Transport Phenomena - DCU

23 downloads 175 Views 3MB Size Report
Systems. 4. Microfabrication Technologies. 5. Flow Control. 6. Micropumps. 7. ... Biological Fluids ... Process underlying all other transport phenomena in fluids.
Contents

1. Introduction

9. Liquid Handling

2. Fluids

10.Microarrays

3. Physics of Microfluidic Systems

11.Microreactors 12.Analytical Chips

4. Microfabrication Technologies Pr isbexa ispel: Ausar beitun gspha Au tsarbei ungde rStand ard-Ze el

13.Particle-Laden Fluids

5. Flow Control

a. Measurement Techniques

6. Micropumps 7. Sensors

b. Fundamentals of Biotechnology

8. Ink-Jet Technology

c. High-Throughput Screening

Microfluidics - Jens Ducrée

Fluids: Transport Phenomena

1

2. Fluids 2.1. General Characteristics 2.2. Dispersions 2.3. Thermodynamics 2.4. Transport Phenomena 2.5. Solutions 2.6. Surface Tension Pr isbexa ispel: Ausar beitun gspha Au tsarbei ungde rStand ard-Ze el

2.7. Electrical Properties 2.8. Optical Properties 2.9. Biological Fluids

Microfluidics - Jens Ducrée

Fluids: Transport Phenomena

2

2.4. Transport Phenomena 2.4.1. Diffusion 2.4.2. Viscosity 2.4.3. Transport of Heat 2.4.4. Characteristic Numbers

Pr isbexa ispel: Ausar beitun gspha Au tsarbei ungde rStand ard-Ze el

Microfluidics - Jens Ducrée

Fluids: Transport Phenomena

3

2.4 Summary of Phenomenological Laws  Transport processes  Arbitrary thermal motion on molecular level  Driven by gradients (inhomogeneities)  Mostly linear relationship Flow = coefficient  force

Pr isbexa ispel: Ausar beitun gspha Au tsarbei ungde rStand ard-Ze el

Microfluidics - Jens Ducrée

Fluids: Transport Phenomena

4

2.4.1. Diffusion

 Diffusion  Counteracts nonuniform particle densities  Thermal „Brownian“ motion  Process underlying all other transport phenomena in fluids

 Fick‘s first law

Pr isbexa ispel: Ausar beitun gspha Au tsarbei ungde rStand ard-Ze el

 Current density jN antiparallel to gradient  Systems seeks homogeneity  Diffusion coefficient D [m² s-1]

Microfluidics - Jens Ducrée

Fluids: Transport Phenomena

5

2.4.1. Diffusion  Fick‘s second law  Time domain  Fixed location

 Combining Fick‘s first law and equation of continuity

Pr isbexa ispel: Ausar beitun gspha Au tsarbei ungde rStand ard-Ze el

 Laplace equation

 Stationary conditions

Microfluidics - Jens Ducrée

Fluids: Transport Phenomena

6

2.4.1 Molecular Picture  Derivation of diffusion constant D  Flow through surface z1  Between two planes with diverging particle densities  Distance = mean free path lmfp  Particles reach plane without collisions (statistically) Pr isbexa ispel: Ausar beitun gspha Au tsarbei ungde rStand ard-Ze el

 Linear term of Taylor expansion Microfluidics - Jens Ducrée

Fluids: Transport Phenomena

7

2.4.1 Diffusion coefficient  Calculation of diffusion coefficient  Assumption: uniformly distributed directions of all vectors v

average over Ensemble

Pr isbexa ispel: Ausar beitun gspha Au tsarbei ungde rStand ard-Ze el

Microfluidics - Jens Ducrée

Fluids: Transport Phenomena

8

2.4.1 Examples for Diffusional Processes  Example  Bilateral diffusion from 2-D layer  Within pure solvent  Initial conditions

