXQERXQGHGVROXWLRQVRFFXU $ SRVVLEOH UHPHG\ IRU HODVWR²SODVWLFLW\ PLJKW EH WR RPLW XQVXLWDEOH HLJHQPRGHV RFFXUULQJ LQ WKH VROXWLRQ LH WKH HLJHQPRGHV ZLWK HLJHQYDOXHV LQ WKH UDQJH M < τ ( ) < 7KLVFDQEHDFKLHYHGE\IL[LQJWKHFRUUHVSRQGLQJFRHIILFLHQWVRUPRGDO M ZHLJKWV F ( ) WRDYDOXHHTXDOWR]HURDQGUHFDOFXODWLQJWKHUHPDLQLQJFRHIILFLHQWV DV WR VDWLVI\ WKH GHPDQGHG ERXQGDU\ FRQGLWLRQV 7KLV DSSURDFK RI DGDSWLQJ WKH FRHIILFLHQWVZLOOEHHODERUDWHGEULHIO\LQWKHIROORZLQJLQFOXGLQJLWVFRQVHTXHQFHV DQGSRVVLEOHVKRUWFRPLQJV 7KHFKDUDFWHULVWLFVRIWKHHLJHQPRGHVRIFRHIILFLHQWV DL ( U ) EL ( U ) FL ( U ) DQG GL ( U ) RFFXUULQJ LQ WKH )RXULHU VHULHV GHVFULELQJ WKH GLVSODFHPHQWV LQ UDGLDO DQG WDQJHQWLDOGLUHFWLRQV XU ( Uθ ) DQG Xθ ( Uθ ) LQHTV DQG UHVSHFWLYHO\IRU WKHRGGFDVHRI N = ! NPD[ DUHH[SUHVVHGDV
( )
( NPD[ +)
[ % ( U ) = 3% ( U ) F% =
¦
( M)
F%( ) ξ(% ) Uτ % M
M
M =
ZKLFK LV DFFRUGLQJ WR HTV DQG (ODERUDWLRQ RI WKLV H[SUHVVLRQ IRU ZKLFK XVH LV PDGH RI HTV DQG OHDGV WR D QXPEHU RI ( NPD[ +)
0RKU²&RXORPEHODVWR²SODVWLFLW\LQFOXGLQJKDUGHQLQJLQWKHFLUFXODUGRPDLQ
HLJHQYDOXHV DQG FRQVHTXHQWO\ WR D VTXDUH PDWUL[ RI VL]H ( NPD[ +) × ( NPD[ +) QDPHO\
§ D( U ) · ª ξ () Uτ %() ¨ ¸ « % ¨ E( U ) ¸ « ξ () Uτ %() ¨ F( U ) ¸ « % ¨ ¸ « ξ () Uτ %() ¨ G( U ) ¸ « % ¨ H( U ) ¸ « ξ () Uτ %() ¨ ¸ « % ¨ I( U ) ¸ « ξ () Uτ %() ¨ J U ¸ « % ¨ ( ) ¸ « ξ () Uτ %( ) ¨ K( U ) ¸ « % () ¨ ¸ « ξ () Uτ % ¨ # ¸ « % () ¨ # ¸ = « ξ () Uτ % ¨ ¸ « % # ¨ ¸ « # ¨ DN ( U ) ¸ « PD[ ¨ ¸ « # ¨ ENPD[ ( U ) ¸ « ¨ F (U ) ¸ « # ¨ NPD[ ¸ « () ) ( ¨ GNPD[ ( U ) ¸ «ξ % N +Uτ % PD[ ¨ ¸ « () ¨ HNPD[ ( U ) ¸ «ξ %() N +Uτ % PD[ ¨ INPD[ ( U ) ¸ « () ¨ ¸ «ξ %() NPD[ +Uτ % J U ( ) N ¨ PD[ ¸ « () ¨ KN ( U ) ¸ «ξ %() N +Uτ % PD[ © PD[ ¹ ¬
ξ%() Uτ
( ) %
ξ %() Uτ
( ) %
ξ%()Uτ
() %
ξ%() Uτ
( ) %
ξ%() Uτ
( ) %
ξ%() Uτ
() %
"
( )
τ %( )
( )
τ %( )
()
τ %( )
%
( )
τ %( )
( )
τ %( )
()
τ %( )
"
ξ% U
ξ% U
ξ % U
ξ% U
ξ% U
ξ% U
#
N
#
# # ( )
ξ% N
PD[ +
( )
Uτ %
"
"
() º § F% · ¨ ¸ » N + F%( ) ¸ ( NPD[ +) τ %( PD[ ) » ¨ ξ% U » ¨ F ( ) ¸ N + ¸ % ( NPD[ +) τ %( PD[ ) » ¨ ξ% U ¨ () ¸ » F ( NPD[ +) % ¸ »¨ ξ%(NPD[ +)Uτ % » ¨ F%() ¸ » ¨ () ¸ » ¨ F% ¸ ¸ »¨ ( ) » ¨ F% ¸ » ¨ F( ) ¸ # »¨ % ¸ ¸ »¨ # » ¨ ( NPD[ −) ¸ ¸ » ¨ F% # » ¨ ( NPD[ −) ¸ ¸ » ¨ F% » ¨ F( NPD[ −) ¸ ¸ »¨ % » ¨ F%( NPD[ ) ¸ » ¨ N + ¸ » ¨ F%( PD[ ) ¸ » ¨ ( NPD[ +) ¸ # ¸ » ¨ F% # » ¨ ( NPD[ +) ¸ ¨ F% ¸ + » N + ) τ %( PD[ ) ¨ NPD[ + ) ¸ ( U ξ%(NPD[ » ¨ ¸ NPD[ + ¼ © F% ¹ ( NPD[ +)
" ξ %( PD[ )Uτ %
"
+
$VFDQEHVHHQIURP7DEOHIRUWKHILUVWDQGVHFRQGHLJHQYDOXHVWKHUHDOSDUWV τ %() DQG τ %() KDYH PDJQLWXGHV EHWZHHQ ]HUR DQG RQH WKXV < τ %() < DQG < τ %( ) < 7KLV FDXVHV LQILQLWH YDOXHV DW WKH FLUFOH FHQWUH U = IRU WKH VWUDLQ VHH 6HFWLRQ 7R SUHYHQW WKHVH LQILQLWH PDJQLWXGHV WKH FRUUHVSRQGLQJ PRGDO ZHLJKWV QHHG WR EH SXW HTXDO WR ]HUR WKXV F%( ) = F%( ) = 7KDW PHDQV WKDW DOO ( M) UHPDLQLQJ FRHIILFLHQWV F% KDYH WR EH UHFDOFXODWHG WR EH DEOH WR VDWLVI\ WKH ERXQGDU\FRQGLWLRQVDSSOLHGDWWKHRXWHUERXQGDU\ U = 5 DVGHILQHGLQHT )RU HOLPLQDWLQJ PRGDO ZHLJKWV F%( ) DQG F%( ) IURP HT WKH FRUUHVSRQGLQJ WZRFROXPQVRIWKHPDWUL[QHHGWREHHOLPLQDWHGDVZHOO+RZHYHUIRUFDOFXODWLQJ WKHUHPDLQLQJPRGDOZHLJKWVWKHPDWUL[QHHGVWREHPDGHVTXDUHDJDLQWKXVWZR URZVQHHGWREHHOLPLQDWHG7KHTXHVWLRQDULVHVZKLFKWZRURZVKDYHPLQLPXP HIIHFWRQWKHPDJQLWXGHVRIWKHUHPDLQLQJPRGDOZHLJKWVDQGPRUHRYHUDUHQRW LQFRQIOLFWZLWKWKHOLPLWLQJFDVHRIOLQHDUHODVWLFLW\IRUZKLFKWKHH[DFWVROXWLRQLV NQRZQ 1RWLQJ WKDW WKH FDOFXODWHG VROXWLRQ LV WKH DSSUR[LPDWLRQ IRU WKH DSSOLHG QXPEHU RI )RXULHU WHUPV DQ\ZD\ RQH FRXOG ZRQGHU ZKHWKHU DQ\ JRRG UHDVRQ FRXOG H[LVW IRU QRW HOLPLQDWLQJ WKH ODVW WZR URZV RI WKH PDWUL[ RI HT IRU WKLVSXUSRVH7KLVDSSURDFKLVVXSSRUWHGE\WKHIDFWWKDWIRUOLQHDUHODVWLFLW\RQO\ WKHILUVWVL[PRGDOZHLJKWVLHFRHIILFLHQWV F%( ) WR F%( ) DUHQRQ²]HURDVVKRZQLQ
