Triple generating functions of Jacobi polynomials of two ... - SciELO

0 downloads 0 Views 274KB Size Report
Mumtaz A. Khan, Abdul H. Khan Sayed M. Abbas. 1. INTRODUCTION. In our paper [6] we discussed some generating and double generating func-.
Proyecciones Journal of Mathematics Vol. 30, No 2, pp. 213-245, August 2011. Universidad Cat´olica del Norte Antofagasta - Chile

Triple generating functions of Jacobi polynomials of two variables MUMTAZ AHMAD KHAN ALIGARH MUSLIM UNIVERSITY, INDIA ABDUL HAKIM KHAN ALIGARH MUSLIM UNIVERSITY, INDIA SAYED MOHAMMAD ABBAS ALIGARH MUSLIM UNIVERSITY, INDIA Received : March 2011. Accepted : May 2011

Abstract The present paper is a study of triple generating functions of Jacobi polynomials of two variables.

Keywords : Triple generating functions.

A. M. S. Subject Classification : 33C45.

214

Mumtaz A. Khan, Abdul H. Khan Sayed M. Abbas

1. INTRODUCTION In our paper [6] we discussed some generating and double generating functions of Jacobi polynomials of two variables. Now in this paper we obtain some triple generating functions of Jacobi polynomials of two variables. In our investigation we require the following results: Jacobi polynomials of two variables are defined by [10] Pn(α1 , β1 ; α2 , β2 ) (x, y) =

(1 + α1 )n (1 + α2 )n (n!)2

(1.1) ∙ ¸ 1−y 1−x , ×F2 −n, 1 + α2 + β2 + n, 1 + α1 + β1 + n; 1 + α2 , 1 + α1 ; . 2 2 The confluent hypergeometric functions of two variables are defined by [9] ∞ X ∞ X (α)m+n (β)m xm yn

φ1 [α, β; γ; x, y] =

(1.2)

(γ)m+n

m=0 n=0

£

¤

φ2 β, β 0 ; γ; x, y =

(1.3)

(1.4)

∞ X ∞ X (β)m (β 0 )n xm y n ∞ X ∞ X (β)m xm yn

m=0 n=0

£

¤

(1.5) Ψ1 α, β; γ, γ 0 ; x, y =

£

¤

(γ)m+n m! n!

m=0 n=0

φ3 [β; γ; x, y] =

(γ)m+n m! n!

, |x| < 1, |y| < ∞ ,

, |x| < ∞,

(γ)m (γ 0 )n m! n!

∞ X ∞ X (α)m+n xm y n

m=0 n=0

|y| < ∞ ,

, |x| < ∞, |y| < ∞ ,

∞ X ∞ X (α)m+n (β)m xm y n

m=0 n=0

(1.6) Ψ2 α; γ, γ 0 ; x, y =

m! n!

(γ)m (γ 0 )n m! n!

, |x| < 1, |y| < ∞ ,

, |x| < ∞,

|y| < ∞ ,

(1.7) £

¤

Ξ1 α, α0 , β; γ; x, y =

∞ ∞ X X (α)m (α0 )n (β)m xm y n

m=0 n=0

(γ)m+n

m! n!

, |x| < 1, |y| < ∞.

Triple generating functions of Jacobi polynomials of two variables 215

2. TRIPLE GENERATING FUNCTIONS (α1 , β1 ; α2 , β2 )

The polynomials Pn functions:

(x, y) admits the following triple generating

∞ ∞ X ∞ X X n!(1 + α1 + β1 )m (λ)k (1 + α2 + β2 )k

m=0 k=0 n=0

m!k!(1 + α1 )n (1 + α2 )k+n

×Pn(α1 , β1 +m−n; α2 +k, β2 −n) (x, y)tn um vk t

−1−α1 −β1

= e (1 − u) (2.1)

× Φ1

1 F1

"

1 2 (x

− 1)t 1 + α1 + β1 ; 1 + α1 ; (1 − u)



#

¸

1 1 + α2 + β2 , λ; 1 + α2 ; v, (y − 1)t , 2

∞ X ∞ ∞ X X n!(λ)m (1 + α1 + β1 )m (1 + α2 + β2 )k

m=0 k=0 n=0

m!k!(1 + α1 )m+n (1 + α2 )n

×Pn(α1 +m, β1 −n; α2 , β2 +k−n) (x, y)tn um vk t

−1−α2 −β2

= e (1 − v)

1 F1

"

1 2 (y

− 1)t 1 + α2 + β2 ; 1 + α2 ; (1 − v)



#

¸

1 × Φ1 1 + α1 + β1 , λ; 1 + α1 ; u, (x − 1)t , 2

(2.2)

∞ ∞ X ∞ X X

n!(1 + α1 + β1 )m (λ)k m!k!(1 + α1 )n (1 + α2 )k+n m=0 k=0 n=0 ×Pn(α1 , β1 +m−n; α2 +k, β2 −k−n) (x, y)tn um v k t

−1−α1 −β1

= e (1 − u) (2.3)

1 F1

"

1 2 (x

− 1)t 1 + α1 + β1 ; 1 + α1 ; (1 − u)



¸

1 × Φ2 λ, 1 + α2 + β2 ; 1 + α2 ; v, (y − 1)t , 2 ∞ ∞ X ∞ X X

n!(λ)m (1 + α2 + β2 )k m!k!(1 + α1 )m+n (1 + α2 )n m=0 k=0 n=0

#

216

Mumtaz A. Khan, Abdul H. Khan Sayed M. Abbas ×Pn(α1 +m, β1 −m−n; α2 , β2 +k−n) (x, y)tn um v k t

−1−α2 −β2

= e (1 − v)

(2.4)

1 F1

"

1 2 (y

− 1)t 1 + α2 + β2 ; 1 + α2 ; (1 − v)



#

¸

1 λ, 1 + α1 + β1 ; 1 + α1 ; u, (x − 1)t , 2

× Φ2

∞ ∞ X ∞ X X n!(1 + α1 + β1 )m (λ)k (1 + α2 + β2 )k

m!k!(µ)k (1 + α1 )n (1 + α2 )n

m=0 k=0 n=0

×Pn(α1 , β1 +m−n; α2 , β2 +k−n) (x, y)tn um vk = et (1 − u)−1−α1 −β1 1 F1

"

1 2 (x

− 1)t 1 + α1 + β1 ; 1 + α1 ; (1 − u)



#

¸

1 × Ψ1 1 + α2 + β2 , λ; µ, 1 + α2 ; v, (y − 1)t , 2

(2.5)

∞ ∞ X ∞ X X n!(λ)m (1 + α1 + β1 )m (1 + α2 + β2 )k

m=0 k=0 n=0

m!k!(µ)m (1 + α1 )n (1 + α2 )n

×Pn(α1 , β1 +m−n; α2 , β2 +k−n) (x, y)tn um vk t

−1−α2 −β2

= e (1 − v)

(2.6)

× Ψ1

1 F1

"

1 2 (y

− 1)t 1 + α2 + β2 ; 1 + α2 ; (1 − v)



#

¸

1 1 + α1 + β1 , λ; µ, 1 + α1 ; u, (x − 1)t , 2

∞ ∞ X ∞ X X n!(1 + α1 + β1 )m (1 + α2 + β2 )k

m=0 k=0 n=0

m!k!(λ)k (1 + α1 )n (1 + α2 )n

×Pn(α1 , β1 +m−n; α2 , β2 +k−n) (x, y)tn um vk t

−1−α1 −β1

= e (1 − u)

1 F1

"

1 2 (x

− 1)t 1 + α1 + β1 ; 1 + α1 ; (1 − u)

#

Triple generating functions of Jacobi polynomials of two variables 217

(2.7)

× Ψ2



¸

1 1 + α2 + β2 ; λ, 1 + α2 ; v, (y − 1)t , 2

∞ X ∞ ∞ X X n!(1 + α1 + β1 )m (1 + α2 + β2 )k

m!k!(λ)m (1 + α1 )n (1 + α2 )n

m=0 k=0 n=0

×Pn(α1 , β1 +m−n; α2 , β2 +k−n) (x, y)tn um vk t

−1−α2 −β2

= e (1 − v) (2.8)

1 F1

"

1 2 (y

− 1)t 1 + α2 + β2 ; 1 + α2 ; (1 − v)



¸

1 × Ψ2 1 + α1 + β1 ; λ, 1 + α1 ; u, (x − 1)t , 2 ∞ ∞ X ∞ X X n!(λ)m (1 + α1 + β1 )m (µ)k (1 + α2 + β2 )k

m!k!(1 + α1 )m+n (1 + α2 )k+n

m=0 k=0 n=0

×Pn(α1 +m, β1 −n; α2 +k, β2 −n) (x, y)tn um vk t

= e Φ1

(2.9)