Pr isbexa ispel: Ausar beitun gspha Au tsarbei ungde rStand ard-Ze el

 Solution by „educated guess“

Microfluidics - Jens Ducrée

Fluids: Transport Phenomena

9

2.4.1 Examples for Diffusive Processes

Pr isbexa ispel: Ausar beitun gspha Au tsarbei ungde rStand ard-Ze el

Microfluidics - Jens Ducrée

Fluids: Transport Phenomena

10

2.4.1 Examples for Diffusive Processes

Pr isbexa ispel: Ausar beitun gspha Au tsarbei ungde rStand ard-Ze el

Microfluidics - Jens Ducrée

Fluids: Transport Phenomena

11

2.4.1 Examples for Diffusive Processes

Pr isbexa ispel: Ausar beitun gspha Au tsarbei ungde rStand ard-Ze el

Microfluidics - Jens Ducrée

Fluids: Transport Phenomena

12

2.4.1 Examples for Diffusive Processes

Pr isbexa ispel: Ausar beitun gspha Au tsarbei ungde rStand ard-Ze el

Microfluidics - Jens Ducrée

Fluids: Transport Phenomena

13

2.4.1 Examples for Diffusive Processes

Pr isbexa ispel: Ausar beitun gspha Au tsarbei ungde rStand ard-Ze el

Microfluidics - Jens Ducrée

Fluids: Transport Phenomena

14

2.4.1 Examples for Diffusive Processes  Example  Diffusion through permeable diaphragm  Initial conditions

Pr isbexa ispel: Ausar beitun gspha Au tsarbei ungde rStand ard-Ze el

Microfluidics - Jens Ducrée

Fluids: Transport Phenomena

15

2.4.1. Laminar Mixing

Pr isbexa ispel: Ausar beitun gspha Au tsarbei ungde rStand ard-Ze el

Microfluidics - Jens Ducrée

Fluids: Transport Phenomena

16

2.4.1 Time and Length Scales  Distance

2 (“rules of thumb”)

 Time

Pr isbexa ispel: Ausar beitun gspha Au tsarbei ungde rStand ard-Ze el

2 ~l2/D

Microfluidics - Jens Ducrée

Fluids: Transport Phenomena

17

2.4.1 Brownian Motion  Discovered by Scottish Botanist Robert Brown in 1827  Random thermal motion of pollen under microscope

 Closely related to thermal velocity

Pr isbexa ispel: Ausar beitun gspha Au tsarbei ungde rStand ard-Ze el

 Mesoscopic particle    

Width of distribution of particle locations

r0 = 1 µm m = 10-15 kg T = 293 K vT  3 mm s-1

Microfluidics - Jens Ducrée

Fluids: Transport Phenomena

18

2.4.1 Brownian Motion

 Fluorescent particles Pr isbexa ispel: Ausar beitun gspha Au tsarbei ungde rStand ard-Ze el

 4 seconds of data  2 µm in diameter  Left picture  Particles moving in pure water

 Right picture shows  Particles moving in concentrated solution of DNA  I.e., in viscoelastic solution in other words From http://www.deas.harvard.edu/projects/weitzlab/research/brownian.html

Microfluidics - Jens Ducrée

Fluids: Transport Phenomena

19

2.4.1 Brownian Motion

Pr isbexa ispel: Ausar beitun gspha Au tsarbei ungde rStand ard-Ze el

 Erratic motion of single milk droplets in water  Droplets size of about 1 micrometer  Continuously kicked by fast-moving water molecules  Size 5000 times smaller

 Magnification factor of about 10,000 http://www.microscopy-uk.org.uk/

Microfluidics - Jens Ducrée

Fluids: Transport Phenomena

20

2.4.1 Boltzmann Distribution  System at T in thermal equilibrium  Each particle with certain kinetic energy  Potential gradient  Particles accumulate in potential minimum

 Counteracting diffusive current

Pr isbexa ispel: Ausar beitun gspha Au tsarbei ungde rStand ard-Ze el

 Boltzmann distribution  Ratio of particle densities Ni at two locations separated by potential difference E Boltzmann function at T = 273 K calibrated to N0 = 1

Microfluidics - Jens Ducrée

Fluids: Transport Phenomena

21

2.4.1 Maxwell Distribution  Maxwell distribution  Fraction of molecules in velocity interval [v, v + dv]  f(v)dv is probability of finding a vector v in [v, v + dv]  Normalization of integrand function f(v) to unity Pr isbexa ispel: Ausar beitun gspha Au tsarbei ungde rStand ard-Ze el

 Leads to Maxwell distribution

Microfluidics - Jens Ducrée

Fluids: Transport Phenomena

22

2.4.1 Maxwell Distribution  Transformation into energy space  Replacing v with kinetic energy E = 1/2 mv2

Pr isbexa ispel: Ausar beitun gspha Au tsarbei ungde rStand ard-Ze el

 Helps determining which fraction of particles is capable of „jumping“ over a certain potential energy barrier E0  Analytical expression for this fraction

Microfluidics - Jens Ducrée

Fluids: Transport Phenomena

23

2.4.1 Reaction Kinetics  Chemical Reactions  Binary collisions  Collision rate scales linearly with vT and thus with T1/2  Concentration of reaction partners c also influences speed of reaction  For single step reaction

Pr isbexa ispel: Ausar beitun gspha Au tsarbei ungde rStand ard-Ze el

 Reaction rate

- Governed by stoichiometry (x, y, ...)  Concentrations c(X), c(Y), …  Reaction velocity constant k’c Microfluidics - Jens Ducrée