&+$37(5
7DEOH7KDWPHDQVWKDWLWLVDOVRHQVXUHGWKDWWKHDGDSWHGFRHIILFLHQWVFRXOG FRQYHUJHWRWKHOLQHDUHODVWLFFDVH )RU WKH FDVH RI KRUL]RQWDO KRXUJODVVLQJ ZLWK ERXQGDU\ FRQGLWLRQV IRU U = 5 DV M GHULYHGLQ7DEOHWKHDGDSWHGV\VWHPWRVROYHIRUWKHDGDSWHGFRHIILFLHQWV F%( ) IRU M = ! ( NPD[ + ) IROORZLQJIURPHT UHDGV
§ · ª ξ () 5τ %() % ¨ ¸ « ¨ ¸ « ξ () 5τ %() ¨ − ¸ « % () ¨ ¸ « ξ () 5τ % ¨ ¸ « % () ¨ ¸ « ξ %() 5τ % ¨ ¸ « () ¨ ¸ « ξ %() 5τ % ¨ ¸ « () ¨ ¸ « ξ %() 5τ % ¨ ¸ « () ¨ ¸ « ξ %() 5τ % ¨ ¸ « () ¨ ¸ = « ξ %() 5τ % ¨ ¸ « ¨ ¸ « # ¨ ¸ « ¨ ¸ « # ¨ ¸ « ¨ ¸ « # ¨ ¸ « () ¨ ¸ «ξ %() NPD[ − 5τ % ¨ ¸ « () ¨ ¸ « ξ %( ) NPD[ 5τ % ¨ # ¸ « () ¨ ¸ «ξ %( ) NPD[ + 5τ % ¨ ¸ « τ %( ) ¨ ¸ «ξ () © ¹ ¬ % NPD[ + 5
ξ %() 5τ
( ) %
ξ %() 5τ
() %
ξ %() 5τ
() %
ξ %() 5τ
() %
ξ %() 5τ
()
ξ %() 5τ
()
( )
%
()
ξ % 5
τ %( )
( )
τ%
ξ % 5
#
%
#
N
" " " % " "
#
# #
ξ %() N
PD[
( )
+
5τ %
"
º § F%() · ¸ »¨ ( ) ( NPD[ +) ¸ » ¨ F% ξ %(NPD[ +) 5τ % ¨ ¸ » ( ) ( NPD[ +) ¸ » ¨ F% ξ %(NPD[ +) 5τ % » ¨ F ( ) ¸ ( NPD[ +) % ¸ »¨ ξ %(NPD[ +) 5τ % » ¨ F%() ¸ ¸ »¨ » ¨ F%( ) ¸ ¸ »¨ # ¸ »¨ ¸ »¨ # # ¸ »¨ # ¸ »¨ » ¨ ( NPD[ −) ¸ ¸ » ¨ F% # » ¨ F ( NPD[ −) ¸ ¸ »¨ % » ¨ F%( NPD[ −) ¸ » ¨ ( N ) ¸ » ¨ F% PD[ ¸ » ¨ ( NPD[ +) ¸ ¸ » ¨ F% » ¨ ( NPD[ +) ¸ # F ¸ »¨ % # » ¨ F ( NPD[ +) ¸ ¨ % ¸ N + » + ) τ %( PD[ ) ξ %(NPD[ »¼ ¨© F%( NPD[ + ) ¹¸ NPD[ + 5
" " ξ %( PD[
" "
+)
( NPD[ +)
5τ %
2UIROORZLQJIURPHT LQPDWUL[²YHFWRUQRWDWLRQ ( NPD[ +)
( 5 ) F = [∗% ( 5 ) = 3 % %
¦
( M)
M M F%( ) ξ (% ) 5τ %
M =
7KHHODERUDWLRQRIWKHSURSRVHGPHWKRGIRUDGDSWLRQRIWKHFRHIILFLHQWVDSSOLHGWR WKHV\VWHPRI3'(VIRUHODVWR²SODVWLFLW\ZLOOQRWEHFRQVLGHUHGZLWKLQWKLVWKHVLV EXWLQFOXGHGLQWKHUHFRPPHQGDWLRQVIRUIXUWKHUUHVHDUFK
&RQFOXVLRQ 7RVXPPDULVHWKHPDLQILQGLQJVRIWKLVFKDSWHULWFDQEHVWDWHGWKDWIRU0RKU² &RXORPE HODVWR²SODVWLFLW\ LQFOXGLQJ KDUGHQLQJ DQG VRIWHQLQJ JHQHUDOO\ UHDOLVWLF PDWHULDOEHKDYLRXULVVLPXODWHG+RZHYHULQWKHSRVW²SHDNUDQJHRIGHIRUPDWLRQ WKH WKUHH GLDJRQDO EDQGV ZLWK VPDOO HODVWLF YROXPHWULF VWUDLQ UDWHV )LJXUH
0RKU²&RXORPEHODVWR²SODVWLFLW\LQFOXGLQJKDUGHQLQJLQWKHFLUFXODUGRPDLQ
DUH XQH[SHFWHG IHDWXUHV RI WKH FDOFXODWHG UHVSRQVH 7KH SDUDPHWHU OLPLWV RI WKH GLVSODFHPHQW ERXQGDU\ YDOXH SUREOHP LQ WKH FLUFXODU GRPDLQ DUH LGHQWLILHG DV JLYHQLQ6HFWLRQ7KHUHOHYDQWSDUDPHWHUVWKDWFRQWUROWKHSDUDPHWHUOLPLWV DUH WKH QRUPDOLVHG KDUGHQLQJ PRGXOXV + DQG WKH GHJUHH RI GLODWLRQ ΦΨ ,Q )LJXUHWKHFRUUHVSRQGLQJOLPLWVDUHLOOXVWUDWHG)RUERXQGHGGRPDLQVWKHUH H[LVWV D UDQJH RI SDUDPHWHUV IRU ZKLFK QR VROXWLRQ H[LVWV ZKLOH LQ FRQWUDU\ IRU ORFDO PDWHULDO VWDELOLW\ WKH SDUDPHWHU OLPLWV LV UHVWULFWHG WR D VLQJOH VHW DV GHULYHG LQ &KDSWHU VHH )LJXUH %RWK DUHLQGLFDWHGLQ )LJXUH E\ WKH KDWFKHG VXUIDFH IRU ERXQGHG GRPDLQV DQG WKH VWUDLJKW OLQH IRU ORFDO PDWHULDO VWDELOLW\UHVSHFWLYHO\ 7KHVHQVLWLYLW\RIWKHUHVXOWVLQ)LJXUHIRUWKHYDULDWLRQRIWKH3RLVVRQ·VUDWLR LQWKHSUDFWLFDOUDQJH < ν < LVPDUJLQDOVHH)LJXUH 7KHGHSHQGHQFH RQ WKH LQLWLDO SULQFLSDO VWUHVV GLUHFWLRQ ≤ Ξ ≤ π PD\ EH PRUH VLJQLILFDQW VHH )LJXUH EXW UHPDLQV OLPLWHG 7KHVH WZR SDUDPHWHUV PD\ VKLIW WKH OLPLWV VOLJKWO\ LQ WKH SODQH VKRZQ LQ )LJXUH EXW GR QRW OHDG WR DGGLWLRQDO