1 1 + α1 + β1 , λ; 1 + α1 ; u, (x − 1)t 2



¸

¸

1 × Φ1 1 + α2 + β2 , µ; 1 + α2 ; v, (y − 1)t , 2 ∞ ∞ X ∞ X X

n!(λ)m (µ)k m!k!(1 + α1 )m+n (1 + α2 )k+n m=0 k=0 n=0 ×Pn(α1 +m, β1 −m−n; α2 +k, β2 −k−n) (x, y)tn um v k t

= e Φ2

(2.10)





1 λ, 1 + α1 + β1 ; 1 + α1 ; u, (x − 1)t 2

¸

¸

1 × Φ2 µ, 1 + α2 + β2 ; 1 + α2 ; v, (y − 1)t , 2 ∞ ∞ X ∞ X X n!(λ)m (µ)k (1 + α1 + β1 )m (1 + α2 + β2 )k

m=0 k=0 n=0

m!k!(δ)m (ν)k (1 + α1 )n (1 + α2 )n

#

218

Mumtaz A. Khan, Abdul H. Khan Sayed M. Abbas ×Pn(α1 , β1 +m−n; α2 , β2 +k−n) (x, y)tn um vk ∙

1 = et Ψ1 1 + α1 + β1 , λ; δ, 1 + α1 ; u, (x − 1)t 2 (2.11)

× Ψ1



¸

¸

1 1 + α2 + β2 , µ; ν, 1 + α2 ; v, (y − 1)t , 2

∞ ∞ X ∞ X X n!(1 + α1 + β1 )m (1 + α2 + β2 )k

m=0 k=0 n=0

m!k!(λ)m (µ)k (1 + α1 )n (1 + α2 )n

×Pn(α1 , β1 +m−n; α2 , β2 +k−n) (x, y)tn um vk t

= e Ψ2

(2.12)



1 1 + α1 + β1 ; λ, 1 + α1 ; u, (x − 1)t 2



¸

¸

1 × Ψ2 1 + α2 + β2 ; µ, 1 + α2 ; v, (y − 1)t , 2 ∞ ∞ X ∞ X X n!(λ)m (1 + α1 + β1 )m (µ)k

m=0 k=0 n=0

m!k!(1 + α1 )m+n (1 + α2 )k+n

×Pn(α1 +m, β1 −n; α2 +k, β2 −k−n) (x, y)tn um v k t

= e Φ1

(2.13)

× Φ2



1 1 + α1 + β1 , λ; 1 + α1 ; u, (x − 1)t 2



¸

¸

1 µ, 1 + α2 + β2 ; 1 + α2 ; v, (y − 1)t , 2

∞ ∞ X ∞ X X

n!(λ)m (µ)k (1 + α2 + β2 )k m!k!(1 + α1 )m+n (1 + α2 )k+n m=0 k=0 n=0 ×Pn(α1 +m, β1 −m−n; α2 +k, β2 −n) (x, y)tn um v k ∙

1 = et Φ2 λ, 1 + α1 + β1 ; 1 + α1 ; u, (x − 1)t 2 (2.14)

× Φ1



¸

¸

1 1 + α2 + β2 , µ; 1 + α2 ; v, (y − 1)t , 2

Triple generating functions of Jacobi polynomials of two variables 219

∞ X ∞ ∞ X X

n!(λ)m (1 + α1 + β1 )m m!k!(1 + α1 )m+n (1 + α2 )k+n m=0 k=0 n=0 ×Pn(α1 +m, β1 −n; α2 +k, β2 −k−n) (x, y)tn um v k t

= e Φ1

(2.15)



1 1 + α1 + β1 , λ; 1 + α1 ; u, (x − 1)t 2



¸

¸

1 × Φ3 1 + α2 + β2 ; 1 + α2 ; (y − 1)t, v , 2 ∞ ∞ X ∞ X X

n!(λ)k (1 + α2 + β2 )k m!k!(1 + α1 )m+n (1 + α2 )k+n m=0 k=0 n=0 ×Pn(α1 +m, β1 −m−n; α2 +k, β2 −n) (x, y)tn um v k ∙

= e Φ3

(2.16)

¸

1 1 + α1 + β1 ; 1 + α1 ; (x − 1)t, u 2

t



¸

1 × Φ1 1 + α2 + β2 , λ; 1 + α2 ; v, (y − 1)t , 2 ∞ ∞ X ∞ X X

n!(λ)m m!k!(1 + α1 )m+n (1 + α2 )k+n m=0 k=0 n=0 ×Pn(α1 +m, β1 −m−n; α2 +k, β2 −k−n) (x, y)tn um v k = e Φ2



× Φ3



t

(2.17)

1 λ, 1 + α1 + β1 ; 1 + α1 ; u, (x − 1)t 2

¸

¸

1 1 + α2 + β2 ; 1 + α2 ; (y − 1)t, v , 2

∞ ∞ X ∞ X X

n!(λ)k m!k!(1 + α1 )m+n (1 + α2 )k+n m=0 k=0 n=0 ×Pn(α1 +m, β1 −m−n; α2 +k, β2 −k−n) (x, y)tn um v k

220

Mumtaz A. Khan, Abdul H. Khan Sayed M. Abbas ∙

= e Φ3

(2.18)

× Φ2

¸

1 1 + α1 + β1 ; 1 + α1 ; (x − 1)t, u 2

t



¸

1 λ, 1 + α2 + β2 ; 1 + α2 ; v, (y − 1)t , 2

∞ ∞ X ∞ X X n!(λ)m (1 + α1 + β1 )m (µ)k (1 + α2 + β2 )k

m!k!(δ)k (1 + α1 )m+n (1 + α2 )n

m=0 k=0 n=0

×Pn(α1 +m, β1 −n; α2 , β2 +k−n) (x, y)tn um vk ∙

1 = et Φ1 1 + α1 + β1 , λ; 1 + α1 ; u, (x − 1)t 2 (2.19)



¸

¸

1 × Ψ1 1 + α2 + β2 , µ; δ, 1 + α2 ; v, (y − 1)t , 2 ∞ X ∞ ∞ X X n!(λ)m (1 + α1 + β1 )m (µ)k (1 + α2 + β2 )k

m!k!(δ)m (1 + α1 )n (1 + α2 )k+n

m=0 k=0 n=0

×Pn(α1 , β1 +m−n; α2 +k, β2 −n) (x, y)tn um vk t

= e Ψ1

(2.20)



1 1 + α1 + β1 , λ; δ, 1 + α1 ; u, (x − 1)t 2



¸

¸

1 × Φ1 1 + α2 + β2 , µ; 1 + α2 ; v, (y − 1)t , 2 ∞ ∞ X ∞ X X n!(λ)m (1 + α1 + β1 )m (1 + α2 + β2 )k

m=0 k=0 n=0

m!k!(1 + α1 )m+n (µ)k (1 + α2 )n

×Pn(α1 +m, β1 −n; α2 , β2 +k−n) (x, y)tn um vk t

= e Φ1

(2.21)

× Ψ2





1 1 + α1 + β1 , λ; 1 + α1 ; u, (x − 1)t 2 ¸

¸

1 1 + α2 + β2 , µ; 1 + α2 ; v, (y − 1)t , 2

Triple generating functions of Jacobi polynomials of two variables 221

∞ X ∞ ∞ X X n!(1 + α1 + β1 )m (λ)k (1 + α2 + β2 )k

m=0 k=0 n=0

m!k!(µ)m (1 + α1 )n (1 + α2 )k+n

×Pn(α1 , β1 +m−n; α2 +k, β2 −n) (x, y)tn um vk ∙

= e Ψ2

(2.22)

¸

1 1 + α1 + β1 , µ; 1 + α1 ; u, (x − 1)t 2

t



¸

1 × Φ1 1 + α2 + β2 , λ; 1 + α2 ; v, (y − 1)t , 2 ∞ ∞ X ∞ X X n!(λ)m (1 + α1 + β1 )m (µ)k (ν)k

m=0 k=0 n=0

m!k!(1 + α1 )m+n (1 + α2 )k+n

×Pn(α1 +m, β1 −n; α2 +k, β2 −k−n) (x, y)tn um v k ∙

1 1 + α1 + β1 , λ; 1 + α1 ; u, (x − 1)t 2

t

= e Φ1

(2.23)



¸

¸

1 × Ξ1 µ, 1 + α2 + β2 , ν; 1 + α2 ; v, (y − 1)t , 2 ∞ ∞ X ∞ X X n!(λ)m (µ)m (ν)k (1 + α2 + β2 )k

m=0 k=0 n=0

m!k!(1 + α1 )m+n (1 + α2 )k+n

×Pn(α1 +m, β1 −m−n; α2 +k, β2 −n) (x, y)tn um v k = e Ξ1



× Φ1



t

(2.24)

