Reading Strategy: Read Geometry Symbols. )N. 7HEN. CAREFULLY. Try This.
2EWRITE. 1. THE. 2. 3. 3EGMENT89"# 4.P Q. 4RANSLATE. 5. MȜ&'( 678. 6.
/À>}iÊ
}ÀÕiVi ! 4RIANGLESAND#ONGRUENCE Ê {£Ê >ÃÃvÞ}Ê/À>}iÃ Ê >LÊ iÛi«ÊÌ
iÊ/À>}iÊ-ÕÊ /
iÀi Ê {ÓÊ }iÊ,i>ÌÃ
«ÃÊÊ/À>}iÃ Ê {ÎÊ }ÀÕiÌÊ/À>}iÃ
" 0ROVING4RIANGLE #ONGRUENCE Ê >LÊ Ý«ÀiÊ---Ê>`Ê--Ê/À>}iÊ
}ÀÕiVi Ê {{Ê /À>}iÊ }ÀÕiVi\Ê---Ê >`Ê-Ê >LÊ *Ài`VÌÊ"Ì
iÀÊ/À>}iÊ
}ÀÕiViÊ,i>ÌÃ
«Ã Ê {xÊ /À>}iÊ }ÀÕiVi\Ê-]Ê -]Ê>`Ê Ê {ÈÊ /À>}iÊ }ÀÕiVi\Ê * /
Ê {ÇÊ ÌÀ`ÕVÌÊÌÊ À`>ÌiÊ*Àv Ê {nÊ ÃÃViiÃÊ>`Ê µÕ>ÌiÀ>Ê/À>}iÃ Ê ÝÌÊ *ÀÛ}Ê ÃÌÀÕVÌÃÊ6>`
7HENYOUTURNAKALEIDOSCOPE THESHAPESFLIPTOFORMAVARIETYOF DESIGNS9OUCANCREATEFLEXAGONS THATALSOFLIPTOFORMPATTERNS
+%97/2$ÇÊ
*À
Ó£Ó
>«ÌiÀÊ{
Ê6V>LÕ>ÀÞ -ATCHEACHTERMONTHELEFTWITHADEFINITIONONTHERIGHT ° ASTATEMENTTHATISACCEPTEDASTRUEWITHOUTPROOF Ê £° ACUTEANGLE Ê Ó° CONGRUENTSEGMENTS
° ANANGLETHATMEASURESGREATERTHANANDLESSTHAN
Ê Î° OBTUSEANGLE
° ASTATEMENTTHATYOUCANPROVE
Ê {° POSTULATE
° SEGMENTSTHATHAVETHESAMELENGTH
Ê x° TRIANGLE
° ATHREE SIDEDPOLYGON ° ANANGLETHATMEASURESGREATERTHANANDLESSTHAN
Êi>ÃÕÀiÊ}ià 5SEAPROTRACTORTOMEASUREEACHANGLE Ê È°
ǰ
5SEAPROTRACTORTODRAWANANGLEWITHEACHOFTHEFOLLOWINGMEASURES Ê n° ° £ä° ££°
Ê-ÛiÊ µÕ>ÌÃÊÜÌ
ÊÀ>VÌà 3OLVE X Ê£Ó° ? ? Ê£{° X ?
? £Î° X ? £x° Y Y ?
Ê iVÌÊ7À`ÃÊ>`Ê}iLÀ> 7RITEANEQUATIONFOREACHSTATEMENT ʣȰ 4ANYASAGETISTHREETIMES-ARTINSAGEM ʣǰ 4WICETHELENGTHOFASEGMENTXISFT Ê£n° 4HESUMOFANDTWICEANANGLEMEASUREYIS Ê£° 4HEPRICEOFARADIORISLESSTHANTHEPRICEOFA#$PLAYERP ÊÓä° (ALFTHEAMOUNTOFLIQUIDJINAJARISOZMORETHANTHEAMOUNTOFLIQUIDBINABOWL
/À>}iÊ }ÀÕiVi
Ó£Î
+EY 6OCABULARY6OCABULARIO *ÀiÛÕÃÞ]ÊÞÕ
>VÕÌiÊÌÀ>}i
ÌÀ?}ÕÊ>VÕÌ?}Õ
V}ÀÕiÌÊ«Þ}Ã
«}ÃÊV}ÀÕiÌiÃ
VÀ>ÀÞ
VÀ>À
iµÕ>ÌiÀ>ÊÌÀ>}i
ÌÀ?}ÕÊiµÕ?ÌiÀ
iÝÌiÀÀÊ>}i
?}ÕÊiÝÌiÀ
ÌiÀÀÊ>}i
?}ÕÊÌiÀ
ÃÃViiÃÊÌÀ>}i
ÌÀ?}ÕÊÃÃViiÃ
LÌÕÃiÊÌÀ>}i
ÌÀ?}ÕÊLÌÕÃ?}Õ
9ÕÊÜÊÃÌÕ`Þ
À}
ÌÊÌÀ>}i
ÌÀ?}ÕÊÀiVÌ?}Õ
s CLASSIFYINGTRIANGLES s PROVINGTRIANGLESCONGRUENT s USINGCORRESPONDINGPARTSOF
ÃV>iiÊÌÀ>}i
ÌÀ?}ÕÊiÃV>i
s MEASUREDANDCLASSIFIEDANGLES s WROTEDEFINITIONSFORTRIANGLES
ANDOTHERPOLYGONS USEDDEDUCTIVEREASONING s s PLANNEDANDWROTEPROOFS
CONGRUENTTRIANGLESINPROOFS s POSITIONINGFIGURESINTHE COORDINATEPLANEFORUSEIN PROOFS s PROVINGTHEOREMSABOUT ISOSCELESANDEQUILATERAL TRIANGLES
9ÕÊV>ÊÕÃiÊÌ
iÊÃÃÊ i>Ài`ÊÊÌ
ÃÊV
>«ÌiÀ
s IN!LGEBRAAND0RECALCULUS s INOTHERCLASSES SUCHASIN
Ó£{
0HYSICSWHENYOUSOLVEFOR VARIOUSMEASURESOFATRIANGLE ANDIN'EOGRAPHYWHENYOU IDENTIFYALOCATIONUSING COORDINATES s OUTSIDEOFSCHOOLTOMAKE GREETINGCARDSORTODESIGN JEWELRYORWHENEVERYOU CREATESETSOFOBJECTSTHAT HAVETHESAMESIZEANDSHAPE
>«ÌiÀÊ{
6OCABULARY#ONNECTIONS 4OBECOMEFAMILIARWITHSOMEOFTHE VOCABULARYTERMSINTHECHAPTER CONSIDER THEFOLLOWING9OUMAYREFERTOTHECHAPTER THEGLOSSARY ORADICTIONARYIFYOULIKE Ê£° 4HE,ATINWORDACUTUSMEANShPOINTEDv ORhSHARPv$RAWATRIANGLETHATLOOKS POINTEDORSHARP$OYOUTHINKTHISIS ANACUTETRIANGLE ÊÓ° #ONSIDERTHEEVERYDAYMEANINGOF THEWORDEXTERIOR7HEREDOYOUTHINK ANEXTERIORANGLEOFATRIANGLEISLOCATED Êΰ 9OUALREADYKNOWTHEDEFINITIONOFAN OBTUSEANGLE5SETHISMEANINGTOMAKE ACONJECTUREABOUTANOBTUSETRIANGLE Ê{° 3CALENECOMESFROMA'REEKWORDTHAT MEANShUNEVENv)FTHESIDESOFASCALENE TRIANGLEAREUNEVEN DRAWANEXAMPLEOF SUCHATRIANGLE
,i>`}Ê-ÌÀ>Ìi}Þ\Ê,i>`ÊiiÌÀÞÊ-ÞLÃ )N'EOMETRYWEOFTENUSESYMBOLSTOCOMMUNICATEINFORMATION 7HENSTUDYINGEACHLESSON READBOTHTHESYMBOLSANDTHEWORDSSLOWLYAND CAREFULLY2EADINGALOUDCANSOMETIMESHELPYOUTRANSLATESYMBOLSINTOWORDS
! POINT
Ȝ89: ANGLE89ÌÊ>Ê v}ÕÀi]ÊÞÕÊV>ÌÊ >ÃÃÕiÊÃi}iÌÃÊ>ÀiÊ V}ÀÕiÌÊL>Ãi`ÊÊ Ì
iÀÊ>««i>À>Vi°Ê /
iÞÊÕÃÌÊLiÊ>Ài`Ê >ÃÊV}ÀÕḭ
£x
£n
£x
̱!"$
x
"YTHE3EGMENT!DDITION0OSTULATE "$"# #$ 3INCENOSIDESARECONGRUENT ̱!"$ISSCALENE 5SETHEDIAGRAMTOCLASSIFY̱!#$BYITSSIDELENGTHS
%8!-0,%
Î 5SING4RIANGLE#LASSIFICATION
&INDTHESIDELENGTHSOFTHETRIANGLE 3TEP &INDTHEVALUEOFX ÜÜ ÜÜ *+ Ɂ+, *++, X X X X
xÝÊÊä°Ó
Ûi
ÝÊ ÊΰÓ
{ÝÊÊ£°Î
iv°ÊvÊɁÊÃi}ð -ÕLÃÌÌÕÌiÊÊ {ÝÊʣΠÊvÀÊÊ>`ÊÊ ÝÊ ÊÎ°Ó ÊvÀʰ ``Ê£°ÎÊ>`ÊÃÕLÌÀ>VÌÊÝÊvÀÊLÌ
ÊÃ`ið Û`iÊLÌ
ÊÃ`iÃÊLÞÊΰ
3TEP 3UBSTITUTEINTOTHEEXPRESSIONSTOFINDTHESIDELENGTHS *+X +,X *,X &INDTHESIDELENGTHSOF EQUILATERAḺ&'(
ÎÞÊÊ{
ÓÞÊ ÊÎ
xÞÊÊ£n
{£Ê >ÃÃvÞ}Ê/À>}iÃ

%8!-0,%
{ Ê ÕÃVÊ««V>Ì !MANUFACTURERPRODUCES MUSICALTRIANGLESBYBENDING PIECESOFSTEELINTOTHESHAPE OFANEQUILATERALTRIANGLE 4HETRIANGLESAREAVAILABLEIN SIDELENGTHSOFINCHES INCHES ANDINCHES(OWMANY INCHTRIANGLESCANTHE MANUFACTURERPRODUCEFROM AINCHPIECEOFSTEEL
{ʰ
{ʰ
4HEAMOUNTOFSTEELNEEDEDTO MAKEONETRIANGLEISEQUALTO THEPERIMETER0OFTHE EQUILATERALTRIANGLE
{ʰ
0 IN 4OFINDTHENUMBEROFTRIANGLES THATCANBEMADEFROMINCHES OFSTEEL DIVIDEBYTHEAMOUNT OFSTEELNEEDEDFORONETRIANGLE TRIANGLES µ? 4HEREISNOTENOUGHSTEELTOCOMPLETEANINTHTRIANGLE 3OTHEMANUFACTURERCANMAKETRIANGLESFROMA INPIECEOFSTEEL %ACHMEASUREISTHESIDELENGTHOFANEQUILATERALTRIANGLE $ETERMINEHOWMANYTRIANGLESCANBEFORMEDFROMA INPIECEOFSTEEL A IN B IN
K?@EB8E;;@J:LJJ Ê £° &OṞ$%& NAMETHETHREEPAIRSOFCONSECUTIVESIDESANDTHEVERTEX FORMEDBYEACH Ê Ó° 3KETCHANEXAMPLEOFANOBTUSEISOSCELESTRIANGLE OREXPLAINWHYITIS NOTPOSSIBLETODOSO Ê Î° )SEVERYACUTETRIANGLEEQUIANGULAR%XPLAINANDSUPPORTYOURANSWER WITHASKETCH Ê {° 5SETHE0YTHAGOREAN4HEOREMTOEXPLAINWHYYOUCANNOTDRAWAN EQUILATERALRIGHTTRIANGLE Êx° /Ê", < #OPYANDCOMPLETE THEGRAPHICORGANIZER)NEACHBOX DESCRIBEEACHTYPEOFTRIANGLE
/À>}i
>ÃÃvV>Ì ÞÊÃ`iÃ
Ó£n
>«ÌiÀÊ{Ê /À>}iÊ }ÀÕiVi
ÞÊ>}iÃ
{£Ê
ÝiÀVÃiÃ
+%97/2$ÇÊ{£ +%97/2$ÇÊ*>ÀiÌ
1 Ê*, /
6V>LÕ>ÀÞ !PPLYTHEVOCABULARYFROMTHISLESSONTOANSWEREACHQUESTION Ê
£° )Ṉ*+, *+ +, AND*,AREEQUAL(OWDOESTHISHELPYOUCLASSIFY̱*+,BY ITSSIDELENGTHS
Ê
Ó° ̱89:ISANOBTUSETRIANGLE7HATCANYOUSAYABOUTTHETYPESOFANGLESIṈ89: 3%%%8!-0,% £
P
#LASSIFYEACHTRIANGLEBYITSANGLEMEASURES ΰ ̱$"#
{° ̱!"$
ΣÂ
Ê
P
ǰ ̱%&(
xÂ
n° ̱(&'
Ê
P
n
ǰ{
3%%%8!-0,% Î
ÓäÂ
#LASSIFYEACHTRIANGLEBYITSSIDELENGTHS Ȱ ̱%'(
ÇäÂ
x° ̱!$#
3%%%8!-0,% Ó
Î
ÕÌ-Ìi« &INDTHESIDELENGTHSOFEACHTRIANGLE °
ÈÞ
£ä°
{ÞÊ Ê£Ó
{ÝÊ Êä°x
ÝÊ ÊÓ°{ ÎÊV ÓÝÊ Ê£°Ç
3%%%8!-0,% {
P
Ê££° À>vÌÃ !JEWELERCREATESTRIANGULAREARRINGSBYBENDING PIECESOFSILVERWIRE%ACHEARRINGISANISOSCELESTRIANGLE WITHTHEDIMENSIONSSHOWN(OWMANYEARRINGSCANBE MADEFROMAPIECEOFWIRETHATISCMLONG £°xÊV
*, /
Ê Ê*," Ê-"6 )NDEPENDENT0RACTICE &OR 3EE %XERCISES %XAMPLE
n n n n
%XTRA0RACTICE Ê3KILLS0RACTICEP3
#LASSIFYEACHTRIANGLEBY ITSANGLEMEASURES
ÈäÂ
£Ó° ̱"%!
£Î° ̱$"#
£{° ̱!"#
ÎäÂ
ÈäÂ
Îä Îä ÈäÂ
*
#LASSIFYEACHTRIANGLEBYITSSIDELENGTHS £x° ̱034
£È° ̱230
£Ç
£Ç° ̱204
!PPLICATION0RACTICEP3
,
ÕÌ-Ìi« &INDTHESIDELENGTHSOFEACHTRIANGLE Ê
£n°
âÊ Êx {âÊÊ{ ÎâÊÊ£
Ê Ê Ê
£ä
-
/
£° ÓÝÊ ÊȰn nÝÊ Ê£°{
Óä° $RAWATRIANGLELARGEENOUGHTOMEASURE,ABELTHEVERTICES8 9 AND: >° .AMETHETHREESIDESANDTHREEANGLESOFTHETRIANGLE L° 5SEARULERANDPROTRACTORTOCLASSIFYTHETRIANGLEBYITSSIDELENGTHS ANDANGLEMEASURES {£Ê >ÃÃvÞ}Ê/À>}iÃ
Ó£
>À«iÌÀÞ 5SETHEFOLLOWINGINFORMATIONFOR%XERCISESAND !MANUFACTURERMAKESTRUSSES ORTRIANGULARSUPPORTS FORTHEROOFSOFHOUSES%ACHTRUSSISTHESHAPEOFAN ÜÜ ÜÜ ISOSCELESTRIANGLEINWHICH01Ɂ024HELENGTHOFTHE ÜÜ ?? BASE12IS THELENGTHOFEACHOFTHECONGRUENTSIDES Ê
Ó£° 4HEPERIMETEROFEACHTRUSSISFT &INDEACHSIDELENGTH
Ê
*
+
,
ÓÓ° (OWMANYTRUSSESCANTHEMANUFACTURERMAKEFROMFEETOFLUMBER $RAWANEXAMPLEOFEACHTYPEOFTRIANGLEOREXPLAINWHYITISNOTPOSSIBLE
Ê
Óΰ ISOSCELESRIGHT
Ó{° EQUIANGULAROBTUSE
Óx° SCALENERIGHT
Ê
ÓȰ EQUILATERALACUTE
 SCALENEEQUIANGULAR
Ón° ISOSCELESACUTE
Ê
Ó° !NEQUILATERALTRIANGLEHASAPERIMETEROFIN 7HATISTHELENGTHOFEACHSIDEOFTHETRIANGLE
8iZ_`k\Zkli\
#LASSIFYEACHTRIANGLEBYITSANGLESANDSIDES
Ê
Îä° ̱!"#
Σ° ̱!#$
Ê
ÎÓ° !NISOSCELESTRIANGLEHASAPERIMETEROFCM4HECONGRUENTSIDESMEASURE X CM4HELENGTHOFTHETHIRDSIDEISXCM7HATISTHEVALUEOFX
Ó{Â
Ó{Â
Îΰ ÀV
ÌiVÌÕÀi 4HEBASEOFTHE&LATIRON"UILDINGISATRIANGLEBORDEREDBYTHREE STREETS"ROADWAY &IFTH!VENUE AND%AST4WENTY SECOND3TREET4HE&IFTH!VENUESIDE ISFTSHORTERTHANTWICETHE%AST4WENTY SECOND3TREETSIDE4HE%AST4WENTY SECOND 3TREETSIDEISFTSHORTERTHANHALFTHE"ROADWAYSIDE4HE"ROADWAYSIDEISFT >° &INDTHETWOUNKNOWNSIDELENGTHS L° #LASSIFYTHETRIANGLEBYITSSIDELENGTHS
Ê Ê Ê
Î{° ÀÌV>Ê/
} )SEVERYISOSCELESTRIANGLEEQUILATERAL)SEVERYEQUILATERAL TRIANGLEISOSCELES%XPLAIN
$ANIEL"URNHAM DESIGNEDANDBUILT THE STORY&LATIRON "UILDINGIN.EW9ORK #ITYIN
4ELLWHETHEREACHSTATEMENTISSOMETIMES ALWAYS ORNEVERTRUE3UPPORTYOUR ANSWERWITHASKETCH
ÊSource:
Îx° !NACUTETRIANGLEISASCALENETRIANGLE
Ê
ÎȰ !SCALENETRIANGLEISANOBTUSETRIANGLE
Ê
낡 !NEQUIANGULARTRIANGLEISANISOSCELESTRIANGLE
WWWGREATBUILDINGSCOM
Ê În° 7ÀÌiÊLÕÌÊÌ 7RITEAFORMULAFORTHESIDELENGTHSOFANEQUILATERALTRIANGLE GIVENTHEPERIMETER0%XPLAINHOWYOUDERIVEDTHEFORMULA Ê Î° ÃÌÀÕVÌ 5SETHEMETHODFORCONSTRUCTINGCONGRUENTSEGMENTSTOCONSTRUCT ANEQUILATERALTRIANGLE
Ê
Ê Ê Ê
ÓÓä
{ä° 4HISPROBLEMWILLPREPAREYOUFORTHE-ULTI 3TEP4EST0REPONPAGE -ARCFOLDEDARECTANGULARSHEETOFPAPER !"#$ INHALF £äÊV ÜÜ ALONG%&(EFOLDEDTHERESULTINGSQUAREDIAGONALLYAND
THENUNFOLDEDTHEPAPERTOCREATETHECREASESSHOWN xÊV >° 5SETHE0YTHAGOREAN4HEOREMTOFIND$%AND#% L° 7HATISTHEMȜ$%# V° #LASSIFY̱$%#BYITSSIDELENGTHSANDBYITSANGLEMEASURES
>«ÌiÀÊ{Ê /À>}iÊ }ÀÕiVi
Ê
{£°Ê 7
>ÌÊÃÊÌ
iÊÃ`iÊi}Ì
ÊvÊ>ÊiµÕ>ÌiÀ>ÊÌÀ>}iÊÜÌ
Ê>Ê«iÀiÌiÀÊvÊÎÈÊÚÚ ÊÓÎÊ V
iö ÓÊÊÊ V
iÃÊ Ê ÎÈÊÊÚ Ê Ê Ê £ÓÊÚ Ê£ÊÊÊ V
iÃ Î Î Ê £nÊÚ Ê£ÊÊÊ V
iÃÊÊ Ê Ê Ê £ÓÊÚ ÊÓÊÊÊ V
ià Î
Ê
{Ó°Ê /
iÊÛiÀÌViÃÊvÊ̱,-/Ê>ÀiÊ,Ê Î]ÊÓ Ê]Ê-Ê Ó]ÊÎ Ê]Ê>`Ê/Ê Ó]Ê£ ʰÊ7
V
ÊvÊÌ
iÃiÊLiÃÌÊ `iÃVÀLiÃÊ̱,-/¶ Ê ÃÃViiÃÊ
Ê
Ê -V>iiÊÊ
Ê µÕ>ÌiÀ>ÊÊ
{Î°Ê 7
V
ÊvÊÌ
iÊvÜ}ÊÃÊ "/Ê>ÊVÀÀiVÌÊ V>ÃÃvV>ÌÊvÊ̱ ¶Ê Ê VÕÌiÊ Ê ÃÃViiÃ Ê µÕ>}Õ>ÀÊ Ê ,}
Ì
ÈäÂ
Îʰ
Ê
Ê ,}
Ì
ÈäÂ
Îʰ
Èä Îʰ
ÜÜ ÜÜ {{° À``i`Ê,iëÃiÊ ̱ ÊÃÊÃÃViiÃ]Ê>`ÊÊ Ê Ê ÊɁÊÊ Ê Ê °Ê ÊÊÊ ÚÚ Ê£ÓÊÝÊ ÊÊÚÚ Ê£{Ê Ê]Ê>`Ê x ÊÊÊ ÚÚ ÊÓÊ ÊÝ Ê°Ê7
>ÌÊÃÊÌ
iÊ«iÀiÌiÀÊvÊ̱ ʶ
Ê Ê 8/ Ê
{x° !TRIANGLEHASVERTICESWITHCOORDINATES A AND A WHEREAɜ #LASSIFYTHETRIANGLEINTWODIFFERENTWAYS%XPLAINYOURANSWER
Ê
{Ȱ 7RITEATWO COLUMNPROOF 'IVEṈ!"#ISEQUIANGULAR %&ȡ!# 0ROVE̱%&"ISEQUIANGULAR
Ê
{ǰ 4WOSIDESOFANEQUILATERALTRIANGLEMEASURE Y UNITSAND Y UNITS )FTHEPERIMETEROFTHETRIANGLEISUNITS WHATISTHEVALUEOFY
Ê
{n° ÕÌ-Ìi« 4HEAVERAGELENGTHOFTHE SIDESOF̱012IS(OWMUCHLONGER THENTHEAVERAGEISTHELONGESTSIDE
* ÎÝÊ Ê{
ÝÊ Ê£Ó
,
nÝÊÊ£È
+
-*,Ê, 6 7 .AMETHEPARENTFUNCTIONOFEACHFUNCTION*ÀiÛÕÃÊVÕÀÃi® Ê
{° YX
xä° YX
x£° Y X
$ETERMINEIFEACHBICONDITIONALISTRUE)FFALSE GIVEACOUNTEREXAMPLEiÃÃÊÓ{® Ê
xÓ° 4WOLINESAREPARALLELIFANDONLYIFTHEYDONOTINTERSECT
Ê
xΰ !TRIANGLEISEQUIANGULARIFANDONLYIFITHASTHREECONGRUENTANGLES
Ê
x{° !NUMBERISAMULTIPLEOFIFANDONLYIFTHENUMBERENDSINA $ETERMINEWHETHEREACHLINEISPARALLELTO ISPERPENDICULARTO OR COINCIDESWITHYXiÃÃÊÎÈ®
Ê Ê
xx° YX xǰ ? YX
xȰ YX X xn° Y? {£Ê >ÃÃvÞ}Ê/À>}iÃ
ÓÓ£
{Ó
$EVELOPTHE4RIANGLE 3UM4HEOREM )NTHISLAB YOUWILLUSEPATTYPAPERTODISCOVERARELATIONSHIPBETWEEN THEMEASURESOFTHEINTERIORANGLESOFATRIANGLE
1ÃiÊÜÌ
ÊiÃÃÊ{Ó
VÌÛÌÞ Ê£ $RAWANDLABEḺ!"#ONASHEETOF NOTEBOOKPAPER
ÊÓ /NPATTYPAPERDRAWALINEŰANDLABEL APOINT0ONTHELINE
ÊÎ 0LACETHEPATTYPAPERONTOPOFTHE TRIANGLEYOUDREW!LIGNTHEPAPERS ÜÜ SOTHAT!"ISONLINEŰAND0AND" COINCIDE4RACEȜ"2OTATETHETRIANGLE ANDTRACEȜ#ADJACENTTOȜ"2OTATE THETRIANGLEAGAINANDTRACEȜ! ADJACENTTOȜ#4HEDIAGRAMSHOWS YOURFINALSTEP
/ÀÞÊ/
Ã Ê £° 7HATDOYOUNOTICEABOUTTHETHREEANGLESOFTHETRIANGLETHATYOUTRACED Ê Ó° 2EPEATTHEACTIVITYTWOMORETIMESUSINGTWODIFFERENTTRIANGLES$OYOUGETTHE SAMERESULTSEACHTIME Ê Î° 7RITEANEQUATIONDESCRIBINGTHERELATIONSHIPAMONGTHEMEASURESOFTHEANGLES OF̱!"# Ê {° 5SEINDUCTIVEREASONINGTOWRITEACONJECTUREABOUTTHESUMOFTHEMEASURESOF THEANGLESOFATRIANGLE ÓÓÓ
>«ÌiÀÊ{Ê /À>}iÊ }ÀÕiVi
!NGLE2ELATIONSHIPS IN4RIANGLES
/BJECTIVES `ÊÌ
iÊi>ÃÕÀiÃÊvÊ ÌiÀÀÊ>`ÊiÝÌiÀÀÊ >}iÃÊvÊÌÀ>}ið ««ÞÊÌ
iÀiÃÊ>LÕÌÊ Ì
iÊÌiÀÀÊ>`ÊiÝÌiÀÀÊ >}iÃÊvÊÌÀ>}ið 6OCABULARY >ÕÝ>ÀÞÊi VÀ>ÀÞ ÌiÀÀ iÝÌiÀÀ ÌiÀÀÊ>}i iÝÌiÀÀÊ>}i ÀiÌiÊÌiÀÀÊ>}i
7
ÊÕÃiÃÊÌ
ö -ÕÀÛiÞÀÃÊÕÃiÊÌÀ>}iÃÊ ÌÊ>iÊi>ÃÕÀiiÌÃÊ >`ÊVÀi>ÌiÊLÕ`>ÀiÃ°Ê -iiÊ Ý>«iÊ£°® 4RIANGULATIONISAMETHOD USEDINSURVEYING,ANDIS DIVIDEDINTOADJACENTTRIANGLES "YMEASURINGTHESIDESAND ANGLESOFONETRIANGLEAND APPLYINGPROPERTIESOFTRIANGLES SURVEYORSCANGATHERINFORMATION ABOUTADJACENTTRIANGLES
Ê/
iÀiÊ{Ó£
/
ÃÊi}À>Û}ÊÃ
ÜÃÊÌ
iÊVÕÌÞÊ ÃÕÀÛiÞÀÊ>`ÊVÃÃiÀÃÊ>Þ}Ê ÕÌÊÌ
iÊÌÜÊvÊ >ÌÀiÊÊ£ÇÎä°
/À>}iÊ-ÕÊ/
iÀi
/
iÊÃÕÊvÊÌ
iÊ>}iÊi>ÃÕÀiÃÊvÊ>ÊÌÀ>}iÊÃÊ£näc°Ê Ê
ȜÊ ÊȜ Ê ÊȜ ÊÊ£näc
4HEPROOFOFTHE4RIANGLE3UM4HEOREMUSESANAUXILIARYLINE!NAUXILIARYLINE ISALINETHATISADDEDTOAFIGURETOAIDINAPROOF
*,""
4RIANGLE3UM4HEOREM 'IVEṈ!"# 0ROVEMȜ MȜ MȜ
0ROOF 7
iiÛiÀÊÞÕÊ`À>ÜÊ >Ê>ÕÝ>ÀÞÊi]Ê ÞÕÊÕÃÌÊLiÊ>LiÊÌÊ ÕÃÌvÞÊÌÃÊiÝÃÌiVi°Ê ÛiÊÌ
ÃÊ>ÃÊÌ
iÊ Ài>Ã\Ê/
ÀÕ}
Ê>ÞÊ ÌÜÊ«ÌÃÊÌ
iÀiÊÃÊ iÝ>VÌÞÊiÊi°
{ £
Ű
Ó x Î
À>ÜÊŰÊȡÊ ÊÌ
ÀÕ}
Ê ° *>À>iÊ*Ã̰ Ȝ£ÊɁÊȜ{
ȜÎÊɁÊȜx
̰ÊÌ°ÊѓÊ/
°
̰ÊÌ°ÊѓÊ/
°
Ȝ£ÊÊȜ{
ȜÎÊÊȜx
Ȝ{Ê ÊȜÓÊ ÊȜxÊÊ£näÂ
iv°ÊvÊɁѓ
iv°ÊvÊɁѓ
ȜÊ``°Ê*Ã̰ÊEÊ`iv°ÊvÊÃÌÀ>}
ÌÊȜ
Ȝ£Ê ÊȜÓÊ ÊȜÎÊÊ£nä -ÕLÃ̰
{ÓÊ}iÊ,i>ÌÃ
«ÃÊÊ/À>}iÃ
ÓÓÎ
%8!-0,%
£ Ê -ÕÀÛiÞ}Ê««V>Ì 4HEMAPOF&RANCECOMMONLY USEDINTHESWASSIGNIFICANTLY REVISEDASARESULTOFATRIANGULATION LANDSURVEY4HEDIAGRAMSHOWS PARTOFTHESURVEYMAP5SETHE DIAGRAMTOFINDTHEINDICATED ANGLEMEASURES
MȜ.+MȜ+-. MȜ-.+ MȜ.+- MȜ.+-
̱Ê-ÕÊ/
°
-«vÞ°
MȜ.+- MȜ.+-
-ÕLÃÌÌÕÌiÊnnÊvÀÊȜ Ê >`Ê{nÊvÀÊȜ ° -ÕLÌÀ>VÌÊ£ÎÈÊvÀÊLÌ
ÊÃ`ið
MȜ*,+ 3TEP &INDMȜ*+, MȜ.+- MȜ-+* MȜ*+, MȜ*+,
MȜ*+, MȜ*+,
°Ê*>ÀÊ/
°ÊEÊȜÊ``°Ê*Ã̰ -ÕLÃÌÌÕÌiÊ{{ÊvÀÊȜ Ê >`Ê£ä{ÊvÀÊȜ° -«vÞ° -ÕLÌÀ>VÌÊ£{nÊvÀÊLÌ
ÊÃ`ið
3TEP 5SESUBSTITUTIONANDTHENSOLVEFORMȜ*,+ MȜ*,+ MȜ*+, MȜ+*, ̱Ê-ÕÊ/
° MȜ*,+ -ÕLÃÌÌÕÌiÊÎÓÊvÀÊȜÊ>`Ê ÇäÊvÀÊȜ°
MȜ*,+ MȜ*,+
-«vÞ° -ÕLÌÀ>VÌÊ£äÓÊvÀÊLÌ
ÊÃ`ið
5SETHEDIAGRAMTOFINDMȜ-*+
!COROLLARYISATHEOREMWHOSEPROOFFOLLOWSDIRECTLYFROMANOTHERTHEOREM (EREARETWOCOROLLARIESTOTHE4RIANGLE3UM4HEOREM Ê À>ÀiÃ
",",9
9*"/ -
{ÓÓÊ /
iÊ>VÕÌiÊ>}iÃÊvÊ
Ȝ Ê>`ÊȜ Ê>ÀiÊ V«iiÌ>ÀÞ° Ȝ Ê ÊȜ ÊÊäc
>ÊÀ}
ÌÊÌÀ>}iÊ>ÀiÊ V«iiÌ>ÀÞ°
{ÓÎÊ /
iÊi>ÃÕÀiÊvÊ i>V
Ê>}iÊvÊ >ÊiµÕ>}Õ>ÀÊ ÌÀ>}iÊÃÊÈäc°
" 1-"
ȜÊÊȜ ÊÊȜ ÊÊÈäc
9ÕÊÜÊ«ÀÛiÊ À>ÀiÃÊ{ÓÓÊ>`Ê{ÓÎÊÊ ÝiÀVÃiÃÊÓ{Ê>`ÊÓx° ÓÓ{
>«ÌiÀÊ{Ê /À>}iÊ }ÀÕiVi
%8!-0,%
Ó &INDING!NGLE-EASURESIN2IGHT4RIANGLES
/NEOFTHEACUTEANGLESINARIGHTTRIANGLEMEASURES7HATISTHE MEASUREOFTHEOTHERACUTEANGLE ,ETTHEACUTEANGLESBEȜ-ANDȜ. WITHMȜ- MȜ- MȜ. VÕÌiÊѓÊvÊÀ̰Ê̱Ê>ÀiÊV«° MȜ. -ÕLÃÌÌÕÌiÊÓÓ°ÊvÀÊȜ° MȜ. -ÕLÌÀ>VÌÊÓÓ°ÊvÀÊLÌ
ÊÃ`ið 4HEMEASUREOFONEOFTHEACUTEANGLESINARIGHTTRIANGLEIS GIVEN7HATISTHEMEASUREOFTHEOTHERACUTEANGLE A B X C ?