SKHQRPHQDRUUHVWULFWLRQV)RUWKHFLUFXODUHOHPHQWWKHSDUDPHWHUOLPLWVIRUWKH FLUFXODU GRPDLQ DUH JHQHUDOO\ QRW RYHUODSSLQJ WKH SDUDPHWHU UDQJH RI SUDFWLFDO LQWHUHVW +RZHYHU LW LV H[SHFWHG WKDW LQWURGXFLQJ UHFWDQJXODU HOHPHQWV WKH UHVWULFWHG SDUDPHWHU UDQJH ZLOO H[WHQG 7KLV ZDV DOVR FRQFOXGHG IRU WKH FDVH RI OLQHDU HODVWLFLW\ LQ 6HFWLRQ LQ FRPSDULVRQ ZLWK 0ROHQNDPS D 7KHUHIRUH LW LV H[SHFWHG WKDW IRU UHFWDQJXODU HOHPHQWV IRU SDUDPHWHUV LQ WKH SUDFWLFDOUDQJHLQVWDELOLWLHVPD\RFFXUZKLFKDUHOHIWKHUHIRUIXUWKHUUHVHDUFK ,Q 6HFWLRQ WZR DSSURDFKHV DUH SUHVHQWHG WR SRVVLEO\ VROYH WKH SUREOHP RI XQERXQGHGQHVVRIWKHVROXWLRQRIWKHVWUDLQVDWWKHFLUFOHFHQWUH7KHDSSOLFDWLRQ RI WKHVH DSSURDFKHV LV QRW SDUW RI WKLV WKHVLV DQG LV LQFOXGHG DV D UHFRPPHQ² GDWLRQ IRU IXUWKHU UHVHDUFK 1HYHUWKHOHVV DOWKRXJK WKH FXUUHQW JHQHUDO VROXWLRQ LV QRW VDWLVI\LQJ WKH FRQGLWLRQ RI ERXQGHGQHVV RI VWUDLQV DW WKH RULJLQ WKH LOOXVWUDWLRQRIWKHVROXWLRQLQ6HFWLRQDQGWKHSDUDPHWULFVWXG\LQ6HFWLRQ UHPDLQ SUDFWLFDOO\ YDOLG +RZHYHU WKH HUURU RI WKH QRUPDOLVHG LQFUHPHQWDO GLVSODFHPHQW XHS H DW WKH FLUFOH FHQWUH DFFRUGLQJ WR 7DEOH PD\ EH VLJQLILFDQW ,W LV H[SHFWHG WKDW WKH DGDSWHG VROXWLRQ ZLOO GHYLDWH PDLQO\ IRU WKH FDOFXODWHGTXDQWLWLHVDURXQGWKHRULJLQRIWKHFLUFXODUGRPDLQEXWZLOOQRWDIIHFW VLJQLILFDQWO\ WKH SDUDPHWHU OLPLWV )RU WKHVH OLPLWV LV VKRZQ WKDW WKH VWUDLQ UDWH HQHUJ\ LV WHQGLQJ WR LQILQLW\ DW WKH RXWHU ERXQGDU\ ZKLOH VWLOO WKH DSSOLHG RXWHUGLVSODFHPHQWERXQGDU\FRQGLWLRQVDUHVDWLVILHG
&+$37(5
&+$37(5 &RQFOXVLRQ
7KH DLP RI WKLV UHVHDUFK LV WR JHW DQDO\WLFDO LQVLJKW LQWR WKH OLPLWV RI WKH H[LVWHQFHRIXQLTXHVROXWLRQVRIGLVSODFHPHQW²W\SHRIILQLWHHOHPHQWVFRPSRVHGRI WKH 0RKU²&RXORPE PDWHULDO PRGHO IRU LQILQLWHVLPDO LQFUHPHQWDO RIWHQ DQG DV ZHOOLQWKLVWKHVLVLQGLFDWHGDVUDWH²W\SH GHIRUPDWLRQ7KHVHOLPLWVRFFXULQWKH PDWHULDO SDUDPHWHU VSDFH DQG DUH H[SHFWHG WR GHSHQG RQ WKH LQLWLDOO\ XQLIRUP SULQFLSDO VWUHVV VWDWH )XUWKHUPRUH WKH VKDSHV DV ZHOO DV WKH QRQ²XQLIRUP PRGHV RI GHIRUPDWLRQ RI WKH ILQLWH HOHPHQWV PD\ EH IDFWRUV RI PDMRU LQIOXHQFH 7KHDQDO\VHVLQWKLVWKHVLVIRFXVRQWKHZHOO²SRVHGQHVVRIGLVSODFHPHQW²W\SHRI ERXQGDU\YDOXHSUREOHPVZLWKFRQWLQXRXVGHIRUPDWLRQRIKRPRJHQHRXVPDWHULDOV ZLWKLQ WKH HOHPHQWV DQG DORQJ WKHLU ERXQGDULHV $QDO\VHV RI ERXQGDU\ YDOXH SUREOHPVZLWKPRUHDGYDQFHGQRQ²ORFDOPDWHULDOPRGHOVDUHEH\RQGWKHVFRSHRI WKLVWKHVLV 7R YDOLGDWH DQG GHPRQVWUDWH WKH VXLWDELOLW\ RI WKH SURSRVHG DQDO\WLFDO VROXWLRQ PHWKRG DV GHYHORSHG LQ WKLV WKHVLV EHVLGHV IRU WKH PDWHULDO PRGHO RI 0RKU² &RXORPE HODVWR²SODVWLFLW\ LQFOXGLQJ KDUGHQLQJ DQG VRIWHQLQJ DOVR IRU HTXLYDOHQW LVRWURSLF OLQHDU HODVWLFLW\ WKH FRUUHVSRQGLQJ SDUDPHWHU OLPLWV DUH GHWHUPLQHG )RU WKH ODWWHU D YDVW DPRXQW RI LQIRUPDWLRQ DQG H[SHULHQFH LV DYDLODEOH LQ OLWHUDWXUH IRU FRPSDULVRQ 0RUHRYHU WKH FULWHULD IRU ORFDO PDWHULDO VWDELOLW\DUHGHWHUPLQHGIRUERWKPDWHULDOPRGHOVLQRUGHUWRDVVHVVWKHLQIOXHQFH RIWKHGRPDLQERXQGDULHVZLWKWKHLUFRUUHVSRQGLQJOLPLWLQJERXQGDU\FRQGLWLRQV 7KHEDVLFFRQWLQXXPPHFKDQLFDOFRQFHSWVZKLFKDUHXVHGWKURXJKRXWWKHWKHVLV DUH SUHVHQWHG LQ &KDSWHU 7KH VWUHVV DQG VWUDLQ WHQVRUV DV ZHOO DV WKHLU LQYDULDQWV DUH GHILQHG LQ WHQVRU QRWDWLRQ DQG HODERUDWHG IRU WKH SODQH GHIRUPDWLRQVLWXDWLRQ)XUWKHUPRUHWKHPDWHULDOPRGHOVRIHTXLYDOHQW LVRWURSLF
&+$37(5