Fluids: Transport Phenomena

24

2.4.1 Reaction Kinetics  Chemical reactions  Activation energy (Gibbs energy)  Simple model reaction

 For simplicity: G = U = Eact  Typically Eact = 60 to 250 kJ mol-1  G = Gact – G‘act Pr isbexa ispel: Ausar beitun gspha Au tsarbei ungde rStand ard-Ze el

 G < 0 exothermic  G > 0 endothermic

 Velocity constant of reaction  Strongly dependent on T  Reaction-specific  Arrhenius equation

Microfluidics - Jens Ducrée

Fluids: Transport Phenomena

25

2.4. Transport Phenomena 2.4.1. Diffusion 2.4.2. Viscosity 2.4.3. Transport of Heat 2.4.4. Characteristic Numbers

Pr isbexa ispel: Ausar beitun gspha Au tsarbei ungde rStand ard-Ze el

Microfluidics - Jens Ducrée

Fluids: Transport Phenomena

26

2.4.2. Viscosity  Viscosity  Transfer of momentum from one plane sliding parallel to another  Mediated by fluid sandwiched between them  „Internal friction“ of fluid

 Newton’s law of viscosity Pr isbexa ispel: Ausar beitun gspha Au tsarbei ungde rStand ard-Ze el

 Relates flow of axial momentum pz = m vZ along lateral x-direction from one plane sliding parallel to another one by viscosity   Unit of : Pa s = kg m-1 s-1 or old Poise with 1 Ps = 0.1 Pa s

Microfluidics - Jens Ducrée

Fluids: Transport Phenomena

27

2.4.2 Viscosity of Gases  Assumptions for picture: - Flow in z-direction - Uniform particle density

 Net flux in x-direction of longitudinal momentum pz

Newton Pr isbexa ispel: Ausar beitun gspha Au tsarbei ungde rStand ard-Ze el

 Viscosity of gases

T

 Kinematic viscosity - „Momentum diffusivity“

Microfluidics - Jens Ducrée

Fluids: Transport Phenomena

28

2.4.2 Viscosity of Gases

Order: 10-5 Pa s Pr isbexa ispel: Ausar beitun gspha Au tsarbei ungde rStand ard-Ze el

Microfluidics - Jens Ducrée

Fluids: Transport Phenomena

29

2.4.2 Viscosity of Liquids  Liquid  Very dense gas  lmfp  average distance between molecules  Macroscopic behavior governed by intermolecular potentials

 Picture  Moving A to A‘  Activation energy E0  External shear stress xz

Pr isbexa ispel: Ausar beitun gspha Au tsarbei ungde rStand ard-Ze el

- Force f on each particle on wall - f counteracts motion in negative z-direction - Momentum loss transferred to B - „Activation energy“ E = f a / 2

Microfluidics - Jens Ducrée

Fluids: Transport Phenomena

30

2.4.2 Viscosity of Liquids  Transfer of momentum pZ = m vZ  Lateral velocity gradient

 net difference between number of jumps +Z and -Z in positive and negative z-direction, respectively  Evaluation of gradient (using Boltzmann Ansatz) Pr isbexa ispel: Ausar beitun gspha Au tsarbei ungde rStand ard-Ze el

0 fundamental oscillation frequency of molecule between neighbors Microfluidics - Jens Ducrée

Fluids: Transport Phenomena

31

2.4.2 Viscosity of Liquids  First order Taylor expansion for E / kBT

 Viscosity of liquids Pr isbexa ispel: Ausar beitun gspha Au tsarbei ungde rStand ard-Ze el

T

Microfluidics - Jens Ducrée

Fluids: Transport Phenomena

32

2.4.2 Viscosity of Liquids

Order: 10-3 Pa s (gases: 10-5 Pa s)

Microfluidics - Jens Ducrée

Pr isbexa ispel: Ausar beitun gspha Au tsarbei ungde rStand ard-Ze el

Fluids: Transport Phenomena

33

2.4.2 Newtonian Fluids  Newtonian fluids  Classical idealized fluids  Linear stress-strain relationship  I.e. linear relationship between tension tensor  and tensor of rate of deformation (strain rate)  - Viscosity  : constant of proportionality

 Approximated by gases and „simple“ liquids like water

Pr isbexa ispel: Ausar beitun gspha Au tsarbei ungde rStand ard-Ze el

 Non-Newtonian fluids  Dispersions containing large structured macromolecules  E.g. polymers and proteins