4HEINTERIORISTHESETOFALLPOINTSINSIDETHEFIGURE4HEEXTERIORISTHESET OFALLPOINTSOUTSIDETHEFIGURE!NINTERIORANGLEISFORMEDBYTWOSIDESOF ATRIANGLE!NEXTERIORANGLEISFORMEDBYONESIDEOFTHETRIANGLEANDTHE EXTENSIONOFANADJACENTSIDE%ACHEXTERIORANGLEHASTWOREMOTEINTERIORANGLES !REMOTEINTERIORANGLEISANINTERIORANGLETHATISNOTADJACENTTOTHE EXTERIORANGLE
ÝÌiÀÀ
Ó
ȜISANEXTERIORANGLE )TSREMOTEINTERIOR ANGLESAREȜANDȜ
ÌiÀÀ £
Ê/
iÀiÊ{Ó{
Î
{
ÝÌiÀÀÊ}iÊ/
iÀi
/
iÊi>ÃÕÀiÊvÊ>ÊiÝÌiÀÀÊ>}iÊvÊ>ÊÌÀ>}iÊÃÊiµÕ>ÊÊ ÌÊÌ
iÊÃÕÊvÊÌ
iÊi>ÃÕÀiÃÊvÊÌÃÊÀiÌiÊÌiÀÀÊ>}ið Ê
Ó
Ȝ{ÊÊȜ£Ê ÊȜÓ
£
Î
{
9ÕÊÜÊ«ÀÛiÊ/
iÀiÊ{Ó{ÊÊ ÝiÀVÃiÊÓn°
%8!-0,%
Î !PPLYINGTHE%XTERIOR!NGLE4HEOREM
&INDMȜ* MȜ* MȜ(MȜ&'( X X
ÈÝÊÊ£®Â
Ý̰ÊȜÊ/
°
£ÓÈÂ
-ÕLÃÌÌÕÌiÊxÝÊ Ê£ÇÊ xÝÊ Ê£Ç®Â vÀÊȜ]ÊÈÝÊÊ£Ê vÀÊȜ]Ê>`Ê£ÓÈÊvÀÊȜ°
-«vÞ° X -ÕLÌÀ>VÌÊ£ÈÊvÀÊLÌ
ÊÃ`ið X Û`iÊLÌ
ÊÃ`iÃÊLÞÊ££° X
MȜ*X
&INDMȜ!#$
ÓâÊ Ê£®  ÈâÊÊ®Â
{ÓÊ}iÊ,i>ÌÃ
«ÃÊÊ/À>}iÃ
ÓÓx
Ê/
iÀiÊ{Óx
/
À`Ê}iÃÊ/
iÀi
/ ",
9*"/ --
vÊÌÜÊ>}iÃÊvÊiÊÌÀ>}iÊ >ÀiÊV}ÀÕiÌÊÌÊÌÜÊ>}iÃÊ vÊ>Ì
iÀÊÌÀ>}i]ÊÌ
iÊ Ì
iÊÌ
À`Ê«>ÀÊvÊ>}iÃÊ >ÀiÊV}ÀÕḭ
" 1-" ,
Ȝ ÊɁÊȜ/
/
9ÕÊÜÊ«ÀÛiÊ/
iÀiÊ{ÓxÊÊ ÝiÀVÃiÊÓǰ
%8!-0,%
{ !PPLYINGTHE4HIRD!NGLES4HEOREM
9ÕÊV>ÊÕÃiÊ ÃÕLÃÌÌÕÌÊÌÊÛiÀvÞÊ Ì
>ÌÊȜÊÊÎÈc°Ê ȜÊÊÊÊ ÎuÎÈÊÊÇÓ Ê ÊÎÈc°
&INDMȜ#ANDMȜ& Ȝ# Ɂ Ȝ& MȜ# MȜ& Y Y
Ê ÊÞÊÓÊ ÊÂ
/
À`ÊѓÊ/
°
iv°ÊvÊɁÊѓ°
ÊÎÞÊÓÊÊÇÓ ÊÂ
Ó
-ÕLÃÌÌÕÌiÊÊÞÊ ÊvÀÊȜ Ê >`ÊÎÊÞÊÓÊÊÇÓÊvÀÊȜ°
Y -ÕLÌÀ>VÌÊÎÊÞÊÓÊvÀÊLÌ
ÊÃ`ið Y Û`iÊLÌ
ÊÃ`iÃÊLÞÊÓ° 3OMȜ# 3INCEMȜ&MȜ# MȜ& &INDMȜ0ANDMȜ4
* Ê ÊÓÝÊÓÊ ÊÂ
, /
Ê{ÝÊ ÊÊÎÓ ÊÂ Ó
-
K?@EB8E;;@J:LJJ Ê £° 5SETHE4RIANGLE3UM4HEOREMTOEXPLAINWHYTHESUPPLEMENTOFONE OFTHEANGLESOFATRIANGLEEQUALSINMEASURETHESUMOFTHEOTHERTWO ANGLESOFTHETRIANGLE3UPPORTYOURANSWERWITHASKETCH Ê Ó° 3KETCHATRIANGLEANDDRAWALLOFITSEXTERIORANGLES(OWMANYEXTERIOR ANGLESARETHEREATEACHVERTEXOFTHETRIANGLE(OWMANYTOTALEXTERIOR ANGLESDOESTHETRIANGLEHAVE Êΰ /Ê", < #OPYANDCOMPLETETHEGRAPHICORGANIZER )NEACHBOX WRITEEACHTHEOREMINWORDSANDTHENDRAWADIAGRAM TOREPRESENTIT /
iÀi /À>}iÊ-ÕÊ/
iÀi
ÝÌiÀÀÊ}iÊ/
iÀi /
À`Ê}iÃÊ/
iÀi
ÓÓÈ
>«ÌiÀÊ{Ê /À>}iÊ }ÀÕiVi
7À`Ã
>}À>
{ÓÊ
ÝiÀVÃiÃ
+%97/2$ÇÊ{Ó +%97/2$ÇÊ*>ÀiÌ
1 Ê*, /
6V>LÕ>ÀÞ !PPLYTHEVOCABULARYFROMTHISLESSONTOANSWEREACHQUESTION Ê
£° 4OREMEMBERTHEMEANINGOFREMOTEINTERIORANGLE THINKOFATELEVISIONREMOTE CONTROL7HATISANOTHERWAYTOREMEMBERTHETERMREMOTE
Ê
Ó° !NEXTERIORANGLEISDRAWNATVERTEX%OF̱$%&7HATAREITSREMOTEINTERIORANGLES
Ê
ΰ 7HATDOYOUCALLSEGMENTS RAYS ORLINESTHATAREADDEDTOAGIVENDIAGRAM 3%%%8!-0,% £
P
ÊÃÌÀÞ 5SETHEFOLLOWING INFORMATIONFOR%XERCISESAND !NASTERISMISAGROUPOFSTARSTHATIS EASIERTORECOGNIZETHANACONSTELLATION /NEPOPULARASTERISMISTHE3UMMER 4RIANGLE WHICHISCOMPOSEDOFTHE STARS$ENEB !LTAIR AND6EGA
Ê
{° 7HATISTHEVALUEOFY
Ê
x° 7HATISTHEMEASUREOFEACH ANGLEINTHE3UMMER4RIANGLE
iiL Ê ÎÞÊ Ê£Î Êc
6i}> Ê xÞÊÊx cÊ
Ì>À
3%%%8!-0,% Ó
P
Ê
4HEMEASUREOFONEOFTHEACUTEANGLES INARIGHTTRIANGLEISGIVEN7HATISTHE MEASUREOFTHEOTHERACUTEANGLE Ȱ
3%%%8!-0,% Î
Ê
P
n° ?
ǰ Y
&INDEACHANGLEMEASURE ° MȜ-
£ä° MȜ,
ÎÞÊ Ê£®Â
*
ÓÞÊ ÊÓ®Â
Ê ÓÞÊ ÊÓ cÊ
{nÂ
ÈÝÊÊ£®Â
+
££° )Ṉ!"# MȜ! ANDTHEMEASUREOFANEXTERIORANGLEAT#IS &INDMȜ"ANDTHEMȜ"#! 3%%%8!-0,% {
P
Ê£Ó° MȜ#ANDMȜ&
£Î° MȜ3ANDMȜ5
,
-
1
Ê
ÇÝÂ
Ê Ê{ÝÊÓÊ ÊÂ
ÊÎÝÊÓÊ ÊÓx ÊÂ
{ÝÊ Ê®Â
xÝÊÊ££®Â
/
£{° &OṞ!"#ANḎ89: MȜ!MȜ8ANDMȜ"MȜ9 &INDTHEMEASURESOFȜ#ANDȜ:IFMȜ#X ANDMȜ: X
{ÓÊ}iÊ,i>ÌÃ
«ÃÊÊ/À>}iÃ
ÓÓÇ
*, /
Ê Ê*," Ê-"6 )NDEPENDENT0RACTICE Ê &OR 3EE %XERCISES %XAMPLE
n n n
£x°
>Û}>Ì !SAILORONSHIP!MEASURES THEANGLEBETWEENSHIP"ANDTHEPIER ANDFINDSTHATITIS!SAILORONSHIP" MEASURESTHEANGLEBETWEENSHIP! ANDTHEPIERANDFINDSTHATITIS 7HATISTHEMEASUREOFTHEANGLEBETWEEN SHIPS!AND"
*iÀ -
«Ê -
«Ê Ψ
xǨ
%XTRA0RACTICE 3KILLS0RACTICEP3 !PPLICATION0RACTICEP3
Ê
4HEMEASUREOFONEOFTHEACUTEANGLESINARIGHTTRIANGLEISGIVEN 7HATISTHEMEASUREOFTHEOTHERACUTEANGLE £È° ? £Ç° X £n° &INDEACHANGLEMEASURE
Ê
£° MȜ89:
xÝÊ ÊÓ®Â
ÈÝÊÊx®Â ££ÝÊ Ê£®Â
nÝÊ Ê{®Â
Ó£° MȜ.ANDMȜ0
£xÝÊÊ£n®Â
8
Ê
«ÌiÀÊ{Ê /À>}iÊ }ÀÕiVi
Ê
Ón° 0ROVETHE%XTERIOR!NGLE4HEOREM
'IVEṈ!"#WITHEXTERIORANGLEȜ!#$ 0ROVEMȜ!#$MȜ! MȜ" (INTȜ"#!ANDȜ$#!FORMALINEARPAIR &INDEACHANGLEMEASURE Ê Ê
Ó° Ȝ587 Σ° Ȝ7:8
9
Îä° Ȝ579 ÎÓ° Ȝ89:
1
Çn x{Â
8
6 7
Ê/
} 7HATISTHEMEASUREOFANYEXTERIORANGLEOFANEQUIANGULAR TRIANGLE7HATISTHESUMOFTHEEXTERIORANGLEMEASURES + /
Ê
Î{° &INDMȜ321 GIVENTHATȜ0ɁȜ5 Ȝ1ɁȜ4 ANDMȜ234
*
-
1
,
Ê
Îx° ÕÌ-Ìi« )NARIGHTTRIANGLE ONEACUTEANGLEMEASUREISTIMESTHEOTHERACUTE ANGLEMEASURE7HATISTHEMEASUREOFTHESMALLERANGLE
Ê
ÎȰ Û>Ì 4OSTUDYTHEFORCESOFLIFTANDDRAG THE7RIGHTBROTHERSBUILTAGLIDER ATTACHEDTWO ROPESTOIT ANDFLEWITLIKEAKITE4HEYMODELED THETWOWINDFORCESASTHELEGSOFARIGHTTRIANGLE >° 7HATPARTOFARIGHTTRIANGLEISFORMEDBY
EACHROPE L° 5SETHE4RIANGLE3UM4HEOREMTOWRITE ANEQUATIONRELATINGTHEANGLEMEASURES INTHERIGHTTRIANGLE V° 3IMPLIFYTHEEQUATIONFROMPARTL7HATISTHERELATIONSHIPBETWEENXANDY `° 5SETHE%XTERIOR!NGLE4HEOREMTOWRITEANEXPRESSIONFORZINTERMSOFX i° )FX USEYOURRESULTSFROMPARTSVAND`TOFINDYANDZ
Ê Ê
Ê Ê Ê Ê Ê
Îǰ ÃÌ>Ì $RAWATRIANGLEANDTWOEXTERIORANGLESATEACHVERTEX%STIMATETHE MEASUREOFEACHANGLE(OWARETHEEXTERIORANGLESATEACHVERTEXRELATED%XPLAIN ÜÜ ÜÜ ÜÜ ÜÜ În° 'IVEN!"ʡ"$ "$ʡ$# Ȝ!ɁȜ# ÜÜ ÜÜ 0ROVE!$ȡ#"
Ê Î° 7ÀÌiÊLÕÌÊÌ !TRIANGLEHASANGLEMEASURESOF AND %XPLAINHOWTOFINDTHEMEASURESOFTHETRIANGLESEXTERIORANGLES 3UPPORTYOURANSWERWITHASKETCH
Ê
Ê Ê
{ä° 4HISPROBLEMWILLPREPAREYOUFORTHE-ULTI 3TEP4EST0REP ONPAGE /NEOFTHESTEPSINMAKINGANORIGAMICRANE INVOLVESFOLDINGASQUARESHEETOFPAPERINTOTHESHAPESHOWN ÜÜ >° Ȝ$#%ISARIGHTANGLEBISECTSȜ$#% ÜÜ AND"#BISECTSȜ%&INDMȜ" L° 5SETHE4RIANGLE3UM4HEOREMTOFINDMȜ#"%
{ÓÊ}iÊ,i>ÌÃ
«ÃÊÊ/À>}iÃ
ÓÓ
Ê
Ê
{£°Ê 7
>ÌÊÃÊÌ
iÊÛ>ÕiÊÊvÊÝ¶Ê Ê £Ê Ê xÇ Ê xÓÊ Ê Ç£ {Ó°Ê `ÊÌ
iÊÛ>ÕiÊvÊÃ°Ê Ê ÓÎÊ Ê ÓnÊ
Ê Î{ Ê xÈ
Ý ǣÂ
£ÓnÂ
xn ÈÈÂ
ÓÃÊ Ê£ä®Â
Ê
{ΰ ȜÊ>`ÊȜ Ê>ÀiÊÌ
iÊÀiÌiÊÌiÀÀÊ>}iÃÊvÊȜ ÊÊ̱ °Ê7
V
ÊvÊÌ
iÃiÊ iµÕ>ÌÃÊÕÃÌÊLiÊÌÀÕi¶ Ê ȜÊÊ£näcÊÊȜ Ê Ê Ê Ȝ ÊÊȜ ÊÊȜ Ê ȜÊÊäcÊÊȜ Ê Ê Ê Ȝ ÊÊȜ ÊÊȜ
Ê
{{° ÝÌi`i`Ê,iëÃiÊ /
iÊi>ÃÕÀiÃÊvÊÌ
iÊ>}iÃÊÊ>ÊÌÀ>}iÊ>ÀiÊÊÌ
iÊÀ>ÌÊ ÓÊ\ÊÎÊ\Ê{°Ê iÃVÀLiÊ
ÜÊÌÊÕÃiÊ>}iLÀ>ÊÌÊv`ÊÌ
iÊi>ÃÕÀiÃÊvÊÌ
iÃiÊ>}iðÊ/
iÊv`Ê Ì
iÊi>ÃÕÀiÊvÊi>V
Ê>}iÊ>`ÊV>ÃÃvÞÊÌ
iÊÌÀ>}i°
Ê Ê 8/ Ê
{x° !NEXTERIORANGLEOFATRIANGLEMEASURES)TSREMOTEINTERIORANGLESMEASURE Y AND Y &INDTHEVALUEOFY
Ê
{Ȱ 4WOPARALLELLINESAREINTERSECTEDBYATRANSVERSAL7HATTYPEOFTRIANGLEISFORMED BYTHEINTERSECTIONOFTHEANGLEBISECTORSOFTWOSAME SIDEINTERIORANGLES%XPLAIN (INT5SEGEOMETRYSOFTWAREORCONSTRUCTADIAGRAMOFTHEANGLEBISECTORSOFTWO SAME SIDEINTERIORANGLES
Ê
{ǰ ÀÌV>Ê/
} %XPLAINWHYANEXTERIORANGLEOFATRIANGLECANNOTBECONGRUENT TOAREMOTEINTERIORANGLE
Ê
{n° *ÀL>LÌÞ 4HEMEASUREOFEACHANGLEINATRIANGLEISAMULTIPLEOF 7HATISTHEPROBABILITYTHATTHETRIANGLEHASATLEASTTWOCONGRUENTANGLES
Ê
{° )Ṉ!"# MȜ"ISLESSTHAN?? TIMESMȜ!MȜ#ISLESSTHAN?? TIMESMȜ! 7HATISMȜ!INDEGREES
-*,Ê, 6 7 -AKEATABLETOSHOWTHEVALUEOFEACHFUNCTIONWHENXIS AND *ÀiÛÕÃÊVÕÀÃi® Ê Ê
xä° F X X
xÓ° F X X
x£° F X X
ÜÜÜ xΰ &INDTHELENGTHOF.1.AMETHETHEOREM ORPOSTULATETHATJUSTIFIESYOURANSWER iÃÃÊÓÇ®
Èʰ
* {ʰ
+ {ʰ
#LASSIFYEACHTRIANGLEBYITSSIDELENGTHSiÃÃÊ{£® Ê
x{° ̱!#$
xx° ̱"#$
xȰ ̱!"$
Ê
xǰ 7
>ÌÊvo¶ )F#! 7HATISTHEEFFECTONTHE CLASSIFICATIONOF̱!#$
ǰx
ÓÎä
>«ÌiÀÊ{Ê /À>}iÊ }ÀÕiVi
{
n
Ó
#ONGRUENT 4RIANGLES
/BJECTIVES 1ÃiÊ«À«iÀÌiÃÊvÊ V}ÀÕiÌÊÌÀ>}ið *ÀÛiÊÌÀ>}iÃÊV}ÀÕiÌÊ LÞÊÕÃ}ÊÌ
iÊ`ivÌÊvÊ V}ÀÕiVi°Ê 6OCABULARY VÀÀië`}Ê>}ià VÀÀië`}ÊÃ`iÃÊ V}ÀÕiÌÊ«Þ}Ã
7
ÊÕÃiÃÊÌ
ö >V
ÃÌÃÊÕÃi`ÊÌÀ>}iÃÊ ÌÊVÃÌÀÕVÌÊ>Ê`iÊvÊÌ
iÊ ÌiÀ>Ì>Ê-«>ViÊ-Ì>̽ÃÊ ÃÕ««ÀÌÊÃÌÀÕVÌÕÀi° 'EOMETRICFIGURESARECONGRUENTIF THEYARETHESAMESIZEANDSHAPE #ORRESPONDINGANGLESANDCORRESPONDINGSIDESAREINTHE SAMEPOSITIONINPOLYGONSWITHANEQUALNUMBEROFSIDES 4WOPOLYGONSARECONGRUENTPOLYGONSIFANDONLYIFTHEIR CORRESPONDINGANGLESANDSIDESARECONGRUENT4HUSTRIANGLES THATARETHESAMESIZEANDSHAPEARECONGRUENT Ê*À«iÀÌiÃÊvÊ }ÀÕiÌÊ*Þ}Ã
",, -*" -
,
ÜÜ ÜÜ Ê ÊÊɁÊÊÊ Ê ÜÜ ÜÜ Ê ÊÊɁÊÊÊ Ê ÜÜ ÜÜ Ê ÊÊɁÊÊÊ Ê
ȜÊɁÊȜ
/ÜÊÛiÀÌViÃÊÌ
>ÌÊ >ÀiÊÌ
iÊi`«ÌÃÊ vÊ>ÊÃ`iÊ>ÀiÊV>i`Ê VÃiVÕÌÛiÊÛiÀÌViÃ°Ê ÀÊiÝ>«i]Ê*Ê>`Ê +Ê>ÀiÊVÃiVÕÌÛiÊ ÛiÀÌVið
",, -*" - -
Ȝ ÊɁÊȜ
Ȝ ÊɁÊȜ
̱ ÊɁÊ̱ *
-
+
,
ÕiÃÊvÀÊȜ Ê>`ÊȜ° ``Ê£ÓÊÌÊLÌ
ÊÃ`ið Û`iÊLÌ
ÊÃ`iÃÊLÞÊȰ
&INDMȜ'&( MȜ%&( MȜ&(% MȜ% MȜ%&(
̱Ê-ÕÊ/
°
-«vÞ°
-ÕLÃÌÌÕÌiÊÛ>ÕiÃÊvÀÊȜ Ê >`ÊȜ °
MȜ%&( MȜ%&( Ȝ'&(ɁȜ%&( MȜ'&(MȜ%&( MȜ'&( 'IVEṈ!"#Ɂ̱$%& A &INDTHEVALUEOFX B &INDMȜ&
-ÕLÌÀ>VÌÊ£££°ÈÊvÀÊLÌ
ÊÃ`ið
ÀÀ°ÊѓÊvÊɁÊєÊ>ÀiÊɁ° iv°ÊvÊɁÊѓ /À>ðÊ*À«°ÊvÊ
ÓÝÊÊÓ
xÎÂ
Î 0ROVING4RIANGLES#ONGRUENT
£°Ê Ûi Ó°Ê ,̰ÊȜÊɁÊ/
°
Î°Ê Ȝ*,+ÊɁÊȜ,
Î°Ê 6iÀÌ°ÊѓÊ/
°
{°Ê Ȝ+ÊɁÊȜ
{°Ê /
À`ÊѓÊ/
°
ÓÎÓ
>«ÌiÀÊ{Ê /À>}iÊ }ÀÕiVi
,i>ÃÃ
Ó°Ê Ȝ*ÊɁÊȜ
n°Ê ̱*+,ÊɁÊ̱ ,
,
*
£°Ê Ȝ*Ê>`ÊȜÊ>ÀiÊÀÌ°Êѓ
ÜÜÜ x°Ê ,ÊÃÊÌ
iÊ`«Ì°ÊvÊÊ*Ê Ê ° ÜÜ ÜÜÜ Ê È°Ê Ê*,ÊÊɁÊÊ,Ê ÜÜ ÜÜÜ ÜÜ ÜÜ Ê ÊÆÊÊ+,Ê Ê ÊɁÊÊÊ ,Ê Ç°Ê Ê*+ÊÊɁÊÊ
£ä
+
'IVENȜ0ANDȜ-ARERIGHTANGLES ÜÜ 2ISTHEMIDPOINTOF0- ÜÜ ÜÜÜ ÜÜ ÜÜ 01 Ɂ-. 12Ɂ.2 0ROVE̱012Ɂ̱-.2 0ROOF -Ì>ÌiiÌÃ
È
%8!-0,%
ÈÝÊÊ£Ó®Â
&INDTHEVALUEOFX
7
iÊÞÕÊÜÀÌiÊ >ÊÃÌ>ÌiiÌÊÃÕV
Ê >ÃÊ̱ ÊɁÊ̱ ]Ê ÞÕÊ>ÀiÊ>ÃÊÃÌ>Ì}Ê Ü
V
Ê«>ÀÌÃÊ>ÀiÊ V}ÀÕḭ
x°Ê Ûi È°Ê iv°ÊvÊ`«Ì° Ç°Ê Ûi n°Ê iv°ÊvÊɁÊє
ÜÜ ÜÜ 'IVEN!$BISECTS"% ÜÜ ÜÜ "% BISECTS!$ ÜÜ ÜÜ !" Ɂ$% Ȝ!ɁȜ$ 0ROVE̱!"#Ɂ̱$%#
"ÛiÀ>««}Ê/À>}ià º7Ì
ÊÛiÀ>««}ÊÌÀ>}iÃ]ÊÌÊ
i«ÃÊiÊÌÊÀi`À>ÜÊÌ
iÊÌÀ>}iÃÊÃi«>À>ÌiÞ°Ê /
>ÌÊÜ>ÞÊÊV>Ê>ÀÊÜ
>ÌÊÊÜÊ>LÕÌÊiÊÌÀ>}iÊÜÌ
ÕÌÊ}iÌÌ}ÊVvÕÃi`Ê LÞÊÌ
iÊÌ
iÀÊi°» £°x
£°x
ä°È
ä°È
Ó°£
£°Ó
iVi>Êi`> >>ÀÊ}
Ê-V
%8!-0,%
£°Ó ä°Ç
£
Ó°£
£°Ó
£°Ó
ä°Ç
£°Ç
£°Ç
{ Ê }iiÀ}Ê««V>Ì 4HEBARSTHATGIVESTRUCTURALSUPPORT TOAROLLERCOASTERFORMTRIANGLES 3INCETHEANGLEMEASURESANDTHE LENGTHSOFTHECORRESPONDINGSIDESARE THESAME THETRIANGLESARECONGRUENT ÜÜ ÜÜ ÜÜ ÜÜ 'IVEN*+ʡ+, -,ʡ+, Ȝ+,*ɁȜ,+- ÜÜ ÜÜ ÜÜ ÜÜ *+ Ɂ-, *,Ɂ-+ 0ROVE̱*+,Ɂ̱-,+ 0ROOF
-Ì>ÌiiÌÃ ÜÜ ÜÜ ÜÜÜ ÜÜ £°Ê ÊÊÊʡÊÊÊ Ê ]ÊÊÊ Ê ÊʡÊÊÊ Ê
,i>ÃÃ £°Ê Ûi
Ó°Ê ȜÊ>`ÊȜÊ>ÀiÊÀÌ°Êѓ
Ó°Ê iv°ÊvÊʡÊiÃ
Î°Ê ȜÊɁÊȜ
Î°Ê ,̰ÊȜÊɁÊ/
°
{°Ê ȜÊɁÊȜ
{°Ê Ûi
x°Ê ȜÊɁÊȜ ÜÜ ÜÜÜ ÜÜ ÜÜÜ Ê ]ÊÊÊ Ê ÊɁÊÊÊ Ê È°Ê ÊÊÊɁÊÊÊ ÜÜ ÜÜ Ê Ç°Ê ÊÊÊɁÊÊÊ
x°Ê /
À`Êѓ/
°
n°Ê ̱ÊɁÊ̱
n°Ê iv°ÊvÊɁÊє
È°Ê Ûi Ç°Ê ,iviݰÊ*À«°ÊvÊɁ
5SETHEDIAGRAMTOPROVETHEFOLLOWING ÜÜÜ ÜÜ ÜÜ ÜÜÜ ÜÜ ÜÜÜ ÜÜ ÜÜÜ 'IVEN-+BISECTS*,*,BISECTS-+*+Ɂ-, *+ȡ-, 0ROVE̱*+.Ɂ̱,-.
