Unsupervised Change Detection with Synthetic ... - Google Sites

0 downloads 233 Views 2MB Size Report
False alarm rate no SRAD. 0.05%. 0.02%. 0.1. 0.21%. 0.01%. 0.5. 82.30%. 0%. 1.0. 80.05%. 0%. Alessandria. Λ (SRAD). Det
1

Unsupervised Change Detection on Synthetic Aperture Radar Images with Generalized Gamma Distributions by F. Crismer, G. Moser, V. A. Krylov, and S. B. Serpico University of Genoa, Italy

Università di Genova Università di Genova

Outline  SAR change detection  Generalized gamma distribution ratio model  Parameter estimation  Change detection  Experimental validation

 Conclusions

Università di Genova

2

SAR change detection • Multitemporal SAR – –



All-day and all-weather acquisitions. High resolution (up to 1 m) and short revisit time (up to 12 h). Appropriate for tracking of natural disatsters. Sample Cosmo-SkyMed (©ASI) image

Università di Genova

3

SAR change detection • Multitemporal SAR All-day and all-weather acquisitions. High resolution (up to 1 m) and short revisit time (up to 12 h). Appropriate for tracking of natural disatsters.

– –



• Objective –

Sample Cosmo-SkyMed (©ASI) image

Non-suprevised detection of changes on SAR image pairs.

Università di Genova

4

Generalized Gamma Distribution • Generalized Gamma Distribution (GΓD) [Stacy, 1962]

with Γ(.) – the gamma function , σ>0 - scale parameter, η>0 and ν≠0 shape paremeters.

• Special cases of GΓD – – – – –

Exponential, η=1, ν=1 Gamma, ν=1 Nakagami, ν = 0.5 Weibull, η=1 Lognormal, 𝜂 → ∞

Università di Genova

5

6

Generalized Gamma Distribution Ratio Assume that for two GΓDs the shape parameters η and ν take the same values: 𝜂 = 𝜂0 = 𝜂1 and 𝜈 = 𝜈0 = 𝜈1

then if we further assume the independence of the amplitudes 𝑟0 and 𝑟1 , and denote 𝑢 = 𝑟0 /𝑟1 , we get 1 0.9

and, finally, the GΓD-ratio model

λ=0.8

0.8

λ=1

p(u)

0.7 0.6

λ=1.5

0.5 0.4

λ=2

0.3

where 𝜆 = 𝜎0 /𝜎1 .

0.2

0.1 0 0

1

2

u

3

4

Examples of GΓDR (η=1.3; ν=2) Università di Genova

5

6

GΓD-ratio parameter estimation

7

Method of log-cumulants (MoLC) for parameter estimation

• Consider the Mellin transform of a variable

• The log-moments of order

:

are defined as:

• The log-cumulants are defined as:

• The following connection with observations can be established for s=2,3,...:

Università di Genova

GΓD-ratio parameter estimation • Applied to GΓDR model the MoLC estimates are derived as: 𝑘1 𝑢 = ln 𝜆 2Ψ(1, 𝜂) 𝑘2 𝑢 = 𝜈2 2Ψ 3, 𝜂 𝑘4 𝑢 = 𝜈4

Università di Genova

characterized by 3 parameters - scale λ, - shape η and ν.

8

GΓD-ratio parameter estimation • Applied to GΓDR model the MoLC estimates are derived as: 𝑘1 𝑢 = ln 𝜆 2Ψ(1, 𝜂) 𝑘2 𝑢 = 𝜈2 2Ψ 3, 𝜂 𝑘4 𝑢 = 𝜈4

characterized by 3 parameters - scale λ, - shape η and ν.

• The parameters are estimated as:

with

Università di Genova

strictly monotone with values in the range [0,6].

9

GΓD-ratio parameter estimation • Applied to GΓDR model the MoLC estimates are derived as: 𝑘1 𝑢 = ln 𝜆 2Ψ(1, 𝜂) 𝑘2 𝑢 = 𝜈2 2Ψ 3, 𝜂 𝑘4 𝑢 = 𝜈4

characterized by 3 parameters - scale λ, - shape η and ν.

• The parameters are estimated as:

with

strictly monotone with values in the range [0,6].

• We prove the property of statistical consistency of the obtained MoLC estimates. Università di Genova

10

11

Change detection • We employ the generanilzed Kittler thresholding to obtain the detection maps: – –

&

Illingworth

non-supervised automatic Bayesian approach; minimizes the following criterion function

where is an estimate of the prior probability of 𝐻𝑖 (change 𝐻1 and no-change 𝐻0 hypotheses), estimated as

and - normalized histogram, the ratio, and - parameter estimate.

Università di Genova

- parametric model of

12

Experimental validation Pavia, Italy XSAR (band X), 25m resolution, 695 x 278 pixels 16 April 1994



18 April 1994

Changes due to the rice fields irrigation. Alessandria, Italy COSMO-SkyMed (band X), 2.5m resolution, 4963 x 2286 pixels 29 April 2009



1 May 2009

Changes due to a flood. Antispeckle filtering with SRAD (Speckle Reducing Anisotropic Diffusion).

Università di Genova

Experimental validation Experimetal analysis of the impact of image despeckling: Pavia Λ (SRAD)

Detection accuracy

False alarm rate

no SRAD

0.05%

0.02%

0.1

0.21%

0.01%

0.5

82.30%

0%

1.0

80.05%

0%

• Accuracies obtained by comparing the results with the available ground truth

Alessandria • Necessity to employ appropriate despeckling procedures.

Università di Genova

Λ (SRAD)

Detection accuracy

False alarm rate

no SRAD

0.34%

0.02%

0.1

0.69%

0.02%

0.5

82.59%

0.33%

1.0

89.00%

0.15%

13

Experimental validation Results on the Pavia dataset: 82.3% accuracy No-change histogram with GΓD-ratio

Change histogram with GΓD-ratio

Università di Genova

14

Experimental validation Results on the Alessandria dataset: 89% accuracy No-change histogram with GΓD-ratio

Change histogram with GΓD-ratio

Università di Genova

15

Conclusions We have developed an automatic non-supervised method for change detection of SAR image pairs with the following properties: –

Accurate results after appropriate despeckling;



Fast and consistent parameter estimation;



Certain robustness with repect to possible multuple changes;



Further integration of the local information is necessary.

Università di Genova

16

Suggest Documents