1 λ, 1 + α1 + β1 , µ; 1 + α1 ; u, (x − 1)t 2 ¸

1 1 + α2 + β2 , ν; 1 + α2 ; v, (y − 1)t , 2

∞ ∞ X ∞ X X

n!(λ)m (µ)k (1 + α2 + β2 )k m!k!(1 + α1 )m+n (δ)k (1 + α2 )n m=0 k=0 n=0 ×Pn(α1 +m, β1 −m−n; α2 , β2 +k−n) (x, y)tn um v k

¸

222

Mumtaz A. Khan, Abdul H. Khan Sayed M. Abbas t

= e Φ2

(2.25)

× Ψ1



1 λ, 1 + α1 + β1 ; 1 + α1 ; u, (x − 1)t 2



¸

¸

1 1 + α2 + β2 , µ; δ, 1 + α2 ; v, (y − 1)t , 2

∞ ∞ X ∞ X X

n!(λ)m (1 + α1 + β1 )m (µ)k m!k!(δ) m (1 + α1 )n (1 + α2 )k+n m=0 k=0 n=0 ×Pn(α1 , β1 +m−n; α2 +k, β2 −k−n) (x, y)tn um v k ∙

1 = et Ψ1 1 + α1 + β1 , λ; δ, 1 + α1 ; u, (x − 1)t 2 (2.26)



¸

¸

1 × Φ2 µ, 1 + α2 + β2 ; 1 + α2 ; v, (y − 1)t , 2 ∞ X ∞ ∞ X X

n!(λ)m (1 + α2 + β2 )k m!k!(µ)k (1 + α1 )m+n (1 + α2 )n m=0 k=0 n=0 ×Pn(α1 +m, β1 −m−n; α2 , β2 +k−n) (x, y)tn um v k t

= e Φ2

(2.27)



1 λ, 1 + α1 + β1 ; 1 + α1 ; u, (x − 1)t 2



¸

¸

1 × Ψ2 1 + α2 + β2 ; µ, 1 + α2 ; v, (y − 1)t , 2 ∞ ∞ X ∞ X X

n!(1 + α1 + β1 )m (λ)k m!k!(µ)m (1 + α1 )n (1 + α2 )k+n m=0 k=0 n=0 ×Pn(α1 , β1 +m−n; α2 +k, β2 −k−n) (x, y)tn um v k t

= e Ψ2

(2.28)

× Φ2





¸

1 1 + α1 + β1 ; µ, 1 + α1 ; u, (x − 1)t 2 ¸

1 λ, 1 + α2 + β2 ; 1 + α2 ; v, (y − 1)t , 2

Triple generating functions of Jacobi polynomials of two variables 223

∞ X ∞ ∞ X X

n!(λ)m (µ)k (ν)k m!k!(1 + α1 )m+n (1 + α2 )k+n m=0 k=0 n=0 ×Pn(α1 +m, β1 −m−n; α2 +k, β2 −k−n) (x, y)tn um v k ∙

1 λ, 1 + α1 + β1 ; 1 + α1 ; u, (x − 1)t 2

t

= e Φ2

(2.29)



¸

¸

1 × Ξ1 µ, 1 + α2 + β2 , ν; 1 + α2 ; v, (y − 1)t , 2 ∞ ∞ X ∞ X X

n!(λ)m (µ)m (ν)k m!k!(1 + α1 )m+n (1 + α2 )k+n m=0 k=0 n=0 ×Pn(α1 +m, β1 −m−n; α2 +k, β2 −k−n) (x, y)tn um v k ∙

1 λ, 1 + α1 + β1 , µ; 1 + α1 ; u, (x − 1)t 2

t

= e Ξ1

(2.30)



¸

¸

1 × Φ2 ν, 1 + α2 + β2 ; 1 + α2 ; v, (y − 1)t , 2 ∞ ∞ X ∞ X X

n!(λ)k (1 + α2 + β2 )k m!k!(µ)k (1 + α1 )m+n (1 + α2 )n m=0 k=0 n=0 ×Pn(α1 +m, β1 −m−n; α2 , β2 +k−n) (x, y)tn um v k t

= e Φ3

(2.31)

× Ψ1



¸

1 1 + α1 + β1 ; 1 + α1 ; (x − 1)t, u 2



¸

1 1 + α2 + β2 , λ; µ, 1 + α2 ; v, (y − 1)t , 2

∞ ∞ X ∞ X X

n!(λ)m (1 + α1 + β1 )m m!k!(µ)m (1 + α1 )n (1 + α2 )k+n m=0 k=0 n=0 ×Pn(α1 , β1 +m−n; α2 +k, β2 −k−n) (x, y)tn um v k

224

Mumtaz A. Khan, Abdul H. Khan Sayed M. Abbas t

= e Ψ1

(2.32)



1 1 + α1 + β1 , λ; µ, 1 + α1 ; u, (x − 1)t 2

× Φ3



¸

¸

1 1 + α2 + β2 ; 1 + α2 ; (y − 1)t, v , 2

∞ ∞ X ∞ X X

n!(1 + α2 + β2 )k m!k!(1 + α1 )m+n (λ)k (1 + α2 )n m=0 k=0 n=0 ×Pn(α1 +m, β1 −m−n; α2 , β2 +k−n) (x, y)tn um v k ∙

¸

1 = et Φ3 1 + α1 + β1 ; 1 + α1 ; (x − 1)t, u 2 (2.33)



¸

1 × Ψ2 1 + α2 + β2 ; λ, 1 + α2 ; v, (y − 1)t , 2 ∞ X ∞ ∞ X X

n!(1 + α1 + β1 )m m!k!(λ)m (1 + α1 )n (1 + α2 )k+n m=0 k=0 n=0 ×Pn(α1 , β1 +m−n; α2 +k, β2 −k−n) (x, y)tn um v k ∙

1 1 + α1 + β1 ; λ, 1 + α1 ; u, (x − 1)t 2

t

= e Ψ2

(2.34)



¸

¸

1 × Φ3 1 + α2 + β2 ; 1 + α2 ; (y − 1)t, v , 2 ∞ ∞ X ∞ X X n!(λ)m (1 + α1 + β1 )m (1 + α2 + β2 )k

m=0 k=0 n=0

m!k!(µ)m (δ)k (1 + α1 )n (1 + α2 )n

×Pn(α1 , β1 +m−n; α2 , β2 +k−n) (x, y)tn um vk = e Ψ1



× Ψ2



t

(2.35)

1 1 + α1 + β1 , λ; µ, 1 + α1 ; u, (x − 1)t 2 ¸

1 1 + α2 + β2 ; δ, 1 + α2 ; v, (y − 1)t , 2

¸

Triple generating functions of Jacobi polynomials of two variables 225

∞ X ∞ ∞ X X n!(λ)k (1 + α1 + β1 )m (1 + α2 + β2 )k

m=0 k=0 n=0

m!k!(µ)m (δ)k (1 + α1 )n (1 + α2 )n

×Pn(α1 , β1 +m−n; α2 , β2 +k−n) (x, y)tn um vk ∙

= e Ψ2

(2.36)

¸

1 1 + α1 + β1 ; µ, 1 + α1 ; u, (x − 1)t 2

t



¸

1 × Ψ1 1 + α2 + β2 , λ; δ, 1 + α2 ; v, (y − 1)t , 2 ∞ ∞ X ∞ X X n!(λ)m (µ)k (δ)k (1 + α1 + β1 )m

m=0 k=0 n=0

m!k!(ν)m (1 + α1 )n (1 + α2 )k+n

×Pn(α1 , β1 +m−n; α2 +k, β2 −k−n) (x, y)tn um v k ∙

1 1 + α1 + β1 , λ; ν, 1 + α1 ; u, (x − 1)t 2

t

= e Ψ1

(2.37)



¸

¸

1 × Ξ1 µ, 1 + α2 + β2 , δ; 1 + α2 ; v, (y − 1)t , 2 ∞ ∞ X ∞ X X n!(λ)m (µ)m (δ)k (1 + α2 + β2 )k

m=0 k=0 n=0

m!k!(ν)k (1 + α1 )m+n (1 + α2 )n

×Pn(α1 +m, β1 −m−n; α2 , β2 +k−n) (x, y)tn um v k ∙

1 λ, 1 + α1 + β1 , µ; 1 + α1 ; u, (x − 1)t 2

t

= e Ξ1

(2.38)