K?@EB8E;;@J:LJJ Ê £° !ROOFTRUSSISATRIANGULARSTRUCTURETHAT SUPPORTSAROOF(OWCANYOUBESURETHAT TWOROOFTRUSSESARETHESAMESIZEANDSHAPE ÊÓ° /Ê", < #OPYANDCOMPLETE THEGRAPHICORGANIZER)NEACHBOX NAMETHE CONGRUENTCORRESPONDINGPARTS
̱*+,ÊɁÊ̱ }iÃ
-`iÃ
{ÎÊ }ÀÕiÌÊ/À>}iÃ
ÓÎÎ
{ÎÊ
ÝiÀVÃiÃ
+%97/2$ÇÊ{Î +%97/2$ÇÊ*>ÀiÌ
1 Ê*, /
6V>LÕ>ÀÞ !PPLYTHEVOCABULARYFROMTHISLESSONTOANSWEREACHQUESTION Ê
£° !NEVERYDAYMEANINGOFCORRESPONDINGIShMATCHINGv(OWCANTHISHELPYOUFINDTHE CORRESPONDINGPARTSOFTWOTRIANGLES
Ê
Ó°Ê)F̱!"#Ɂ̱234 WHATANGLECORRESPONDSTOȜ3 3%%%8!-0,% £
Ê
P
Ê 3%%%8!-0,% Ó
Ê
P
'IVEṈ234Ɂ̱,-.)DENTIFYTHECONGRUENTCORRESPONDINGPARTS ÜÜ ÜÜ Î° 23 Ɂ {° ,.Ɂ x° Ȝ3Ɂ ÜÜÜÜ ÜÜÜÜ ÜÜÜÜ ÜÜ È° 43Ɂ ǰ Ȝ,Ɂ n° Ȝ.Ɂ ÜÜÜÜ ÜÜÜÜ ÜÜÜÜ 'IVEṈ&'(Ɂ̱*+,&INDEACHVALUE ° +,
£ä° X £Ó
{ÝÊÊÓä®Â
P
Ê
ÜÜ ÜÜ Ê££° 'IVEN%ISTHEMIDPOINTOF!#AND"$ ÜÜ ÜÜ ÜÜ ÜÜ Ɂ#$ !"ȡ#$ !" 0ROVE̱!"%Ɂ̱#$% 0ROOF -Ì>ÌiiÌà ÜÜ ÜÜ £°Ê Ê ÊÊȡÊÊ Ê Ê Ó°Ê Ȝ ÊɁÊȜ ]ÊȜ ÊɁÊȜ
ÜÜ ÜÜ Î°Ê Ê ÊÊɁÊÊ Ê Ê ÜÜ ÜÜ Ê Ê° {°Ê ÊÃÊÌ
iÊ`«Ì°ÊvÊÊ Ê Ê Ê>`ÊÊ Ê x°Ê i°ÊÊÊÊʶÊÊÊÊÊ ÜÜÜÜ È°Ê Ȝ ÊɁÊȜ
Ç°Ê ̱ ÊɁÊ̱
3%%%8!-0,% {
P
Ê£Ó° }iiÀ} 4HEGEODESICDOME SHOWNISA STORYBUILDINGTHAT MODELS%ARTH5SETHEGIVEN INFORMATIONTOPROVETHATTHE TRIANGLESTHATMAKEUPTHESPHERE ARECONGRUENT ÜÜ ÜÜ ÜÜ ÜÜ ÜÜ 'IVEN35Ɂ34Ɂ32 45Ɂ42 Ȝ534ɁȜ234 ANDȜ5ɁȜ2 0ROVE̱243Ɂ̱543
-
/
ÓÎ{
>«ÌiÀÊ{Ê /À>}iÊ }ÀÕiVi
,i>Ãà £°Ê >°ÊÊÊÊʶÊÊÊÊÊ ÜÜÜÜ Ó°Ê L°ÊÊÊÊʶÊÊÊÊÊ ÜÜÜÜ Î°Ê V°ÊÊÊÊʶÊÊÊÊÊ ÜÜÜÜ {°Ê `°ÊÊÊÊʶÊÊÊÊÊ ÜÜÜÜ x°Ê iv°ÊvÊ`«Ì° È°Ê v°ÊÊÊÊʶÊÊÊÊÊ ÜÜÜÜ Ç°Ê }°ÊÊÊÊʶÊÊÊÊÊ ÜÜÜÜ
1
,
Þ
£änÂ
3%%%8!-0,% Î
ÎÞÊÊ£x
*, /
Ê Ê*," Ê-"6 )NDEPENDENT0RACTICE &OR 3EE Ê %XERCISES %XAMPLE
Ê
Ê
n n
'IVEN0OLYGON#$%&ɁPOLYGON+,-.)DENTIFYTHECONGRUENTCORRESPONDINGPARTS ÜÜ ÜÜ £Î° $% Ɂ £{° +. Ɂ ÜÜÜÜ ÜÜÜÜ £x° Ȝ&Ɂ £È° Ȝ,Ɂ ÜÜÜÜ ÜÜÜÜ
£Ç° MȜ#
3KILLS0RACTICEP3
ÞÊÊÇ
£n° Y
%XTRA0RACTICE Ê!PPLICATION0RACTICEP3
'IVEṈ!"$Ɂ̱#"$&INDEACHVALUE
{ÝÊ Ê£ä®Â
ÜÜÜ £° 'IVEN-0BISECTSȜ.-20ISTHEMIDPOINTOF ÜÜ ÜÜÜ ÜÜÜ -.Ɂ-2 Ȝ.ɁȜ2 .2 0ROVE̱-.0Ɂ̱-20
Î°Ê V°ÊÊÊÊʶÊÊÊÊ ÜÜÜÜ {°Ê `°ÊÊÊÊʶÊÊÊÊ ÜÜÜÜ ÜÜ x°Ê *ÊÃÊÌ
iÊ`«Ì°ÊvÊÊÊ ,ʰ È°Ê v°ÊÊÊÊʶÊÊÊÊ ÜÜÜÜ ÜÜÜ ÜÜÜ Ê Ç°Ê Ê ÊɁÊÊ,Ê ÜÜÜ ÜÜÜ Ê n°Ê Ê*ÊÊɁÊÊ*Ê °Ê ̱ *ÊɁÊ̱,*
*
£°Ê >°ÊÊÊÊʶÊÊÊÊ ÜÜÜÜ Ó°Ê L°ÊÊÊÊʶÊÊÊÊ ÜÜÜÜ Î°Ê iv°ÊvÊȜÊLÃiVÌÀ {°Ê /
À`Êѓ/
° x°Ê i°ÊÊÊÊʶÊÊÊÊ ÜÜÜÜ È°Ê iv°ÊvÊ`«Ì° Ç°Ê }°ÊÊÊÊʶÊÊÊÊ ÜÜÜÜ n°Ê
°ÊÊÊÊʶÊÊÊÊ ÜÜÜÜ °Ê iv°ÊvÊɁÊє
Óä° LLià )NAGARDEN TRIANGULARFLOWER BEDSARESEPARATEDBYSTRAIGHTROWSOF GRASSASSHOWN
Ê
'IVENȜ!$#ANDȜ"#$ARERIGHTANGLES ÜÜ ÜÜ ÜÜ ÜÜ !# Ɂ"$ !$Ɂ"# Ȝ$!#ɁȜ#"$ 0ROVE̱!$#Ɂ̱"#$
Ê
Ó£° &ORTWOTRIANGLES THEFOLLOWING CORRESPONDINGPARTSAREGIVEN ÜÜ ÜÜ ÜÜ ÜÜ ÜÜ ÜÜ '3Ɂ+0 '2Ɂ+( 32Ɂ0( Ȝ3ɁȜ0 Ȝ'ɁȜ+ ANDȜ2ɁȜ( 7RITETHREEDIFFERENTCONGRUENCESTATEMENTS
Ê
ÓÓ° 4HETWOPOLYGONSINTHEDIAGRAMARECONGRUENT #OMPLETETHEFOLLOWINGCONGRUENCE STATEMENTFORTHEPOLYGONS POLYGON2 ɁPOLYGON6 ÜÜÜÜ ÜÜÜÜ 7RITEANDSOLVEANEQUATIONFOREACHOFTHEFOLLOWING
Ê
,i>ÃÃ
Ê
Ê
ÝÊ Ê££®Â
,
£°Ê Ȝ ÊɁÊȜ, ÜÜÜ Ó°Ê Ê*ÊÊLÃiVÌÃÊȜ ,°
Ê
0ROOF -Ì>ÌiiÌÃ
£Ó
-
1
/ 6
,
7
< 9
8
Óΰ ̱!"#Ɂ̱$%&!"X AND$%X &INDTHEVALUEOFXAND!" Ó{° ̱*+,Ɂ̱-.0MȜ, X ANDMȜ0 X 7HATISMȜ, Óx° 0OLYGON!"#$ɁPOLYGON0123"#X AND12X &INDTHEVALUEOFXAND"#
{ÎÊ }ÀÕiÌÊ/À>}iÃ
ÓÎx
Ê
ÓȰ 4HISPROBLEMWILLPREPAREYOUFORTHE-ULTI 3TEP4EST0REPONPAGE -ANYORIGAMIMODELSBEGINWITHASQUAREPIECEOFPAPER *+,- THATISFOLDEDALONGBOTHDIAGONALSTOMAKETHE ÜÜ ÜÜÜ CREASESSHOWN*,AND-+AREPERPENDICULARBISECTORS OFEACHOTHER ANDȜ.-,ɁȜ.+, ÜÜ ÜÜÜ >° %XPLAINHOWYOUKNOWTHAT+,AND-,ARECONGRUENT L° 0ROVE̱.-,Ɂ̱.+,
Ê Ê
Ê
Óǰ $RAWADIAGRAMANDTHENWRITEAPROOF ÜÜ ÜÜ ÜÜ ÜÜ ÜÜ ÜÜ 'IVEN"$ʡ!#$ISTHEMIDPOINTOF!#!"Ɂ#" AND"$BISECTSȜ!"# 0ROVE̱!"$Ɂ̱#"$
Ê
Ón° ÀÌV>Ê/
} $RAWTWOTRIANGLESTHATARENOTCONGRUENTBUTHAVEANAREAOF CMEACH
Ê
Ó°
,,",Ê
9-- 'IVEṈ-01Ɂ̱%$& 4WOSOLUTIONSFORFINDINGMȜ%ARESHOWN 7HICHISINCORRECT%XPLAINTHEERROR *
!
-ViÊÌ
iÊ>VÕÌiÊѓÊvÊ>ÊÀÌ°Ê ̱Ê>ÀiÊV«°]ÊȜÊÊ{ÈÂ°Ê Ȝ ÊɁÊȜ]ÊÃÊȜ ÊÊ{Ȱ
Ê Îä° 7ÀÌiÊLÕÌÊÌ 'IVENTHEDIAGRAMOFTHE TRIANGLES ISTHEREENOUGHINFORMATIONTOPROVE THAṮ(+,ISCONGRUENTTO̱978%XPLAIN
Ê
+
" -ViÊVÀÀ°Ê«>ÀÌÃÊvÊɁÊєÊ >ÀiÊɁ]ÊȜ ÊɁÊȜ*°Ê-ÊȜ ÊÊ Ȝ*ÊÊ{{°
Ê
{{Â
Σ°Ê 7
V
ÊV}ÀÕiViÊÃÌ>ÌiiÌÊVÀÀiVÌÞÊ`V>ÌiÃÊÊ Ì
>ÌÊÌ
iÊÌÜÊ}ÛiÊÌÀ>}iÃÊ>ÀiÊV}ÀÕi̶ Ê ̱ ÊɁÊ̱ Ê Ê ̱ ÊɁÊ̱ Ê ̱ ÊɁÊ̱ Ê Ê ̱ ÊɁÊ̱
7
9
8
Ê
ÎÓ°Ê ̱ *ÊɁÊ̱,-/°Ê7
>ÌÊ>ÀiÊÌ
iÊÛ>ÕiÃÊvÊÝÊ>`ÊÞ¶Ê Ê ÝÊÊÓÈ]ÊÞÊÊÓ£ÊÚ Ê£ÊÊÊ Ê ÝÊÊÓx]ÊÞÊÊÓäÊÚ ÊÓÊÊÊ Î Î Ê ÝÊÊÓÇ]ÊÞÊÓäÊ Ê ÝÊÊÎäÊÚ Ê£ÊÊÊ]ÊÞÊÊ£ÈÊÚ ÊÓÊÊÊÊ Î Î
ÈÓ xn ÈäÂ
,
ÎÞÊÓ®Â
* -
Ê
ÎÎ°Ê ̱ ÊɁÊ̱89`ÊȜ Êʣΰnc°Ê`ÊȜ9° Ê £Î°nÊ Ê ÇÈ°Ó Ê {Ó°Ê Ê ££°£
Ê
Î{°Ê ̱ ,ÊɁÊ̱-*+]Ê ÊÊ£n]Ê-*ÊÊÎÎ]Ê-,ÊÊ£ä]Ê,+ÊÊÓ{]ÊÊ >`Ê+*ÊÊÎä°Ê7
>ÌÊÃÊÌ
iÊ«iÀiÌiÀÊvÊ̱ ,¶ Ê ÇÊ Ê nÇ Ê nxÊ Ê Ç
ÓÎÈ
>«ÌiÀÊ{Ê /À>}iÊ }ÀÕiVi
/ {ÝÊÊÓÞÊn®Â
ÓÝÊ n®Â
* -
,
+
Ê Ê 8/ Ê
Îx° ÕÌ-Ìi« 'IVENTHATTHEPERIMETEROF4567ISUNITS FINDTHEVALUEOFX)S̱456Ɂ̱476%XPLAIN
/
Ê
1
nÝÊÊ££
7
Ê
ÈÝ
ÇÝÊ ÊÎ
6
ÝÊÊn
ÎȰ ÕÌ-Ìi« 0OLYGON!"#$ɁPOLYGON%&'(Ȝ!ISARIGHTANGLE MȜ% Y ANDMȜ( Y &INDMȜ$ ÜÜ ÜÜ , Îǰ 'IVEN23Ɂ24 Ȝ3ɁȜ4 0ROVE̱234Ɂ̱243 /
-
-*,Ê, 6 7 4WONUMBERCUBESAREROLLED&INDTHEPROBABILITYOFEACHOUTCOME *ÀiÛÕÃÊVÕÀÃi® Ê
În° "OTHNUMBERSROLLEDAREEVEN
ΰ 4HESUMOFTHENUMBERSROLLEDIS
#LASSIFYEACHANGLEBYITSMEASUREiÃÃʣή Ê
{ä° MȜ$/#
{£° MȜ"/!
{Ó° MȜ#/!
&INDEACHANGLEMEASUREiÃÃÊ{Ó®Ê Ê
{ΰ Ȝ1
{{° Ȝ0
+
{x° Ȝ123
{Ý ÝÊ Ê£È®Â
*
ÎÝÊ ÊÓä®Â
,
-
+%97/2$ÇÊ >ÀiiÀ
+\Ê 7
>ÌÊ>Ì
ÊV>ÃÃiÃÊ``ÊÞÕÊÌ>iÊÊ
}
ÊÃV
¶ \Ê }iLÀ>Ê£Ê>`ÊÓ]ÊiiÌÀÞ]Ê*ÀiV>VÕÕà +\Ê 7
>ÌÊ`ÊvÊ`i}ÀiiÊÀÊViÀÌvV>ÌÊÜÊÞÕÊÀiViÛi¶ \Ê ÊÜÊÀiViÛiÊ>Ê>ÃÃV>Ìi½ÃÊ`i}ÀiiÊÊ>««i`ÊÃViVi°Ê /
iÊÊÜÊÌ>iÊ>ÊiÝ>ÊÌÊLiÊViÀÌvi`Ê>ÃÊ>Ê /Ê ÀÊ«>À>i`V°
+\Ê ÜÊ`ÊÞÕÊÕÃiÊ>Ì
ÊÊÞÕÀÊ
>`ÃÊÌÀ>}¶ \Ê ÊV>VÕ>ÌiÊ`Ã>}iÃÊL>Ãi`ÊÊL`ÞÊÜi}
ÌÊ>`Ê>}i°ÊÊ>ÃÊ V>VÕ>ÌiÊ`ÀÕ}Ê`ÃiÃÊÊ}À>ÃÊ«iÀÊ}À>Ê«iÀÊ
ÕÀÊÀÊ ÃiÌÊÕ«Ê>Ê6Ê`À«ÊÌÊ`iÛiÀÊi`V>ÌÃÊ>ÌÊÌ
iÊVÀÀiVÌÊÀ>Ìi° À`>Ê >ÀÌiÀ
iÀ}iVÞÊi`V> -iÀÛViÃÊ*À}À>
+\Ê 7
>ÌÊ>ÀiÊÞÕÀÊvÕÌÕÀiÊV>ÀiiÀÊ«>ö \Ê 7
iÊÊ>ÊViÀÌvi`]ÊÊV>ÊÜÀÊvÀÊ>Ê«ÀÛ>ÌiÊ>LÕ>ViÊÃiÀÛViÊ ÀÊÜÌ
Ê>ÊvÀiÊ`i«>ÀÌḭÊÊVÕ`Ê>ÃÊÜÀÊÊ>Ê
ëÌ>]Ê ÌÀ>ëÀÌ}ÊVÀÌV>ÞÊÊ«>ÌiÌÃÊLÞÊ>LÕ>ViÊÀÊ
iV«ÌiÀ°
{ÎÊ }ÀÕiÌÊ/À>}iÃ
ÓÎÇ
/À>}iÃÊ>`Ê }ÀÕiVi "À}> /RIGAMIISTHE*APANESEARTOFPAPERFOLDING 4HE*APANESEWORDORIGAMILITERALLYMEANShFOLDPAPERv 4HISANCIENTARTFORMRELIESONPROPERTIESOFGEOMETRYTO PRODUCEFASCINATINGANDBEAUTIFULSHAPES %ACHOFTHEFIGURESSHOWSASTEPINMAKINGANORIGAMI SWANFROMASQUAREPIECEOFPAPER4HEFINALFIGURESHOWS THECREASESOFANORIGAMISWANTHATHASBEENUNFOLDED 3TEP
3TEP
3TEP
&OLDTHEPAPERINHALF DIAGONALLYANDCREASEIT 4URNITOVER
&OLDCORNERS!AND# TOTHECENTERLINEAND CREASE4URNITOVER
&OLDINHALFALONGTHE ÜÜ CENTERCREASESOTHAT$% ÜÜ AND$&ARETOGETHER
3TEP
3TEP
3TEP
É
&OLDTHENARROWPOINT UPWARDATAANGLE ANDCREASE0USHINTHE FOLDSOTHATTHENECKIS INSIDETHEBODY
&OLDTHETIPDOWNWARD ANDCREASE0USHINTHE FOLDSOTHATTHEHEADIS INSIDETHENECK
TOCLASSIFY̱!"$BYITSSIDE LENGTHSANDBYITSANGLEMEASURES ÜÜ ÜÜ $" BISECTSȜ!"#ANDȜ!$#$% BISECTSȜ!$"&INDTHEMEASURES OFTHEANGLESIṈ%$"%XPLAIN HOWYOUFOUNDTHEMEASURES ÜÜ 'IVENTHAT$"BISECTSȜ!"#AND ÜÜ ÜÜ ÜÜ ÜÜ Ȝ%$& "%Ɂ"& AND$%Ɂ$& PROVETHAṮ%$"Ɂ̱&$"
>«ÌiÀÊ{Ê /À>}iÊ }ÀÕiVi
É
5SETHEFACTTHAT!"#$ISASQUARE
ÓÎn
É
&OLDUPTHEFLAPTO FORMTHEWING
+ÕâÊvÀÊiÃÃÃÊ{£Ê/
ÀÕ}
Ê{Î
#LASSIFYING4RIANGLES #LASSIFYEACHTRIANGLEBYITSANGLEMEASURES Ê
£° ̱!#$
Ó° ̱!"$
ÎäÂ
ÎäÂ
ΰ ̱!$%
ÈäÂ
ÈäÂ
#LASSIFYEACHTRIANGLEBYITSSIDELENGTHS Ê
{° ̱012
*
x° ̱023
Ȱ ̱013
n°Ç
x
+
!NGLE2ELATIONSHIPSIN4RIANGLES
-
,
&INDEACHANGLEMEASURE Ê
ǰ MȜ-
n{ ÈÞÊ ÊήÂ
Ê
n° MȜ!"#
£x£ÊÊÓÞ®Â
ÓäÝÊÊ£x®Â
xÝÂ
° !CARPENTERBUILTATRIANGULARSUPPORTSTRUCTUREFORAROOF4WOOFTHE ANGLESOFTHESTRUCTUREMEASUREAND&INDTHEMEASUREOFȜ240 THEANGLEFORMEDBYTHEROOFOFTHEHOUSEANDTHEROOFOFTHEPATIO
, xxÂ
-
ÎÇÂ
/ *
#ONGRUENT4RIANGLES Ê
'IVEṈ*+,Ɂ̱$%&)DENTIFYTHECONGRUENTCORRESPONDINGPARTS ÜÜ ÜÜ £ä° +, Ɂ ££° $& Ɂ £Ó° Ȝ+Ɂ ÜÜÜÜ ÜÜÜÜ ÜÜÜÜ 'IVEṈ012Ɂ̱345&INDEACHVALUE
Ê Ê Ê Ê
£{° 01
,
+
£x° Y
ÓÊ Ê£
ÜÜ ÜÜ ÜÜ ÜÜ £È°Ê 'IVEN!" ЭжЮ !"Ɂ#$ !#Ɂ"$ ЭжЮȡ#$ ÜÜ ÜÜ ÜÜ ÜÜ !# ʡ#$ $"ʡ!" Ê 0ROVE̱!#$Ɂ̱$"!
£Î° Ȝ&Ɂ ÜÜÜÜ
{ÈÂ
*
1
/
£{
ÓÞÂ
ÎÊ ÊÓ
-
Ê 0ROOF -Ì>ÌiiÌà ЭжЮ ЭжЮÊȡÊÊÊ Ê £°Ê Ê Ê Ê Ó°Ê Ȝ ÊɁÊȜ ÜÜ ÜÜ ÜÜ ÜÜ Ê ]ÊÊ Ê Ê ÊʡÊÊ Ê Ê Î°Ê Ê ÊÊʡÊÊ Ê {°Ê Ȝ Ê>`ÊȜ Ê>ÀiÊÀÌ°Êѓ x°Ê i°ÊÊÊÊÊÊʶÊÊÊÊÊÊÊ ÜÜÜÜÜ È°Ê v°ÊÊÊÊÊÊʶÊÊÊÊÊÊÊ ÜÜ ÜÜ ÜÜ ÜÜÜÜÜÜÜ Ê ]ÊÊ Ê Ê ÊɁÊÊ Ê Ê Ç°Ê Ê ÊÊɁÊÊ Ê n°Ê
°ÊÊÊÊÊÊʶÊÊÊÊÊÊÊ ÜÜÜÜÜ °Ê ̱ ÊɁÊ̱
,i>Ãà £°Ê >°ÊÊÊÊÊÊʶÊÊÊÊÊÊÊ ÜÜÜÜÜ Ó°Ê L°ÊÊÊÊÊÊʶÊÊÊÊÊÊÊ ÜÜÜÜÜ Î°Ê V°ÊÊÊÊÊÊʶÊÊÊÊÊÊÊ ÜÜÜÜÜ {°Ê `°ÊÊÊÊÊÊʶÊÊÊÊÊÊÊ ÜÜÜÜÜ x°Ê ,̰ÊȜÊɁ/
°
È°Ê /
À`ÊѓÊ/
° Ç°Ê }°ÊÊÊÊÊÊʶÊÊÊÊÊÊÊ ÜÜÜÜÜ n°Ê ,iviÝÊ*À«°ÊvÊɁ °Ê ʰÊÊÊÊÊÊʶÊÊÊÊÊÊÊ ÜÜÜÜÜ ,i>`ÞÊÌÊÊ"¶
ÓÎ
{{
1ÃiÊÜÌ
ÊiÃÃÊ{{
%XPLORE333AND3!3 4RIANGLE#ONGRUENCE )N,ESSON YOUUSEDTHEDEFINITIONOFCONGRUENTTRIANGLESTOPROVE TRIANGLESCONGRUENT4OUSETHEDEFINITION YOUNEEDTOPROVETHATALL THREEPAIRSOFCORRESPONDINGSIDESANDALLTHREEPAIRSOFCORRESPONDING ANGLESARECONGRUENT )NTHISLAB YOUWILLDISCOVERSOMESHORTCUTSFORPROVINGTRIANGLESCONGRUENT
VÌÛÌÞÊ£ Ê£ -EASUREANDCUTSIXPIECESFROMTHESTRAWS TWOTHATAREINCHESLONG TWOTHATARE INCHESLONG ANDTWOTHATAREINCHESLONG ÊÓ #UTTWOPIECESOFSTRINGTHATAREEACHABOUT INCHESLONG ÊÎ 4HREADONEPIECEOFEACHSIZEOFSTRAWONTO APIECEOFSTRING4IETHEENDSOFTHESTRING TOGETHERSOTHATTHEPIECESOFSTRAWFORMA TRIANGLE Ê{ 5SINGTHEREMAININGPIECES TRYTOMAKE ANOTHERTRIANGLEWITHTHESAMESIDELENGTHS THATISNOTCONGRUENTTOTHEFIRSTTRIANGLE
/ÀÞÊ/
Ã Ê £° 2EPEAT!CTIVITYUSINGSIDELENGTHSOFYOURCHOICE!REYOURRESULTSTHESAME Ê Ó° $OYOUTHINKITISPOSSIBLETOMAKETWOTRIANGLESTHATHAVETHESAMESIDELENGTHS BUTTHATARENOTCONGRUENT7HYORWHYNOT Ê Î° (OWDOESYOURANSWERTO0ROBLEMPROVIDEASHORTCUTFORPROVINGTRIANGLES CONGRUENT Ê {° #OMPLETETHEFOLLOWINGCONJECTUREBASEDONYOURRESULTS4WOTRIANGLESARE CONGRUENTIF ÜÜÜÜÜÜÜÜÜÜÜÜÜ
Ó{ä
>«ÌiÀÊ{Ê /À>}iÊ }ÀÕiVi
VÌÛÌÞÊÓ Ê£ -EASUREANDCUTTWOPIECESFROMTHESTRAWS ONETHATISINCHESLONGANDONETHATIS INCHESLONG ÊÓ 5SEAPROTRACTORTOHELPYOUBENDAPAPER CLIPTOFORMAANGLE ÊÎ 0LACETHEPIECESOFSTRAWONTHESIDESOFTHE ANGLE4HESTRAWSWILLFORMTWOSIDESOF YOURTRIANGLE Ê{ 7ITHOUTCHANGINGTHEANGLEFORMEDBYTHE PAPERCLIP USEAPIECEOFSTRAWTOMAKEA THIRDSIDEFORYOURTRIANGLE CUTTINGITTOFIT ASNECESSARY5SEADDITIONALPAPERCLIPS ORSTRINGTOHOLDTHESTRAWSTOGETHERINA TRIANGLE
/ÀÞÊ/
Ã Ê x° 2EPEAT!CTIVITYUSINGSIDELENGTHSANDANANGLEMEASUREOFYOURCHOICE !REYOURRESULTSTHESAME Ê È° 3UPPOSEYOUKNOWTWOSIDELENGTHSOFATRIANGLEANDTHEMEASUREOFTHEANGLE BETWEENTHESESIDES#ANTHELENGTHOFTHETHIRDSIDEBEANYMEASURE%XPLAIN Ê Ç° (OWDOESYOURANSWERTO0ROBLEMPROVIDEASHORTCUTFORPROVINGTRIANGLES CONGRUENT Ê n° 5SETHETWOGIVENSIDESANDTHEGIVENANGLEFROM!CTIVITYTOFORMATRIANGLE THATISNOTCONGRUENTTOTHETRIANGLEYOUFORMED(INT/NEOFTHEGIVENSIDES DOESNOTHAVETOBEADJACENTTOTHEGIVENANGLE Ê ° #OMPLETETHEFOLLOWINGCONJECTUREBASEDONYOURRESULTS 4WOTRIANGLESARECONGRUENTIF ÜÜÜÜÜÜÜÜÜÜÜÜÜ
{ {ÊiiÌÀÞÊ>L
Ó{£
4RIANGLE#ONGRUENCE 333AND3!3
/BJECTIVES ««ÞÊ---Ê>`Ê--ÊÌÊ VÃÌÀÕVÌÊÌÀ>}iÃÊ>`Ê ÌÊÃÛiÊ«ÀLið *ÀÛiÊÌÀ>}iÃÊV}ÀÕiÌÊ LÞÊÕÃ}Ê---Ê>`Ê--° 6OCABULARY ÌÀ>}iÊÀ}`ÌÞ VÕ`i`Ê>}i
7
ÊÕÃiÃÊÌ
ö
}iiÀÃÊÕÃi`ÊÌ
iÊ«À«iÀÌÞÊvÊ ÌÀ>}iÊÀ}`ÌÞÊÌÊ`iÃ}ÊÌ
iÊ ÌiÀ>ÊÃÕ««ÀÌÊvÀÊÌ
iÊ-Ì>ÌÕiÊ vÊLiÀÌÞÊ>`ÊÌÊLÕ`ÊLÀ`}iÃ]Ê ÌÜiÀÃ]Ê>`ÊÌ
iÀÊÃÌÀÕVÌÕÀiÃ°Ê -iiÊ Ý>«iÊÓ°® )N,ESSON YOUPROVEDTRIANGLESCONGRUENT BYSHOWINGTHATALLSIXPAIRSOFCORRESPONDING PARTSWERECONGRUENT 4HEPROPERTYOFTRIANGLERIGIDITYGIVESYOUASHORTCUT FORPROVINGTWOTRIANGLESCONGRUENT)TSTATESTHATIF THESIDELENGTHSOFATRIANGLEAREGIVEN THETRIANGLE CANHAVEONLYONESHAPE &OREXAMPLE YOUONLYNEEDTOKNOWTHATTWOTRIANGLES HAVETHREEPAIRSOFCONGRUENTCORRESPONDINGSIDES 4HISCANBEEXPRESSEDASTHEFOLLOWINGPOSTULATE
Ê*ÃÌÕ>ÌiÊ{{£
-`i-`i-`iÊ---®Ê }ÀÕiVi
*"-/1/ vÊÌ
ÀiiÊÃ`iÃÊvÊiÊ ÌÀ>}iÊ>ÀiÊV}ÀÕiÌÊ ÌÊÌ
ÀiiÊÃ`iÃÊvÊ >Ì
iÀÊÌÀ>}i]ÊÌ
iÊ Ì
iÊÌÀ>}iÃÊ >ÀiÊV}ÀÕḭ
%8!-0,%
`>ViÌÊÌÀ>}iÃÊ Ã
>ÀiÊ>ÊÃ`i]ÊÃÊ ÞÕÊV>Ê>««ÞÊÌ
iÊ ,iviÝÛiÊ*À«iÀÌÞÊ ÌÊ}iÌÊ>Ê«>ÀÊvÊ V}ÀÕiÌÊ«>ÀÌð
9*"/ - {ÊV
ÇÊV
ÈÊV
" 1-" {ÊV
ÇÊV
+
£ 5SING333TO0ROVE4RIANGLE#ONGRUENCE 5SE333TOEXPLAINWHY̱012Ɂ̱032 ÜÜ ÜÜ ÜÜ ÜÜ )TISGIVENTHAT01Ɂ03ANDTHAT12Ɂ32"Y ÜÜ ÜÜ THE2EFLEXIVE0ROPERTYOF#ONGRUENCE 02Ɂ02 4HEREFORE̱012Ɂ̱032BY333
*
5SE333TOEXPLAINWHY ̱!"#Ɂ̱#$!