Microfluidics - Jens Ducrée

Fluids: Transport Phenomena

34

2.4. Transport Phenomena 2.4.1. Diffusion 2.4.2. Viscosity 2.4.3. Transport of Heat 2.4.4. Characteristic Numbers

Pr isbexa ispel: Ausar beitun gspha Au tsarbei ungde rStand ard-Ze el

Microfluidics - Jens Ducrée

Fluids: Transport Phenomena

35

2.4.3. Transport of Heat  Equilibrium thermodynamics  System seeks uniform temperature distribution

 Inhomogeneous T-distribution  Transport of heat

 Two basic modes  Diffusion - Statistical phenomenon (related to entropy) - Summarized in macroscopic thermal conductivity  Pr isbexa ispel: Ausar beitun gspha Au tsarbei ungde rStand ard-Ze el

 Convection - Far more complicated - Macroscopic ramifications - Minor importance in microworld

 Another frequently encountered issue  Transfer of thermal energy at interface between two media/phases  No inter-phase diffusion / exchange of particles  Transmission and transition of heat Microfluidics - Jens Ducrée

Fluids: Transport Phenomena

36

2.4.3 Thermal Conductivity  Fourier‘s law  Basic equation quantifying diffusive transport of heat

 Net flow of energy jQ  Thermal conductivity 

 Power

Pr isbexa ispel: Ausar beitun gspha Au tsarbei ungde rStand ard-Ze el

 Cross-section of flow A

 Relaxation time for temperature gradient  Distance d Microfluidics - Jens Ducrée

Fluids: Transport Phenomena

37

2.4.3 Thermal Conductivity  Molecular picture  Net energy flow in positive z-direction  Using linear terms of Taylor-expansion

Pr isbexa ispel: Ausar beitun gspha Au tsarbei ungde rStand ard-Ze el

Microfluidics - Jens Ducrée

Fluids: Transport Phenomena

38

2.4.3 Thermal Conductivity  Thermal conductivity

 Approximating on lmfp

Pr isbexa ispel: Ausar beitun gspha Au tsarbei ungde rStand ard-Ze el

 Independent of particle density N for ideal gas

 Heat diffusion coefficient kinematic viscosity

Microfluidics - Jens Ducrée

Fluids: Transport Phenomena

39

2.4.3 Thermal Conductivity  Typical values

Pr isbexa ispel: Ausar beitun gspha Au tsarbei ungde rStand ard-Ze el

Microfluidics - Jens Ducrée

Fluids: Transport Phenomena

40

2.4.3 Convection

 Macroscopic transport of particles  Characteristic for macro-devices  Important for heat transport in liquids and gases

 Forced convection  Transport of heat by macroscopic particle flow  E.g., by an external mechanical source Pr isbexa ispel: Ausar beitun gspha Au tsarbei ungde rStand ard-Ze el

 Free convection  For instance driven by buoyancy

Microfluidics - Jens Ducrée

Fluids: Transport Phenomena

41

2.4.3 Convection

 Convective currents  Stationary or non-stationary flow patterns

 Simulation of convection  Often fail to coincide with experimental observations  E.g., atmospheric weather and climate Pr isbexa ispel: Ausar beitun gspha Au tsarbei ungde rStand ard-Ze el

 Free Convection of minor importance in microdevices  Laminar conditions Microfluidics - Jens Ducrée

Fluids: Transport Phenomena

42

2.4. Transport Phenomena 2.4.1. Diffusion 2.4.2. Viscosity 2.4.3. Transport of Heat 2.4.4. Characteristic Numbers

Pr isbexa ispel: Ausar beitun gspha Au tsarbei ungde rStand ard-Ze el

Microfluidics - Jens Ducrée

Fluids: Transport Phenomena

43

2.4.4. Characteristic Numbers  Fourier mass number  Characterizes diffusion

 Time t, e.g. residence in chemical reaction chamber  Typical diffusive time scale tD = l2 / D Pr isbexa ispel: Ausar beitun gspha Au tsarbei ungde rStand ard-Ze el

 Schmidt number  Relates viscosity and diffusion

 Roughly 0.8 for gases

Microfluidics - Jens Ducrée

Fluids: Transport Phenomena

44

2.4.4. Characteristic Numbers  Fourier number  Diffusion of heat  Stored thermal energy

 Prandtl number

Pr isbexa ispel: Ausar beitun gspha Au tsarbei ungde rStand ard-Ze el

 Ratio between momentum diffusivity (via dynamic viscosity ) and heat diffusivity (via thermal conductivity )

 Specific heat capacity Cm  Typically 3 to 300 for liquids and 0.7 to1.0 for gases Microfluidics - Jens Ducrée

Fluids: Transport Phenomena

45