OLQHDU HODVWLFLW\ 6HFWLRQ DQG ORFDO FRD[LDO 0RKU²&RXORPE HODVWR²SODVWLFLW\ LQFOXGLQJ KDUGHQLQJ DQG VRIWHQLQJ 6HFWLRQ DUH LQWURGXFHG 7KH FRQWUROOLQJ SDUDPHWHUV RI ERWK PRGHOV DUH LGHQWLILHG DQG LOOXVWUDWHG XVLQJ H[SHULPHQWDO WULD[LDO FRPSUHVVLRQ WHVW GDWD *RWR 7KH DSSURDFK WR GHILQH DOO FRQFHSWV DQGTXDQWLWLHVLQGHWDLODVFKRVHQLQWKLVWKHVLVLVDQHFHVVDU\DQGDGHTXDWHWRRO WR LPSURYH ERWK LQWHU²GLVFLSOLQDU\ JHR²HQJLQHHULQJ PHFKDQLFDO HQJLQHHULQJ QXPHULFDO PHFKDQLFV DQG PDWKHPDWLFV DV ZHOO DV LQWHU²VHFWRULDO HQJLQHHULQJ SUDFWLFHDQGVFLHQWLILF XQGHUVWDQGLQJ 7KH ORFDO FULWHULD IRU PDWHULDO VWDELOLW\ DUH HODERUDWHG LQ &KDSWHU )RU ERWK PDWHULDO PRGHOV WKH SDUDPHWHU UDQJHV IRU ZKLFK WKH ORFDO FRQGLWLRQ RI PDWHULDO VWDELOLW\LVVDWLVILHGDUHLGHQWLILHG0RGDOGHFRPSRVLWLRQRIWKHHLJHQPRGHVRIWKH PDWHULDOWDQJHQWVWLIIQHVVWHQVRULVDSSOLHG6HFWLRQ LQYROYLQJPRGDOZHLJKWV WRGHWHUPLQHFRQYHQLHQWH[SUHVVLRQVIRUWKHVWUDLQUDWHHQHUJ\7KHFRQGLWLRQRI ORFDO PDWHULDO VWDELOLW\ LV HYDOXDWHG E\ LQVSHFWLQJ WKH SRVLWLYHQHVV RI WKH VWUDLQ UDWHHQHUJ\6HFWLRQ )RUWKHSODQHVWUDLQVLWXDWLRQRILVRWURSLFOLQHDUHODVWLFLW\6HFWLRQ LWIROORZV WKDWWKHGHYLDWRULFVWUDLQUDWHHQHUJ\LVDOZD\VSRVLWLYHZKLOHWKHLVRWURSLFVWUDLQ UDWHHQHUJ\LVRQO\SRVLWLYHLQWKHUDQJHRI3RLVVRQ·VUDWLR −∞ < ν < DQGIRUWKH VKHDUPRGXOXV * > DVFDQEHREVHUYHGLQ)LJXUH&RQVHTXHQWO\+LOO·VORFDO PDWHULDO VWDELOLW\ FULWHULRQ HT LV VDWLVILHG LQ WKLV SDUDPHWHU UDQJH 7KH ORFDO PDWHULDO VWDELOLW\ FULWHULRQ DFFRUGLQJ WR +LOO LV HTXDO WR .LUFKKRII·V XQLTXHQHVVDQGHQHUJ\FULWHULRQHT )RUWKHUDQJHRI3RLVVRQ·VUDWLRHTXDO WR −∞ < ν < LH ZLWK DOO HLJHQYDOXHV EHLQJ SRVLWLYH .LUFKKRII VKRZHG WKDW DW PRVW RQH VROXWLRQ H[LVWV WR WKH PL[HG ERXQGDU\ YDOXH SUREOHP RI WKUHH² GLPHQVLRQDOKRPRJHQHRXVLVRWURSLFOLQHDUHODVWLFLW\LQERXQGHGUHJLRQV )RUWKHSODQHVWUDLQVLWXDWLRQRI0RKU²&RXORPEHODVWR²SODVWLFLW\6HFWLRQ LW LVVKRZQWKDWWKHVLJQLILFDQWSDUDPHWHUVGHWHUPLQLQJWKHFRQGLWLRQVIRUPDWHULDO VWDELOLW\ DUH RQO\ WKH QRUPDOLVHG KDUGHQLQJ PRGXOXV + DQG WKH GHJUHH RI GLODWLRQ ΦΨ ,WIROORZVWKDWWKHLVRWURSLFVWUDLQUDWHHQHUJ\LVHTXDOWR]HURIRU WKH ILUVW VHW RI FRQGLWLRQV RQ + DQG ΦΨ DV JLYHQ LQ HT ZKLFK DUH LOOXVWUDWHGLQ)LJXUH%RWKWKHLVRWURSLFDQGGHYLDWRULFVWUDLQUDWHHQHUJ\DUH WHQGLQJ WR LQILQLW\ IRU WKH VHFRQG VHW RI FRQGLWLRQV RQ + DQG ΦΨ DV JLYHQ LQ HT ZKLFK DUH LOOXVWUDWHG LQ )LJXUH 7KHVH FRQGLWLRQV FRLQFLGH ZLWK WKHVHFRQGHLJHQYDOXHRIWKHPDWHULDOWDQJHQWVWLIIQHVVWHQVRUDSSURDFKLQJPLQXV LQILQLW\IRUGHFUHDVLQJQRUPDOLVHGKDUGHQLQJPRGXOXV + DVGHILQHGLQHT 1RWH WKDW WKH PRGDO ZHLJKWV DSSHDULQJ LQ WKH H[SUHVVLRQ RI WKH VWUDLQ UDWH HQHUJ\KDYHQRLQIOXHQFHRQWKHORFDWLRQRIWKHYHUWLFDODV\PSWRWHVHHHT DQG )LJXUH EXW RQ WKH JUDGLHQW ZLWK ZKLFK WKH LVRWURSLF DQG GHYLDWRULF VWUDLQ UDWH HQHUJ\ WHQG WR LQILQLW\ &RPELQLQJ WKH UHVXOWV RI )LJXUHV DQG IRU D GHFUHDVLQJ KDUGHQLQJ PRGXOXV + GXULQJ PRQRWRQLFDOO\ LQFUHDVLQJ GHYLDWRULFGHIRUPDWLRQWKHNLQGRIFKDQJHWRLQILQLW\RIWKHLVRWURSLFVWUDLQUDWH HQHUJ\ FDQ EH GHULYHG )LJXUH LV HVVHQWLDO WR H[SODLQ WKH SDUDPHWHU UDQJH
&RQFOXVLRQ
ZKLFK LV REWDLQHG DV D UHVXOW RI WKH DQDO\WLFDO VROXWLRQ RI WKH ERXQGDU\ YDOXH SUREOHP IRU 0RKU²&RXORPE HODVWR²SODVWLFLW\ LQ WKH FLUFXODU GRPDLQ ODWHU RQ LQ &KDSWHU 7KH V\VWHP RI ILHOG HTXDWLRQV RI VWDWLF HTXLOLEULXP EDVHG RQ WKH FRQVHUYDWLRQ RI OLQHDUPRPHQWXPLVGHULYHGLQWHUPVRIGLVSODFHPHQWVIRUDUELWUDU\GRPDLQV LQ &KDSWHU )RU WKH FLUFXODU DQG UHFWDQJXODU GRPDLQ WKH ILHOG HTXDWLRQV RI HTXLOLEULXPDUHGHULYHGIRULVRWURSLFOLQHDUHODVWLFLW\DQG0RKU²&RXORPEHODVWR² SODVWLFLW\ LQFOXGLQJ KDUGHQLQJ LQ WHQVRU IRUPXODWLRQ $ JHQHUDOO\ DSSOLFDEOH DSSURDFKIRUDQ\FRRUGLQDWHGHVFULSWLRQLQYROYLQJWKHDSSOLFDWLRQRIWKHEDODQFHG JUDGLHQW RSHUDWRU 6HFWLRQ LV XVHG WR