!NINCLUDEDANGLEISANANGLEFORMEDBYTWO ADJACENTSIDESOFAPOLYGONȜ"ISTHEINCLUDED ÜÜ ÜÜ ANGLEBETWEENSIDES!"AND"#
>«ÌiÀÊ{Ê /À>}iÊ }ÀÕiVi
, -
Ó{Ó
̱ ÊɁÊ̱
ÈÊV
)TCANALSOBESHOWNTHATONLYTWOPAIRSOFCONGRUENTCORRESPONDINGSIDESARE NEEDEDTOPROVETHECONGRUENCEOFTWOTRIANGLESIFTHEINCLUDEDANGLESARE ALSOCONGRUENT Ê*ÃÌÕ>ÌiÊ{{Ó
-`i}i-`iÊ--®Ê }ÀÕiVi
*"-/1/ vÊÌÜÊÃ`iÃÊ>`ÊÌ
iÊVÕ`i`Ê >}iÊvÊiÊÌÀ>}iÊ>ÀiÊ V}ÀÕiÌÊÌÊÌÜÊÃ`iÃÊ >`ÊÌ
iÊVÕ`i`Ê>}iÊvÊ >Ì
iÀÊÌÀ>}i]ÊÌ
iÊÌ
iÊ ÌÀ>}iÃÊ>ÀiÊV}ÀÕḭÊ
9*"/ --
" 1-"
̱ ÊɁÊ̱
Ó Ê }iiÀ}Ê««V>Ì
%8!-0,%
4HEFIGURESHOWSPARTOFTHESUPPORT STRUCTUREOFTHE3TATUEOF,IBERTY 5SE3!3TOEXPLAINWHY ̱+0. Ɂ ̱,0- ÜÜ ÜÜ )TISGIVENTHAT+0Ɂ ,0 ÜÜ ÜÜÜ ANDTHAT.0Ɂ -0 "YTHE6ERTICAL!NGLES 4HEOREM Ȝ+0. Ɂ Ȝ,0- 4HEREFORE̱+0. Ɂ ̱,0BY3!3
/
iÊiÌÌiÀÃÊ--Ê >ÀiÊÜÀÌÌiÊÊÌ
>ÌÊ À`iÀÊLiV>ÕÃiÊÌ
iÊ V}ÀÕiÌÊ>}iÃÊ ÕÃÌÊLiÊLiÌÜiiÊ «>ÀÃÊvÊV}ÀÕiÌÊ VÀÀië`}ÊÃ`ið
5SE3!3TOEXPLAIN WHY̱!"# Ɂ ̱$"#
4HE3!30OSTULATEGUARANTEESTHATIFYOUAREGIVENTHELENGTHSOFTWOSIDESAND THEMEASUREOFTHEINCLUDEDANGLE YOUCANCONSTRUCTONEANDONLYONETRIANGLE
ÃÌÀÕVÌÊ }ÀÕiÌÊ/À>}iÃÊ1Ã}Ê-1ÃiÊ>ÊÃÌÀ>}
Ìi`}iÊÌÊ`À>ÜÊÌÜÊÃi}iÌÃÊ>`ÊiÊ>}i]Ê ÀÊV«ÞÊÌ
iÊ}ÛiÊÃi}iÌÃÊ>`Ê>}i°
ÜÜ
ÃÌÀÕVÌÊÊ Ê Ê ÊV}ÀÕiÌÊÌÊiÊ vÊÌ
iÊÃi}iÌð
ÃÌÀÕVÌÊȜÊV}ÀÕiÌÊÌÊ Ì
iÊ}ÛiÊ>}i°
ÜÜ
ÃÌÀÕVÌÊÊ Ê Ê ÊV}ÀÕiÌÊÌÊ ÜÜ Ì
iÊÌ
iÀÊÃi}iÌ°Ê À>ÜÊÊ Ê Ê ÊÊ ÌÊV«iÌiÊ̱ °
{{Ê/À>}iÊ }ÀÕiVi\Ê---Ê>`Ê--
Ó{Î
%8!-0,%
Î 6ERIFYING4RIANGLE#ONGRUENCE
3HOWTHATTHETRIANGLESARECONGRUENT FORTHEGIVENVALUEOFTHEVARIABLE
̱567Ɂ̱987 X
1
:9X 8:X 89X 6 ÜÜ ÜÜ ÜÜÜ ÜÜ ÜÜÜ ÜÜ 56 Ɂ9867Ɂ8: AND57Ɂ9: 3O̱567Ɂ̱98:BY333
̱$%&Ɂ̱*'( Y
8
Ó
{
ÎÝÊÊx Ý
7 Î
ÀiÊÌ
iÞÊ>i¶
ÜÊ>ÀiÊÌ
iÞÊ`vviÀi̶
ÝiÀVÃiÃ
+%97/2$ÇÊ{{ +%97/2$ÇÊ*>ÀiÌ
1 Ê*, /
ÜÜ ÜÜ £° 6V>LÕ>ÀÞ )Ṉ234WHICHANGLEISTHEINCLUDEDANGLEOFSIDES34AND42
Ê 3%%%8!-0,% £
Ê
P
5SE333TOEXPLAINWHYTHETRIANGLESINEACHPAIRARECONGRUENT Ó° ̱!"$Ɂ̱#$"
ΰ ̱-.0Ɂ̱-10
*
3%%%8!-0,% Ó
P
+
Ê {° ->} 3IGNALFLAGSAREUSEDTOCOMMUNICATE MESSAGESWHENRADIOSILENCEISREQUIRED 4HE:ULUSIGNALFLAGMEANS h)REQUIREATUGv '*'(','+IN5SE3!3TO EXPLAINWHY̱*'+Ɂ̱,'(
3%%%8!-0,% Î
Ê
P
3HOWTHATTHETRIANGLESARECONGRUENTFORTHEGIVENVALUEOFTHEVARIABLE x° ̱'(*Ɂ̱)(* X Î
ÎÝÊÊ
Ȱ ̱234Ɂ̱452 X
,
È£
-
ÎÈÂ
x
ÓÝÊÊÎ
1
ÓÝÂ {ÝÊÊ££
/
{{Ê/À>}iÊ }ÀÕiVi\Ê---Ê>`Ê--
Ó{x
3%%%8!-0,% {
P
ÜÜ ÜÜÜ Ê Ç° 'IVEN *+Ɂ -, Ȝ*+, Ɂ Ȝ-,+
0ROVE̱*+,Ɂ̱-,+
0ROOF -Ì>ÌiiÌÃ ÜÜ ÜÜÜ £°Ê ÊÊÊɁÊÊÊ Ê
,i>Ãà £°Ê >°ÊÊÊÊʶÊÊÊÊÊ ÜÜÜÜ Ó°Ê Ûi
Ó°Ê L°ÊÊÊÊʶÊÊÊÊÊ ÜÜÜÜÜÜ ÜÜ Ê Î°Ê ÊÊÊɁÊÊÊ
Î°Ê V°ÊÊÊÊʶÊÊÊÊÊ ÜÜÜÜ {°Ê `°ÊÊÊÊʶÊÊÊÊÊ ÜÜÜÜ
{°Ê ̱ÊɁÊ̱
*, /
Ê Ê*," Ê-"6 )NDEPENDENT0RACTICE &OR 3EE Ê %XERCISES %XAMPLE
n n
5SE333TOEXPLAINWHYTHETRIANGLESINEACHPAIRARECONGRUENT n° ̱"#$Ɂ̱%$#
{ʰ
° ̱'*+Ɂ̱'*,
Îʰ
Îʰ
{ʰ
%XTRA0RACTICE Ê3KILLS0RACTICEP3 !PPLICATION0RACTICEP3
£ä° /
i>ÌiÀ 4HELIGHTSSHININGONASTAGEAPPEAR TOFORMTWOCONGRUENTRIGHTTRIANGLES ÜÜ ÜÜ 'IVEN%# Ɂ$" USE3!3TOEXPLAINWHY ̱%#"Ɂ̱$"# 3HOWTHATTHETRIANGLESARECONGRUENTFORTHEGIVEN VALUEOFTHEVARIABLE
Ê Ê
££° ̱-.0Ɂ̱1.0 Y
Î
Ê Ê£äÞÊÓÊ ÊÂ
£Ó° ̱89:Ɂ̱345 T
8
{
Óä
ÓÓ
9
ÞÊ Ê£
xÌÊÊ£
ÜÜ ÜÜ ÜÜ £Î° 'IVEN"ISTHEMIDPOINTOF$#!"ʡ$#
/
0ROVE̱!"$Ɂ̱!"#
0ROOF -Ì>ÌiiÌÃ ÜÜ £°Ê ÊÃÊÌ
iÊ`«Ì°ÊvÊÊ Ê Ê ° Ó°Ê L°ÊÊÊÊʶÊÊÊÊÊ ÜÜÜÜ Î°Ê V°ÊÊÊÊʶÊÊÊÊÊ ÜÜÜÜ {°Ê Ȝ Ê>`ÊȜ Ê>ÀiÊÀÌ°Êѓ° x°Ê Ȝ ÊɁÊȜ
È°Ê v°ÊÊÊÊʶÊÊÊÊÊ ÜÜÜÜ Ç°Ê ̱ ÊɁÊ̱
Ó{È
>«ÌiÀÊ{Ê /À>}iÊ }ÀÕiVi
,i>Ãà £°Ê >°ÊÊÊÊʶÊÊÊÊÊ ÜÜÜÜ Ó°Ê iv°ÊvÊ`«Ì° Î°Ê Ûi {°Ê `°ÊÊÊÊʶÊÊÊÊÊ ÜÜÜÜ x°Ê i°ÊÊÊÊʶÊÊÊÊÊ ÜÜÜÜ È°Ê ,iviݰÊ*À«°ÊvÊɁ Ç°Ê }°ÊÊÊÊʶÊÊÊÊÊ ÜÜÜÜ
Ó{
«ÌiÀÊ{Ê /À>}iÊ }ÀÕiVi
VÌÛÌÞÊÓ ÜÜ Ê£ #ONSTRUCT9:WITHALENGTHOFCM
ÜÜ ÊÓ 5SING9:ASASIDE CONSTRUCTȜ89: MEASURING
ÊÎ $RAWACIRCLEAT:WITHARADIUSOFCM ÜÜÜ #ONSTRUCT:7 ARADIUSOFCIRCLE:
Ê{ -OVE7AROUNDCIRCLE:/BSERVETHEPOSSIBLE SHAPESOF̱9:7
/ÀÞÊ/
Ã Ê Ç° )N3TEPOFTHEACTIVITY HOWMANYDIFFERENTTRIANGLESWEREPOSSIBLE $OES3IDE 3IDE !NGLEMAKEONLYONETRIANGLE Ê n° 2EPEAT!CTIVITYUSINGANANGLEMEASUREOFIN3TEPANDACIRCLEWITHA RADIUSOFCMIN3TEP(OWMANYDIFFERENTTRIANGLESAREPOSSIBLEIN3TEP Ê ° 2EPEATTHEACTIVITYAGAINUSINGAMEASUREOFIN3TEPANDACIRCLEWITHARADIUS OFCMIN3TEP#LASSIFYTHERESULTINGTRIANGLEBYITSANGLEMEASURES Ê£ä° "ASEDONYOURRESULTS COMPLETETHEFOLLOWINGCONJECTURE)NA3IDE 3IDE !NGLE COMBINATION IFTHECORRESPONDINGNONINCLUDEDANGLESARE THENONLYONE ÜÜÜÜ TRIANGLEISPOSSIBLE
{ xÊ/iV
}ÞÊ>L
Óx£
4RIANGLE#ONGRUENCE !3! !!3 AND(,
/BJECTIVES ««ÞÊ-]Ê-]Ê>`ÊÊ ÌÊVÃÌÀÕVÌÊÌÀ>}iÃÊ>`Ê ÌÊÃÛiÊ«ÀLið *ÀÛiÊÌÀ>}iÃÊV}ÀÕiÌÊ LÞÊÕÃ}Ê-]Ê-]Ê >`ʰ 6OCABULARY VÕ`i`ÊÃ`i
7
ÞÊÕÃiÊÌ
ö i>À}ÃÊ>ÀiÊÕÃi`ÊÌÊVÛiÞÊ`ÀiVÌ]Ê
i«}Ê«i«iÊv`ÊÌ
iÀÊÜ>ÞÊÌÊ Ã«iVvVÊV>Ìð 0ARTICIPANTSINANORIENTEERINGRACEUSEA MAPANDACOMPASSTOFINDTHEIRWAYTO CHECKPOINTSALONGANUNFAMILIARCOURSE $IRECTIONSAREGIVENBYBEARINGS WHICHARE BASEDONCOMPASSHEADINGS&OREXAMPLE TOTRAVELALONGTHEBEARING3% YOUFACE SOUTHANDTHENTURNTOTHEEAST !NINCLUDEDSIDEISTHECOMMONSIDEOFTWO CONSECUTIVEANGLESINAPOLYGON4HEFOLLOWING POSTULATEUSESTHEIDEAOFANINCLUDEDSIDE +
ÜÜ 01ISTHEINCLUDEDSIDE OFȜ0ANDȜ1
* ,
Ê*ÃÌÕ>ÌiÊ{x£
}i-`i}iÊ-®Ê }ÀÕiVi
*"-/1/
9*"/ --
vÊÌÜÊ>}iÃÊ>`ÊÌ
iÊVÕ`i`Ê Ã`iÊvÊiÊÌÀ>}iÊ>ÀiÊ V}ÀÕiÌÊÌÊÌÜÊ>}iÃÊ>`Ê Ì
iÊVÕ`i`ÊÃ`iÊvÊ>Ì
iÀÊ ÌÀ>}i]ÊÌ
iÊÌ
iÊÌÀ>}iÃÊ >ÀiÊV}ÀÕḭ
%8!-0,%
" 1-"
̱ ÊɁÊ̱
£ Ê *ÀLi-Û}Ê««V>Ì /RGANIZERSOFANORIENTEERINGRACEARE PLANNINGACOURSEWITHCHECKPOINTS! " AND#$OESTHETABLEGIVEENOUGH INFORMATIONTODETERMINETHELOCATION OFTHECHECKPOINTS
i>À} ÊÌÊ
Ê
ÊÌÊ
Ê ÊÓÈcÊ7
Ê
ÊÌÊ
Ê -ÊÓäcÊ7
Ê
5NDERSTANDTHE0ROBLEM
4HEANSWERISWHETHERTHEINFORMATIONINTHETABLECAN BEUSEDTOFINDTHEPOSITIONOFCHECKPOINTS! " AND# ,ISTTHEIMPORTANTINFORMATION4HEBEARINGFROM! TO"IS.%&ROM"TO#IS.7 ANDFROM# TO!IS374HEDISTANCEFROM!TO"ISKM
ÓxÓ
>«ÌiÀÊ{Ê /À>}iÊ }ÀÕiVi
ÊxxcÊ
ÃÌ>Vi Ê Ç°ÈÊ
-AKEA0LAN
$RAWTHECOURSEUSINGVERTICALLINESTOSHOWNORTH SOUTH DIRECTIONS4HENUSETHESEPARALLELLINESANDTHEALTERNATE INTERIORANGLESTOHELPFINDANGLEMEASURESOF̱!"#
ÓÈ ÓäÂ
ÓäÂ
3OLVE
xxÂ
Îx ǰÈÊ
MȜ#!" MȜ#"! 9OUKNOWTHEMEASURESOFȜ#!"ANDȜ#"!ANDTHELENGTHOFTHEINCLUDED ÜÜ SIDE!"4HEREFOREBY!3! AUNIQUETRIANGLE!"#ISDETERMINED
,OOK"ACK /NEANDONLYONETRIANGLECANBEMADEUSINGTHEINFORMATIONINTHETABLE SOTHETABLEDOESGIVEENOUGHINFORMATIONTODETERMINETHELOCATIONOFALL THECHECKPOINTS 7
>ÌÊv°°°¶ )FKMISTHEDISTANCEFROM"TO# ISTHERE ENOUGHINFORMATIONTODETERMINETHELOCATIONOFALLTHE CHECKPOINTS%XPLAIN
%8!-0,%
Ó !PPLYING!3!#ONGRUENCE $ETERMINEIFYOUCANUSE!3!TOPROVE̱568 Ɂ ̱768%XPLAIN 8 Ȝ586 Ɂ Ȝ786ASGIVEN3INCEȜ768IS ARIGHTANGLETHATFORMSALINEARPAIRWITH ÜÜ ÜÜ Ȝ568 Ȝ768 Ɂ Ȝ568!LSO68Ɂ 68 BYTHE2EFLEXIVE0ROPERTY4HEREFORE ̱568 Ɂ ̱768BY!3! 1
6
7
$ETERMINEIFYOUCANUSE!3!TO PROVE̱.+, Ɂ ̱,-.%XPLAIN
ÃÌÀÕVÌÊ }ÀÕiÌÊ/À>}iÃÊ1Ã}Ê- 1ÃiÊ>ÊÃÌÀ>}
Ìi`}iÊÌÊ`À>ÜÊ>ÊÃi}iÌÊ>`ÊÌÜÊ>}iÃ]Ê ÀÊV«ÞÊÌ
iÊ}ÛiÊÃi}iÌÊ>`Ê>}ið
̱
ÜÜ
ÃÌÀÕVÌÊÊ Ê Ê ÊV}ÀÕiÌÊÌÊ Ì
iÊ}ÛiÊÃi}ḭ
ÃÌÀÕVÌÊȜ ÊV}ÀÕiÌÊ ÌÊiÊvÊÌ
iÊ>}ið
ÃÌÀÕVÌÊȜ ÊV}ÀÕiÌÊ ÌÊÌ
iÊÌ
iÀÊ>}i°
>LiÊÌ
iÊÌiÀÃiVÌÊvÊÊ Ì
iÊÀ>ÞÃÊ>ÃÊ °Ê
{xÊ/À>}iÊ }ÀÕiVi\Ê-]Ê-]Ê>`Ê
ÓxÎ
9OUCANUSETHE4HIRD!NGLES4HEOREMTOPROVEANOTHERCONGRUENCERELATIONSHIP BASEDON!3!4HISTHEOREMIS!NGLE !NGLE 3IDE!!3 Ê/
iÀiÊ{xÓ
}i}i-`iÊ-®Ê }ÀÕiVi
/ ",
9*"/ -
vÊÌÜÊ>}iÃÊ>`Ê>ÊVÕ`i`Ê Ã`iÊvÊiÊÌÀ>}iÊ>ÀiÊ V}ÀÕiÌÊÌÊÌ
iÊVÀÀië`}Ê >}iÃÊ>`ÊVÕ`i`ÊÃ`iÊ vÊ>Ì
iÀÊÌÀ>}i]ÊÌ
iÊÌ
iÊ ÌÀ>}iÃÊ>ÀiÊV}ÀÕḭ
̱ÊɁÊ̱
*,""
!NGLE !NGLE 3IDE#ONGRUENCE
ÜÜ ÜÜÜ 'IVENȜ'Ɂ Ȝ+ Ȝ*Ɂ Ȝ- (*Ɂ ,- 0ROVE̱'(*Ɂ ̱+, 0ROOF
-Ì>ÌiiÌÃ
%8!-0,%
" 1-"
,i>ÃÃ
£°Ê ȜÊɁÊȜ]ÊȜÊɁÊȜ
£°Ê Ûi
Ó°Ê ȜÊɁÊȜ ÜÜ ÜÜÜ Ê Î°Ê ÊÊÊɁÊÊÊ
Ó°Ê /
À`ÊѓÊ/
°
{°Ê ̱ÊɁÊ̱
{°Ê -ÊÊ-Ìi«ÃÊ£]ÊÎ]Ê>`ÊÓ
Î°Ê Ûi
Î 5SING!!3TO0ROVE4RIANGLES#ONGRUENT 5SE!!3TOPROVETHETRIANGLESCONGRUENT ÜÜ ÜÜ ÜÜ ÜÜ 'IVEN!"ȡ%$ "#Ɂ$# 0ROVE̱!"#Ɂ̱%$# 0ROOF
ÊɁÊ
Ûi
ÊȡÊ Ûi
Ȝ ÊɁÊȜ
̱ ÊɁÊ̱
̰Ḛ̂ÊѐÊ/
°
-
ȜÊɁÊȜ ̰Ḛ̂ÊѐÊ/
°
5SE!!3TOPROVETHETRIANGLESCONGRUENT ÜÜ 'IVEN*,BISECTSȜ+,-Ȝ+ɁȜ- 0ROVE̱*+,Ɂ̱*-,
4HEREAREFOURTHEOREMSFORRIGHTTRIANGLESTHATARENOTUSEDFORACUTEOROBTUSE TRIANGLES4HEYARE,EG ,EG,, (YPOTENUSE !NGLE(! ,EG !NGLE,! AND (YPOTENUSE ,EG(, 9OUWILLPROVE,, (! AND,!IN%XERCISES AND Óx{
>«ÌiÀÊ{Ê /À>}iÊ }ÀÕiVi
Ê/
iÀiÊ{xÎ
Þ«ÌiÕÃii}Ê®Ê }ÀÕiVi
/ ",
9*"/ --
vÊÌ
iÊ
Þ«ÌiÕÃiÊ>`Ê>Êi}ÊvÊ >ÊÀ}
ÌÊÌÀ>}iÊ>ÀiÊV}ÀÕiÌÊ ÌÊÌ
iÊ
Þ«ÌiÕÃiÊ>`Ê>Êi}ÊvÊ >Ì
iÀÊÀ}
ÌÊÌÀ>}i]ÊÌ
iÊÌ
iÊ ÌÀ>}iÃÊ>ÀiÊV}ÀÕḭ
" 1-" ̱ ÊɁÊ̱
9ÕÊÜÊ«ÀÛiÊÌ
iÊÞ«ÌiÕÃii}Ê/
iÀiÊÊiÃÃÊ{n°
%8!-0,%
{ !PPLYING(,#ONGRUENCE $ETERMINEIFYOUCANUSETHE(,#ONGRUENCE4HEOREMTOPROVETHE TRIANGLESCONGRUENT)FNOT TELLWHATELSEYOUNEEDTOKNOW
̱678ANḎ987
6
!CCORDINGTOTHEDIAGRAM ̱678AND ̱987ARERIGHTTRIANGLESTHATSHARE ÜÜÜ ÜÜÜ ÜÜÜ HYPOTENUSE7878Ɂ 78BYTHE2EFLEXIVE ÜÜÜ ÜÜ 0ROPERTY)TISGIVENTHAT76Ɂ 89 THEREFORE̱678 Ɂ ̱987BY(,
À}
Ê
ÃÌ>Vi
Ê
ÊÌÊ
££xÊvÌ
ÊÌÊ
Ê -ÊÓxcÊ
Ê
ÊÈÓcÊ7
Ê
Ê
¶
¶
Ê
Ó° $RAWTHEPLOTOFLANDDESCRIBEDBYTHETABLE ,ABELTHEMEASURESOFTHEANGLESINTHETRIANGLE
Ê
ΰ $OESTHETABLEHAVEENOUGHINFORMATIONTO DETERMINETHELOCATIONSOFPOINTS! " AND#%XPLAIN 3%%%8!-0,% Ó
Ê
P
$ETERMINEIFYOUCANUSE!3!TOPROVETHETRIANGLESCONGRUENT%XPLAIN {° ̱623ANḎ643 GIVENTHAT ÜÜ 63BISECTSȜ234ANDȜ264 /
-
x° ̱$%(ANḎ&'(
6
P
,
3%%%8!-0,% Î
Ê È° 5SE!!3TOPROVETHETRIANGLESCONGRUENT 'IVENȜ2ANDȜ0ARERIGHTANGLES ÜÜ ÜÜ 12 ȡ30 0ROVE̱103Ɂ̱321 0ROOF
+
,
*
-
>°ÊÊÊʶÊÊÊ ,iviݰÊ*À«°ÊvÊɁ
3%%%8!-0,% {
Ê
P
+,ÊȡÊ*-
L°ÊÊÊʶÊÊÊ
̱+*-ÊɁÊ̱-,+
Ûi
̰Ḛ̂ÊѐÊ/
°
`°ÊÊÊʶÊÊÊ
Ȝ,Ê>`ÊȜ*Ê>ÀiÊÀ̰Êѐ°
Ȝ,ÊɁÊȜ*
Ûi
V°ÊÊÊʶÊÊÊ
$ETERMINEIFYOUCANUSETHE(,#ONGRUENCE4HEOREMTOPROVETHETRIANGLES CONGRUENT)FNOT TELLWHATELSEYOUNEEDTOKNOW ǰ ̱!"#ANḎ#$!
n° ̱896ANḎ:96 6
8
ÓxÈ
>«ÌiÀÊ{Ê /À>}iÊ }ÀÕiVi
9
À}
Ê
Ê
ÊxÎcÊ
Ê
Ê£ÈcÊ7
ÃÌ>Vi
Ê
ÈÊ
Ê
¶
Ê
¶
%XTRA0RACTICE Ê3KILLS0RACTICEP3 !PPLICATION0RACTICEP3
Ê
° $RAWTHEDIAGRAMFORMEDBYOBSERVATIONTOWER8 OBSERVATIONTOWER9 ANDTHEFIRE&,ABELTHEMEASURESOFTHEANGLES £ä° )STHEREENOUGHINFORMATIONGIVENINTHETABLETOPINPOINTTHELOCATIONOF THEFIRE%XPLAIN $ETERMINEIFYOUCANUSE!3!TOPROVETHETRIANGLESCONGRUENT%XPLAIN
ÊDXk_?`jkfip
££° ̱-+*ANḎ-+,
£Ó° ̱234ANḎ452
, 1
Ê
%UCLIDWROTETHE MATHEMATICALTEXT The ElementsAROUND YEARSAGO)TMAY BETHESECONDMOST REPRINTEDBOOKINHISTORY
ÜÜ ÜÜ £Î° 'IVEN!"Ɂ$% Ȝ#ɁȜ& 0ROVE̱!"#Ɂ̱$%&
ȜÊ>`ÊȜ Ê>ÀiÊÀ̰Êѐ°
>°ÊÊÊʶÊÊÊ
Ûi
,̰ÊȜÊɁÊ/
°
/
0ROOF
-
ÊɁÊ
̱ ÊɁÊ̱
L°ÊÊÊʶÊÊÊ
`°ÊÊÊʶÊÊÊ
V°ÊÊÊʶÊÊÊ Ûi
$ETERMINEIFYOUCANUSETHE(,#ONGRUENCE4HEOREMTOPROVETHETRIANGLES CONGRUENT)FNOT TELLWHATELSEYOUNEEDTOKNOW Ê
£{° ̱'(*ANḎ*+'
£x°
̱!"%ANḎ$#% GIVENTHAT%IS THEMIDPOINT ÜÜ ÜÜ OF!$AND"#
ÕÌ-Ìi« &OREACHPAIROFTRIANGLESWRITEATRIANGLECONGRUENCESTATEMENT )DENTIFYTHETRANSFORMATIONTHATMOVESONETRIANGLETOTHEPOSITIONOFTHE OTHERTRIANGLE Ê
£È°
£Ç°
,
-
+
Ê
£n° ÀÌV>Ê/
} 3IDE 3IDE !NGLE33! CANNOTBEUSEDTOPROVETWO TRIANGLESCONGRUENT$RAWADIAGRAMTHATSHOWSWHYTHISISTRUE {xÊ/À>}iÊ }ÀÕiVi\Ê-]Ê-]Ê>`Ê
ÓxÇ
Ê Ê Ê
Ê
Ê
£° 4HISPROBLEMWILLPREPAREYOUFORTHE-ULTI 3TEP4EST0REPONPAGE !CARPENTERBUILTATRUSSTOSUPPORTTHEROOFOFADOGHOUSE ÜÜ ÜÜ >° 4HECARPENTERKNOWSTHAT+*Ɂ-*#ANTHECARPENTER CONCLUDETHAṮ+*,Ɂ̱-*,7HYORWHYNOT L° 3UPPOSETHECARPENTERALSOKNOWSTHATȜ*,+IS ARIGHTANGLE7HICHTHEOREMCANBEUSEDTO SHOWTHAṮ+*,Ɂ̱-*,
,,",Ê
9-- 4WOPROOFSTHAṮ%&(Ɂ̱'(& AREGIVEN7HICHISINCORRECT%XPLAINTHEERROR
Óä°
!