× Ψ1



¸

¸

1 1 + α2 + β2 , δ; ν, 1 + α2 ; v, (y − 1)t , 2

∞ ∞ X ∞ X X

n!(1 + α1 + β1 )m (λ)k (µ)k m!k!(ν)m (1 + α1 )n (1 + α2 )k+n m=0 k=0 n=0 ×Pn(α1 , β1 +m−n; α2 +k, β2 −k−n) (x, y)tn um v k

226

Mumtaz A. Khan, Abdul H. Khan Sayed M. Abbas ∙

= e Ψ2

(2.39)

× Ξ1

¸

1 1 + α1 + β1 ; ν, 1 + α1 ; u, (x − 1)t 2

t



¸

1 λ, 1 + α2 + β2 , µ; 1 + α2 ; v, (y − 1)t , 2

∞ ∞ X ∞ X X

n!(λ)m (µ)m (1 + α2 + β2 )k m!k!(ν)k (1 + α1 )m+n (1 + α2 )n m=0 k=0 n=0 ×Pn(α1 +m, β1 −m−n; α2 , β2 +k−n) (x, y)tn um v k t

= e Ξ1



1 λ, 1 + α1 + β1 , µ; 1 + α1 ; u, (x − 1)t 2



¸

¸

1 × Ψ2 1 + α2 + β2 ; ν, 1 + α2 ; v, (y − 1)t . 2

(2.40)

PROOF OF (2.1) ∞ ∞ X ∞ X X n!(1 + α1 + β1 )m (λ)k (1 + α2 + β2 )k

m!k!(1 + α1 )n (1 + α2 )k+n

m=0 k=0 n=0

×Pn(α1 , β1 +m−n; α2 +k, β2 −n) (x, y)tn um vk =

∞ ∞ X ∞ X X n!(1 + α1 + β1 )m (λ)k (1 + α2 + β2 )k

m=0 k=0 n=0

××

m!k!(1 + α1 )n (1 + α2 + k)n (1 + α2 )k

(1 + α1 )n (1 + α2 + k)n (n!)2

n n−r X X (−n)r+s (1 + α1 + β1 + m)r (1 + α2 + β2 + k)s

r!s!(1 + α1 )r (1 + α2 + k)s

r=0 s=0

µ

=

×

1−x 2

¶r µ

1−y 2

¶s

tn um v k

∞ X ∞ X ∞ X n n−r X X (−1)r+s n!(1 + α1 + β1 )m+r (1 + α2 + β2 )k+s (λ)k

m!k!n!r!s!(n − r − s)!(1 + α1 )r (1 + α2 )k+s

m=0 k=0 n=0 r=0 s=0

µ

1−x × 2

¶r µ

1−y 2

¶s

tn um v k

Triple generating functions of Jacobi polynomials of two variables 227

∞ X ∞ X ∞ X ∞ ∞ X X (1 + α1 + β1 )m+r (1 + α2 + β2 )k+s (λ)k

=

m!k!n!r!s!(1 + α1 )r (1 + α2 )k+s

m=0 k=0 n=0 r=0 s=0

×

³

x−1 2

t

=e

´r ³

´ y−1 s n+r+s m k t u v 2

µ ∞ X (1 + α1 + β1 )r 1

r!(1 + α1 )r

2

∞ P ∞ P (1+α2 +β2 )k+s (λ)k

× vk

r=0

k=0 s=0

k!s!(1+α2 )k+s

t

¶r X ∞ (1 + α1 + β1 + r)m m (x − 1)t u ³

1 2 (y

− 1)t

´s

∞ X (1 + α1 + β1 )r

−1−α1 −β1

= e (1 − u)

m!

m=0

r!(1 + α1 )r

r=0

Ã

1 2 (x − 1)t

(1 − u)

!r

³ ´s ∞ ∞ P P (1+α2 +β2 )k+s (λ)k k 1 v (y − 1)t

k=0 s=0

t

−1−α1 −β1

= e (1 − u) ×Φ1

2

k!s!(1+α2 )k+s



1 F1

"

1 2 (x

− 1)t 1 + α1 + β1 ; +α1 ; (1 − u)

#

¸

1 1 + α2 + β2 ; λ; 1 + α2 ; v, (y − 1)t 2

which proves (2.1). The proof of results (2.2) to (2.8) are similar to that of (2.1). PROOF OF (2.9) ∞ ∞ X ∞ X X n!(λ)m (1 + α1 + β1 )m (µ)k (1 + α2 + β2 )k

m!k!(1 + α1 )m+n (1 + α2 )k+n

m=0 k=0 n=0

×Pn(α1 +m, β1 −n; α2 +k, β2 −n) (x, y)tn um vk =

∞ ∞ X ∞ X X

n!(λ)m (1 + α1 + β1 )m (µ)k (1 + α2 + β2 )k m!k!(1 + α1 + m)n (1 + α1 )m (1 + α2 + k)n (1 + α2 )k m=0 k=0 n=0 ×

(1 + α1 + m)n (1 + α2 + k)n (n!)2

228

Mumtaz A. Khan, Abdul H. Khan Sayed M. Abbas

× × =

³

1−x 2

n n−r X X (−n)r+s (1 + α1 + β1 + m)r (1 + α2 + β2 + k)s

r!s!(1 + α1 + m)r (1 + α2 + k)s

r=0 s=0

´r ³

´ 1−y s n m k t u v 2

∞ X ∞ X ∞ X n n−r X X (−1)r+s n!(λ)m (1 + α1 + β1 )m+r (µ)k (1 + α2 + β2 )k+s

m!k!n!r!s!(n − r − s)!(1 + α1 )m+r (1 + α2 )k+s

m=0 k=0 n=0 r=0 s=0

× =

µ

1−x 2

¶r µ

1−y 2

¶s

× tn um v k

∞ X ∞ X ∞ X ∞ ∞ X X (λ)m (1 + α1 + β1 )m+r (µ)k (1 + α2 + β2 )k+s

m!k!n!r!s!(1 + α1 )m+r (1 + α2 )k+s

m=0 k=0 n=0 r=0 s=0

µ

x−1 × 2 = et

¶r µ

y−1 2

¶s

tn+r+s um vk

µ ¶r ∞ X ∞ X (1 + α1 + β1 )m+r (λ)m m 1 (x − 1)t u

m!r!(1 + α1 )m+r

m=0 r=0

2

µ ¶s ∞ ∞ X X (1 + α2 + β2 )k+s (µ)k k 1 (y − 1)t v

k!s!(1 + α2 )k+s

k=0 s=0



1 1 + α1 + β1 , λ; 1 + α1 ; u, (x − 1)t 2

t

= e Φ1 ×Φ1

2



1 1 + α2 + β2 , µ; 1 + α2 ; v, (y − 1)t 2

¸

¸

which proves (2.9). The proof of results (2.10) to (2.40) are similar to that of (2.9). Further we have the following triple generating functions of Jacobi polynomials of two variables: ∞ ∞ X ∞ X X n!(1 + α1 + β1 )m (1 + α2 + β2 )k

m=0 k=0 n=0

m!k!(1 + α1 )n (1 + α2 )n

Pn(α1 , β1 +m−n; α2 , β2 +k−n) (x, y)tn um v k

Triple generating functions of Jacobi polynomials of two variables 229 "

= et (1−u)−1−α1 −β1 (1−v)−1−α2 −β2 1 F1 1 + α1 + β1 ; 1 + α1 ;

(2.41)

×1 F1

"

1 2 (y

m!k!(1 + α1 )n (1 + α2 + k)n

t

−1−α1 −β1

= e (1 − u)

#

1 F1

Pn(α1 , β1 +m−n; α2 +k, β2 −n) (x, y)tn um v k

"

1 + α1 + β1 ; 1 + α1 ;

1 2 (x − 1)t

(1 − u)



#

¸

1 × Φ1 1 + α2 + β2 , 1 + α2 ; 1 + α2 ; v, (y − 1)t , 2

(2.42)

∞ ∞ X ∞ X X n!(1 + α1 + β1 )m (1 + α2 + β2 )k

m!k!(1 + α1 + m)n (1 + α2 )n

m=0 k=0 n=0 t

(1 − u)

#

− 1)t 1 + α2 + β2 ; 1 + α2 ; , (1 − v)

∞ ∞ X ∞ X X n!(1 + α1 + β1 )m (1 + α2 + β2 )k

m=0 k=0 n=0

1 2 (x − 1)t

−1−α2 −β2

= e (1−v)

(2.43)

×Φ1

1 F1

"

Pn(α1 +m, β1 −n; α2 , β2 +k−n) (x, y)tn um v k 1 2 (y

− 1)t 1 + α2 + β2 ; 1 + α2 ; (1 − v)