IRUPXODWH WKH ILHOG HTXDWLRQV IRU VSHFLILFFRRUGLQDWHV\VWHPV7KHXVHRIWKHEDODQFHGJUDGLHQWRSHUDWRUHQVXUHVD UHOLDEOH GHWHUPLQDWLRQ RI WKH FRHIILFLHQWV RI WKH ILHOG HTXDWLRQV IRU SODQH GHIRUPDWLRQ LQ WKH UHFWDQJXODU DQG FLUFXODU GRPDLQ IRU ERWK PDWHULDO PRGHOV XQGHU FRQVLGHUDWLRQ 0RUHRYHU LW DOORZV IRU D IDVW WUDQVIRUPDWLRQ WR DQ\ FRRUGLQDWHGHVFULSWLRQZKLFKPD\EHIDYRXUDEOHIRURWKHUGRPDLQV ,Q &KDSWHU WKH ERXQGDU\ FRQGLWLRQV IRU WKH SODQH GHIRUPDWLRQ VLWXDWLRQ DUH HODERUDWHG IRU UHFWDQJXODU DQG FLUFXODU GRPDLQV $Q\ DUELWUDU\ LQFUHPHQWDO GLVSODFHPHQW ILHOG SUHVFULEHG DW WKH ERXQGDU\ FDQ EH GHFRPSRVHG LQWR HLJKW GHIRUPDWLRQPRGHV7KHRQO\QRQ²XQLIRUPGHIRUPDWLRQPRGHVRFFXUULQJIRUSODQH GHIRUPDWLRQ DUH WKH KRUL]RQWDO DQG YHUWLFDO KRXUJODVV PRGHV 6HFWLRQ 2QO\ WKHVH WZR GHIRUPDWLRQ PRGHV FDQ FDXVH QRQ²XQLTXH RU XQVWDEOH VROXWLRQV IRU ERXQGHGGRPDLQV 7KH GLVSODFHPHQW ERXQGDU\ YDOXH SUREOHP RI LVRWURSLF OLQHDU HODVWLFLW\ LQ WKH FLUFXODU GRPDLQ LV VROYHG DQDO\WLFDOO\ LQ &KDSWHU 7KH FORVHG IRUP DQDO\WLFDO VROXWLRQ LV GHULYHG XVLQJ DQ H[WHQGHG YHUVLRQ RI WKH PHWKRG RI VHSDUDWLRQ RI YDULDEOHV 7KLV PHWKRG OHDGV LQ D VWUDLJKWIRUZDUG ZD\ ZLWKRXW DQ\ SUH² DVVXPSWLRQVWRWKHVROXWLRQRIWKHSUREOHP7KXVWKLVPHWKRGFDQEHDSSOLHGWR SUREOHPVEH\RQGOLQHDUHODVWLFLW\IRUZKLFKSUH²DVVXPSWLRQVFDQQRWEHPDGHDV HDVLO\ )RULVRWURSLFOLQHDUHODVWLFLW\WZRSDUDPHWHUVDUHFRQWUROOLQJWKHEHKDYLRXURIWKH VROXWLRQLHWKHVKHDUPRGXOXV * DQG3RLVVRQ·VUDWLRν ,WLVVKRZQWKDWWKHUH H[LVWVDWOHDVWRQHVROXWLRQIRUDOO * ∈ \ DQGDOOν ∈ \ $WPRVWRQHVROXWLRQH[LVWV IRUDOO * ≠ DQGDOO ν ≠ 7KHVROXWLRQLVPDWKHPDWLFDOO\VWDEOHIRUDOO * ≠ DQGDOO ν ≠ 7KLVLPSOLHVWKDWWKHSUREOHPLVZHOO²SRVHGIRUWKHVKHDU PRGXOXV * ≠ DQGIRUDOOYDOXHVRI3RLVVRQ·VUDWLRν ≠ $Wν = IRU WKHFLUFXODUGRPDLQLQWKHFDVHRISODQHVWUDLQOLQHDULVRWURSLFHODVWLFLW\ORFNLQJRI WKHHOHPHQWRFFXUVGXHWRWKHWRWDOVWUDLQUDWHHQHUJ\EHFRPLQJLQILQLWH7KHORFDO VWUDLQUDWHHQHUJ\SHUXQLWRIDUHDDORQJWKHFLUFXODUERXQGDU\DSSURDFKHVSOXV DQGPLQXVLQILQLW\IRUν ↑ DQGν ↓ UHVSHFWLYHO\
&+$37(5
7KHFKDUDFWHURIWKHV\VWHPRISDUWLDOGLIIHUHQWLDOHTXDWLRQVLVQRWFKDQJHGE\WKH FKRLFHRIWKHFRRUGLQDWHV\VWHPRUGRPDLQ+HQFHQRQ²XQLTXHVROXWLRQVZLOODOVR RFFXU DW WKH SRLQWV * = DQG ν = DQG ν = DV ZHOO IRU UHFWDQJXODU DV IRU DUELWUDU\GRPDLQV+RZHYHUWKHFKRLFHRIWKHERXQGDU\PD\LQIOXHQFHWKHQDWXUH RIWKHUHPDLQLQJQRQ²XQLTXHSDUDPHWHUUDQJH 7KH VXIILFLHQW XQLTXHQHVV FULWHULRQ RI &RVVHUDW HT LV FRQILUPHG 0RUHRYHU WKH XQLTXHQHVV FULWHULRQ LQ WKH UDQJH < ν < LV LPSURYHG IRU WKH FLUFXODU GRPDLQ :KLOVW &RVVHUDW VWDWHG WKDW LQ WKLV UDQJH DW OHDVW RQH QRQ² XQLTXH VROXWLRQ H[LVWV LQ WKLV WKHVLV LW LV SURYHQ WKDW IRU WKH FLUFXODU GRPDLQ H[DFWO\ RQH QRQ²XQLTXH VROXWLRQ H[LVWV ,Q WKLV WKHVLV D QHFHVVDU\ FRQGLWLRQ IRU XQLTXHQHVVLVGHULYHG 7KH GLVSODFHPHQW ERXQGDU\ YDOXH SUREOHP RI 0RKU²&RXORPE HODVWR²SODVWLFLW\ LQFOXGLQJ KDUGHQLQJ LQ WKH FLUFXODU GRPDLQ LV VROYHG DQDO\WLFDOO\ LQ &KDSWHU 7KHDQDO\WLFDOVROXWLRQSURFHGXUHLVEDVHGRQD)RXULHUVHULHVDSSURDFKUHVXOWLQJ LQ DQ LQILQLWH V\VWHP RI HTXDWLRQV IRU WKH GHWHUPLQDWLRQ RI WKH FRHIILFLHQWV WR VDWLVI\ WKH ERXQGDU\ FRQGLWLRQV 7KHVH FRHIILFLHQWV DUH GHWHUPLQHG QXPHULFDOO\ 7KHGHULYHGVROXWLRQLVLQYHVWLJDWHGE\HYDOXDWLQJWKHLQFUHPHQWDOGLVSODFHPHQW ILHOGVWUDLQUDWHILHOGVDQGLQYDULDQWVDQGVWUDLQUDWHHQHUJ\GLVWULEXWLRQ%DVHG RQWKHHYDOXDWLRQRIWKHVHUHVXOWVWKHVROXWLRQSURFHGXUHLVVKRZQWREHUHOLDEOH DQG WR SURGXFH H[SHFWHG UHVXOWV IRU VWUHVV VWDWHV LQYROYHG LQ D VWDQGDUG WULD[LDO FRPSUHVVLRQ WHVW $OWKRXJK LQ WKH SRVW²SHDN