" ÌÊÃÊ}ÛiÊÌ
>ÌÊ ÊȡÊ°Ê ÞÊÌ
i ̰ÊÌ°ÊѓÊ/
°]ÊȜ ÊɁÊȜ° Ȝ ÊɁÊȜÊLÞÊÌ
iÊ,̰ÊȜÊɁÊ/
°Ê ÞÊ Ì
iÊ,iviݰÊ*À«°ÊvÊɁ]ÊÊɁʰ -ÊLÞÊ-]Ê̱ ÊɁÊ̱°
ÊÃÊÌ
iÊ
Þ«°ÊvÊLÌ
ÊÀÌ°Êє°ÊÊɁÊ ÊLÞÊÌ
iÊ,iviݰÊ*À«°ÊvÊɁ°Ê-ViÊ Ì
iÊ««°ÊÃ`iÃÊvÊ>ÊÀiV̰Ê>ÀiÊɁ]Ê ÊɁÊ °Ê-ÊLÞÊ]Ê̱ ÊɁÊ̱°
Ê
Ó£° 7RITEAPARAGRAPHPROOFOFTHE,EG ,EG,, #ONGRUENCE4HEOREM)FTHELEGSOF ONERIGHTTRIANGLEARECONGRUENTTOTHECORRESPONDINGLEGSOFANOTHERRIGHTTRIANGLE THETRIANGLESARECONGRUENT
Ê
ÓÓ° 5SE!!3TOPROVETHETRIANGLESCONGRUENT ÜÜ ÜÜ ÜÜ ÜÜ 'IVEN!$ȡ"# !$Ɂ#" 0ROVE̱!%$Ɂ̱#%"
Ó°Ê Ȝ ÊɁÊȜ
Î°Ê V°ÊÊÊÊʶÊÊÊÊÊ ÜÜÜÜ {°Ê `°ÊÊÊÊʶÊÊÊÊÊ ÜÜÜÜ x°Ê i°ÊÊÊÊʶÊÊÊÊÊ ÜÜÜÜ
Ê
0ROOF -Ì>ÌiiÌÃ ÜÜÜ ÜÜ £°Ê Ê ÊÊȡÊÊ Ê Ê
,i>Ãà £°Ê >°ÊÊÊÊʶÊÊÊÊÊ ÜÜÜÜ Ó°Ê L°ÊÊÊÊʶÊÊÊÊÊ ÜÜÜÜ Î°Ê 6iÀÌ°ÊѓÊ/
° Î°Ê Ûi {°Ê v°ÊÊÊÊʶÊÊÊÊÊ ÜÜÜÜ
Óΰ 0ROVETHE(YPOTENUSE !NGLE(! 4HEOREM ÜÜÜ ÜÜ ÜÜ ÜÜÜ 'IVEN+-ʡ*, *-Ɂ,- Ȝ*-+ɁȜ,-+ 0ROVE̱*+-Ɂ̱,+-
Ê Ó{° 7ÀÌiÊLÕÌÊÌ 4HELEGSOFBOTHRIGHṮ$%&ANDRIGHṮ234ARECMANDCM 4HEYEACHHAVEAHYPOTENUSECMINLENGTH$ESCRIBETWODIFFERENTWAYSYOUCOULD PROVETHAṮ$%&Ɂ̱234 Ê Óx° ÃÌÀÕVÌ 5SETHEMETHODFORCONSTRUCTINGPERPENDICULARLINESTOCONSTRUCT ARIGHTTRIANGLE
Ê
Óxn
ÓÈ°Ê 7
>ÌÊ>``Ì>ÊV}ÀÕiViÊÃÌ>ÌiiÌÊÃÊiViÃÃ>ÀÞÊÌÊ«ÀÛiÊÊ ̱879ÊɁÊ̱86`ÊȜ-ÊɁÊȜ6°Ê 7
>ÌÊÕÃÌÊLiÊÌ
iÊÛ>ÕiÊvÊÞÊÊÀ`iÀÊÌÊ«ÀÛiÊÌ
>ÌÊ̱,-/ÊɁÊ̱167¶ Ê £°ÓxÊ Ê Ó°ÓxÊ Ê °äÊ Ê ££°x
Ê
Îä°Ê ÝÌi`i`Ê,iëÃiÊ À>ÜÊ>ÊÌÀ>}i°Ê ÃÌÀÕVÌÊ>ÊÃiV`ÊÌÀ>}iÊÌ
>ÌÊ
>ÃÊÌ
iÊ Ã>iÊ>}iÊi>ÃÕÀiÃÊLÕÌÊÃÊÌÊV}ÀÕiÌ°Ê «>ÀiÊÌ
iÊi}Ì
ÃÊvÊi>V
Ê«>ÀÊvÊ VÀÀië`}ÊÃ`iÃ°Ê Ã`iÀÊÌ
iÊÀi>ÌÃ
«ÊLiÌÜiiÊÌ
iÊi}Ì
ÃÊvÊÌ
iÊÃ`iÃÊ >`ÊÌ
iÊi>ÃÕÀiÃÊvÊÌ
iÊ>}iÃ°Ê Ý«>ÊÜ
ÞÊ}i}i}iÊ®ÊÃÊÌÊ>Ê V}ÀÕiViÊ«ÀV«i°
Ê Ê 8/ Ê
Ê
Ê
Ê
Σ° -«ÀÌà 4HISBICYCLEFRAMEINCLUDES̱635 ANḎ645 WHICHLIEININTERSECTINGPLANES &ROMTHEGIVENANGLEMEASURES CANYOU CONCLUDETHAṮ635Ɂ̱645%XPLAIN MȜ653 Y MȜ654 ? X? Y MȜ546 X MȜ536? MȜ365 Y MȜ465X
6
/ 1
ÎÓ° 'IVEṈ!"#ISEQUILATERAL#ISTHEMIDPOINTOF ÜÜ $% Ȝ$!#ANDȜ%"#ARECONGRUENT ANDSUPPLEMENTARY
0ROVE̱$!#Ɂ̱%"#
Ê
Îΰ 7RITEATWO COLUMNPROOFOFTHE,EG !NGLE,! #ONGRUENCE4HEOREM)FALEGAND ANACUTEANGLEOFONERIGHTTRIANGLEARECONGRUENTTOTHECORRESPONDINGPARTSOF ANOTHERRIGHTTRIANGLE THETRIANGLESARECONGRUENT(INT4HEREARETWOCASES TOCONSIDER
Ê
Î{° )FTWOTRIANGLESARECONGRUENTBY!3! WHATTHEOREMCOULDYOUUSETOPROVETHATTHE TRIANGLESAREALSOCONGRUENTBY!!3%XPLAIN
-*,Ê, 6 7
Ê
)DENTIFYTHEX ANDY INTERCEPTS5SETHEMTOGRAPHEACHLINE*ÀiÛÕÃÊVÕÀÃi® Îx° YX ÎȰ Y? X Îǰ YX În° &IND!"AND"#IF!#iÃÃÊ£È®Ê xΰ£Â
Ê
ΰ &INDMȜ#iÃÃÊ{Ó®
Ê
Ý Ó
Ý ÓÈ
Ý ÓÓÝ
{xÊ/À>}iÊ }ÀÕiVi\Ê-]Ê-]Ê>`Ê
Óx
4RIANGLE
#ONGRUENCE#0#4#
/BJECTIVE 1ÃiÊ * / ÊÌÊ«ÀÛiÊ «>ÀÌÃÊvÊÌÀ>}iÃÊ>ÀiÊ V}ÀÕḭ 6OCABULARY
* /
%8!-0,%
---]Ê--]Ê-]Ê -]Ê>`ÊÊÕÃiÊ VÀÀië`}Ê«>ÀÌÃÊ ÌÊ«ÀÛiÊÌÀ>}iÃÊ V}ÀÕiÌ°Ê * / Ê ÕÃiÃÊV}ÀÕiÌÊ ÌÀ>}iÃÊÌÊ«ÀÛiÊ VÀÀië`}Ê «>ÀÌÃÊV}ÀÕḭ
7
ÞÊi>ÀÊÌ
ö 9ÕÊV>ÊÕÃiÊV}ÀÕiÌÊÌÀ>}iÃÊÌÊ iÃÌ>ÌiÊ`ÃÌ>Við #0#4#ISANABBREVIATIONFORTHEPHRASE h#ORRESPONDING0ARTSOF#ONGRUENT 4RIANGLESARE#ONGRUENTv)TCANBEUSED ASAJUSTIFICATIONINAPROOFAFTERYOU HAVEPROVENTWOTRIANGLESCONGRUENT
£ Ê }iiÀ}Ê««V>Ì 4ODESIGNABRIDGEACROSSACANYON YOU NEEDTOFINDTHEDISTANCEFROM!TO" ,OCATEPOINTS# $ AND%ASSHOWNIN THEFIGURE)F$% FT WHATIS!" Ȝ$ Ɂ Ȝ" BECAUSETHEYAREBOTHRIGHTANGLES ÜÜ ÜÜ $#Ɂ #" BECAUSE$# #" FT Ȝ$#%ɁȜ"#! BECAUSEVERTICALANGLES ARECONGRUENT4HEREFORE̱$#%Ɂ̱"#! ÜÜ ÜÜ BY!3!OR,!"Y#0#4# %$Ɂ !" SO !" %$ FT
xääÊvÌ xääÊvÌ
!LANDSCAPEARCHITECTSETSUPTHE TRIANGLESSHOWNINTHEFIGURETO FINDTHEDISTANCE*+ACROSSAPOND 7HATIS*+
£ÊvÌ
ÎäÊvÌ
ÎäÊvÌ
%8!-0,%
£ÊvÌ
{£ÊvÌ
Ó 0ROVING#ORRESPONDING0ARTS#ONGRUENT ÜÜ ÜÜ 'IVEN!"Ɂ$# Ȝ!"#ɁȜ$#" 0ROVEȜ!ɁȜ$ 0ROOF
ÊɁÊ
Ûi Ȝ ÊɁÊȜ
̱ ÊɁÊ̱
ȜÊɁÊȜ
Ûi
--
* /
ÊɁÊ
,iviݰÊ*À«°ÊvÊɁ
ÜÜ 'IVEN02BISECTSȜ103ANDȜ123 ÜÜ ÜÜ 0ROVE01Ɂ03 *
+ , -
ÓÈä
>«ÌiÀÊ{Ê /À>}iÊ }ÀÕiVi
%8!-0,%
Î 5SING#0#4#INA0ROOF ÜÜ ÜÜ ÜÜ ÜÜ 'IVEN%'ȡ$& %'Ɂ$& ÜÜ ÜÜ 0ROVE%$ȡ'& 0ROOF
-Ì>ÌiiÌÃ ÜÜ ÜÜ £°Ê Ê ÊÊɁÊÊ Ê Ê ÜÜ ÜÜ Ê Ó°Ê Ê ÊÊȡÊÊ Ê
7ÀÊL>VÜ>À`Ê Ü
iÊ«>}Ê >Ê«Àv°Ê/ÊÃ
ÜÊ ÜÜ ÜÜ Ê ]ÊÊ Ì
>ÌÊÊ Ê Ê ÊȡÊÊÊ vÀÊ>Ê«>ÀÊvÊ>}iÃÊ Ì
>ÌÊ>ÀiÊV}ÀÕiÌ°Ê /
iÊÊvÀÊ ÌÀ>}iÃÊÌ
>ÌÊVÌ>Ê Ì
iÃiÊ>}ið
,i>ÃÃ £°Ê Ûi Ó°Ê Ûi
Î°Ê Ȝ ÊɁÊȜ ÜÜÜ ÜÜÜ {°Ê Ê ÊÊɁÊÊ Ê Ê
Î°Ê Ì°ÊÌ°Êѓ/
°
x°Ê ̱ ÊɁÊ̱
x°Ê --ÊÊ-Ìi«ÃÊ£]ÊÎ]Ê>`Ê{
È°Ê Ȝ ÊɁÊȜ ÜÜ ÜÜ Ê Ç°Ê Ê ÊÊȡÊÊÊ
È°Ê * /
{°Ê ,iviݰÊ*À«°ÊvÊɁ
Ç°Ê ÛiÀÃiÊvḚ̂ÊÌ°ÊѓÊ/
°
ÜÜÜ ÜÜ 'IVEN*ISTHEMIDPOINTOF+-AND., ÜÜ ÜÜÜ 0ROVE+,ȡ-.
9OUCANALSOUSE#0#4#WHENTRIANGLESAREONACOORDINATEPLANE 9OUUSETHE$ISTANCE&ORMULATOFINDTHELENGTHSOFTHESIDESOFEACHTRIANGLE 4HEN AFTERSHOWINGTHATTHETRIANGLESARECONGRUENT YOUCAN MAKECONCLUSIONSABOUTTHEIRCORRESPONDINGPARTS
%8!-0,%
{ 5SING#0#4#INTHE#OORDINATE0LANE 'IVEN! " # $ % &
{
Ý
3TEP 0LOTTHEPOINTSONACOORDINATEPLANE 3TEP 5SETHE$ISTANCE&ORMULATOFINDTHE LENGTHSOFTHESIDESOFEACHTRIANGLE
е е Ȗ ее Ȗ
еееееееее "#
Ȗ
Ȗ е ее Ȗ е
!#Ȗ ееееееее
е е Ȗ ее Ȗ
ä
Ó
{
$Ȗ еееееееее XX YY
0ROVEȜ!"#ɁȜ$%&
!"Ȗ ееееееее
Þ
ееееееееее
$%
Ȗ
е е Ȗ ее Ȗ
%& Ȗ еееееееее
е Ȗ е ее Ȗ
ееееееееееее
$&
Ȗ
е е Ȗ ее Ȗ
ÜÜ ÜÜ ÜÜ ÜÜ ÜÜ ÜÜ 3O!"Ɂ$% "#Ɂ%& AND!#Ɂ$&4HEREFORE̱!"#Ɂ̱$%&BY333 ANDȜ!"#ɁȜ$%&BY#0#4#
'IVEN* + , 2 3 4 0ROVEȜ*+,ɁȜ234 {ÈÊ/À>}iÊ }ÀÕiVi\Ê * /
ÓÈ£
K?@EB8E;;@J:LJJ
ÜÜ ÜÜ ÜÜÜ ÜÜ Ê £° )NTHEFIGURE 56Ɂ89 67Ɂ9: ANDȜ6ɁȜ9%XPLAINWHY ̱567Ɂ̱89:"Y#0#4# WHICH ADDITIONALPARTSARECONGRUENT
1
8
6
7
9
Ê/
} $OESTHEDIAGRAMCONTAIN ENOUGHINFORMATIONTOALLOWYOUTOCONCLUDE ÜÜ ÜÜÜ THAT*+ȡ-,%XPLAIN
Ê Óΰ 7ÀÌiÊLÕÌÊÌ $RAWADIAGRAMANDEXPLAINHOWASURVEYORCANSETUPTRIANGLES TOFINDTHEDISTANCEACROSSALAKE,ABELEACHPARTOFYOURDIAGRAM,ISTWHICH SIDESORANGLESMUSTBECONGRUENT
Ê
Ó{°Ê 7
V
ÊvÊÌ
iÃiÊÜÊ "/ÊLiÊÕÃi`Ê>ÃÊ>ÊÀi>ÃÊÊ>Ê«ÀvÊÊ ÜÜ ÜÜ vÊÊ Ê Ê ÊɁÊÊ Ê Ê ¶ Ê --Ê Ê - Ê * / Ê
Ê ,iviÝÛiÊ*À«iÀÌÞ
Ê
Óx°Ê ÛiÊÌ
iÊ«ÌÃÊÊ £]ÊÓ Ê]ÊÊ ä]Ê{ Ê]ÊÊ Ó]ÊÎ Ê]Ê>`Ê Ê £]ÊÎ Ê]Ê Ü
V
ÊvÊÌ
iÃiÊÃÊÌÀÕi¶ Ê Ȝ ÊɁÊȜ Ê Ê Ȝ ÊɁÊȜ Ê Ȝ ÊɁÊȜ Ê Ê Ȝ ÊɁÊȜ
Ê
ÓÈ°Ê 7
>ÌÊÃÊÌ
iÊÛ>ÕiÊvÊÞ¶Ê Ê £äÊ Ê ÓäÊ
Ê
ÓÈ{
Ê Îx Ê nx
ÈÝ £äÝÊ ÊÞ®Â
ÓÇ°Ê 7
V
ÊvÊÌ
iÃiÊ>ÀiÊ "/ÊÕÃi`ÊÌÊ«ÀÛiÊ>}iÃÊV}ÀÕi̶ Ê V}ÀÕiÌÊÌÀ>}iÃÊ Ê Ê «>À>iÊiÃ Ê VÀÀië`}Ê«>ÀÌÃÊ Ê «iÀ«i`VÕ>ÀÊiÃ
>«ÌiÀÊ{Ê /À>}iÊ }ÀÕiVi
{ä ÝÊ ÊÊÚÚ ÊxÊÊÊ Ó
Ê
Ón°Ê 7
V
ÊÃiÌÊvÊVÀ`>ÌiÃÊÀi«ÀiÃiÌÃÊÌ
iÊÛiÀÌViÃÊvÊ>ÊÊ ÌÀ>}iÊV}ÀÕiÌÊÌÊ̱,-/ʶÊÊ Ì\Ê`ÊÌ
iÊi}Ì
ÃÊ vÊÌ
iÊÃ`iÃÊvÊ̱,-/° Ê Ê Ê Î]Ê{ Ê]ÊÊ Î]Êä Ê]ÊÊ ä]Êä Ê Ê Ê Î]Ê£ Ê]ÊÊ Î]ÊÎ Ê]ÊÊ {]ÊÈ Ê Ê Ê Î]ÊÎ Ê]ÊÊ ä]Ê{ Ê]ÊÊ ä]Êä Ê Ê Ê Î]Êä Ê]ÊÊ {]Ê{ Ê]ÊÊ ä]ÊÈ Ê
È
Þ
/
{
,
Ó
Ý ä
Ê Ê 8/ Ê
-
Ó
Ó° !LLOFTHEEDGESOFACUBEARECONGRUENT!LLOF THEANGLESONEACHFACEOFACUBEARERIGHTANGLES 5SE#0#4#TOEXPLAINWHYANYTWODIAGONALSON ÜÜ ÜÜ THEFACESOFACUBE FOREXAMPLE !#AND!& MUSTBECONGRUENT
{
È
Ê
ÜÜ ÜÜÜ ÜÜ ÜÜ Îä° 'IVEN*+Ɂ-, *-Ɂ+, 0ROVEȜ*ɁȜ, (INT$RAWANAUXILIARYLINE
0ROVE̱!3$Ɂ̱"3#
ÜÜ Î£° 'IVEN2ISTHEMIDPOINTOF!" ÜÜ 3ISTHEMIDPOINTOF$# ÜÜ ÜÜ 23 ʡ!" Ȝ!3$ɁȜ"3#
,
Ê
ÎÓ° ̱!"#ISINPLANE̱#$%IS INPLANE"OTHPLANESHAVE #INCOMMONANDȜ!ɁȜ% 7HATISTHEHEIGHT!"TOTHE NEARESTFOOT
-
£äÊvÌ
Ó£ÊvÌ
-*,Ê, 6 7 Ê
Îΰ ,INASTESTSCORESINHERHISTORYCLASSARE AND7HATISTHEMINIMUM SCORE,INAMUSTMAKEONHERNEXTTESTTOHAVEANAVERAGETESTSCOREOF *ÀiÛÕÃÊVÕÀÃi®
Ê
Î{° /NELONG DISTANCEPHONEPLANCOSTSPERMONTHPLUSPERMINUTEOFUSE !SECONDLONG DISTANCEPLANCOSTSPERMINUTEFORTHEFIRSTMINUTESUSED EACHMONTHANDTHENPERMINUTEAFTERTHAT7HICHPLANISCHEAPERIFYOUUSE ANAVERAGEOFLONG DISTANCEMINUTESPERMONTH*ÀiÛÕÃÊVÕÀÃi® !FIGUREHASVERTICESAT AND )DENTIFYTHETRANSFORMATIONOF THEFIGURETHATPRODUCESANIMAGEWITHEACHSETOFVERTICESiÃÃʣǮ
Ê
Îx°
Ê
ÎȰ
Ê
Îǰ $ETERMINEIFYOUCANUSE!3!TOPROVE ̱!#"Ɂ̱%#$%XPLAINiÃÃÊ{x®
{ÈÊ/À>}iÊ }ÀÕiVi\Ê * /
ÓÈx
1UADRATIC%QUATIONS !QUADRATICEQUATIONISANEQUATIONTHATCANBEWRITTENINTHE FORMAX BX C
}iLÀ> -iiÊ-ÃÊ >Ê «>}iÊ-ÈÈ
Ý>«i ÜÜ ÜÜ 'IVEṈ!"#ISISOSCELESWITH!"Ɂ !#3OLVEFORX
Ý ÓÊÊxÝ
3TEP 3ETXnXEQUALTOTOGETXnX 3TEP 2EWRITETHEQUADRATICEQUATIONBYSUBTRACTING FROMEACHSIDETOGETXnXn
3TEP 3OLVEFORX iÌ
`Ê£\Ê>VÌÀ}
XX
X X
XORX Ê
-iÌÊi>V
Êv>VÌÀÊ Ê iµÕ>ÊÌÊä°
Ê
Ê
X OR X
iÌ
`ÊÓ\Ê+Õ>`À>ÌVÊÀÕ>
>VÌÀ°
Ê
È
-Ûi°
BpȖееее B AC X?? A -ÕLÃÌÌÕÌiÊ£ÊvÀÊ pȖеееееее X??? Ê >]ÊxÊvÀÊL]Ê Ê >`ÊÈÊvÀÊV° е pȖ X? -«vÞ° p X? `ÊÌ
iÊõÕ>ÀiÊÀ̰ ORX? X? -«vÞ° XOR X
3TEP #HECKEACHSOLUTIONINTHEORIGINALEQUATION X X
XX
ͧ
ͧ
/ÀÞÊ/
à 3OLVEFORXINEACHISOSCELESTRIANGLE ÜÜ ÜÜ Ê £° 'IVEN &%Ɂ &' Ý ÓÊÊÎÝ
£n
ÜÜ ÜÜ Ê Î° 'IVEN 98Ɂ 9:
Ý ÓÊ Ê{Ý
9
,
£Ó Î
+
«ÌiÀÊ{Ê /À>}iÊ }ÀÕiVi
ÜÜ ÜÜ {° 'IVEN 10Ɂ 12
£Ó
Ý ÓÊÊ{Ý
ÓÈÈ
ÜÜ ÜÜ Ó° 'IVEN *+Ɂ *,
Ý ÓÊ ÊÓÝ
*
)NTRODUCTIONTO
#OORDINATE0ROOF
/BJECTIVES *ÃÌÊv}ÕÀiÃÊÊÌ
iÊ VÀ`>ÌiÊ«>iÊvÀÊÕÃiÊ ÊVÀ`>ÌiÊ«Àvð *ÀÛiÊ}iiÌÀVÊ VVi«ÌÃÊLÞÊÕÃ}Ê VÀ`>ÌiÊ«Àv° 6OCABULARY VÀ`>ÌiÊ«Àv
7
ÊÕÃiÃÊÌ
ö /
iÊ ÕÃ
iÊÊ-ÕÌ
ÊvÀV>ÊÕÃiÊ Ì
iÊL>Ê*ÃÌ}Ê-ÞÃÌiÊÌÊ ÌÀ>ÃÌÊ`>Ì>Ê>LÕÌÊi`>}iÀi`Ê >>ÃÊÌÊVÃiÀÛ>ÌÃÌÃ°Ê -iiÊ ÝiÀVÃiÊÓ{°® 9OUHAVEUSEDCOORDINATEGEOMETRY TOFINDTHEMIDPOINTOFALINESEGMENT ANDTOFINDTHEDISTANCEBETWEEN TWOPOINTS#OORDINATEGEOMETRYCAN ALSOBEUSEDTOPROVECONJECTURES !COORDINATEPROOFISASTYLEOFPROOFTHATUSESCOORDINATEGEOMETRY ANDALGEBRA4HEFIRSTSTEPOFACOORDINATEPROOFISTOPOSITIONTHEGIVEN FIGUREINTHEPLANE9OUCANUSEANYPOSITION BUTSOMESTRATEGIESCAN MAKETHESTEPSOFTHEPROOFSIMPLER
Ê-ÌÀ>Ìi}iÃÊvÀÊ*ÃÌ}Ê}ÕÀiÃÊÊÌ
iÊ À`>ÌiÊ*>i UÊ 1ÃiÊÌ
iÊÀ}Ê>ÃÊ>ÊÛiÀÌiÝ]Êii«}ÊÌ
iÊv}ÕÀiÊÊ+Õ>`À>Ìʰ UÊ iÌiÀÊÌ
iÊv}ÕÀiÊ>ÌÊÌ
iÊÀ}° UÊ iÌiÀÊ>ÊÃ`iÊvÊÌ
iÊv}ÕÀiÊ>ÌÊÌ
iÊÀ}° UÊ 1ÃiÊiÊÀÊLÌ
Ê>ÝiÃÊ>ÃÊÃ`iÃÊvÊÌ
iÊv}ÕÀi°
%8!-0,%
£ 0OSITIONINGA&IGUREINTHE#OORDINATE0LANE 0OSITIONARECTANGLEWITHALENGTHOFUNITSANDAWIDTHOFUNITSINTHE COORDINATEPLANE -ETHOD 9OUCANCENTERTHELONGER SIDEOFTHERECTANGLEATTHEORIGIN {]Êή
{
Þ {]Êή
Ó
-ETHOD 9OUCANUSETHEORIGINAS AVERTEXOFTHERECTANGLE Þ { ä]Êή
n]Êή
Ó Ý
{]Êä®
ä
Ó
{]Êä®
Ý ä ä]Êä®
{
È
n]Êä®
$EPENDINGONWHATYOUAREUSINGTHEFIGURETOPROVE ONESOLUTIONMAY BEBETTERTHANTHEOTHER&OREXAMPLE IFYOUNEEDTOFINDTHEMIDPOINT OFTHELONGERSIDE USETHEFIRSTSOLUTION 0OSITIONARIGHTTRIANGLEWITHLEGLENGTHSOFANDUNITSIN THECOORDINATEPLANE(INT5SETHEORIGINASTHEVERTEXOF THERIGHTANGLE { ÇÊÌÀ`ÕVÌÊÌÊ À`>ÌiÊ*Àv
ÓÈÇ
/NCETHEFIGUREISPLACEDINTHECOORDINATEPLANE YOUCANUSESLOPE THE COORDINATESOFTHEVERTICES THE$ISTANCE&ORMULA ORTHE-IDPOINT&ORMULA TOPROVESTATEMENTSABOUTTHEFIGURE
%8!-0,%
Ó 7RITINGA0ROOF5SING#OORDINATE'EOMETRY 7RITEACOORDINATEPROOF 'IVEN2IGHṮ!"#HASVERTICES! " AND# $ISTHE ÜÜ MIDPOINTOF!# 0ROVE4HEAREAOF̱$"#ISONEHALFTHE AREAOF̱!"#
Þ È {
Ó Ý
0ROOF̱!"#ISARIGHTTRIANGLEWITHHEIGHT !"ANDBASE"# AREAOF̱!"#??BH
Ó
È
?? SQUAREUNITS
"YTHE-IDPOINT&ORMULA THECOORDINATESOF
???? $ ???? 4HEY COORDINATEOF$ISTHEHEIGHT
OF̱$"# ANDTHEBASEISUNITS AREAOF̱$"#??BH
?? SQUAREUNITS
3INCE?? THEAREAOF̱$"#ISONEHALFTHEAREAOF̱!"# 5SETHEINFORMATIONIN%XAMPLETOWRITEACOORDINATEPROOF SHOWINGTHATTHEAREAOF̱!$"ISONEHALFTHEAREAOF̱!"# !COORDINATEPROOFCANALSOBEUSEDTOPROVETHATACERTAINRELATIONSHIPIS ALWAYSTRUE9OUCANPROVETHATASTATEMENTISTRUEFORALLRIGHTTRIANGLES WITHOUTKNOWINGTHESIDELENGTHS4ODOTHIS ASSIGNVARIABLESASTHECOORDINATES OFTHEVERTICES
%8!-0,%
Î !SSIGNING#OORDINATESTO6ERTICES 0OSITIONEACHFIGUREINTHECOORDINATEPLANEANDGIVETHECOORDINATESOF EACHVERTEX
ARIGHTTRIANGLEWITHLEG ÊÌÊÕÃiÊLÌ
Ê>ÝiÃÊ Ü
iÊ«ÃÌ}Ê >Êv}ÕÀiÊÕiÃÃÊÞÕÊ ÜÊÌ
iÊv}ÕÀiÊ
>ÃÊ>ÊÀ}
ÌÊ>}i°
LENGTHSAANDB Þ
ä]Ê>®
ARECTANGLEWITH
LENGTHCANDWIDTHD ä]Ê`®
Þ
V]Ê`®
Ý ä]Êä®
L]Êä®
Ý ä]Êä®
V]Êä®
0OSITIONASQUAREWITHSIDELENGTHPINTHECOORDINATEPLANE ANDGIVETHECOORDINATESOFEACHVERTEX )FACOORDINATEPROOFREQUIRESCALCULATIONSWITHFRACTIONS CHOOSECOORDINATES THATMAKETHECALCULATIONSSIMPLER&OREXAMPLE USEMULTIPLESOFWHEN YOUARETOFINDCOORDINATESOFAMIDPOINT/NCEYOUHAVEASSIGNEDTHE COORDINATESOFTHEVERTICES THEPROCEDUREFORTHEPROOFISTHESAME EXCEPT THATYOURCALCULATIONSWILLINVOLVEVARIABLES ÓÈn
>«ÌiÀÊ{Ê /À>}iÊ }ÀÕiVi
%8!-0,%
{ 7RITINGA#OORDINATE0ROOF ÜÜ 'IVENȜ"ISARIGHTANGLEIṈ!"#$ISTHEMIDPOINTOF!# 0ROVE4HEAREAOF̱$"#ISONEHALFTHEAREAOF̱!"# 3TEP !SSIGNCOORDINATESTOEACHVERTEX 4HECOORDINATESOF!ARE J THECOORDINATESOF"ARE ANDTHECOORDINATESOF#ARE N
-ViÊÞÕÊÜÊÕÃiÊÌ
iÊ `«ÌÊÀÕ>ÊÌÊv`ÊÌ
i VÀ`>ÌiÃÊvÊ ]ÊÕÃiÊÕÌ«iÃÊ vÊÓÊvÀÊÌ
iÊi}Êi}Ì
ð
3TEP 0OSITIONTHEFIGUREINTHECOORDINATEPLANE
ä]ÊÓ®
Þ
3TEP 7RITEACOORDINATEPROOF
Ý
0ROOF̱!"#ISARIGHTTRIANGLEWITHHEIGHTJ ANDBASEN
iV>ÕÃiÊÌ
iÊÝÊ>`Ê Þ>ÝiÃÊÌiÀÃiVÌÊ>ÌÊ À}
ÌÊ>}iÃ]ÊÌ
iÞÊ V>ÊLiÊÕÃi`ÊÌÊvÀÊ Ì
iÊÃ`iÃÊvÊ>ÊÀ}
ÌÊ ÌÀ>}i°
ä]Êä®
Ó]Êä®
AREAOF̱!"#??BH
?? N J
NJSQUAREUNITS
J
N ????? "YTHE-IDPOINT&ORMULA THECOORDINATESOF$ ????? N J
4HEHEIGHTOF̱$"#ISJUNITS ANDTHEBASEISNUNITS AREAOF̱$"#??BH
?? N J
NJSQUAREUNITS
3INCENJ?? NJ THEAREAOF̱$"#ISONEHALFTHEAREAOF̱!"#
5SETHEINFORMATIONIN%XAMPLETOWRITEACOORDINATE PROOFSHOWINGTHATTHEAREAOF̱!$"ISONEHALFTHE AREAOF̱!"#
K?@EB8E;;@J:LJJ Ê £° 7HENWRITINGACOORDINATEPROOFWHYAREVARIABLESUSEDINSTEADOF NUMBERSASCOORDINATESFORTHEVERTICESOFAFIGURE Ê Ó° (OWDOESTHEWAYYOUPOSITIONAFIGUREINTHECOORDINATEPLANEAFFECT YOURCALCULATIONSINACOORDINATEPROOF Ê Î° %XPLAINWHYITMIGHTBEUSEFULTOASSIGNPASACOORDINATEINSTEAD OFJUSTP Ê{° /Ê", < #OPYANDCOMPLETETHEGRAPHICORGANIZER )NEACHROW DRAWANEXAMPLEOFEACHSTRATEGYTHATMIGHTBEUSED WHENPOSITIONINGAFIGUREFORACOORDINATEPROOF *ÃÌ}Ê-ÌÀ>Ìi}Þ
Ý>«i
1ÃiÊÀ}Ê>ÃÊ>ÊÛiÀÌiݰ
iÌiÀÊv}ÕÀiÊ>ÌÊÀ}°
iÌiÀÊÃ`iÊvÊv}ÕÀiÊ>ÌÊÀ}°
Ê
1ÃiÊ>ÝiÃÊ>ÃÊÃ`iÃÊvÊv}ÕÀi°
{ ÇÊÌÀ`ÕVÌÊÌÊ À`>ÌiÊ*Àv
ÓÈ
{ÇÊ
ÝiÀVÃiÃ
+%97/2$ÇÊ{Ç +%97/2$ÇÊ*>ÀiÌ
1 Ê*, /
Ê
£° 6V>LÕ>ÀÞ 7HATISTHERELATIONSHIPBETWEENCOORDINATEGEOMETRY COORDINATEPLANE ANDCOORDINATEPROOF 3%%%8!-0,% £
Ê
P
Ê
0OSITIONEACHFIGUREINTHECOORDINATEPLANE Ӱ ARECTANGLEWITHALENGTHOFUNITSANDWIDTHOFUNIT ΰ ARIGHTTRIANGLEWITHLEGLENGTHSOFUNITANDUNITS
3%%%8!-0,% Ó
Ê
P
3%%%8!-0,% Î
P
7RITEAPROOFUSINGCOORDINATEGEOMETRY {° 'IVEN2IGHṮ012HASCOORDINATES0 1 ÜÜ AND2 !ISTHEMIDPOINTOF02 ÜÜ "ISTHEMIDPOINTOF12 0ROVE!"??01 0OSITIONEACHFIGUREINTHECOORDINATEPLANEANDGIVE THECOORDINATESOFEACHVERTEX
Ê
x° ARIGHTTRIANGLEWITHLEGLENGTHSMANDN
Ê
Ȱ ARECTANGLEWITHLENGTHAANDWIDTHB 3%%%8!-0,% {
Ê
P
Þ
* {
Ó Ý
,
Ó
+
È
ÊÕÌ-Ìi« !SSIGNCOORDINATESTOEACHVERTEXANDWRITEACOORDINATEPROOF ÜÜ Ç° 'IVENȜ2ISARIGHTANGLEIṈ012!ISTHEMIDPOINTOF02 ÜÜ "ISTHEMIDPOINTOF12 0ROVE!"??01
*, /
Ê Ê*," Ê-"6 )NDEPENDENT0RACTICE &OR 3EE Ê %XERCISES %XAMPLE
Ê
Ê
n n
%XTRA0RACTICE 3KILLS0RACTICEP3 !PPLICATION0RACTICEP3
0OSITIONEACHFIGUREINTHECOORDINATEPLANE n° ASQUAREWITHSIDELENGTHSOFUNITS ° ARIGHTTRIANGLEWITHLEGLENGTHSOFUNITANDUNITS 7RITEAPROOFUSINGCOORDINATEGEOMETRY
Þ
£ä° 'IVEN2ECTANGLE!"#$HASCOORDINATES! " # AND$ %ISTHE ÜÜ ÜÜ MIDPOINTOF!" AND&ISTHEMIDPOINTOF#$ 0ROVE%&"#
Ý
0OSITIONEACHFIGUREINTHECOORDINATEPLANEANDGIVE THECOORDINATESOFEACHVERTEX Ê
££° ASQUAREWITHSIDELENGTHM
£ä n È { Ó ä
Ê
£Ó° ARECTANGLEWITHDIMENSIONSXANDX
Ê
ÕÌ-Ìi« !SSIGNCOORDINATESTOEACHVERTEXANDWRITEACOORDINATEPROOF ÜÜ ÜÜ £Î° 'IVEN%ISTHEMIDPOINTOF!"INRECTANGLE!"#$&ISTHEMIDPOINTOF#$ 0ROVE%&!$
Ê
ÓÇä
Ó
{
È
£{° ÀÌV>Ê/
}Ê 5SEVARIABLESTOWRITETHEGENERALFORMOFTHEENDPOINTS OFASEGMENTWHOSEMIDPOINTIS
>«ÌiÀÊ{Ê /À>}iÊ }ÀÕiVi
£x° ,iVÀi>Ì !HIKINGTRAILBEGINSAT% "RYANHIKESFROMTHESTARTOFTHETRAILTO AWATERFALLAT7 ANDTHENMAKESATURNTOACAMPSITEAT# >° $RAW"RYANSROUTEINTHECOORDINATEPLANE L° )FONEGRIDUNITREPRESENTSMILE WHATISTHETOTALDISTANCE"RYANHIKED 2OUNDTOTHENEARESTTENTH
Ê Ê Ê
&INDTHEPERIMETERANDAREAOFEACHFIGURE Ê
£È° ARIGHTTRIANGLEWITHLEGLENGTHSOFAANDAUNITS
Ê
£Ç° ARECTANGLEWITHDIMENSIONSSANDTUNITS &INDTHEMISSINGCOORDINATESFOREACHFIGURE
Ê
£n°
Þ ä]Ê®
ÊÊÊ]ÊÊÊÊ®
:fej\imXk`fe
£°
Þ
«]ʵ®
Ý ä]Êä®
]Êä®
Ý ä]Êä®
ÊÊÊ]ÊÊÊÊ®
Ê
Óä° ÃiÀÛ>Ì 4HE"USHMENHAVESIGHTEDANIMALSATTHEFOLLOWINGCOORDINATES AND 0ROVETHATTHEDISTANCEBETWEENTWOOF THESELOCATIONSISAPPROXIMATELYTWICETHEDISTANCEBETWEENTWOOTHER
Ê
Ó£°
4HEORIGINOFTHE SPRINGBOKSNAMEMAY COMEFROMITSHABITOF pronking ORBOUNCING 7HENPRONKING A ÊSPRINGBOKCANLEAPUP TOFEETINTHEAIR 3PRINGBOKSCANRUNUP TOMILESPERHOUR
7RITEACOORDINATEPROOF
Ê Ê
>Û}>Ì 4WOSHIPSDEPARTFROMAPORTAT0 4HEFIRSTSHIPTRAVELSTO ALOCATIONAT! ANDTHESECONDSHIPTRAVELSTOALOCATIONAT" %ACHUNITREPRESENTSONENAUTICALMILE&INDTHEDISTANCETOTHENEARESTNAUTICAL MILEBETWEENTHETWOSHIPS6ERIFYTHATTHEPORTISATTHEMIDPOINTBETWEENTHETWO
ÓÓ° 'IVEN2ECTANGLE0123HASCOORDINATES0 1 2 AND3 ÜÜ ÜÜ 02 AND13INTERSECTAT4 0ROVE4HEAREAOF̱234IS?? OFTHEAREAOFTHERECTANGLE
X X Y Y
Óΰ 'IVEN! X Y " X Y WITHMIDPOINT- ????? ????? ?? 0ROVE!-!"