# ¸

1 1 + α1 + β1 , 1 + α1 ; 1 + α1 ; u, (x − 1)t , 2

∞ ∞ X ∞ X X

n!(1 + α1 + β1 )m Pn(α1 , β1 +m−n; α2 +k, β2 −k−n) (x, y)tn um vk m!k!(1 + α ) (1 + α + k) 1 n 2 n m=0 k=0 n=0 t

−1−α1 −β1

= e (1 − u)

1 F1

"

1 + α1 + β1 ; 1 + α1 ;



1 2 (x − 1)t

(1 − u)

#

¸

1 Φ2 1 + α2 , 1 + α2 + β2 ; 1 + α2 ; v, (y − 1)t , 2

(2.44) ∞ ∞ X ∞ X X

n!(1 + α2 + β2 )k Pn(α1 +m, β1 −m−n; α2 , β2 +k−n) (x, y)tn um vk m!k!(1 + α + m) (1 + α ) 1 n 2 n m=0 k=0 n=0 t

−1−α2 −β2

= e (1 − v)

1 F1

"

1 2 (y

− 1)t 1 + α2 + β2 ; 1 + α2 ; (1 − v)

#

230

Mumtaz A. Khan, Abdul H. Khan Sayed M. Abbas

(2.45)

× Φ2



¸

1 1 + α1 , 1 + α1 + β1 ; 1 + α1 ; u, (x − 1)t , 2

∞ ∞ X ∞ X X

n!(1 + α1 + β1 )m Pn(α1 , β1 +m−n; α2 +k, β2 −k−n) (x, y)tn um vk m!k!(1 + α ) (1 + α ) 1 n 2 k+n m=0 k=0 n=0 = et (1 − u)−1−α1 −β1 1 F1 (2.46)

× Φ3

"

1 2 (x

− 1)t 1 + α1 + β1 ; 1 + α1 ; (1 − u)



#

¸

1 1 + α2 + β2 ; 1 + α2 ; (y − 1)t, v , 2

∞ ∞ X ∞ X X

n!(1 + α2 + β2 )k Pn(α1 +m, β1 −m−n; α2 , β2 +k−n) (x, y)tn um v k m!k!(1 + α ) (1 + α ) 1 m+n 2 n m=0 k=0 n=0 = et (1 − v)−1−α2 −β2 1 F1 (2.47)

× Φ3

"

1 2 (y

− 1)t 1 + α2 + β2 ; 1 + α2 ; (1 − v)



¸

1 1 + α1 + β1 ; 1 + α1 ; (x − 1)t, u , 2

∞ ∞ X ∞ X X n!(1 + α1 + β1 )m (λ)k

m!k!(1 + α1 )n (1 + α2 )n m=0 k=0 n=0 "

Pn(α1 , β1 +m−n; α2 , β2 +k−n) (x, y)tn um v k

= et (1−u)−1−α1 −β1 1 F1 1 + α1 + β1 ; 1 + α1 ;

(2.48)

×Ψ1

−1−α2 −β2

= e (1−v)

×Ψ1

(1 − u)

# ¸

1 1 + α2 + β2 , λ; 1 + α2 + β2 , 1 + α2 ; v, (y − 1)t , 2

m!k!(1 + α1 )n (1 + α2 )n m=0 k=0 n=0

(2.49)

1 2 (x − 1)t



∞ ∞ X ∞ X X n!(λ)m (1 + α2 + β2 )k t

#



1 F1

"

Pn(α1 , β1 +m−n; α2 , β2 +k−n) (x, y)tn um v k 1 2 (y

− 1)t 1 + α2 + β2 ; 1 + α2 ; (1 − v)

# ¸

1 1 + α1 + β1 , λ; 1 + α1 + β1 , 1 + α1 ; u, (x − 1)t , 2

Triple generating functions of Jacobi polynomials of two variables 231

∞ ∞ X ∞ X X

n!(1 + α1 + β1 )m Pn(α1 , β1 +m−n; α2 , β2 +k−n) (x, y)tn um v k m!k!(1 + α ) (1 + α ) 1 n 2 n m=0 k=0 n=0 t

−1−α1 −β1

= e (1−u)

(2.50)

×Ψ2

1 F1

"

1 + α1 + β1 ; 1 + α1 ;

1 2 (x − 1)t

(1 − u)

#



¸

1 1 + α2 + β2 ; 1 + α2 + β2 , 1 + α2 ; v, (y − 1)t , 2

∞ ∞ X ∞ X X

n!(1 + α2 + β2 )k Pn(α1 , β1 +m−n; α2 , β2 +k−n) (x, y)tn um v k m!k!(1 + α ) (1 + α ) 1 n 2 n m=0 k=0 n=0 = et (1−v)−1−α2 −β2 1 F1

(2.51)

×Ψ2

"

1 2 (y

− 1)t 1 + α2 + β2 ; 1 + α2 ; (1 − v)



¸

1 1 + α1 + β1 ; 1 + α1 + β1 , 1 + α1 ; u, (x − 1)t , 2

∞ X ∞ ∞ X X n!(1 + α1 + β1 )m (λ)k (µ)k

m!k!(1 + α1 )n (1 + α2 )k+n m=0 k=0 n=0 =et

(2.52)

(1 − u)−1−α1 −β1

1 F1

Pn(α1 , β1 +m−n; α2 +k, β2 −k−n) (x, y)tn um vk



1 + α1 + β1 ; 1 + α1 ;

(1−u)



¸

¸

m!k!(1 + α1 )m+n (1 + α2 )n m=0 k=0 n=0

(2.53)

1 (x−1)t 2

1 × Ξ1 λ, 1 + α2 + β2 , µ; 1 + α2 ; v, (y − 1)t , 2

∞ ∞ X ∞ X X n!(λ)m (µ)m (1 + α2 + β2 )k

=et

#

(1 − v)−1−α2 −β2 Ξ1



1 F1



Pn(α1 +m, β1 −m−n; α2 , β2 +k−n) (x, y)tn um v k

1 + α2 + β2 ; 1 + α2 ;

1 (y−1)t 2

(1−v)

¸

¸

1 λ, 1 + α1 + β1 , µ; 1 + α1 ; u, (x − 1)t , 2

232

Mumtaz A. Khan, Abdul H. Khan Sayed M. Abbas

∞ ∞ X ∞ X X n!(1 + α1 + β1 )m (1 + α2 + β2 )k

m=0 k=0 n=0

m!k!(1 + α1 + m)n (1 + α2 + k)n

Pn(α1 +m, β1 −n; α2 +k, β2 −n) (x, y)tn um v k

h

=et Φ1 1 + α1 + β1 , 1 + α1 ; 1 + α1 ; u, 12 (x − 1)t (2.54)

× Φ1



i

¸

1 1 + α2 + β2 , 1 + α2 ; 1 + α2 ; v, (y − 1)t , 2

∞ ∞ X ∞ X X

n! m!k!(1 + α + m) 1 n (1 + α2 + k)n m=0 k=0 n=0 h

×Pn(α1 +m, β1 −m−n; α2 +k, β2 −k−n) (x, y)tn um v k

=et Φ2 1 + α1 , 1 + α1 + β1 ; 1 + α1 ; u, 12 (x − 1)t ∙

i

¸

1 × Φ2 1 + α2 , 1 + α2 + β2 ; 1 + α2 ; v, (y − 1)t , 2

(2.55)

∞ ∞ X ∞ X X

m=0 k=0 n=0

n! m!k!(1 + α1 )m+n (1 + α2 )k+n

(α1 +m, β1 −m−n; α2 +k, β2 −k−n)

Pn

t

= e Φ3

(2.56)

Φ3

∞ ∞ X ∞ X X



(x, y)tn um vk



¸

1 1 + α1 + β1 ; 1 + α1 ; (x − 1)t, u 2 ¸

1 1 + α2 + β2 ; 1 + α2 ; (y − 1)t, v , 2

n!(λ)m (µ)k Pn(α1 , β1 +m−n; α2 , β2 +k−n) (x, y)tn um v k m!k!((1 + α ) (1 + α ) 1 n 2 n m=0 k=0 n=0 t

= e Ψ1



¸

1 1 + α1 + β1 , λ; 1 + α1 + β1 , 1 + α1 ; u, (x − 1)t 2

Triple generating functions of Jacobi polynomials of two variables 233 h

i

×Ψ1 1 + α2 + β2 , µ; 1 + α2 + β2 , 1 + α2 ; v, 12 (y − 1)t , (2.57) ∞ ∞ X ∞ X X

n! Pn(α1 , β1 +m−n; α2 , β2 +k−n) (x, y)tn um v k m!k!(1 + α ) (1 + α ) 1 n 2 n m=0 k=0 n=0 ∙