UDQJH RI GHIRUPDWLRQ WKH WKUHH GLDJRQDO EDQGV ZLWK VPDOO HODVWLF YROXPHWULF VWUDLQ UDWHV )LJXUH DUH XQH[SHFWHG IHDWXUHV RI WKH FDOFXODWHG UHVSRQVH 0RUHRYHU IURP WKH DQDO\VLV RI WKH HLJHQYDOXHV 6HFWLRQ DQG WKH GHWDLOHG REVHUYDWLRQ RI WKH GLVSODFHPHQW ILHOGV LW LV DOVR XQGHUVWRRG WKDW WKH VROXWLRQ GRHV QRW DFFXUDWHO\ VDWLVI\ WKH ERXQGDU\FRQGLWLRQVLQWKHFLUFOHFHQWUH )RU0RKU²&RXORPEHODVWR²SODVWLFLW\LQFOXGLQJKDUGHQLQJWKHSDUDPHWHUOLPLWVRI WKH GLVSODFHPHQW ERXQGDU\ YDOXH SUREOHP LQ WKH FLUFXODU GRPDLQ DUH LGHQWLILHG DSSUR[LPDWHO\ZLWKUHDVRQDEOHDFFXUDF\6HFWLRQ 7KHUHOHYDQWSDUDPHWHUV WKDWFRQWUROWKHSDUDPHWHUOLPLWVDUHWKHQRUPDOLVHGKDUGHQLQJPRGXOXV + DQG WKH GHJUHH RI GLODWLRQ ΦΨ 7KH FRUUHVSRQGLQJ OLPLWV DUH LOOXVWUDWHG LQ )LJXUH )RU ERXQGHG GRPDLQV WKHUH H[LVWV D UDQJH RI SDUDPHWHUV IRU ZKLFK QR VROXWLRQ H[LVWV ,Q FRQWUDU\ IRU ORFDO PDWHULDO VWDELOLW\ WKH SDUDPHWHU OLPLWV DUH UHVWULFWHGWRDVLQJOHVHWDVGHULYHGLQ&KDSWHU)LJXUH %RWKDUHLQGLFDWHG LQ)LJXUHE\WKHKDWFKHGVXUIDFHIRUERXQGHGGRPDLQVDQGWKHVWUDLJKWOLQH IRUORFDOPDWHULDOVWDELOLW\UHVSHFWLYHO\ 7KHVHQVLWLYLW\RIWKHUHVXOWVLQ)LJXUHIRUWKHYDULDWLRQRIWKH3RLVVRQ·VUDWLR LQWKHSUDFWLFDOUDQJHRI < ν < LVPDUJLQDO)LJXUH 7KHGHSHQGHQFH RQ WKH LQLWLDO SULQFLSDO VWUHVV GLUHFWLRQ ≤ Ξ ≤ π PD\ EH PRUH VLJQLILFDQW )LJXUH EXW UHPDLQV OLPLWHG 7KHVH WZR SDUDPHWHUV PD\ VKLIW WKH OLPLWV VOLJKWO\ LQ WKH SODQH VKRZQ LQ )LJXUH EXW GR QRW OHDG WR DGGLWLRQDO SKHQRPHQD RU UHVWULFWLRQV 7KH SDUDPHWHU OLPLWV IRU WKH FLUFXODU GRPDLQ DUH
&RQFOXVLRQ
JHQHUDOO\QRWRYHUODSSLQJWKHSDUDPHWHUUDQJHRISUDFWLFDOLQWHUHVW+RZHYHUWKH LQWURGXFWLRQRIUHFWDQJXODUHOHPHQWVPD\H[WHQGWKHUHVWULFWHGSDUDPHWHUUDQJH 7KLV ZDV DOVR FRQFOXGHG IRU WKH FDVH RI OLQHDU HODVWLFLW\ 6HFWLRQ LQ FRPSDULVRQ ZLWK 0ROHQNDPS D 7KHUHIRUH LW LV H[SHFWHG WKDW IRU UHFWDQJXODU HOHPHQWV IRU SDUDPHWHUV LQ WKH SUDFWLFDO UDQJH LQVWDELOLWLHV PD\ RFFXUZKLFKDUHOHIWKHUHIRUIXUWKHUUHVHDUFK ,Q 6HFWLRQ WZR DSSURDFKHV DUH SUHVHQWHG WR SRVVLEO\ VROYH WKH SUREOHP RI XQERXQGHGQHVVRIWKHVROXWLRQRIWKHVWUDLQVDWWKHFLUFOHFHQWUH7KHDSSOLFDWLRQ RI WKHVH DSSURDFKHV LV QRW SDUW RI WKLV WKHVLV DQG LQFOXGHG KHUH DV UHFRPPHQ² GDWLRQIRUIXUWKHUUHVHDUFK+RZHYHUDOWKRXJKWKHFXUUHQWJHQHUDOVROXWLRQLVQRW VDWLVI\LQJWKHFRQGLWLRQRIERXQGHGQHVVRIVWUDLQVDWWKHRULJLQWKHLOOXVWUDWLRQRI WKH VROXWLRQ LQ 6HFWLRQ DQG WKH SDUDPHWULF VWXG\ LQ 6HFWLRQ UHPDLQ SUDFWLFDOO\ YDOLG $OWKRXJK WKH HUURU RI WKH QRUPDOLVHG LQFUHPHQWDO GLVSODFHPHQW XHS H DW WKH FLUFOH FHQWUH DFFRUGLQJ WR 7DEOH PD\ EH PRUH VLJQLILFDQW LW LV H[SHFWHG WKDW WKH DGDSWHG VROXWLRQ ZLOO GHYLDWH PDLQO\ IRU WKH FDOFXODWHGTXDQWLWLHVDURXQGWKHRULJLQRIWKHFLUFXODUGRPDLQEXWZLOOQRWDIIHFW VLJQLILFDQWO\ WKH SDUDPHWHU OLPLWV )RU WKHVH OLPLWV LV VKRZQ WKDW WKH VWUDLQ UDWHHQHUJ\LVWHQGLQJWRLQILQLW\DWWKHRXWHUERXQGDU\ZKLOHWKHDSSOLHGRXWHU GLVSODFHPHQWERXQGDU\FRQGLWLRQVDUHVDWLVILHGSURSHUO\ )RU IXUWKHU UHVHDUFK ILUVW LW LV UHFRPPHQGHG WKDW IRU WKH FLUFXODU GRPDLQ WKH EHKDYLRXURIWKHVROXWLRQFORVHWRWKHFLUFOHFHQWUHLVLQVSHFWHGLQPRUHGHWDLOIRU WKH 0RKU²&RXORPE PDWHULDO PRGHO ,W LV H[SHFWHG WKDW XVLQJ RQH RI WKH WZR DSSURDFKHV SUHVHQWHG LQ 6HFWLRQ PD\ OHDG WR D VROXWLRQ IRU ZKLFK WKH ILUVW GHULYDWLYH ZLWK UHVSHFW WR U VWD\V ERXQGHG DQG WKHUHIRUH WKH GHVLUHG ERXQGDU\ FRQGLWLRQRIERXQGHGQHVVRIWKHVWUDLQVDWWKHRULJLQLVVDWLVILHG $QRWKHU UHFRPPHQGDWLRQ LV WR GHULYH DQ DQDO\WLFDO VROXWLRQ IRU WKH UHFWDQJXODU GRPDLQIRU0RKU²&RXORPEPDWHULDOEHKDYLRXUZKLFKLVPRUHUHDOLVWLFIRUILQLWH HOHPHQW