Ó{° 0LOTTHEPOINTSONACOORDINATEPLANEANDCONNECTTHEMTOFORM̱+,-AND ̱-0+7RITEACOORDINATEPROOF 'IVEN+ , - 0 0ROVE̱+,-Ɂ̱-0+ Ê Óx° 7ÀÌiÊLÕÌÊÌÊ 7HENYOUPLACETWOSIDESOFAFIGUREONTHECOORDINATEAXES WHATAREYOUASSUMINGABOUTTHEFIGURE
Ê
Ê Ê
ÓȰ 4HISPROBLEMWILLPREPAREYOUFORTHE-ULTI 3TEP4EST0REPONPAGE 0AULDESIGNEDADOGHOUSETOFITAGAINSTTHESIDEOFHISHOUSE (ISPLANCONSISTEDOFARIGHTTRIANGLEONTOPOFARECTANGLE
>° &IND"$AND#% L° "EFOREBUILDINGTHEDOGHOUSE 0AULSKETCHEDHISPLAN ONACOORDINATEPLANE(EPLACED!ATTHEORIGIN Ónʰ ÜÜ AND!"ONTHEY AXIS&INDTHECOORDINATESOF" # $ AND% ASSUMINGTHATEACHUNITOFTHECOORDINATE PLANEREPRESENTSONEINCH
Þ
ÓÈʰ
£äʰ
{ ÇÊÌÀ`ÕVÌÊÌÊ À`>ÌiÊ*Àv
Ý
ÓÇ£
Ê
ÓÇ°Ê /
iÊVÀ`>ÌiÃÊvÊÌ
iÊÛiÀÌViÃÊvÊ>ÊÀ}
ÌÊÌÀ>}iÊ>ÀiÊÊ ä]Êä Ê]ÊÊ {]Êä Ê]Ê>`ÊÊ ä]ÊÓ Ê°Ê 7
V
ÊÃÊ>ÊÌÀÕiÊÃÌ>Ìii̶ Ê /
iÊÛiÀÌiÝÊvÊÌ
iÊÀ}
ÌÊ>}iÊÃÊ>ÌÊÊ {]ÊÓ Ê° Ê /
iÊ`«ÌÃÊvÊÌ
iÊÌÜÊi}ÃÊ>ÀiÊ>ÌÊÊ Ó]Êä Ê>`ÊÊ ä]Ê£ ʰ е Ê /
iÊ
Þ«ÌiÕÃiÊvÊÌ
iÊÌÀ>}iÊÃÊÊÊȖÈÊ Ê ÕÌð Ê /
iÊÃ
ÀÌiÃÌÊÃ`iÊvÊÌ
iÊÌÀ>}iÊÃÊ«ÃÌi`ÊÊÌ
iÊÝ>Ýð
Ê
Ón°Ê ÊÀiVÌ>}iÊ
>ÃÊ`iÃÃÊvÊÓ}Ê>`ÊÓvÊÕÌðÊvÊiÊÛiÀÌiÝÊÃÊ>ÌÊÌ
iÊÀ}]Ê Ü
V
ÊVÀ`>ÌiÃÊVÕ`Ê "/ÊÀi«ÀiÃiÌÊ>Ì
iÀÊÛiÀÌiݶ Ê Ê Óv]Ê} Ê
Ê Ê Ó}]ÊÓv Ê
Ê Ê Óv]Êä Ê
Ê Ê Óv]ÊÓ} Ê
Ê
Ó°Ê /
iÊVÀ`>ÌiÃÊvÊÌ
iÊÛiÀÌViÃÊvÊ>ÊÀiVÌ>}iÊ>ÀiÊä]Êä®]Ê>]Êä®]Ê>]ÊL®]Ê>`Êä]ÊL®°Ê 7
>ÌÊÃÊÌ
iÊ«iÀiÌiÀÊvÊÌ
iÊÀiVÌ>}i¶ Ê >Ê ÊLÊ Ê >LÊ Ê Ú Ê£ÊÊÊ>LÊ Ê Ó>Ê ÊÓL Ó
Ê
Îä°Ê ÊVÀ`>ÌiÊ}À`ÊÃÊ«>Vi`ÊÛiÀÊ>Ê>«°Ê ÌÞÊÊÃÊV>Ìi`Ê>ÌÊÊ £]ÊÓ Ê>`ÊVÌÞÊ ÊÃÊ V>Ìi`Ê>ÌÊÊ Î]Êx ʰÊvÊVÌÞÊ ÊÃÊ>ÌÊÌ
iÊ`«ÌÊLiÌÜiiÊVÌÞÊÊ>`ÊVÌÞÊ ]ÊÜ
>ÌÊ>ÀiÊ Ì
iÊVÀ`>ÌiÃÊvÊVÌÞÊ ¶ Ê Ê £]Êΰx Ê Ê Ê x]Ê£ Ê Ê Ê Ç]Ên Ê Ê Ê Ó]ÊÇ Ê
Ê Ê 8/ &INDTHEMISSINGCOORDINATESFOREACHFIGURE Ê
룡
Þ
Ý >]Êä®
>Ê ÊV]ÊäÊ®
>]ÊL®
ÊÊÊ]ÊÊÊÊ®
ÎÓ°
Þ
]Ê
®
Ê Ê«]Ê
Ê®
Ý ä]Êä®
ÊÊÊ]ÊÊÊÊ®
Ê
Îΰ 4HEVERTICESOFARIGHTTRIANGLEAREAT S S S AND 7HATCOORDINATES COULDBEUSEDSOTHATACOORDINATEPROOFWOULDBEEASIERTOCOMPLETE
Ê
Î{° 2ECTANGLE!"#$HASDIMENSIONSOFFANDGUNITS G ÜÜ 4HEEQUATIONOFTHELINECONTAINING"$ISY?? FX AND ÜÜ G FX G THEEQUATIONOFTHELINECONTAINING!#ISY??
ä]ÊÓ}®
Óv]ÊÓ}®
Þ
Ý
5SEALGEBRATOSHOWTHATTHECOORDINATESOF%ARE F G
ä]Êä®
Óv]Êä®
-*,Ê, 6 7 5SETHEQUADRATICFORMULATOSOLVEFORX2OUNDTOTHENEAREST HUNDREDTHIFNECESSARY*ÀiÛÕÃÊVÕÀÃi® Ê
Îx° X X
ÎȰ X X
낡 XX
&INDEACHVALUEiÃÃÊÎÓ® Ê
În° XÊ
Ê
ΰ Y
ÓÞÊ ÊÓ{®Â ÝÂ
Ê
ÓÇÓ
ÈnÂ
{ä° 5SE! " # $ % AND& TOPROVE Ȝ!"#ɁȜ%$&iÃÃÊ{È®
>«ÌiÀÊ{Ê /À>}iÊ }ÀÕiVi
)SOSCELESAND
%QUILATERAL4RIANGLES 7
ÊÕÃiÃÊÌ
ö ÃÌÀiÀÃÊÕÃiÊ}iiÌÀVÊiÌ
`Ã°Ê -iiÊ Ý>«iÊ£°®
/BJECTIVES *ÀÛiÊÌ
iÀiÃÊ>LÕÌÊ ÃÃViiÃÊ>`ÊiµÕ>ÌiÀ>Ê ÌÀ>}ið ««ÞÊ«À«iÀÌiÃÊvÊ ÃÃViiÃÊ>`ÊiµÕ>ÌiÀ>Ê ÌÀ>}ið 6OCABULARY i}ÃÊvÊ>ÊÃÃViiÃÊ ÌÀ>}i ÛiÀÌiÝÊ>}i L>Ãi L>ÃiÊ>}iÃ
2ECALLTHATANISOSCELESTRIANGLEHASATLEAST TWOCONGRUENTSIDES4HECONGRUENTSIDES ARECALLEDTHELEGS4HEVERTEXANGLEIS THEANGLEFORMEDBYTHELEGS4HESIDE OPPOSITETHEVERTEXANGLEISCALLEDTHEBASE ANDTHEBASEANGLESARETHETWOANGLES THATHAVETHEBASEASASIDE
Ó
ȜÎÊÃÊÌ
iÊÛiÀÌiÝÊ>}i°Ê Ȝ£Ê>`ÊȜÓÊ>ÀiÊÌ
iÊ L>ÃiÊ>}ið
Ê/
iÀiÃ
Î
£
ÃÃViiÃÊ/À>}i
/ ",
9*"/ --
" 1-"
{n£Ê ÃÃViiÃÊ/À>}iÊ/
iÀi vÊÌÜÊÃ`iÃÊvÊ>ÊÌÀ>}iÊ>ÀiÊ V}ÀÕiÌ]ÊÌ
iÊÌ
iÊ>}iÃÊ««ÃÌiÊ Ì
iÊÃ`iÃÊ>ÀiÊV}ÀÕḭ
Ȝ ÊɁÊȜ
{nÓÊ ÛiÀÃiÊvÊÃÃViiÃÊ /À>}iÊ/
iÀi
vÊÌÜÊ>}iÃÊvÊ>ÊÌÀ>}iÊ>ÀiÊ V}ÀÕiÌ]ÊÌ
iÊÌ
iÊÃ`iÃÊ««ÃÌiÊ Ì
ÃiÊ>}iÃÊ>ÀiÊV}ÀÕḭ
ÜÜ ÜÜ Ê ÊÊɁÊÊ Ê Ê
/
iÀiÊ{n£ÊÃÊ«ÀÛiÊLiܰÊ9ÕÊÜÊ«ÀÛiÊ/
iÀiÊ{nÓÊÊ ÝiÀVÃiÊÎx°
*,""
)SOSCELES4RIANGLE4HEOREM ÜÜ ÜÜ 'IVEN!"Ɂ!# 0ROVEȜ"ɁȜ# 0ROOF
8
-Ì>ÌiiÌÃ
/
iÊÃÃViiÃÊ /À>}iÊ/
iÀiÊÃÊ ÃiÌiÃÊÃÌ>Ìi`Ê>ÃÊ º >ÃiÊ>}iÃÊvÊ>Ê ÃÃViiÃÊÌÀ>}iÊ >ÀiÊV}ÀÕḭ»
ÜÜ £°Ê À>ÜÊ8]ÊÌ
iÊ`«Ì°ÊvÊÊ Ê Ê ° ÜÜ Ó°Ê À>ÜÊÌ
iÊ>ÕÝ>ÀÞÊiÊÊ8Ê Ê ° ÜÜ ÜÜ Ê Î°Ê Ê 8ÊÊɁÊÊ 8Ê ÜÜ ÜÜ Ê {°Ê Ê ÊÊɁÊÊ Ê ÜÜ ÜÜ Ê x°Ê Ê8ÊÊɁÊÊ8Ê
,i>ÃÃ £°Ê ÛiÀÞÊÃi}°Ê
>ÃÊ>ÊÕµÕiÊ`«Ì° Ó°Ê /
ÀÕ}
ÊÌÜÊ«ÌðÊÌ
iÀiÊÃÊiÝ>VÌÞÊiÊi° Î°Ê iv°ÊvÊ`«Ì° {°Ê Ûi x°Ê ,iviݰÊ*À«°ÊvÊɁ
È°Ê ̱ 8ÊɁÊ̱ 8
È°Ê ---ÊÊ-Ìi«ÃÊÎ]Ê{]Êx
Ç°Ê Ȝ ÊɁÊȜ
Ç°Ê * /
{nÊÃÃViiÃÊ>`Ê µÕ>ÌiÀ>Ê/À>}iÃ
ÓÇÎ
%8!-0,%
£ Ê ÃÌÀÞÊ««V>Ì
4HEDISTANCEFROM%ARTHTONEARBY STARSCANBEMEASUREDUSINGTHE PARALLAXMETHOD WHICHREQUIRES OBSERVINGTHEPOSITIONSOFASTAR MONTHSAPART)FTHEDISTANCE,- TOASTARIN*ULYISKM EXPLAINWHYTHEDISTANCE,+TOTHE STARIN*ANUARYISTHESAME!SSUME THEDISTANCEFROM%ARTHTOTHE3UN DOESNOTCHANGE
n°È¨ ÕÞ
ä°{¨ >Õ>ÀÞ
-Õ
*
ÌÊ`À>ÜÊÌÊÃV>i
MȜ,+- SOMȜ,+-3INCEȜ,+-ɁȜ- ̱,-+ISISOSCELESBYTHE#ONVERSEOFTHE)SOSCELES4RIANGLE4HEOREM 4HUS,+,-KM )FTHEDISTANCEFROM%ARTHTOASTARIN3EPTEMBERISKM WHATISTHEDISTANCEFROM%ARTHTOTHESTARIN-ARCH%XPLAIN
%8!-0,%
Ó &INDINGTHE-EASUREOFAN!NGLE
ÎnÂ
&INDEACHANGLEMEASURE
MȜ# MȜ#MȜ"X MȜ# MȜ" MȜ! X X X X 4HUSMȜ#
ÃÃV°Ê̱Ê/
°
-ÕLÃÌÌÕÌiÊÌ
iÊ}ÛiÊÛ>Õið -«vÞÊ>`ÊÃÕLÌÀ>VÌÊÎnÊvÀÊLÌ
ÊÃ`ið Û`iÊLÌ
ÊÃ`iÃÊLÞÊÓ° ,
MȜ3 ÃÃV°Ê̱Ê/
° MȜ3MȜ2 -ÕLÃÌÌÕÌiÊÌ
iÊ}ÛiÊÛ>Õið X X -ÕLÌÀ>VÌÊÝÊvÀÊLÌ
ÊÃ`ið X 4HUSMȜ3X
ÝÊ ÊÎä®Â
/ ÓÝÂ
-
&INDEACHANGLEMEASURE A MȜ( B MȜ.
ÝÂ
̱-ÕÊ/
°
*
ÈÞÂ
nÞÊʣȮÂ
{nÂ
4HEFOLLOWINGCOROLLARYANDITSCONVERSESHOWTHECONNECTIONBETWEEN EQUILATERALTRIANGLESANDEQUIANGULARTRIANGLES Ê À>ÀÞÊ{nÎ
µÕ>ÌiÀ>Ê/À>}i
",",9
9*"/ -
vÊ>ÊÌÀ>}iÊÃÊiµÕ>ÌiÀ>]ÊÌ
iÊÌÊÃÊ iµÕ>}Õ>À°Ê Ê iµÕ>ÌiÀ>Ê̱ÊƐÊiµÕ>}Õ>ÀÊ̱
" 1-" ȜÊɁÊȜ ÊɁÊȜ
9ÕÊÜÊ«ÀÛiÊ À>ÀÞÊ{nÎÊÊ ÝiÀVÃiÊÎȰ ÓÇ{
>«ÌiÀÊ{Ê /À>}iÊ }ÀÕiVi
Ê À>ÀÞÊ{n{
µÕ>}Õ>ÀÊ/À>}i
",",9
9*"/ --
" 1-"
vÊ>ÊÌÀ>}iÊÃÊiµÕ>}Õ>À]ÊÌ
iÊÌÊÃÊ iµÕ>ÌiÀ>°
ÜÜ ÜÜ ÜÜ Ê ÊÊɁÊÊ Ê Ê ÊɁÊÊ Ê Ê
iµÕ>}Õ>ÀÊ̱ ƐÊiµÕ>ÌiÀ>Ê̱
9ÕÊÜÊ«ÀÛiÊ À>ÀÞÊ{n{ÊÊ ÝiÀVÃiÊÎǰ
%8!-0,%
Î 5SING0ROPERTIESOF%QUILATERAL4RIANGLES
&INDEACHVALUE
X
̱!"#ISEQUIANGULAR X
µÕ>ÌiÀ>Ê̱ÊƐÊiµÕ>}Õ>ÀÊ̱
-ÕLÌÀ>VÌÊ£xÊvÀÊLÌ
ÊÃ`ið
/
iÊi>ÃÕÀiÊvÊi>V
ÊȜÊvÊ >ÊiµÕ>}Õ>ÀÊ̱ÊÃÊÈäc°
X X
ÎÝÊ Ê£x®Â
Û`iÊLÌ
ÊÃ`iÃÊLÞÊΰ
T
̱*+,ISEQUILATERAL TT T
µÕ>}Õ>ÀÊ̱ÊƐÊiµÕ>ÌiÀ>Ê̱ ÓÌÊ Ê£
iv°ÊvÊiµÕ>ÌiÀ>Ê̱ -ÕLÌÀ>VÌÊÓÌÊ>`Ê>``ÊnÊÌÊ LÌ
ÊÃ`ið
T
{ÌÊÊn
Û`iÊLÌ
ÊÃ`iÃÊLÞÊÓ°
5SETHEDIAGRAMTOFIND*,
%8!-0,%
ÊVÀ`>ÌiÊ«ÀvÊ >ÞÊLiÊi>ÃiÀÊvÊÞÕÊ «>ViÊiÊÃ`iÊvÊÌ
iÊ ÌÀ>}iÊ>}ÊÌ
iÊ Ý>ÝÃÊ>`ÊV>ÌiÊ>Ê ÛiÀÌiÝÊ>ÌÊÌ
iÊÀ}Ê ÀÊÊÌ
iÊÞ>Ýð
{ 5SING#OORDINATE0ROOF
Þ
0ROVETHATTHETRIANGLEWHOSEVERTICESARETHE MIDPOINTSOFTHESIDESOFANISOSCELESTRIANGLE ISALSOISOSCELES ÜÜ 'IVEṈ!"#ISISOSCELES8ISTHEMDPTOF!" ÜÜ ÜÜ 9ISTHEMDPTOF!#:ISTHEMDPTOF"# 0ROVE̱89:ISISOSCELES
Ó>]ÊÓL®
8
9 Ý
ä]Êä®
<
{>]Êä®
0ROOF $RAWADIAGRAMANDPLACETHECOORDINATESOF̱!"#ANḎ89:ASSHOWN A ????? "YTHE-IDPOINT&ORMULA THECOORDINATESOF8ARE ????? B A B
A A ????? B A B ANDTHECOORDINATESOF: THECOORDINATESOF9ARE ??????
A ???? ARE ????? A
ееееееее еее "YTHE$ISTANCE&ORMULA 8:Ȗ AA B ȖA B AND 9:Ȗеееееееее AA B Ȗеее A B
ÜÜ ÜÜ 3INCE8:9: 8:Ɂ9:BYDEFINITION3O̱89:ISISOSCELES 7
>ÌÊv°°°¶ 4HECOORDINATESOF̱!"#ARE! B " A AND# A 0ROVE̱89:ISISOSCELES { nÊÃÃViiÃÊ>`Ê µÕ>ÌiÀ>Ê/À>}iÃ
ÓÇx
K?@EB8E;;@J:LJJ Ê £° %XPLAINWHYEACHOFTHEANGLESINANEQUILATERALTRIANGLEMEASURES ÊÓ° /Ê", < #OPYANDCOMPLETETHE GRAPHICORGANIZER)NEACHBOX DRAWAND MARKADIAGRAMFOREACHTYPEOFTRIANGLE
{nÊ
/À>}i
µÕ>ÌiÀ>
µÕ>}Õ>À
ÝiÀVÃiÃ
+%97/2$ÇÊ{n +%97/2$ÇÊ*>ÀiÌ
1 Ê*, /
Ê
£° 6V>LÕ>ÀÞ $RAWISOSCELES̱*+,WITHȜ+ASTHEVERTEXANGLE.AMETHELEGS BASE ANDBASEANGLESOFTHETRIANGLE 3%%%8!-0,% £
P
3%%%8!-0,% Ó
Ê
P
Ê Ó° -ÕÀÛiÞ} 4OFINDTHEDISTANCE12ACROSSARIVER ASURVEYORLOCATESTHREEPOINTS1 2 AND313M ANDMȜ34HEMEASUREOFEXTERIORȜ013$RAWA DIAGRAMANDEXPLAINHOWYOUCANFIND12 &INDEACHANGLEMEASURE
ΰ MȜ%#$
x° MȜ8
®
Þ
8
0ROVE̱!8"ISISOSCELES
Ý
ä]Êä® ÓÇÈ
>«ÌiÀÊ{Ê /À>}iÊ }ÀÕiVi
Ó>]Êä®
*, /
Ê Ê*," Ê-"6 )NDEPENDENT0RACTICE Ê &OR 3EE %XERCISES %XAMPLE
n n
£Ó° Û>Ì !PLANEISFLYINGPARALLEL TOTHEGROUNDALONG!# жжЮ7HENTHE PLANEISAT! ANAIR TRAFFICCONTROLLER INTOWER4MEASURESTHEANGLETO THEPLANEAS!FTERTHEPLANEHAS TRAVELEDMITO" THEANGLETOTHE PLANEIS(OWCANYOUFIND"4
Ó°{Ê
nä¨
%XTRA0RACTICE
{ä¨
3KILLS0RACTICEP3
/
!PPLICATION0RACTICEP3
&INDEACHANGLEMEASURE Ê
£Î° MȜ%
ÈÂ
,
£{° MȜ425
-
xÇÂ
1
/
Ê
£x° MȜ&
Ê ÊÝÊÓÊ ÊÂ
£È° MȜ!
ÎÝÊ Ê£ä®Â
ÈÞÊ Ê£®Â
Ó£ÞÊ Ê£Î®Â
&INDEACHVALUE Ê
£Ç° Z
Ê ÚÚ ÊâÊÊÊÊ Ê£{ ÊÂ
Ó
£n° Y
£°xÞÊÊ£Ó®Â
Ê
£° "#
Î ÊÚÚ ÊÊÊÝÊ ÊÓ Ó
ÓÝ
ÚÚÊxÊÊÊÝÊÊx
ÚÚÊxÊÊÊÝÊ ÊÈ
9
Ó
{
ÓÝ
Ê
8
Óä° 8:
Ì $RAWTHEFIGUREFORMEDBY AND %STIMATE THEMEASUREOFEACHANGLEANDMAKEACONJECTUREABOUTTHECLASSIFICATIONOFTHE FIGURE4HENUSEAPROTRACTORTOMEASUREEACHANGLE7ASYOURCONJECTURECORRECT 7HYORWHYNOT
Ê
ÎÓ° (OWMANYDIFFERENTISOSCELESTRIANGLESHAVEAPERIMETEROFANDSIDESWHOSE LENGTHSARENATURALNUMBERS%XPLAIN ÕÌ-Ìi« &INDTHEVALUEOFTHEVARIABLEINEACHDIAGRAM
Ê
Îΰ
Î{°
xÝÊ Ê£x®Â
ÎÞÊÊx®Â {äÂ
Ê
Îx° 0ROVETHE#ONVERSEOFTHE)SOSCELES4RIANGLE4HEOREM
Ê
ÎȰ #OMPLETETHEPROOFOF#OROLLARY ÜÜ ÜÜ ÜÜ 'IVEN!"Ɂ!#Ɂ"# 0ROVEȜ!ɁȜ"ɁȜ#
ÜÜ ÜÜ 0ROOF3INCE!"Ɂ!# >° BYTHE)SOSCELES4RIANGLE4HEOREM ÜÜÜÜ ÜÜ ÜÜ 3INCE!#Ɂ"# Ȝ!ɁȜ"BYL° 4HEREFOREȜ!ɁȜ#BYV° ÜÜÜÜ ÜÜÜÜ "YTHE4RANSITIVE0ROPERTYOFɁ Ȝ!ɁȜ"ɁȜ#
Ê
낡 0ROVE#OROLLARY
EXm`^Xk`fe
4HETAFFRAILLOGIS DRAGGEDFROMTHESTERN OFAVESSELTOMEASURE THESPEEDORDISTANCE TRAVELEDDURINGA VOYAGE4HELOGCONSISTS OFAROTATOR RECORDING ÊDEVICE ANDGOVERNOR
În°
>Û}>Ì 4HECAPTAINOFASHIPTRAVELINGALONGжжЮ !" SIGHTSANISLAND#ATANANGLEOF4HECAPTAINMEASURES THEDISTANCETHESHIPCOVERSUNTILITREACHES" WHERE THEANGLETOTHEISLANDIS%XPLAINHOWTOFINDTHE DISTANCE"#TOTHEISLAND
{xÂ
ΰÊ'IVEṈ!"#Ɂ̱#"! 0ROVE̱!"#ISISOSCELES Ê {ä° 7ÀÌiÊLÕÌÊÌ 7RITETHE)SOSCELES4RIANGLE4HEOREMANDITSCONVERSE ASABICONDITIONAL
ÓÇn
>«ÌiÀÊ{Ê /À>}iÊ }ÀÕiVi
äÂ
Ê
{£° 2EWRITETHEPARAGRAPHPROOFOFTHE (YPOTENUSE ,EG(, #ONGRUENCE 4HEOREMASATWO COLUMNPROOF
'IVEṈ!"#ANḎ$%&ARERIGHTTRIANGLES Ȝ#ANDȜ&ARERIGHTANGLES ÜÜ ÜÜ ÜÜ ÜÜ !# Ɂ$& AND!"Ɂ$%
0ROVE̱!"#Ɂ̱$%& ÜÜ ÜÜ 0ROOF/Ṉ$%&DRAW%& жжЮ-ARK'SOTHAT&'#"4HUS&'Ɂ#"&ROMTHEDIAGRAM ÜÜ ÜÜ ÜÜ ÜÜ !#Ɂ$&ANDȜ#ANDȜ&ARERIGHTANGLES$&ʡ%'BYDEFINITIONOFPERPENDICULAR LINES4HUSȜ$&'ISARIGHTANGLE ANDȜ$&'ɁȜ#̱!"#Ɂ̱$'&BY3!3 ÜÜÜ ÜÜ ÜÜÜ ÜÜ ÜÜ ÜÜ $'Ɂ!"BY#0#4#!"Ɂ$%ASGIVEN$'Ɂ$%BYTHE4RANSITIVE0ROPERTY "YTHE)SOSCELES4RIANGLE4HEOREMȜ'ɁȜ%Ȝ$&'ɁȜ$&%SINCERIGHTANGLES ARECONGRUENT3O̱$'&Ɂ̱$%&BY!!34HEREFORE̱!"#Ɂ̱$%&BYTHE 4RANSITIVE0ROPERTY
Ê
Ê
Ê
{Ó°Ê Ài>ÊÃÊ`iÃ}}Ê>ÊÜ`ÜÊÃÊÌ
>ÌÊȜ,]ÊȜ-]ÊȜ/]Ê>`ÊÊ ÜÜ ÜÜ Ȝ1Ê>ÀiÊÀ}
ÌÊ>}iÃ]ÊÊ61Ê Ê ÊɁÊÊ6/Ê Ê ]Ê>`ÊȜ16/ÊÊÓäc°Ê 7
>ÌÊÃÊȜ,16¶ 6 Ê £äcÊ Ê Ê Ê Óäc , Ê ÇäcÊ Ê Ê Ê näc {Î°Ê 7
V
ÊvÊÌ
iÃiÊÛ>ÕiÃÊvÊÞÊ>iÃÊ̱ ÊÃÃViiÃ¶Ê Ê £ÊÚ Ê£ÊÊÊÊ Ê Ê Ê ÇÊÚ Ê£ÊÊÊ { Ó £ Ú Ê ÓÊÊ ÊÊÊÊ Ê Ê Ê £xÊÚ Ê£ÊÊÊ Ó Ó
ÓäÂ
1
{Þ
ÎÞÊÊx
ÞÊ Ê£ä
{{°Ê À``i`Ê,iëÃiÊ /
iÊÛiÀÌiÝÊ>}iÊvÊ>ÊÃÃViiÃÊ ÌÀ>}iÊi>ÃÕÀiÃÊÊ ÈÌÊÊ Êc]Ê>`ÊiÊvÊÌ
iÊL>ÃiÊ>}iÃÊ i>ÃÕÀiÃÊÊ {Ì cÊ °Ê`Ḛ̂
Ê Ê 8/ Ê Ê
Ê
/
ÜÜ ÜÜ ÜÜÜ ÜÜ {x° )NTHEFIGURE *+Ɂ*, AND+-Ɂ+,,ETMȜ*X 0ROVEMȜ-+,MUSTALSOBEX
ÝÂ
{Ȱ !NEQUILATERAḺ!"#ISPLACEDONACOORDINATEPLANE %ACHSIDELENGTHMEASURESA"ISATTHEORIGIN AND #ISAT A &INDTHECOORDINATESOF!