1 = et Ψ2 1 + α1 + β1 ; 1 + α1 + β1 , 1 + α1 ; u, (x − 1)t 2 (2.58)

×Ψ2



¸ ¸

1 1 + α2 + β2 ; 1 + α2 + β2 , 1 + α2 ; v, (y − 1)t , 2

∞ X ∞ ∞ X X

n!(λ)m (µ)m (δ)k (ν)k Pn(α1 +m, β1 −m−n; α2 +k, β2 −k−n) (x, y)tn um v k m!k!(1 + α ) (1 + α ) 1 m+n 2 k+n m=0 k=0 n=0 ∙

1 = et Ξ1 λ, 1 + α1 + β1 , µ; 1 + α1 ; u, (x − 1)t 2 (2.59)



¸

¸

1 × Ξ1 δ, 1 + α2 + β2 , ν; 1 + α2 ; v, (y − 1)t , 2

∞ ∞ X ∞ X X

n!(1 + α1 + β1 )m Pn(α1 +m, β1 −n; α2 +k, β2 −k−n) (x, y)tn um v k m!k!(1 + α + m) (1 + α + k) 1 n 2 n m=0 k=0 n=0 t

= e Φ1

(2.60)



1 1 + α1 + β1 , 1 + α1 ; 1 + α1 ; u, (x − 1)t 2



¸

¸

1 × Φ2 1 + α2 , 1 + α2 + β2 ; 1 + α2 ; v, (y − 1)t , 2

∞ ∞ X ∞ X X

n!(1 + α2 + β2 )k Pn(α1 +m, β1 −m−n; α2 +k, β2 −n) (x, y)tn um v k m!k!(1 + α + m) (1 + α + k) 1 n 2 n m=0 k=0 n=0 t

= e Φ2

(2.61)

× Φ1





1 1 + α1 , 1 + α1 + β1 ; 1 + α1 ; u, (x − 1)t 2 ¸

¸

1 1 + α2 + β2 , 1 + α2 ; 1 + α2 ; v, (y − 1)t , 2

234

Mumtaz A. Khan, Abdul H. Khan Sayed M. Abbas

∞ ∞ X ∞ X X

n!(1 + α1 + β1 )m Pn(α1 +m, β1 −n; α2 +k, β2 −k−n) (x, y)tn um vk m!k!(1 + α + m) (1 + α ) 1 n 2 k+n m=0 k=0 n=0 t

= e Φ1

(2.62)



1 1 + α1 + β1 , 1 + α1 ; 1 + α1 ; u, (x − 1)t 2 ∙

¸

¸

1 × Φ3 1 + α2 + β2 ; 1 + α2 ; (y − 1)t, v , 2 ∞ ∞ X ∞ X X

n!(1 + α2 + β2 )k m!k!(1 + α1 )m+n (1 + α2 + k)n m=0 k=0 n=0 (α1 +m, β1 −m−n; α2 +k, β2 −n)

Pn

t

= e Φ3

(2.63)

× Φ1

(x, y)tn um v k



¸

1 1 + α1 + β1 ; 1 + α1 ; (x − 1)t, u 2



¸

1 1 + α2 + β2 , 1 + α2 ; 1 + α2 ; v, (y − 1)t , 2

∞ ∞ X ∞ X X

n! m!k!(1 + α1 + m)n (1 + α2 )k+n m=0 k=0 n=0 (α1 +m, β1 −m−n; α2 +k, β2 −k−n)

Pn

(x, y)tn um vk



¸

1 = et Φ2 1 + α1 , 1 + α1 + β1 ; 1 + α1 ; u, (x − 1)t 2 (2.64)

×Φ3



¸

1 1 + α2 + β2 ; 1 + α2 ; (y − 1)t, v , 2

∞ ∞ X ∞ X X

m=0 k=0 n=0

n! m!k!(1 + α1 )m+n (1 + α2 + k)n

(α1 +m, β1 −m−n; α2 +k, β2 −k−n)

Pn

(x, y)tn um vk

Triple generating functions of Jacobi polynomials of two variables 235

t

= e Φ3

(2.65)

× Φ2



¸

1 1 + α1 + β1 ; 1 + α1 ; (x − 1)t, u 2



¸

1 1 + α2 , 1 + α2 + β2 ; 1 + α2 ; v, (y − 1)t , 2

∞ ∞ X ∞ X X

n!(1 + α1 + β1 )m (λ)k Pn(α1 +m, β1 −n; α2 , β2 +k−n) (x, y)tn um v k m!k!(1 + α + m) (1 + α ) 1 n 2 n m=0 k=0 n=0 t

= e Φ1



¸

1 1 + α1 + β1 , 1 + α1 ; 1 + α1 ; u, (x − 1)t 2

(2.66)

×Ψ1



¸

1 1 + α2 + β2 , λ; 1 + α2 + β2 , 1 + α2 ; v, (y − 1)t , 2

∞ ∞ X ∞ X X

n!(λ)m (1 + α2 + β2 )k Pn(α1 , β1 +m−n; α2 +k, β2 −n) (x, y)tn um vk m!k!(1 + α ) (1 + α + k) 1 n 2 n m=0 k=0 n=0 ∙

¸

1 = et Ψ1 1 + α1 + β1 , λ; 1 + α1 + β1 , 1 + α1 ; u, (x − 1)t 2 ∙

¸

1 ×Φ1 1 + α2 + β2 , 1 + α2 ; 1 + α2 ; v, (y − 1)t , 2

(2.67)

∞ ∞ X ∞ X X

n!(1 + α1 + β1 )m Pn(α1 +m, β1 −n; α2 , β2 +k−n) (x, y)tn um v k m!k!(1 + α + m) (1 + α ) 1 n 2 n m=0 k=0 n=0 ∙

1 = et Φ1 1 + α1 + β1 , 1 + α1 ; 1 + α1 ; u, (x − 1)t 2 (2.68)

∞ ∞ X ∞ X X



¸ ¸

1 ×Ψ2 1 + α2 + β2 ; 1 + α2 + β2 , 1 + α2 ; v, (y − 1)t , 2

n!(1 + α2 + β2 )k Pn(α1 , β1 +m−n; α2 +k, β2 −n) (x, y)tn um vk m!k!(1 + α ) (1 + α + k) 1 n 2 n m=0 k=0 n=0

236

Mumtaz A. Khan, Abdul H. Khan Sayed M. Abbas t

= e Ψ2

(2.69)



1 1 + α1 + β1 ; 1 + α1 + β1 , 1 + α1 ; u, (x − 1)t 2

×Φ1



¸

¸

1 1 + α2 + β2 , 1 + α2 ; 1 + α2 ; v, (y − 1)t , 2

∞ ∞ X ∞ X X

n!(1 + α1 + β1 )m (λ)k (µ)k m!k!(1 + α1 + m)n (1 + α2 )k+n m=0 k=0 n=0 Pn(α1 +m, β1 −n; α2 +k, β2 −k−n) (x, y)tn um v k

h

=et Φ1 1 + α1 + β1 , 1 + α1 ; 1 + α1 ; u, 12 (x − 1)t

(2.70)

i



¸

1 × Ξ1 λ, 1 + α2 + β2 , µ; 1 + α2 ; v, (y − 1)t , 2 ∞ ∞ X ∞ X X

n!(λ)m (µ)m (1 + α2 + β2 )k m!k!(1 + α1 )m+n (1 + α2 + k)n m=0 k=0 n=0 Pn(α1 +m, β1 −m−n; α2 +k, β2 −n) (x, y)tn um v k ∙

1 = et Ξ1 λ, 1 + α1 + β1 , µ; 1 + α1 ; u, (x − 1)t 2 (2.71)



¸

¸

1 ×Φ1 1 + α2 + β2 , 1 + α2 ; 1 + α2 ; v, (y − 1)t , 2

∞ ∞ X ∞ X X

n!(λ)k Pn(α1 +m, β1 −m−n; α2 , β2 +k−n) (x, y)tn um vk m!k!(1 + α + m) (1 + α ) 1 n 2 n m=0 k=0 n=0 t

= e Φ2

(2.72)

×Ψ1





1 1 + α1 , 1 + α1 + β1 ; 1 + α1 ; u, (x − 1)t 2

¸ ¸

1 1 + α2 + β2 , λ; 1 + α2 + β2 , 1 + α2 ; v, (y − 1)t , 2

Triple generating functions of Jacobi polynomials of two variables 237

∞ X ∞ ∞ X X

n!(λ)m Pn(α1 , β1 +m−n; α2 +k, β2 −k−n) (x, y)tn um vk m!k!(1 + α ) (1 + α + k) 1 n 2 n m=0 k=0 n=0 t