VLPXODWLRQV WKDQ WKH FLUFXODU GRPDLQ $Q HTXLYDOHQW WR WKH ERXQGDU\ GLVSODFHPHQWSUREOHPZLWK'LULFKOHWERXQGDU\FRQGLWLRQVDVXVHGLQWKLVWKHVLVLV WKH WKHRU\ RI FODPSHG SODWHV DV NQRZQ IURP DSSOLHG PDWKHPDWLFV 7KHUH LW LV NQRZQ WKDW WKH SUREOHP RI D UHFWDQJXODU FODPSHG SODWH LV QRW DQDO\WLFDOO\ VROYDEOH ZKHUHDV WKH FLUFXODU FODPSHG SODWH LV 7KHUHIRUH LW PD\ EH H[SHFWHG WKDWDQRWKHUDSSURDFKQHHGVWREHGHYHORSHGWRVROYHWKHSUREOHPIRUUHFWDQJXODU GRPDLQV 7KLV PD\ EH DFKLHYHG E\ DSSO\LQJ PDSSLQJ RI WKH GRPDLQ DQG RI WKH GHULYHGVROXWLRQILUVWWRHOOLSWLFDOGRPDLQVIRUZKLFKRQHD[LVEHFRPHVGRPLQDQW DQG WKHQ IODWWHQ WKH ERXQGDU\ VLGHV LQ RUGHU WR DUULYH DW D GRPDLQ ZKLFK LV DSSUR[LPDWHO\ HTXDO WR WKH UHFWDQJXODU GRPDLQ KRZHYHU VWLOO ZLWK URXQGHG FRUQHUV$PHWKRGZKLFKPD\EHXVHGWRDFKLHYHWKLVWUDQVIRUPDWLRQLVSURSRVHG E\HJ*LHOLV %RWKVWHSVDUHQHHGHGWRDUULYHILQDOO\DWDQDQDO\WLFDOILQLWHHOHPHQWGHVFULSWLRQ IRU0RKU²&RXORPEHODVWR²SODVWLFLW\ZKLFKLVHVVHQWLDOIRUWKHUHOLDEOHDQGUREXVW VROXWLRQRIQXPHULFDOSUREOHPVLQJHRPHFKDQLFV
&+$37(5
%,%/,2*5$3+VL]Hgeo(5),geo(6),5@HODVWR²SODVWLFHQHUJ\GLVWULEXWLRQ wel(:,:,:)>VL]Hgeo(5),geo(6),5@HODVWLFHQHUJ\GLVWULEXWLRQ wpl(:,:,:)>VL]Hgeo(5),geo(6),5@SODVWLFHQHUJ\GLVWULEXWLRQ w(:,:,1)WRWDOVWUDLQHQHUJ\ w(:,:,2)LVRWURSLFVWUDLQHQHUJ\ w(:,:,3)GHYLDWRULFVWUDLQHQHUJ\ w(:,:,4)[²FRRUGLQDWHIRUFRQWRXUSORW w(:,:,5)\²FRRUGLQDWHIRUFRQWRXUSORW matep(:)>VL]H7@OLVWRIHODVWR²SODVWLFPDWHULDOSDUDPHWHUV matel(:)>VL]H7@OLVWRIHODVWLFPDWHULDOSDUDPHWHUV mat(1)3RLVVRQ VUDWLRQX mat(2)DQJOHRILQWHUQDOIULFWLRQSKL mat(3)LQWHUSDUWLFOHIULFWLRQDQJOHSKLPX mat(4)QRUPDOLVHGKDUGHQLQJPRGXOXV+*+ mat(5)SULQFLSDOVWUHVVGLUHFWLRQ[L mat(6)DPSOLWXGHRISUHVFULEHGGLVSODFHPHQWHPD[ mat(7)UDGLXVRIFLUFXODUHOHPHQWUPD[ geo(:)>VL]H6@OLVWRIJHRPHWULFDOSDUDPHWHUV geo(1)GLVSODFHPHQWPRGHPRGH geo(2)RGG QXPEHURIWHUPVLQ)RXULHUVHULHVNPD[ geo(3)LQWHUYDOVLQU²GLUHFWLRQIRUTXLYHUSORWVGLYU geo(4)LQWHUYDOVLQWKHWD²GLUIRUTXLYHUSORWVGLYW geo(5)LQWHUYDOVLQU²GLUHFWLRQIRUFRQWRXUSORWVGLYU geo(6)LQWHUYDOVLQWKHWD²GLUIRUFRQWRXUSORWVGLYW maxep(:)>VL]H15@PD[LPXPYDOXHVIRUHODVWR²SODVWLFFDOFXODWLRQ maxel(:)>VL]H15@PD[LPXPYDOXHVIRUHODVWLFFDOFXODWLRQ maxpl(:)>VL]H15@PD[LPXPYDOXHVIRUSODVWLFFDOFXODWLRQ max(1)[²FRRUGLQDWHRIPD[LPXPGLVSODFHPHQW[PD[ max(2)\²FRRUGLQDWHRIPD[LPXPGLVSODFHPHQW\PD[ max(3)PD[LPXPWRWDOGLVSODFHPHQWXWRWPD[ max(4)PD[LPXPKRUL]RQWDOGLVSODFHPHQWX[PD[ max(5)PD[LPXPYHUWLFDOGLVSODFHPHQWX\PD[ max(6)PD[LPXPLVRWURSLFVWUDLQHSVYROPD[ max(7)PD[LPXPGHYLDWRULFVWUDLQHSVHTXPD[ max(8)PD[LPXPLVRWURSLFVWUHVVVLJLVRPD[ max(9)PD[LPXPGHYLDWRULFVWUHVVVLJGHYPD[ max(10)PD[LPXPWRWDOVWUDLQHQHUJ\ZPD[ max(11)PD[LPXPLVRWURSLFVWUDLQHQHUJ\ZLVRPD[ max(12)PD[LPXPGHYLDWRULFVWUDLQHQHUJ\ZGHYPD[ max(13)LQWHJUDWHGWRWDOVWUDLQHQHUJ\WRWHQJ max(14)LQWHJUDWHGLVRWURSLFVWUDLQHQHUJ\WRWLVR max(15)LQWHJUDWHGGHYLDWRULFVWUDLQHQHUJ\WRWGHY rU²FRRUGLQDWH thetaWKHWD²FRRUGLQDWH utotplWRWDOSODVWLFGLVSODFHPHQW startVWDUWYDOXHRISDUDPHWULFVWXG\ finishHQGYDOXHRISDUDPHWULFVWXG\ stepVWHSVL]HRISDUDPHWULFVWXG\
$33(1',;*6RXUFHFRGH
,QWKLVDSSHQGL[WKHVRXUFHFRGHIRUWKHLQ $SSHQGL[)GHVFULEHGPDLQSURJUDP ZLWKIRXUPRGXOHVLVSUHVHQWHG ² elastoplastic.f95WKHPDLQSURJUDP ² mod_main.f95FRQWDLQVVXEURXWLQHIRUWKHFDOFXODWLRQRIWKHGLVSODFHPHQWILHOG VWUDLQUDWHILHOGVWUHVVUDWHILHOGDQGVWUDLQHQHUJ\DWRQHSRLQW ( Uθ ) ² mod_global.f95 FRQWDLQV VXEURXWLQHV IRU FDOFXODWLRQ RI JOREDO PDWUL[ 0 DQG LWVLQYHUVHJOREDOPDWUL[ 1 JOREDOPDWUL[ . HLJHQYDOXHVRI . M M ² mod_coeff.f95FRQWDLQVVXEURXWLQHVIRUFDOFXODWLRQRIFRHIILFLHQWV α L( ) DQG βL( ) ² mod_mykind.f95 GHILQLWLRQ RI DFFXUDF\ RI SDUDPHWHUV DQG GHFODUDWLRQ RI FRQVWDQWV 7KHVRXUFHFRGHLVDYDLODEOHRQOLQHDWZZZDURKHQOSKG