{ǰ !NISOSCELESTRIANGLEHASCOORDINATES! AND" A B 7HATAREALLPOSSIBLECOORDINATESOFTHETHIRDVERTEX
-*,Ê, 6 7 &INDTHESOLUTIONSFOREACHEQUATION*ÀiÛÕÃÊVÕÀÃi® Ê
{n° X X
{° XX
xä° XX
&INDTHESLOPEOFTHELINETHATPASSESTHROUGHEACHPAIROFPOINTSiÃÃÊÎx® Ê
x£° AND
xӰ AND xΰ AND
Ê
x{° 0OSITIONASQUAREWITHAPERIMETEROFSINTHECOORDINATEPLANEANDGIVETHE COORDINATESOFEACHVERTEXiÃÃÊ{Ç® { nÊÃÃViiÃÊ>`Ê µÕ>ÌiÀ>Ê/À>}iÃ
ÓÇ
- /" Ê{
*ÀÛ}Ê/À>}iÃÊ }ÀÕiÌ iÊÌÊÌ
iÊ }ÃÊ 9OUAREPLANNINGTOBUILD ADOGHOUSEFORYOURDOG4HEPITCHEDROOFOF THEDOGHOUSEWILLBESUPPORTEDBYFOURTRUSSES %ACHTRUSSWILLBEANISOSCELESTRIANGLEWITHTHE DIMENSIONSSHOWN4ODETERMINETHEMATERIALS YOUNEEDTOPURCHASEANDHOWYOUWILLCONSTRUCT THETRUSSES YOUMUSTFIRSTPLANCAREFULLY
ʰ
Ó{ʰ
9OUWANTTOBESURETHATALLFOUR TRUSSESAREEXACTLYTHESAMESIZE ANDSHAPE%XPLAINHOWYOU COULDMEASURETHREELENGTHS ONEACHTRUSSTOENSURETHIS 7HICHPOSTULATEORTHEOREM AREYOUUSING
0ROVETHATTHETWOTRIANGULAR HALVESOFTHETRUSSARECONGRUENT ÜÜ 7HATCANYOUSAYABOUT!$ ÜÜ AND$"7HYISTHISTRUE 5SETHISTOHELPYOUFINDTHE ÜÜ ÜÜ ÜÜ ÜÜ LENGTHSOF!$ $" !# AND"#
9OUWANTTOMAKECAREFULPLANSONACOORDINATEPLANE BEFOREYOUBEGINYOURCONSTRUCTIONOFTHETRUSSES %ACHUNITOFTHECOORDINATEPLANEREPRESENTSINCH (OWCOULDYOUASSIGNCOORDINATESTOVERTICES! " AND#
MȜ!#"7HATISTHEMEASUREOFEACHOFTHEACUTE ANGLESINTHETRUSS%XPLAINHOWYOUFOUNDYOURANSWER
9OUCANBUYTHEWOODFORTHETRUSSESATTHEBUILDING SUPPLYSTOREFORAFOOT4HESTORESELLSTHEWOODIN FOOTLENGTHSONLY(OWMUCHWILLYOUHAVETOSPEND TOGETENOUGHWOODFORTHETRUSSESOFTHEDOGHOUSE (INT9OUNEEDTOUSETHE0YTHAGOREAN4HEOREMTOFIND THETWOUNKNOWNSIDELENGTHSOFEACHTRUSS
Ónä
>«ÌiÀÊ{Ê /À>}iÊ }ÀÕiVi
- /" Ê{
+ÕâÊvÀÊiÃÃÃÊ{{Ê/
ÀÕ}
Ê{n 4RIANGLE#ONGRUENCE333AND3!3 Ê Ê Ê
£°Ê 4HEFIGURESHOWSONETOWERANDTHECABLESOFASUSPENSIONBRIDGE ÜÜ ÜÜ 'IVENTHAT!#Ɂ"# USE3!3TOEXPLAINWHY̱!#$Ɂ̱"#$ ÜÜ ÜÜ ÜÜ Ó°Ê 'IVEN*+BISECTSȜ-*. -* Ɂ.* Ê 0ROVE̱-*+Ɂ̱.*+
4RIANGLE#ONGRUENCE!3! !!3 AND(, $ETERMINEIFYOUCANUSETHE(,#ONGRUENCE4HEOREMTOPROVETHETRIANGLES CONGRUENT)FNOT TELLWHATELSEYOUNEEDTOKNOW Ê
ΰ ̱235ANḎ453
,
-
1
/
{° ̱!"#ANḎ$#"
Ê
x°Ê $RAWADIAGRAMOFTHETRIANGLEFORMEDBYTHE LIGHTHOUSESANDTHESHIP,ABELEACHMEASURE
Ê
È°Ê )STHEREENOUGHDATAINTHETABLETOPINPOINT THELOCATIONOFTHESHIP7HY
Ê Ê
/BSERVERSINTWOLIGHTHOUSES+AND,SPOTASHIP3
4RIANGLE#ONGRUENCE#0#4#
ÜÜ ÜÜ ÜÜ ÜÜ Ç°Ê 'IVEN#$ȡ"% $%ȡ#" Ê 0ROVEȜ$ɁȜ"
ÊÌÊ i>À}
ÃÌ>Vi
£ÓÊ
ÊÌÊÊxncÊ ¶
ÊÌÊÊÇÇcÊ7
)NTRODUCTIONTO#OORDINATE0ROOF Ê
n° 0OSITIONASQUAREWITHSIDELENGTHSOFUNITSINTHECOORDINATEPLANE
Ê Ê Ê
°Ê !SSIGNCOORDINATESTOEACHVERTEXANDWRITEACOORDINATEPROOF ÜÜ ÜÜ Ê 'IVEN!"#$ISARECTANGLEWITH-ASTHEMIDPOINTOF!".ISTHEMIDPOINTOF!$ Ê 0ROVE4HEAREAOF̱!-.IS?? THEAREAOFRECTANGLE!"#$
)SOSCELESAND%QUILATERAL4RIANGLES &INDEACHVALUE Ê
£ä° MȜ#
Ê Ê
ÓÝÂ
xÝÂ
,
££° 34 nÊÊ{Ü
ÓÜÊ Êx
/
-
£Ó°Ê 'IVEN)SOSCELES̱*+,HASCOORDINATES* + A B AND, A ÜÜ ÜÜ -ISTHEMIDPOINTOF*+ AND.ISTHEMIDPOINTOF+, Ê 0ROVE̱+-.ISISOSCELES ,i>`ÞÊÌÊÊ"¶
Ón£
8/ -"
/BJECTIVE 1ÃiÊV}ÀÕiÌÊÌÀ>}iÃÊ ÌÊ«ÀÛiÊVÃÌÀÕVÌÃÊ Û>`°
0ROVING#ONSTRUCTIONS6ALID 7HENPERFORMINGACOMPASSANDSTRAIGHTEDGECONSTRUCTION THECOMPASS SETTINGREMAINSTHESAMEWIDTHUNTILYOUCHANGEIT4HISFACTALLOWSYOUTO CONSTRUCTASEGMENTCONGRUENTTOAGIVENSEGMENT9OUCANASSUMETHATTWO DISTANCESCONSTRUCTEDWITHTHESAMECOMPASSSETTINGARECONGRUENT
4HESTEPSINTHECONSTRUCTIONOFAFIGURECANBEJUSTIFIEDBYCOMBININGTHE ASSUMPTIONSOFCOMPASSANDSTRAIGHTEDGECONSTRUCTIONSANDTHEPOSTULATESAND THEOREMSTHATAREUSEDFORPROVINGTRIANGLESCONGRUENT 9OUHAVELEARNEDTHATTHEREEXISTSEXACTLYONEMIDPOINTONANYLINESEGMENT 4HEPROOFBELOWJUSTIFIESTHECONSTRUCTIONOFAMIDPOINT
%8!-0,%
£ 0ROVINGTHE#ONSTRUCTIONOFA-IDPOINT 'IVENDIAGRAMSHOWINGTHESTEPS INTHECONSTRUCTION ÜÜ 0ROVE-ISTHEMIDPOINTOF!"°
0ROOF
/ÊVÃÌÀÕVÌÊ>Ê `«Ì]ÊÃiiÊÌ
iÊ VÃÌÀÕVÌÊvÊ >Ê«iÀ«i`VÕ>ÀÊ LÃiVÌÀÊÊ«°Ê£ÇÓ°
-Ì>ÌiiÌà ÜÜ ÜÜ ÜÜÜ ÜÜ £°Ê À>ÜÊÊÊ Ê]ÊÊ Ê Ê ]ÊÊ Ê Ê ]Ê>`ÊÊ Ê Ê Ê° ÜÜ ÜÜ ÜÜÜ ÜÜ Ê ÊɁÊÊ Ê Ê ÊɁÊÊ Ê Ê Ó°Ê Ê ÊÊɁÊÊ Ê ÜÜ ÜÜ Ê Î°Ê Ê ÊÊɁÊÊ Ê
£°Ê Ê/
ÀÕ}
Ê>ÞÊÌÜÊ«ÌðÊÌ
iÀiÊÃÊ iÝ>VÌÞÊiÊi°Ê Ó°Ê ->iÊV«>ÃÃÊÃiÌÌ}ÊÕÃi` Î°Ê ,iviݰÊ*À«°ÊvÊɁ
{°Ê ̱ ÊɁÊ̱
{°Ê ---ÊÊ-Ìi«ÃÊÓ]ÊÎ
x°Ê Ȝ ÊɁÊȜ ÜÜÜ ÜÜÜ Ê È°Ê Ê ÊÊɁÊÊ Ê
x°Ê * /
Ç°Ê ̱ ÊɁÊ̱ ÜÜÜ ÜÜÜ Ê n°Ê ÊÊÊɁÊÊ Ê
Ç°Ê --ÊÊ-Ìi«ÃÊÓ]Êx]ÊÈ
ÜÜ °Ê ÊÃÊÌ
iÊ`«Ì°ÊvÊÊ Ê Ê °
ÓnÓ
,i>ÃÃ
>«ÌiÀÊ{Ê /À>}iÊ }ÀÕiVi
È°Ê ,iviݰÊ*À«°ÊvÊɁ n°Ê * /
°Ê iv°ÊvÊ`«Ì°
'IVENABOVEDIAGRAM ÜÜ 0ROVE#$ ЭжЮISTHEPERPENDICULARBISECTOROF!"
%8!-0,%
Ó 0ROVINGTHE#ONSTRUCTIONOFAN!NGLE 'IVENDIAGRAMSHOWINGTHESTEPSINTHECONSTRUCTION 0ROVEȜ!ɁȜ$
/ÊÀiÛiÜÊÌ
iÊ VÃÌÀÕVÌÊvÊ>Ê >}iÊV}ÀÕiÌÊÌÊ >Ì
iÀÊ>}i]ÊÃiiÊ «>}iÊÓÓ°
0ROOF3INCETHEREISASTRAIGHTLINETHROUGHANYTWOPOINTS YOUCANDRAW ÜÜ ÜÜ ÜÜ ÜÜ ÜÜ "#AND%&4HESAMECOMPASSSETTINGWASUSEDTOCONSTRUCT!# !" $& ÜÜ ÜÜ ÜÜ ÜÜ ÜÜ AND$% SO!#Ɂ!"Ɂ$&Ɂ$%4HESAMECOMPASSSETTINGWASUSED ÜÜ ÜÜ ÜÜ ÜÜ TOCONSTRUCT"#AND%& SO"#Ɂ%&4HEREFORE̱"!#Ɂ̱%$&BY333 ANDȜ!ɁȜ$BY#0#4# 0ROVETHECONSTRUCTIONFOR BISECTINGANANGLE3EEPAGE
%84%.3)/.
ÝiÀVÃià 5SEEACHDIAGRAMTOPROVETHECONSTRUCTIONVALID
Ê
£° PARALLELLINES 3EEPAGEANDPAGE
Ó° A PERPENDICULARTHROUGHAPOINTNOT ONTHELINE3EEPAGE
*
+
Ê
ΰ CONSTRUCTINGATRIANGLEUSING3!3 3EEPAGE
{° CONSTRUCTINGATRIANGLEUSING!3! 3EEPAGE
ÝÌiÃ
ÓnÎ
&ORACOMPLETE LISTOFTHE POSTULATESAND THEOREMSIN THISCHAPTER SEEP3
6OCABULARY ACUTETRIANGLE
#0#4#
ISOSCELESTRIANGLE
AUXILIARYLINE
EQUIANGULARTRIANGLE
LEGSOFANISOSCELESTRIANGLE
BASE
EQUILATERALTRIANGLE
OBTUSETRIANGLE
BASEANGLE
EXTERIOR
REMOTEINTERIORANGLE
CONGRUENTPOLYGONS
EXTERIORANGLE
RIGHTTRIANGLE
COORDINATEPROOF
INCLUDEDANGLE
SCALENETRIANGLE
COROLLARY
INCLUDEDSIDE
TRIANGLERIGIDITY
CORRESPONDINGANGLES
INTERIOR
VERTEXANGLE
CORRESPONDINGSIDES
INTERIORANGLE
#OMPLETETHESENTENCESBELOWWITHVOCABULARYWORDSFROMTHELISTABOVE £° !N ISATRIANGLEWITHATLEASTTWOCONGRUENTSIDES ÜÜÜÜ Ó° !NAMEGIVENTOMATCHINGANGLESOFCONGRUENTTRIANGLESIS ÜÜÜÜ Î° !N ISTHECOMMONSIDEOFTWOCONSECUTIVEANGLESINAPOLYGON ÜÜÜÜ
#LASSIFYING4RIANGLES««°ÊÓ£ÈqÓÓ£®
8 , - -
%8!-0,% N
#LASSIFYTHETRIANGLEBYITSANGLEMEASURES ANDSIDELENGTHS ISOSCELESRIGHTTRIANGLE
#LASSIFYEACHTRIANGLEBYITSANGLEMEASURESAND SIDELENGTHS Ê {° x° Èä ÈäÂ
ÈäÂ
£ÎxÂ
!NGLE2ELATIONSHIPSIN4RIANGLES««°ÊÓÓÎqÓÎä®
8 , - -
%8!-0,% N
&INDMȜ3
XX X XX
ÎÝÊ {Ӯ /
£ÓÝÂ
,
ÈÝÂ
-
&INDMȜ. Ê È° ÞÂ
X X MȜ3
*
ÞÂ
£ÓäÂ
+
Ê Ç° )Ṉ,-. MȜ,X MȜ- X AND MȜ. X Ón{
>«ÌiÀÊ{Ê /À>}iÊ }ÀÕiVi
#ONGRUENT4RIANGLES««°ÊÓΣqÓÎÇ®
8 , - -
%8!-0,% N
'IVEṈ$%&Ɂ̱*+,)DENTIFYALLPAIRSOF CONGRUENTCORRESPONDINGPARTS 4HENFINDTHEVALUEOFX
'IVEṈ012Ɂ̱89:)DENTIFYTHECONGRUENT CORRESPONDINGPARTS ÜÜ Ê n° 02 Ɂ ° Ȝ9Ɂ ÜÜÜÜ ÜÜÜ 'IVEṈ!"#Ɂ̱#$! &INDEACHVALUE Ê£ä° X
nÝÊÊÓÓ®Â
{ÇÂ
£xÊÊ{Þ
ÎÞÊ £
Ê££° #$
4HECONGRUENTPAIRSFOLLOWȜ$ɁȜ* Ȝ%ɁȜ+ ÜÜ ÜÜ ÜÜ ÜÜ ÜÜ ÜÜ Ȝ&ɁȜ, $% Ɂ*+ %& Ɂ+, AND$& Ɂ*, 3INCEMȜ%MȜ+ X!FTERIS ADDEDTOBOTHSIDES X3OX
ÓÝÊÊήÂ
4RIANGLE#ONGRUENCE333AND3!3««°ÊÓ{ÓqÓ{®
8 , - -
%8!-0,%3 ÜÜ ÜÜ N 'IVEN23Ɂ54 AND ÜÜ ÜÜ Ɂ646IS 63 THEMIDPOINT ÜÜ OF25
ÜÜ ÜÜ Ê£Ó° 'IVEN!"Ɂ$% ÜÜ ÜÜ Ɂ!% $" 0ROVE̱!$"Ɂ̱$!%
/
-
,
6
1
0ROVE̱236Ɂ̱546 0ROOF
-Ì>ÌiiÌÃ ÜÜ ÜÜ £°Ê Ê,-ÊÊɁÊÊ1/Ê Ê ÜÜ ÜÜ Ê Ó°Ê Ê6-ÊÊɁÊÊ6/Ê
,i>ÃÃ
ÜÜ ÜÜ Ê£Î° 'IVEN'*BISECTS&( ÜÜ ÜÜ AND&(BISECTS'* 0ROVE̱&'+Ɂ̱(*+
£°Ê Ûi Ó°Ê Ûi
ÜÜ Î°Ê 6ÊÃÊÌ
iÊ`«Ì°ÊvÊÊ,1Ê Ê ° ÜÜ ÜÜ Ê {°Ê Ê,6ÊÊɁÊÊ16Ê
Î°Ê Ûi
Ê£{° 3HOWTHAṮ!"#Ɂ̱89:WHENX
x°Ê ---ÊÊ-Ìi«ÃÊ£]ÊÓ]Ê{
ÓÝ Ó Ý ÓÊ ÊÎÈ
3HOWTHAṮ!$"Ɂ̱#$"WHENS Ã ÓÊ{Ã
£{ÊÓÃ
x
ÃÊÓ
{
9
{°Ê iv°ÊvÊ`«Ì°
x°Ê ̱,-6ÊɁÊ̱1/6 N
{ÓÂ
8
{ÓÂ
nÓ
<
nÓ
£x° 3HOWTHAṮ,-.Ɂ̱012WHENY
!"SS !$S ÜÜ ÜÜ ÜÜ ÜÜ "$Ɂ"$ BYTHE2EFLEXIVE0ROPERTY!$ Ɂ#$ ÜÜ ÜÜ 3O̱!$"Ɂ̱#$"BY333 AND!" Ɂ#"
Óx
Ç
Ó{
, ÓÊÊÞÊ£®ÓÊÊ{Ó
Þ
*
Þ
ÞÊ£
+
-ÌÕ`ÞÊÕ`i\Ê,iÛiÜ
Ónx
4RIANGLE#ONGRUENCE!3! !!3 AND(,««°ÊÓxÓqÓx®
8 , - -
%8!-0,%3 ÜÜ N 'IVEN"ISTHEMIDPOINTOF!% Ȝ! Ɂ Ȝ% Ȝ!"# Ɂ Ȝ%"$ 0ROVE ̱!"# Ɂ ̱%"$
ʣȰ 'IVEN#ISTHEMIDPOINT ÜÜ OF!' ÜÜ ÜÜ (!ȡ'" 0ROVE̱(!#Ɂ̱"'#
0ROOF ,i>ÃÃ
£°Ê ȜÊɁÊȜ
£°Ê Ûi
Ó°Ê Ȝ ÊɁÊȜ
Ó°Ê Ûi
ÜÜ Î°Ê ÊÃÊÌ
iÊ`«Ì°ÊvÊÊ Ê Ê ° ÜÜ ÜÜ {°Ê Ê ÊÊɁÊÊ Ê Ê
ÜÜÜ ÜÜ Ê£Ç° 'IVEN78ʡ8: ÜÜ ÜÜ ʡ:8 9: ÜÜÜ ÜÜ 7: Ɂ98 0ROVE̱7:8Ɂ̱98:
Î°Ê Ûi
9 8
ÌiiÌÃ
Ê£n° 'IVENȜ3ANDȜ6 ARERIGHTANGLES 2457 MȜ4MȜ7 0ROVE̱234Ɂ̱567
,
/
-
1
6
7
4RIANGLE#ONGRUENCE#0#4#««°ÊÓÈäqÓÈx®
8 , - -
%8!-0,%3 ÜÜ ÜÜ N 'IVEN*,AND(+BISECTEACHOTHER 0ROVE Ȝ*(' Ɂ Ȝ,+'
0ROOF -Ì>ÌiiÌÃ ÜÜ ÜÜ £°Ê ÊÊÊ>`ÊÊÊ Ê ÊLÃiVÌÊ Ê i>V
ÊÌ
iÀ° ÜÜ ÜÜ Ê ]Ê>`Ê Ó°Ê ÊÊÊɁÊÊÊ ÜÜÜ ÜÜ Ê ÊÊÊɁÊÊÊ Ê °
,i>ÃÃ
Ê£° 'IVEN-ISTHEMIDPOINT ÜÜ OF"$ ÜÜ ÜÜ "# Ɂ$# 0ROVEȜɁȜ
£
Ó
ÜÜ ÜÜ ÊÓä° 'IVEN01Ɂ21 ÜÜ ÜÜ Ɂ23 03 ÜÜ 0ROVE13BISECTSȜ012
+
£°Ê Ûi -
Ó°Ê iv°ÊvÊLÃiVÌ
Î°Ê ȜÊɁÊȜ
Î°Ê 6iÀÌ°ÊѓÊ/
°
{°Ê ̱ÊɁÊ̱
{°Ê --ÊÊ-Ìi«ÃÊÓ]ÊÎ
x°Ê ȜÊɁÊȜ
x°Ê * /
,
*
ÜÜ ÊÓ£° 'IVEN(ISTHEMIDPOINTOF', ÜÜÜ ,ISTHEMIDPOINTOF-+ ÜÜÜ ÜÜ ÜÜ ÜÜÜ Ɂ+* '*Ɂ+- '- Ȝ'ɁȜ+ 0ROVEȜ'-(ɁȜ+*,
ÓnÈ
>«ÌiÀÊ{Ê /À>}iÊ }ÀÕiVi
)NTRODUCTIONTO#OORDINATE0ROOF««°ÊÓÈÇqÓÇÓ®
8 , - -
%8!-0,%3 N
'IVENȜ"ISARIGHTANGLEINISOSCELESRIGHT ÜÜ ̱!"#%ISTHEMIDPOINTOF!" ÜÜ ÜÜ ÜÜ $ISTHEMIDPOINTOF#"!"Ɂ #" ÜÜ ÜÜ 0ROVE #%Ɂ !$ 0ROOF5SETHECOORDINATES! A " ÜÜ ÜÜ AND# A $RAW!$AND#%
Þ
Ý
"YTHE-IDPOINT&ORMULA ? A A AND % ? A ? $ ? A "YTHE$ISTANCE&ORMULA #%Ȗееееееее A A
0OSITIONEACHFIGUREINTHECOORDINATEPLANEANDGIVE THECOORDINATESOFEACHVERTEX ÊÓÓ° ARIGHTTRIANGLEWITHLEGLENGTHSRANDS ÊÓΰ ARECTANGLEWITHLENGTHPANDWIDTHP ÊÓ{° ASQUAREWITHSIDELENGTHM &OREXERCISESANDASSIGNCOORDINATESTOEACH VERTEXANDWRITEACOORDINATEPROOF ÊÓx° 'IVEN)NRECTANGLE!"#$ %ISTHEMIDPOINTOF ÜÜ ÜÜ !" &ISTHEMIDPOINTOF"# 'ISTHE ÜÜ MIDPOINTOF#$ AND(ISTHEMIDPOINT ÜÜ OF!$ ÜÜ ÜÜÜ 0ROVE%&Ɂ'( ÊÓȰ 'IVEṈ012HASARIGHTȜ1 ÜÜ -ISTHEMIDPOINTOF02 0ROVE-0-1-2 ÊÓǰ 3HOWTHATATRIANGLEWITHVERTICESAT AND ISARIGHTTRIANGLE
Ȗ ееее A A AȖе ееееееее A !$Ȗ A
Ȗ ееее A A AȖе ÜÜ ÜÜ 4HUS#%Ɂ!$BYTHEDEFINITIONOFCONGRUENCE
)SOSCELESAND%QUILATERAL4RIANGLES««°ÊÓÇÎqÓÇ®
8 , - -
%8!-0,% N
&INDTHEVALUEOFX
ÎÝÂ MȜ$ MȜ% MȜ& BYTHE4RIANGLE3UM {ÓÂ 4HEOREMMȜ%MȜ& BYTHE)SOSCELES 4RIANGLE4HEOREM MȜ$ MȜ% -ÕLÃÌÌÕÌ X -ÕLÃÌÌÕÌiÊÌ
iÊ}ÛiÊ
X X
Û>Õið -«vÞ°
&INDEACHVALUE ÊÓn° X
{xÊÊÎÝ®Â
ÊÓ° 23
, ÓÞÊÊ{°x
/
£°xÞ
-
Û`iÊLÌ
ÊÃ`iÃÊLÞÊȰ
ÊÎä° 'IVEṈ!#$ISISOSCELESWITHȜ$ASTHEVERTEX ÜÜ ANGLE"ISTHEMIDPOINTOF!# !"X "#X AND#$X &INDTHEPERIMETEROF̱!#$ -ÌÕ`ÞÊÕ`i\Ê,iÛiÜ
ÓnÇ
Ê £° #LASSIFY̱!#$BYITSANGLEMEASURES
x°Ç
#LASSIFYEACHTRIANGLEBYITSSIDELENGTHS Ê Ó° ̱!#$
ΰ ̱!"#
x
{° ̱!"$
Î ,
Ê x° 7HILESURVEYINGTHETRIANGULARPLOTOFLANDSHOWN ASURVEYORFINDSTHATMȜ34HEMEASURE OFȜ240ISTWICETHATOFȜ2437HATISMȜ2 'IVEṈ89:Ɂ̱*+, )DENTIFYTHECONGRUENTCORRESPONDINGPARTS ÜÜ Ê È° *, Ɂ ǰ Ȝ9Ɂ ÜÜÜÜ ÜÜÜÜ ÜÜ ÜÜ Ê£ä° 'IVEN4ISTHEMIDPOINTOF02AND31 0ROVE̱043Ɂ̱241
{ÎÂ
-
/
*
ÜÜ ° 9:Ɂ ÜÜÜÜ
n° Ȝ,Ɂ ÜÜÜÜ * /
-
+
,
Ê££° 4HEFIGUREREPRESENTSAWALKWAYWITH ÜÜ TRIANGULARSUPPORTS'IVENTHAT'*BISECTS Ȝ('+ANDȜ(ɁȜ+ USE!!3TOPROVE ̱('*Ɂ̱+'*
ÜÜ ÜÜ Ê£Ó° 'IVEN!"Ɂ$# ÜÜ ÜÜ !" ʡ!# ÜÜ ÜÜ $# ʡ$" 0ROVE̱!"#Ɂ̱$#"
ÜÜ ÜÜ £Î° 'IVEN01ȡ32 Ȝ3ɁȜ1 ÜÜ ÜÜ 0ROVE03ȡ12
*
+
-
,
Ê£{° 0OSITIONARIGHTTRIANGLEWITHLEGSMANDMLONGINTHECOORDINATEPLANE 'IVETHECOORDINATESOFEACHVERTEX Ê£x° !SSIGNCOORDINATESTOEACHVERTEXANDWRITEACOORDINATEPROOF 'IVEN3QUARE!"#$ ÜÜ ÜÜ 0ROVE!#Ɂ"$ &INDEACHVALUE ʣȰ Y
£Ç° MȜ3
-
* xÈÂ
xÊÊ££Þ®Â
,
+
Ê£n° 'IVEN)SOSCELES̱!"#HASCOORDINATES! A " B AND# A ÜÜ ÜÜ $ISTHEMIDPOINTOF!# AND%ISTHEMIDPOINTOF!" 0ROVE̱!%$ISISOSCELES
Ónn
>«ÌiÀÊ{Ê /À>}iÊ }ÀÕiVi
/
" 1-Ê" Ê / 4HE!#4-ATHEMATICS4ESTISONEOFFOURTESTSINTHE !#49OUAREGIVENMINUTESTOANSWERMULTIPLE CHOICEQUESTIONS4HEQUESTIONSCOVERMATERIALTYPICALLY TAUGHTTHROUGHTHEENDOFELEVENTHGRADE9OUWILLNEED TOKNOWBASICFORMULASBUTNOTHINGTOODIFFICULT
4HEREISNOPENALTYFORGUESSINGONTHE !#4)FYOUAREUNSUREOFTHECORRECT ANSWER ELIMINATEASMANYANSWERCHOICES ASPOSSIBLEANDMAKEYOURBESTGUESS -AKESUREYOUHAVEENTEREDANANSWER FOREVERYQUESTIONBEFORETIMERUNSOUT
9OUMAYWANTTOTIMEYOURSELFASYOUTAKETHISPRACTICETEST )TSHOULDTAKEYOUABOUTMINUTESTOCOMPLETE Ê£°Ê &ORTHEFIGUREBELOW WHICHOFTHEFOLLOWING MUSTBETRUE
ÊÎ°Ê 7HICHOFTHEFOLLOWINGBESTDESCRIBESATRIANGLE WITHVERTICESHAVINGCOORDINATES AND ! %QUILATERAL " )SOSCELES
# 2IGHT
Ê Ê
)MȜ%&'MȜ$%&
$ 3CALENE
Ê Ê
))MȜ%$&MȜ%&$
% %QUIANGULAR
Ê Ê
)))MȜ$%& MȜ%$&MȜ%&' ! )ONLY
Ê{°Ê )NTHEFIGUREBELOW WHATISTHEVALUEOFY
" ))ONLY
ÞÂ
# )AND))ONLY
£ÎÈÂ
$ ))AND)))ONLY
Ê
£Î£Â
&
% ) )) AND)))
' ÊÓ°Ê )NTHEFIGUREBELOW ̱!"$Ɂ̱#$" MȜ! X MȜ# X AND MȜ$"!7HATISTHEMEASUREOFȜ"$!