= e Ψ1



¸

1 1 + α1 + β1 , λ; 1 + α1 + β1 , 1 + α1 ; u, (x − 1)t 2 ∙

¸

1 ×Φ2 1 + α2 , 1 + α2 + β2 ; 1 + α2 ; v, (y − 1)t , 2

(2.73)

∞ ∞ X ∞ X X

n! Pn(α1 +m, β1 −m−n; α2 , β2 +k−n) (x, y)tn um vk m!k!(1 + α + m) (1 + α ) 1 n 2 n m=0 k=0 n=0 ∙

1 = et Φ2 1 + α1 , 1 + α1 + β1 ; 1 + α1 ; u, (x − 1)t 2

¸



¸

1 ×Ψ2 1 + α2 + β2 ; 1 + α2 + β2 , 1 + α2 ; v, (y − 1)t , 2

(2.74)

∞ ∞ X ∞ X X

n! Pn(α1 , β1 +m−n; α2 +k, β2 −k−n) (x, y)tn um vk m!k!(1 + α ) (1 + α + k) 1 n 2 n m=0 k=0 n=0 ∙

1 = et Ψ2 1 + α1 + β1 ; 1 + α1 + β1 , 1 + α1 ; u, (x − 1)t 2 (2.75)

×Φ2



¸

¸

1 1 + α2 , 1 + α2 + β2 ; 1 + α2 ; v, (y − 1)t , 2

∞ ∞ X ∞ X X

n!(λ)k (µ)k Pn(α1 +m, β1 −m−n; α2 +k, β2 −k−n) (x, y)tn um v k m!k!(1 + α + m) (1 + α ) 1 n 2 k+n m=0 k=0 n=0 ∙

1 1 + α1 , 1 + α1 + β1 ; 1 + α1 ; u, (x − 1)t 2

t

= e Φ2

(2.76)

Ξ1



¸

1 λ, 1 + α2 + β2 , µ; 1 + α2 ; v, (y − 1)t , 2

¸

238

Mumtaz A. Khan, Abdul H. Khan Sayed M. Abbas

∞ X ∞ ∞ X X

n!(λ)m (µ)m Pn(α1 +m, β1 −m−n; α2 +k, β2 −k−n) (x, y)tn um v k m!k!(1 + α ) (1 + α + k) 1 m+n 2 n m=0 k=0 n=0 t

= e Ξ1



1 λ, 1 + α1 + β1 , µ; 1 + α1 ; u, (x − 1)t 2



¸

¸

1 Φ2 1 + α2 , 1 + α2 + β2 ; 1 + α2 ; v, (y − 1)t , 2

(2.77)

∞ ∞ X ∞ X X

n!(λ)k Pn(α1 +m, β1 −m−n; α2 , β2 +k−n) (x, y)tn um v k m!k!(1 + α ) (1 + α ) 1 m+n 2 n m=0 k=0 n=0 ∙

¸

1 = et Φ3 1 + α1 + β1 ; 1 + α1 ; (x − 1)t, u 2 ∙

¸

1 Ψ1 1 + α2 + β2 , λ; 1 + α2 + β2 , 1 + α2 ; v, (y − 1)t , 2

(2.78)

∞ ∞ X ∞ X X

n!(λ)m Pn(α1 , β1 +m−n; α2 +k, β2 −k−n) (x, y)tn um vk m!k!(1 + α ) (1 + α ) 1 n 2 k+n m=0 k=0 n=0 ∙

¸

1 = et Ψ1 1 + α1 + β1 , λ; 1 + α1 + β1 , 1 + α1 ; u, (x − 1)t 2 (2.79)

Φ3



¸

1 1 + α2 + β2 ; 1 + α2 ; (y − 1)t, v , 2

∞ ∞ X ∞ X X

n! Pn(α1 +m, β1 −m−n; α2 , β2 +k−n) (x, y)tn um v k m!k!(1 + α ) (1 + α ) 1 m+n 2 n m=0 k=0 n=0 t

= e Φ3

(2.80)

× Ψ2





¸

1 1 + α1 + β1 ; 1 + α1 ; (x − 1)t, u 2

¸

1 1 + α2 + β2 ; 1 + α2 + β2 , 1 + α2 ; v, (y − 1)t , 2

Triple generating functions of Jacobi polynomials of two variables 239

∞ X ∞ ∞ X X

n! Pn(α1 , β1 +m−n; α2 +k, β2 −k−n) (x, y)tn um vk m!k!(1 + α ) (1 + α ) 1 n 2 k+n m=0 k=0 n=0 t

= e Ψ2



1 1 + α1 + β1 ; 1 + α1 + β1 , 1 + α1 ; u, (x − 1)t 2 ∙

¸

¸

1 × Φ3 1 + α2 + β2 ; 1 + α2 ; (y − 1)t, v , 2

(2.81)

∞ ∞ X ∞ X X

n!(λ)k (µ)k Pn(α1 +m, β1 −m−n; α2 +k, β2 −k−n) (x, y)tn um v k m!k!(1 + α ) (1 + α ) 1 m+n 2 k+n m=0 k=0 n=0 ∙

¸

1 = et Φ3 1 + α1 + β1 ; 1 + α1 ; (x − 1)t, u 2 ∙

¸

1 Ξ1 λ, 1 + α2 + β2 , µ; 1 + α2 ; v, (y − 1)t , 2

(2.82)

∞ ∞ X ∞ X X

n!(λ)m (µ)m Pn(α1 +m, β1 −m−n; α2 +k, β2 −k−n) (x, y)tn um v k m!k!(1 + α ) (1 + α ) 1 m+n 2 k+n m=0 k=0 n=0 ∙

1 = et Ξ1 λ, 1 + α1 + β1 , µ; 1 + α1 ; u, (x − 1)t 2 (2.83)

Φ3

∞ ∞ X ∞ X X



¸

¸

1 1 + α2 + β2 ; 1 + α2 ; (y − 1)t, v , 2

n!(λ)m Pn(α1 , β1 +m−n; α2 , β2 +k−n) (x, y)tn um v k m!k!((1 + α ) (1 + α ) 1 n 2 n m=0 k=0 n=0 t

= e Ψ1

(2.84)



¸

1 1 + α1 + β1 , λ; 1 + α1 + β1 , 1 + α1 ; u, (x − 1)t 2 ×Ψ2



¸

1 1 + α2 + β2 ; 1 + α2 + β2 , 1 + α2 ; v, (y − 1)t , 2

240

Mumtaz A. Khan, Abdul H. Khan Sayed M. Abbas

∞ X ∞ ∞ X X

n!(λ)k Pn(α1 , β1 +m−n; α2 , β2 +k−n) (x, y)tn um v k m!k!(1 + α ) (1 + α ) 1 n 2 n m=0 k=0 n=0 t

= e Ψ2



1 1 + α1 + β1 ; 1 + α1 + β1 , 1 + α1 ; u, (x − 1)t 2

¸



¸

1 ×Ψ1 1 + α2 + β2 , λ; 1 + α2 + β2 , 1 + α2 ; v, (y − 1)t , 2

(2.85)

∞ ∞ X ∞ X X

n!(λ)m (µ)k (δ)k Pn(α1 , β1 +m−n; α2 +k, β2 −k−n) (x, y)tn um vk m!k!(1 + α ) (1 + α ) 1 n 2 k+n m=0 k=0 n=0 ∙

¸

1 = et Ψ1 1 + α1 + β1 , λ; 1 + α1 + β1 , 1 + α1 ; u, (x − 1)t 2 ∙

¸

1 ×Ξ1 µ, 1 + α2 + β2 , δ; 1 + α2 ; v, (y − 1)t , 2

(2.86)

∞ ∞ X ∞ X X

n!(λ)m (µ)m (δ)k Pn(α1 +m, β1 −m−n; α2 , β2 +k−n) (x, y)tn um v k m!k!(1 + α ) (1 + α ) 1 m+n 2 n m=0 k=0 n=0 ∙

1 = et Ξ1 λ, 1 + α1 + β1 , µ; 1 + α1 ; u, (x − 1)t 2 (2.87)

×Ψ1

∞ ∞ X ∞ X X

¸



¸

1 1 + α2 + β2 , δ; 1 + α2 + β2 , 1 + α2 ; v, (y − 1)t , 2

n!(λ)k (µ)k Pn(α1 , β1 +m−n; α2 +k, β2 −k−n) (x, y)tn um vk m!k!(1 + α ) (1 + α ) 1 n 2 k+n m=0 k=0 n=0 t

= e Ψ2

(2.88)