$33(1',;*
&XUULFXOXP9LWDH
$OH[DQGHU5RKHZDVERUQRQWK-XQHLQ/HRQEHUJ*HUPDQ\ +HOLYHGDQG VWXGLHG LQ SULPDU\ DQG VHFRQGDU\ VFKRROV LQ VRXWK²ZHVW *HUPDQ\ $IWHU DWWHQGLQJWKH7HFKQLFDO*\PQDVLXPLQ/HRQEHUJ*HUPDQ\ KHIXOILOOHGKLVFLYLO VHUYLFHIRURQH\HDUDWDQROGSHRSOHVKRPH +HVWDUWHGWRVWXG\&LYLO(QJLQHHULQJDW6WXWWJDUW8QLYHUVLW\LQ$XJXVW,Q -XO\ KH PRYHG WR 'HOIW WR FRQWLQXH KLV VWXG\ RI &LYLO (QJLQHHULQJ DW 'HOIW 8QLYHUVLW\ RI 7HFKQRORJ\ +H JUDGXDWHG LQ $XJXVW DW WKH FKDLU RI 6RLO 0HFKDQLFV XQGHU VXSHUYLVLRQ RI SURIHVVRU )UDQV 0ROHQNDPS RQ WKH VXEMHFW RI ¶XQLTXHQHVVRIPDWHULDOPRGHOV·DQGREWDLQHGD06FGHJUHHLQ&LYLO(QJLQHHULQJ ,Q 6HSWHPEHU KH VWDUWHG DV D UHVHDUFK DVVLVWDQW DW WKH *HR²HQJLQHHULQJ VHFWLRQ RI WKH 'HOIW 8QLYHUVLW\ RI 7HFKQRORJ\ XQGHU WKH VXSHUYLVLRQ RI SURIHVVRU )UDQV 0ROHQNDPS DW WKH FKDLU RI 6RLO 0HFKDQLFV +LV UHVHDUFK WRSLF ZDV WKH DQDO\VLV DQG EHKDYLRXU RI PDWHULDO PRGHOV WRZDUGV SDUDPHWHU OLPLWV LQ QXPHULFDODSSOLFDWLRQVDQGWKHUHVHDUFKUHVXOWHGLQWKLVGRFWRUDOWKHVLV 'XULQJ WKH SDVW \HDUV KH ZURWH VHYHUDO SDSHUV IRU LQWHUQDWLRQDO FRQIHUHQFHV DV ZHOODVLQWHUQDWLRQDOSHHUUHYLHZHGMRXUQDOV+HDOVRDFWHGDVWKHVLVDGYLVRUIRU JUDGXDWLRQVWXGHQWVDQGKDVIXOILOOHGWHDFKLQJDFWLYLWLHVIRUJUDGXDWHVWXGHQWVLQ WKH FXUULFXOXP RI WKH 0DVWHU FRXUVH RI JHRPHFKDQLFV +H SDUWLFLSDWHG LQ WKH LQWHUQDWLRQDO JHRPHFKDQLFV QHWZRUN $/(57 DQG DWWHQGHG WKH LQWHUQDWLRQDO QHWZRUN RI 086( IRU XQVDWXUDWHG VRLO PHFKDQLFV 2Q QDWLRQDO 'XWFK OHYHO KH SDUWLFLSDWHGLQWKH*UDGXDWH6FKRRORI(QJLQHHULQJ0HFKDQLFV 6LQFH 0D\ KH LV HPSOR\HG E\ 'HOWDUHV WKH 'XWFK 5HVHDUFK ,QVWLWXWH IRU +\GUDXOLF DQG *HRWHFKQLFDO (QJLQHHULQJ ORFDWHG LQ 'HOIW 7KHUH KLV UHVHDUFK DFWLYLWLHVDUHUHODWHGWRVRIWVRLOHQJLQHHULQJIRFXVVLQJRQLQIUDVWUXFWXUDOSURMHFWV DQGGLNHWHFKQRORJ\6LQFH-XO\WRJHWKHUZLWKSURIHVVRU3LHWHU9HUPHHUKH LV LQYROYHG LQ WKH UHVHDUFK SURJUDPPH FRQFHUQLQJ WKH 0DWHULDO 3RLQW 0HWKRG 030 IRU QXPHULFDO PRGHOOLQJ RI ODUJH GHIRUPDWLRQV LQ VRLO²ZDWHU LQWHUDFWLRQ SUREOHPV
3XEOLFDWLRQV
$OOHUVPD +*% 5RKH $ &HQWULIXJH WHVWV RQ WKH IDLOXUH PHFKDQLVPV RI G\NHV ,Q WK 6RXWKHDVW$VLDQ*HRWHFKQLFDO&RQIHUHQFH+RQJ.RQJ6ZHWV =HLWOLQJHU S² $OOHUVPD +*% 5RKH $ 'XSRQW 2 &HQWULIXJH WHVWV RQ WKH IDLOXUH RI GLNHV FDXVHG E\ XSOLIW SUHVVXUH ,Q ,QWHUQDWLRQDO &RQIHUHQFH RQ 3K\VLFDO 0RGHOOLQJ LQ *HRWHFKQLFV 6W -RKQ·V 6ZHWV =HLWOLQJHU S² $OOHUVPD +*% 5RKH $ &HQWULIXJH WHVWV RQ WKH IDLOXUH RI GLNHV FDXVHG E\ XSOLIW SUHVVXUH,QWHUQDWLRQDO-RXUQDORI3K\VLFDO0RGHOOLQJLQ*HRWHFKQLFV² 5RKH$0ROHQNDPS)YDQ+RUVVHQ:7 ,QYHVWLJDWLRQRIPDWHULDOSDUDPHWHUILHOGDW WKH OLPLWV RI H[LVWHQFH DQG XQLTXHQHVV RIILQLWH HOHPHQWVIRUDSSOLFDWLRQ LQJHRPHFKDQLFV ,Q WK ,QWHUQDWLRQDO&RQIHUHQFHRI,$&0$*7XULQ,WDO\3jWURQHGLWRUH S² 5RKH$0ROHQNDPS)YDQ+RUVVHQ:7 8QLTXHQHVVDQGVWDELOLW\RISODQHERXQGDU\ YDOXH SUREOHPV LQ ILQLWH HOHPHQW GHVFULSWLRQ ,Q WK ,QWHUQDWLRQDO 6\PSRUVLXP RQ 1XPHULFDO 0RGHOVLQ*HRPHFKDQLFV5KRGHV*UHHFHS² 5RKH $ 0ROHQNDPS ) YDQ +RUVVHQ :7 2Q WKH XQLTXHQHVV RI VROXWLRQV IRU WKH 'LULFKOHW ERXQGDU\ YDOXH SUREOHP RI OLQHDU HODVWRVWDWLFV LQ WKH FLUFXODU GRPDLQ $FWD 0HFKDQLFD ² 5RKH $ *DUHDX /) 0ROHQNDPS ) /DWHUDO RHGRPHWHU WHVWLQJ RI DQLVRWURSLF FOD\ DV DIIHFWHGE\VXUIDFHURXJKQHVV*pRWHFKQLTXH ²
DYDLODEOHRQOLQHDWZZZDURKHQOSKG
$FNQRZOHGJHPHQWV
7KRVHFRQFHUQHGNQRZZKDW,DSSUHFLDWHWKHPIRU