& ' ( * +
( * +
Êx°Ê )Ṉ234 23X 34X AND 24?? X )F̱234ISEQUIANGULAR WHAT ISTHEVALUEOFX ! " ? # $ %
i}iÊ ÌÀ>ViÊ Ý>Ê*À>VÌVi
Ón
ÝÌi`i`Ê,iëÃi\Ê7ÀÌiÊ ÝÌi`i`Ê,iëÃià %XTENDED RESPONSEQUESTIONSAREDESIGNEDTOASSESS YOURABILITYTOAPPLYANDEXPLAINWHATYOUHAVELEARNED 4HESETESTITEMSAREGRADEDUSINGA POINT SCORINGRUBRIC
ÝÌi`i`Ê,iëÃi 'IVEN PȡQ STATEWHICHTHEOREM !!3 !3! 333 OR3!3 YOUWOULDUSE TOPROVETHAṮ!"#Ɂ̱$#" %XPLAINYOURREASONING
µ
«
POINTRESPONSE
-VÀ}Ê,ÕLÀV {Ê«ÌÃ\Ê/
iÊÃÌÕ`iÌÊÃ
ÜÃÊ>Ê Õ`iÀÃÌ>`}ÊvÊ«À«iÀÌiÃÊÀi>Ì}ÊÌÊ «>À>iÊiÃ]ÊÌÀ>}iÊV}ÀÕiVi]Ê>`ÊÌ
iÊ `vviÀiViÃÊLiÌÜiiÊ-]Ê---]Ê>`Ê--° ÎÊ«ÌÃ\Ê/
iÊÃÌÕ`iÌÊVÀÀiVÌÞÊV
ÃiÃÊ Ü
V
ÊÌ
iÀiÊÌÊÕÃiÊLÕÌÊ`iÃÊÌÊ V«iÌiÞÊ`ivi`ÊÌ
iÊV
ViÊÀÊi>ÛiÃÊÕÌÊ VÀÕV>ÊÕ`iÀÃÌ>`}ÊvÊ«>À>iÊið ÓÊ«ÌÃ\Ê/
iÊÃÌÕ`iÌÊV
ÃiÃÊÌ
iÊVÀÀiVÌÊ Ì
iÀiÊLÕÌÊÞÊ`ivi`ÃÊ«>ÀÌÊvḚ̂ £Ê«Ì\Ê/
iÊÃÌÕ`iÌÊ`iÃÊÌÊvÜÊ `ÀiVÌÃÊÀÊ`iÃÊÌÊ«ÀÛ`iÊ>ÞÊ iÝ«>>ÌÊvÀÊÌ
iÊ>ÃÜiÀ°
L`][gjj][ll`]gj]elgmk]akK9K&9[[gj\af_lg äÊ«ÌÃ\Ê/
iÊÃÌÕ`iÌÊ`iÃÊÌÊ>ÌÌi«ÌÊ l`]^a_mj]$9 ;5 ÃÜiÀ° :;5 :;&Kgalbmklf]]\klgZ]k`gofl`Yl :;9 5 ;:ÃÊÌÊÜ
ÞÊÌ
iÊÌ
iÀÊÌ
iÀiÃÊVÕ`ÊÌÊLiÊÕÃi`°
POINTRESPONSE
/
iÊÀi>Ã}ÊÃÊVÀÀiVÌ]ÊLÕÌÊÌ
iÊÃÌÕ`iÌÊ``ÊÌÊiÝ«>ÊÜ
ÞÊÌ
iÀÊÌ
iÀiÃÊVÕ`Ê ÌÊLiÊÕÃi`°
POINTRESPONSE
/
iÊ>ÃÜiÀÊÃÊVÀÀiVÌ]ÊLÕÌÊÌ
iÊÃÌÕ`iÌÊ``ÊÌÊiÝ«>ÊÜ
ÞÊÌ
iÊVÕ`i`Ê>}iÃÊ >ÀiÊV}ÀÕḭ
POINTRESPONSE /
iÊÃÌÕ`iÌÊ``ÊÌÊ«ÀÛ`iÊ>ÞÊÀi>Ã}°
Óä
>«ÌiÀÊ{Ê /À>}iÊ }ÀÕiVi
4ORECEIVEFULLCREDIT MAKESUREALLPARTSOFTHE PROBLEMAREANSWERED"ESURETOPROVIDEA COMPLETEEXPLANATIONFORYOURREASONING
2EADEACHTESTITEMANDANSWERTHEQUESTIONS THATFOLLOW
ÌiÊ
#ANANEQUILATERALTRIANGLEBEANOBTUSE TRIANGLE%XPLAINYOURANSWER)NCLUDEASKETCH TOSUPPORTYOURREASONING Ê x°Ê 7
>ÌÊÃ
Õ`Ê>ÊvÕVÀi`ÌÊÀiëÃiÊÌÊÌ
ÃÊ ÌiÃÌÊÌiÊVÕ`i¶ È°Ê ÊÃÌÕ`iÌÊÜÀÌiÊÌ
ÃÊÀiëÃi\
-VÀ}Ê,ÕLÀV\ {Ê«ÌÃ\Ê/
iÊÃÌÕ`iÌÊ`iÃÌÀ>ÌiÃÊ>ÊÌ
ÀÕ}
Ê Õ`iÀÃÌ>`}ÊvÊÌ
iÊVVi«Ì]ÊVÀÀiVÌÞÊ >ÃÜiÀÃÊÌ
iʵÕiÃÌ]Ê>`Ê«ÀÛ`iÃÊ>ÊV«iÌiÊ iÝ«>>̰ ÎÊ«ÌÃ\Ê/
iÊÃÌÕ`iÌÊVÀÀiVÌÞÊ>ÃÜiÀÃÊÌ
iÊ µÕiÃÌÊLÕÌÊ`iÃÊÌÊÃ
ÜÊ>ÊÜÀÊÀÊ`iÃÊÌÊ «ÀÛ`iÊ>ÊiÝ«>>̰ ÓÊ«ÌÃ\Ê/
iÊÃÌÕ`iÌÊ>iÃÊÀÊiÀÀÀÃÊ ÀiÃÕÌ}ÊÊ>ÊVÀÀiVÌÊÃÕÌÊLÕÌÊÃ
ÜÃÊ>`Ê iÝ«>ÃÊ>ÊÕ`iÀÃÌ>`}ÊvÊÌ
iÊVVi«Ì° £Ê«Ì\Ê/
iÊÃÌÕ`iÌÊ}ÛiÃÊ>ÊÀiëÃiÊÃ
Ü}Ê ÊÜÀÊÀÊiÝ«>>̰ äÊ«ÌÃ\Ê/
iÊÃÌÕ`iÌÊ}ÛiÃÊÊÀiëÃi°
Ê
Ê 7
ÞÊÜÊÌ
ÃÊÀiëÃiÊÌÊÀiViÛiÊ>ÊÃVÀiÊ vÊ{Ê«Ìö Ç°Ê ÀÀiVÌÊÌ
iÊÀiëÃiÊÃÊÌ
>ÌÊÌÊÀiViÛiÃÊ vÕÊVÀi`̰
ÌiÊ
7HATTHEOREMS CANYOUUSE OTHERTHANTHE (,4HEOREM TOPROVETHAṮ-.0Ɂ̱89: %XPLAINYOURREASONING ÌiÊ
!NISOSCELESRIGHTTRIANGLEHASTWOSIDES EACH WITHLENGTHY
< *
8
$ESCRIBEHOWYOUWOULDFINDTHELENGTHOF THEHYPOTENUSE0ROVIDEASKETCHINYOUR EXPLANATION
9
Ê £°Ê 7
>ÌÊÃ
Õ`Ê>ÊvÕVÀi`ÌÊÀiëÃiÊÌÊÌ
ÃÊ ÌiÃÌÊÌiÊVÕ`i¶ Ê Ó°Ê ÊÃÌÕ`iÌÊÜÀÌiÊÌ
ÃÊÀiëÃi\
Ê
Ê
Ê
Ê 7
>ÌÊÃVÀiÊÃ
Õ`ÊÌ
ÃÊÀiëÃiÊÀiViÛi¶Ê 7
Þ¶
Ê Î° 7ÀÌiÊ>ÊÃÌÊvÊÌ
iÊÜ>ÞÃÊÌÊ«ÀÛiÊÌÀ>}iÃÊ V}ÀÕḭÊÃÊÌ
iÊ*ÞÌ
>}Ài>Ê/
iÀiÊÊ ÞÕÀÊÃ̶ Ê {°Ê ``ÊÌÊÌ
iÊÀiëÃiÊÃÊÌ
>ÌÊÌÊÀiViÛiÃÊ >ÊÃVÀiÊvÊ{«Ìð
Ê n°Ê ÊÃÌÕ`iÌÊLi}>ÊÌÀÞ}ÊÌÊv`ÊÌ
iÊi}Ì
ÊvÊ Ì
iÊ
Þ«ÌiÕÃiÊLÞÊÜÀÌ}ÊÌ
iÊvÜ}\
Ê
Ê ÃÊÌ
iÊÃÌÕ`iÌÊÊ
ÃÊÜ>ÞÊÌÊÀiViÛ}Ê>Ê {«ÌÊÀiëÃi¶Ê Ý«>° °Ê iÃVÀLiÊ>Ê`vviÀiÌÊiÌ
`ÊÌ
iÊÃÌÕ`iÌÊ VÕ`ÊÕÃiÊvÀÊÌ
ÃÊÀiëÃi°
/iÃÌÊ/>ViÀ
Ó£
+%97/2$ÊÇÊ/iÃÌ*Ài«
11/6 Ê-- -- /]Ê */ ,-Ê£q{ Ê È°Ê 7
V
ÊV`Ì>ÊÃÌ>ÌiiÌÊ
>ÃÊÌ
iÊÃ>iÊÌÀÕÌ
Ê
ÕÌ«iÊ
Vi
Û>ÕiÊ>ÃÊÌÃÊÛiÀÃi¶
1ÃiÊÌ
iÊ`>}À>ÊvÀÊÌiÃÊ£Ê>`ÊÓ°
Ê vÊÊÊä]ÊÌ
iÊÊÊÓÊä°
Ê vÊ>ÊÌÀ>}iÊ
>ÃÊÌ
ÀiiÊV}ÀÕiÌÊÃ`iÃ]ÊÌ
iÊ ÌÊÃÊ>ÊÃÃViiÃÊÌÀ>}i°
Ê vÊÊÃÊ>Êi}>ÌÛiÊÌi}iÀ]ÊÌ
iÊÊÊä°Ê
Ê £°Ê 7
V
ÊvÊÌ
iÃiÊV}ÀÕiViÊÃÌ>ÌiiÌÃÊV>ÊLiÊ «ÀÛi`ÊvÀÊÌ
iÊvÀ>ÌÊ}ÛiÊÊÌ
iÊv}ÕÀi¶ ̱ ÊɁÊ̱
Ê
Ê ̱ ÊɁÊ̱
̱ ÊɁÊ̱ Ê
Ê ̱ ÊɁÊ̱
Ê Ó°Ê 7
>ÌÊÌ
iÀÊvÀ>ÌÊÃÊii`i`ÊÌÊ«ÀÛiÊÌ
>ÌÊ ̱
ÊɁÊ̱ ÊLÞÊÌ
iÊÊ }ÀÕiViÊ/
iÀi¶ ÜÜ ÜÜÜ ÜÜÜ ÜÜ Ê Ê Ê ÊɁÊÊ Ê Ê Ê Ê Ê Ê ÊɁÊÊ Ê Ê ÜÜ ÜÜ ÜÜ ÜÜ Ê Ê Ê ÊɁÊÊ Ê Ê Ê Ê Ê Ê ÊɁÊÊ
Ê Ê
Ê Î°Ê 7
V
ÊLV`Ì>ÊÃÌ>ÌiiÌÊÃÊÌÀÕi¶ Ê /ÀÀÜÊÃÊ`>ÞÊvÊ>`ÊÞÊvÊÌ`>ÞÊÃÊ ÌÊ->ÌÕÀ`>Þ° Ê
Ê vÊ>Ê>}iÊi>ÃÕÀiÃÊiÃÃÊÌ
>Êäc]ÊÌ
iÊÌÊÃÊ >Ê>VÕÌiÊ>}i°
iÝÌÊÌ
ÊÃÊ>Õ>ÀÞÊvÊ>`ÊÞÊvÊÌ
ÃÊ Ì
ÊÃÊ iViLiÀ°
Ê /`>ÞÊÃÊ>ÊÜiii`Ê`>ÞÊvÊ>`ÊÞÊvÊ ÞiÃÌiÀ`>ÞÊÜ>ÃÊÀ`>Þ° Ê /
ÃÊÌ
Ê
>`ÊΣÊ`>ÞÃÊvÊ>`ÊÞÊvÊ>ÃÌÊ Ì
Ê
>`ÊÎäÊ`>Þð ЭжЮ жЮ Ê {°Ê 7
>ÌÊÕÃÌÊLiÊÌÀÕiÊvÊÊÊ*+Ê ÊÌiÀÃiVÌÃÊÊÊЭ-/ÊÊ Ê>ÌÊÀiÊ Ì
>Êiʫ̶
Ê Ç°Ê "Ê>Ê>«]Ê>ÊÃ>`Ê
>ÃÊVÀ`>ÌiÃÊÊ Î]Êx Ê]Ê>`Ê
>ÊÀiivÊ
>ÃÊVÀ`>ÌiÃÊÊ È]Ên ʰÊvÊi>V
Ê>«ÊÕÌÊ Ài«ÀiÃiÌÃÊ£Êi]ÊÜ
>ÌÊÃÊÌ
iÊ`ÃÌ>ViÊLiÌÜiiÊ Ì
iÊÃ>`Ê>`ÊÌ
iÊÀiivÊÌÊÌ
iÊi>ÀiÃÌÊÌiÌ
ÊvÊ>Ê i¶ Ê {°ÓÊiÃÊ
Ê °äÊiÃ
Ê È°äÊiÃÊ
Ê £x°nÊiÃ
Ê n°Ê ÊiÊ
>ÃÊ>ÊÝÌiÀVi«ÌÊvÊnÊ>`Ê>ÊÞÌiÀVi«ÌÊ vÊΰÊ7
>ÌÊÃÊÌ
iÊiµÕ>ÌÊvÊÌ
iÊi¶Ê ÞÊÊnÝÊ ÊÎÊ Ê Þ ÊÊÚ ÊnÊÝÊÊn Î ÞÊÊÊÚ ÊÎÊÝÊ ÊÎÊ Ê Þ ÊÎÝÊÊn n жЮ Ê °Ê ÊЭÊÊ Ê«>ÃÃiÃÊÌ
ÀÕ}
Ê«ÌÃÊÊ £]ÊÎ Ê>`ÊÊ Î]Ê££ Ê°Ê жЮ 7
V
ÊvÊÌ
iÃiÊiÃÊÃÊ«iÀ«i`VÕ>ÀÊÌÊÊÊЭÊÊ ¶ £ £ £ Ú Ú Ú ÞÊÊ ÊÝÊ ÊÊÊ Ê Ê Þ ÊÓÝÊÊÊÊ Ê x Î Ó £ Ú ÞÊÊÊÊ ÊÝÊ ÊÈÊ Ê Þ ÊÓÝÊÊ{ Ó
Ê£ä°Ê vÊ*+ÊÊÓÊ ,- Ê Ê{Ê>`Ê,-ÊÊ/1Ê Ê£]ÊÜ
V
Ê iµÕ>ÌÊÃÊÌÀÕiÊLÞÊÌ
iÊ-ÕLÃÌÌÕÌÊ*À«iÀÌÞÊ vÊ µÕ>ÌÞ¶ *+ÊÊ/1Ê Êx
*]Ê+]Ê-]Ê>`Ê/Ê>ÀiÊVi>À° *]Ê+]Ê-]Ê>`Ê/Ê>ÀiÊV«>>À° Ê жжЮÊ>ÀiÊ««ÃÌiÊÀ>Þð Ê *+Ê ÊжжЮÊ>`ÊÊÊ-/ÊÊ
*+ÊÊ/1Ê ÊÈ *+ÊÊÓÊ /1 Ê Êx *+ÊÊÓÊ /1 Ê ÊÈ
ЭжЮ жЮÊ>ÀiÊ«iÀ«i`VÕ>À° Ê Ê*+Ê Ê>`ÊÊÊЭ -/ÊÊ
Ê££°Ê 7
V
ÊvÊÌ
iÊvÜ}ÊÃÊ "/ÊÛ>`ÊvÀÊ«ÀÛ}Ê Ê x° ̱ ÊɁÊ̱ ]Ê ÊÊÊÝÊÓÊÊÇ]Ê>`Ê ÊÊ{ÝÊÊÓ°Ê `ÊÌ
iÊÛ>ÕiÃÊvÊݰ
ÓÓ
£Ê>`ÊxÊ
Ê £Ê>`Êx
£Ê>`ÊÈÊ
Ê ÓÊ>`ÊÎ
>«ÌiÀÊ{Ê /À>}iÊ }ÀÕiVi
Ì
>ÌÊÌÀ>}iÃÊ>ÀiÊV}ÀÕi̶ Ê Ê
Ê --
Ê -Ê
Ê
1ÃiÊÌ
ÃÊ`>}À>ÊvÀÊÌiÃÊ£ÓÊ>`ʣΰ
-
ÀÌÊ,iëÃi ÊÓä°Ê ÛiÊŰÊȡÊÊÜÌ
ÊÌÀ>ÃÛiÀÃ>Ê]ÊiÝ«>ÊÜ
ÞÊȜÓÊ
>`ÊȜÎÊ>ÀiÊV«iiÌ>ÀÞ°
£ääÂ
Î
£
Ê£Ó°Ê 7
>ÌÊÃÊÌ
iÊi>ÃÕÀiÊvÊȜ ¶ Ê {äcÊ
Ê £ääc
Ê näcÊ
Ê £{äc
Ű
Ó
ÊÓ£°Ê ȜÊ>`ÊȜÊ>ÀiÊÃÕ««iiÌ>ÀÞÊ>}iÃ°Ê ȜÊÊÊ ÓÝÊ Ê£Ó Êc]Ê>`ÊȜÊÊÝc°
Ê£Î°Ê 7
>ÌÊÌÞ«iÊvÊÌÀ>}iÊÃÊ̱ ¶
Ê
`iÌiÀiÊÌ
iÊÛ>ÕiÊvÊݰÊ-ÛiÊÌ
iÊiµÕ>ÌÊ >`ÊÕÃÌvÞÊi>V
ÊÃÌi«°
Ê ÃÃViiÃÊ>VÕÌi Ê µÕ>ÌiÀ>Ê>VÕÌi Ê ÃÃViiÃÊLÌÕÃi
>°Ê 7ÀÌiÊ>ÊiµÕ>ÌÊÌ
>ÌÊV>ÊLiÊÕÃi`ÊÌÊ
Ê
L°Ê Ý«>ÊÜ
ÞÊȜÊ
>ÃÊ>ÊV«iiÌÊLÕÌÊȜÊ `iÃḚ̂
Ê -V>iiÊ>VÕÌi
ÊÓÓ°Ê Ê>>}iÀÊViVÌÕÀiÃÊÌ
>ÌÊvÀÊiÛiÀÞÊ£äääÊ«>ÀÌÃÊ 4AKESOMETIMETOLEARNTHEDIRECTIONSFORFILLING INAGRID#HECKANDRECHECKTOMAKESUREYOUARE FILLINGINTHEGRIDPROPERLY9OUWILLONLYGETCREDIT IFTHEOVALSBELOWTHEBOXESAREFILLEDINCORRECTLY 4OCHECKYOURANSWER SOLVETHEPROBLEMUSING ADIFFERENTMETHODFROMTHEONEYOUORIGINALLY USED)FYOUMADEAMISTAKETHEFIRSTTIME YOU AREUNLIKELYTOMAKETHESAMEMISTAKEWHEN YOUSOLVEADIFFERENTWAY
>Êv>VÌÀÞÊ«À`ÕViÃ]ÊÈäÊ>ÀiÊ`iviVÌÛi°
Ê
>°Ê vÊÌ
iÊv>VÌÀÞÊ«À`ÕViÃÊ£xääÊ«>ÀÌÃÊÊiÊ`>Þ]Ê
ÜÊ>ÞÊvÊÌ
iÊV>ÊLiÊiÝ«iVÌi`ÊÌÊLiÊ `iviVÌÛiÊL>Ãi`ÊÊÌ
iÊ>>}iÀ½ÃÊViVÌÕÀi¶Ê
Ý«>Ê
ÜÊÞÕÊvÕ`ÊÞÕÀÊ>ÃÜiÀ°
Ê
L°Ê 1ÃiÊÌ
iÊ`>Ì>ÊÊÌ
iÊÌ>LiÊLiÜÊÌÊÃ
ÜÊÌ
>ÌÊ Ì
iÊ>>}iÀ½ÃÊViVÌÕÀiÊÃÊv>Ãi°
À``i`Ê,iëÃi Ê£{°Ê ̱ ÊɁÊ̱°ÊȜ ÊÊÊ ÎÝÊ Ê{ Êc]Ê>`Ê ȜÊÊÊ ÈÝÊÊx Êc°Ê7
>ÌÊÃÊÌ
iÊÛ>ÕiÊvÊݶ
>Þ
£
Ó
Î
{
x
*>ÀÌÃ
Ê£äää
ÊÓäää
Êxää
Ê£xää
ÊÓxää
iviVÌÛi *>ÀÌÃ
Ê Èä
Ê£xä
Ê Îä
Ê ä
Ê£xä
ÜÜ
ÜÜ
Ê£x°Ê ÕVÞ]Ê `Õ>À`]Ê >Ài]Ê>`ÊÀ>ÊÛiÊÊ Ì
iÊÃ>iÊÃÌÀiiÌ°Ê `Õ>À`½ÃÊ
ÕÃiÊÃÊ
>vÜ>ÞÊ LiÌÜiiÊÕVÞ½ÃÊ
ÕÃiÊ>`ÊÀ>½ÃÊ
ÕÃi°Ê ÕVÞ½ÃÊ
ÕÃiÊÃÊ
>vÜ>ÞÊLiÌÜiiÊ >Ài½ÃÊ
ÕÃiÊ >`ÊÀ>½ÃÊ
ÕÃi°ÊvÊÌ
iÊ`ÃÌ>ViÊLiÌÜiiÊ
`Õ>À`½ÃÊ
ÕÃiÊ>`ÊÕVÞ½ÃÊ
ÕÃiÊÃÊ£xäÊvÌ]Ê Ü
>ÌÊÃÊÌ
iÊ`ÃÌ>ViÊÊviiÌÊLiÌÜiiÊ >Ài½ÃÊ
ÕÃiÊ>`Ê `Õ>À`½ÃÊ
ÕÃi¶
Ê£È°Ê ̱ÊɁÊ̱89`ÊÊÊ£äÊÊÓ°Ê89ÊÊÓ]Ê>`Ê
Ê Î°Ê Ê Ó Ê ÊÃÊÌ
iÊ«iÀ«i`VÕ>ÀÊLÃiVÌÀÊvÊÊ Ê Ê ° Ê >°Ê 7
>ÌÊ>ÀiÊÌ
iÊVVÕÃÃÊÞÕÊV>Ê>iÊvÀÊ Ê
ÝÌi`i`Ê,iëÃi ÜÜ ÜÜ ÜÜ >`ÊÊ Ê Ê ÊɁÊÊ Ê Ê °ÊȜ ÊÊ{Ó°xc]Ê>`ÊȜ ÊÊxc°
Ê
7
>ÌÊÃÊÌÃÊVÀVÕviÀiViÊÌÊÌ
iÊi>ÀiÃÌÊV
¶
>°Ê 7
>ÌÊÃÊȜ ¶Ê Ý«>Ê
ÜÊÞÕÊ`iÌiÀi`Ê ÞÕÀÊ>ÃÜiÀ°
Ê£Ç°Ê Ê>}iÊÃÊÌÃÊÜÊÃÕ««iḭÊ7
>ÌÊÃÊ
Ê£n°Ê /
iÊ>Ài>ÊvÊ>ÊVÀViÊÃÊ£x{ÊõÕ>ÀiÊV
iðÊ
ÜÜ
ÊÓ{°Ê ̱ Ê>`Ê̱ Ê>ÀiÊÃÃViiÃÊÌÀ>}iðÊÊ Ê Ê ÊɁÊÊ Ê Ê ]Ê
9ÃÕÀi¶
Ì
ÃÊÃÌ>Ìii̶ ÜÜ ÜÜ ÜÜ L°Ê -Õ««ÃiÊÊÊ ÊÊÌiÀÃiVÌÃÊÊ Ê Ê Ê>ÌÊ °Ê Ý«>ÊÜ
ÞÊÊ Ê Ê Ê ÜÜ ÃÊÌ
iÊÃ
ÀÌiÃÌÊ«>Ì
ÊvÀÊ ÊÌÊÊ Ê Ê °
Ê Ê
L°Ê -
ÜÊÌ
>ÌÊ̱ Ê>`Ê̱ Ê>ÀiÊV}ÀÕḭ V°Ê ÛiÊÌ
>ÌÊ ÊÊÓÝÊ ÊÇÊ>`Ê ÊÊÎÝÊ ÊÓ]Êv`Ê Ì
iÊÛ>ÕiÊvÀÊÝ°Ê Ý«>Ê
ÜÊÞÕÊ`iÌiÀi`Ê ÞÕÀÊ>ÃÜiÀ°
Ê£°Ê /
iÊi>ÃÕÀiÊvÊȜ*ÊÃÊÎÊÚÚ Ê£ÓÊ ÌiÃÊÌ
iÊi>ÃÕÀiÊvÊȜ+°Ê vÊȜ*Ê>`ÊȜ+Ê>ÀiÊV«iiÌ>ÀÞ]ÊÜ
>ÌÊÃÊȜ*Ê Ê`i}Àiiö
ÕÕ>ÌÛiÊÃÃiÃÃiÌ]Ê
>«ÌiÀÃÊ£q{
ÓÎ
-)#()'!.
'RAND (AVEN
+ALAMAZOO
Ê/
iÊ+Õii½ÃÊ Õ« 4HEANNUAL1UEENS#UPRACEISONEOFTHEMOSTEXCITINGSAILINGEVENTSOFTHE YEAR4RADITIONALLYHELDATTHEENDOF*UNE THERACEATTRACTSHUNDREDSOFYACHTS THATCOMPETETOCROSS,AKE-ICHIGANATNIGHTINTHEFASTESTTIMEPOSSIBLE #HOOSEONEORMORESTRATEGIESTOSOLVEEACHPROBLEM Ê
£° 4HERACESTARTSIN-ILWAUKEE 7ISCONSIN ANDENDSIN'RAND(AVEN -ICHIGAN 4HEBOATSDONTSAILFROMTHESTARTTOTHE FINISHINASTRAIGHTLINE4HEYFOLLOWAZIGZAG COURSETOTAKEADVANTAGEOFTHEWIND 3UPPOSEONEOFTHEBOATSLEAVES-ILWAUKEE ATABEARINGOF.%ANDFOLLOWSTHE COURSESHOWN!TWHATBEARINGDOESTHE BOATAPPROACH'RAND(AVEN
ΰ $URINGTHERACEONEOFTHEBOATSLEAVES-ILWAUKEE- SAILSTO8 ANDTHENSAILSTO94HETEAMDISCOVERSAPROBLEM WITHTHEBOATSOITHASTORETURNDIRECTLYTO-ILWAUKEE $OESTHETABLECONTAINENOUGHINFORMATIONTODETERMINE THECOURSETORETURNTO-%XPLAIN
8ÊÌÊ9
-ÊxcÊ
Ó°{
9ÊÌÊ
>«ÌiÀÊ{Ê /À>}iÊ }ÀÕiVi
8
ÃÌ>ViÊ® ΰ£
£äxc
Ê
Ê{ÓcÊ
Ü>Õii
Ó° 4HE1UEENS#UPRACEISMILESLONG)N THEWINNING SAILBOATCOMPLETEDTHEFIRSTMILESINABOUTHOURSAND THEFIRSTMILESINABOUTHOURS3UPPOSEITHADCONTINUED ATTHISRATE7HATWOULDTHEWINNINGTIMEHAVEBEEN
ÊÌÊ8
nÓc
Îc
Ê
i>À}
Ó{
9
À>`Ê>Ûi
*ÀLiÊ -Û}Ê -ÌÀ>Ìi}ià À>ÜÊ>Ê >}À> >iÊ>Ê`i ÕiÃÃÊ>`Ê/iÃÌ 7ÀÊ >VÜ>À` `Ê>Ê*>ÌÌiÀ >iÊ>Ê/>Li -ÛiÊ>Ê-«iÀÊ*ÀLi 1ÃiÊ}V>Ê,i>Ã} 1ÃiÊ>Ê6iÊ >}À> >iÊ>Ê"À}>âi`ÊÃÌ
Ê/
iÊÀÊÌ}Ê/
iÊ iÌÕÀÞÊvÊ}
Ì
£° 4HE#ENTURYOF&LIGHTMURAL MEASURES SQUAREFEET APPROXIMATELYTHESIZEOFTHREE FOOTBALLFIELDS4HETABLEGIVESDATA ONTHERATEATWHICHTHEMURALWAS PAINTED(OWMANYMONTHSDIDIT TAKETOCOMPLETETHEMURAL
ÕÌÊ
«iÌi`ÊÊ ÊvÌÊÓÊ Ê Ê
Ì
ÃÊvÊ7À Ó
Ê
x]ÓÎÈ
x
Ê
£Î]ä£
Ç
Ê
£n]ÎÓÇ
Ê
ÓÂ
Ê
ΰ 4HE!IR:OOSFLIGHTSIMULATORSLET VISITORSPRACTICETAKEOFFSANDLANDINGS 4ODETERMINETHEPOSITIONOFAPLANE DURINGTAKEOFF ANAIRPORTUSESTWO CAMERASMOUNTEDFTAPART 7HATISTHEDISTANCEDTHATTHEPLANE HASMOVEDALONGTHERUNWAYSINCE ITPASSEDCAMERA
Ó° 6ISITORSTOTHE!IR:OOCANSEEA REPLICAOFA#URTISS*. h*ENNY v THEPLANETHATFLEWTHEFIRSTOFFICIAL 53AIRMAILROUTEIN4HEPLANE ÜÜ ÜÜ HASTWOPARALLELWINGS!"AND#$ THATARECONNECTEDBYBRACINGWIRES 4HEWIRESAREARRANGEDSOTHAT ÜÜ MȜ%&'AND'&BISECTSȜ%'$ 7HATISMȜ!%' `
Óx Çä £xäÊvÌ
>iÀ>Ê£
>iÀ>ÊÓ
*ÀLiÊ-Û}ÊÊV>Ì
Óx