1 1 + α1 + β1 ; 1 + α1 + β1 , 1 + α1 ; u, (x − 1)t 2

× Ξ1



¸

1 λ, 1 + α2 + β2 , µ; 1 + α2 ; v, (y − 1)t , 2

¸

Triple generating functions of Jacobi polynomials of two variables 241

∞ ∞ X ∞ X X

n!(λ)m (µ)m Pn(α1 +m, β1 −m−n; α2 , β2 +k−n) (x, y)tn um v k m!k!(1 + α ) (1 + α ) 1 m+n 2 n m=0 k=0 n=0 t

= e Ξ1

(2.89)

×Ψ2



1 λ, 1 + α1 + β1 , µ; 1 + α1 ; u, (x − 1)t 2

¸



¸

1 1 + α2 + β2 ; 1 + α2 + β2 , 1 + α2 ; v, (y − 1)t . 2

PROOF OF (2.41) ∞ ∞ X ∞ X X n!(1 + α1 + β1 )m (1 + α2 + β2 )k

m!k!(1 + α1 )n (1 + α2 )n

m=0 k=0 n=0

=

Pn(α1 ,β1 +m−n;α2 ,β2 +k−n) (x, y)tn um vk

∞ ∞ X ∞ X X n!(1 + α1 + β1 )m (1 + α2 + β2 )k

m=0 k=0 n=0

×

m!k!(1 + α1 )n (1 + α2 )n

r!s!(1 + α1 )r (1 + α2 )s

r=0 s=0

1−x × 2

× =

1−y 2

¶s

tn um v k

µ

m!k!n!r!s!(n − r − s)!(1 + α1 )r (1 + α2 )s

1−x 2

¶r µ

1−y 2

¶s

tn um v k

∞ X ∞ X ∞ X ∞ X ∞ X (1 + α1 + β1 )m+r (1 + α2 + β2 )k+s

m=0 k=0 n=0 r=0 s=0

µ

x−1 × 2 =e

¶r µ

∞ X ∞ X ∞ X n n−r X X (−1)r+s n!(1 + α1 + β1 )m+r (1 + α2 + β2 )k+s

m=0 k=0 n=0 r=0 s=0

t

(1 + α1 )n (1 + α2 )n (n!)2

n n−r X X (−n)r+s (1 + α1 + β1 + m)r (1 + α2 + β2 + k)s

µ

=

×

m!k!n!r!s!(1 + α1 )r (1 + α2 )s

¶r µ

y−1 2

¶s

tn+r+s um vk

µ ∞ X ∞ X (1 + α1 + β1 )r (1 + α2 + β2 )s 1

r=0 s=0

r!s!(1 + α1 )r (1 + α2 )s

2

(x − 1)t

¶r µ

1 (y − 1)t 2

¶s

242

Mumtaz A. Khan, Abdul H. Khan Sayed M. Abbas

×

∞ ∞ X (1 + α1 + β1 + r)m m X (1 + α2 + β2 + s)k k u v

m!

m=0

t

−1−α1 −β1

= e (1 − u)

×

t

−1−α1 −β1

= e (1 − u)

∞ X (1 + α1 + β1 )r

−1−α2 −β2

(1 − v)

s!(1 + α2 )s

−1−α2 −β2

(1 − v)

× 1 F1

r!(1 + α1 )r

r=0

∞ X (1 + α2 + β2 )s

s=0

k!

k=0

Ã

1 F1

1 2 (y

− 1)t (1 − v)

Ã

1 2 (x − 1)t

(1 − u)

!r

!s

"

1 2 (x

− 1)t 1 + α1 + β1 ; 1 + α1 ; (1 − u)

"

1 2 (y

− 1)t 1 + α2 + β2 ; 1 + α2 ; (1 − v)

#

#

which proves (2.41). The proof of results (2.42) to (2.53) are similar to that of (2.41). PROOF OF (2.54) : ∞ ∞ X ∞ X X n!(1 + α1 + β1 )m (1 + α2 + β2 )k

m!k!(1 + α1 + m)n (1 + α2 + k)n m=0 k=0 n=0

=

∞ ∞ X ∞ X X n!(1 + α1 + β1 )m (1 + α2 + β2 )k

m=0 k=0 n=0

× × =

Pn(α1 +m,β1 −n;α2 +k,β2 −n) (x, y)tn um v k

³

1−x 2

´r ³

m!k!(1 + α1 + m)n (1 + α2 + k)n

×

(1 + α1 + m)n (1 + α2 + k)n (n!)2

n n−r X X (−n)r+s (1 + α1 + β1 + m)r (1 + α2 + β2 + k)s

r=0 s=0

1−y 2

´s

r!s!(1 + α1 + m)r (1 + α2 + k)s

tn um vk

∞ X ∞ X ∞ X n n−r X X (−1)r+s n!(1 + α1 + β1 )m+r (1 + α2 + β2 )k+s (1 + α1 )m (1 + α2 )k

m=0 k=0 n=0 r=0 s=0

m!k!n!r!s!(n − r − s)!(1 + α1 )m+r (1 + α2 )k+s µ

1−x 2

¶r

Triple generating functions of Jacobi polynomials of two variables 243 µ

1−y × 2 =

¶s

tn um vk

∞ X ∞ X ∞ X ∞ X ∞ X (1 + α1 + β1 )m+r (1 + α2 + β2 )k+s (1 + α1 )m (1 + α2 )k

m=0 k=0 n=0 r=0 s=0

³

x−1 2

=et

´r ³

´ y−1 s 2

m!k!n!r!s!(1 + α1 )m+r (1 + α2 )k+s

× tn+r+s um v k

³ ´r ∞ P ∞ P (1+α1 +β1 )m+r (1+α1 )m m 1 u (x − 1)t

m!r!(1+α1 )m+r m=0 r=0 ∞ ∞ P P (1+α2 +β2 )k+s (1+α2 )k × k!s!(1+α2 )k+s k=0 s=0

h

2

vk

³

1 2 (y

− 1)t

´s

=et Φ1 1 + α1 + β1 , 1 + α1 ; 1 + α1 ; u, 12 (x − 1)t h

Φ1 1 + α2 + β2 , 1 + α2 ; 1 + α2 ; v, 12 (y − 1)t

i

i

which proves (2.54). The proof of results (2.55) to (2.89) are similar to that of (2.54).

References [1] Chatterjea, S. K., A note on Laguerre polynomials of two variables, Bull. cal. Math. Soc. 83, (1991). [2] Khan, M. A. and Abukhammash, G. S., On Hermite polynomials of two variables suggested by S. F. Ragab’s Laguerre polynomials of two variables, Bull. cal. Math. Soc. 90, pp. 61-76, (1998). [3] Khan, M. A. and Shukla, A. K., On Laguerre polynomials of several variables,Bull. cal. Math. Soc. 89, (1997). [4] Khan, M. A., A note on Laguerre polynomials of m- variables,Bull.of the Greek. Math.Soc. 40, pp. 113-117, (1998). [5] Khan,M. A.,Khan, A. H. and Abbas,S.M.,A note on Pseudo two variables Jacobi polynomials ,International transactions in applied sciences, (2010)

244

Mumtaz A. Khan, Abdul H. Khan Sayed M. Abbas

[6] Khan, M. A., Khan, A. H. and Abbas, S. M.,On some generating and double generating functions of Jacobi polynomials of two variables, Communicated for publication. (α,β)

[7] Ragab, S. F. On Laguerre polynomials of two Ln ables,Bull. cal. Math. Soc. 83, (1991).

(x, y) vari-

[8] Rainville, E. D. Special Functions, Chelsea Publishing Company, Bronx, New York, (1971). [9] Srivastava, H. M. and Manocha, H. L., A treatise on generating functions,John Wily and Sons (Halsted Press, New York, Ellis Horwood, Chichester). [10] Shrivastava, H. S. P., On Jacobi polynomials of several variables, Integral Transforms and Special functions 10 No. 1, pp. 61-70, (2000). [11] Shrivastava, H. S. P., Generating function,Expansion and Recurrence Relations of Jacobi polynomials of two variables, Acta Ciencia No. 4, pp. 633-640, (2002). [12] Shrivastava, H. S. P.,Derivatives of multivariable Jacobi polynomials,Acta Ciencia No. 3, pp. 451-458, (2002).

Mumtaz Ahmad Khan Department of Applied Mathematics Faculty of Engineering and Technology Aligarh Muslim University Aligarh - 202002, U.P. India e-mail : mumtaz ahmad khan [email protected] Abdul Hakim Khan Department of Applied Mathematics Faculty of Engineering and Technology Aligarh Muslim University Aligarh - 202002, U.P. India e-mail : [email protected] and

Triple generating functions of Jacobi polynomials of two variables 245 Sayed Mohammad Abbas Department of Applied Mathematics Faculty of Engineering and Technology Aligarh Muslim University Aligarh - 202002, U.P. India e-mail : syedmohammad [email protected]

Suggest Documents