Valent Functions Assoicated with Generalized Linear - Downloads ...

1 downloads 0 Views 2MB Size Report
Jan 20, 2013 - By differentiating both sides of (31) logarithmically with respect to and .... (5) in (42) and taking the logarithmic differentiation in the resultingΒ ...
Hindawi Publishing Corporation Journal of Mathematics Volume 2013, Article ID 692045, 8 pages http://dx.doi.org/10.1155/2013/692045

Research Article Differential Subordination for Certian Subclasses of 𝑝-Valent Functions Assoicated with Generalized Linear Operator R. M. El-Ashwah,1 M. K. Aouf,2 and S. M. El-Deeb1 1 2

Department of Mathematics, Faculty of Science at Damietta, University of Mansoura, New Damietta 34517, Egypt Department of Mathematics, Faculty of Science, University of Mansoura, Mansoura 33516, Egypt

Correspondence should be addressed to S. M. El-Deeb; [email protected] Received 14 October 2012; Accepted 20 January 2013 Academic Editor: Liwei Zhang Copyright Β© 2013 R. M. El-Ashwah et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. By making use of the differential subordination analytic functions, we investigate inclusion relationships among certain classes of analytic and 𝑝-valent functions defined by generalized linear operator.

Now, we introduce the linear multiplier operator Lπ‘š,𝛿 𝑐,𝑝,πœ† : A(𝑝) β†’ A(𝑝) by

1. Introduction Let A(𝑝) denote the class of functions of the form 𝑝

∞

π‘˜+𝑝

𝑓 (𝑧) = 𝑧 + βˆ‘ π‘Žπ‘˜+𝑝 𝑧

(𝑝 ∈ N = {1, 2, . . .}) ,

(1)

π‘˜=1

which are analytic and 𝑝-valent in the open unit disc π‘ˆ = {𝑧 ∈ C : |𝑧| < 1}. For functions 𝑓 ∈ A(𝑝), given by (1) and 𝑔 given by ∞

𝑔 (𝑧) = 𝑧𝑝 + βˆ‘ π‘π‘˜+𝑝 π‘§π‘˜+𝑝

(𝑝 ∈ N) ,

the Hadamard product (or convolution) of 𝑓 and 𝑔 is defined by ∞

π‘˜=1

= (𝑔 βˆ— 𝑓) (𝑧)

∞

= 𝑧𝑝 + βˆ‘ (1 + π‘˜=1

𝛿 𝑐+𝑝 πœ†π‘˜ π‘š ) ( ) π‘Žπ‘˜+𝑝 π‘§π‘˜+𝑝 𝑝 𝑐+π‘˜+𝑝

(4)

(𝛿 β‰₯ 0; 𝑐 > βˆ’π‘; πœ† β‰₯ 0; π‘š ∈ N0 ) . It is easily verified from (4) that

(2)

π‘˜=1

(𝑓 βˆ— 𝑔) (𝑧) = 𝑧𝑝 + βˆ‘ π‘Žπ‘˜+𝑝 π‘π‘˜+𝑝 π‘§π‘˜+𝑝

Lπ‘š,𝛿 𝑐,𝑝,πœ† 𝑓 (𝑧)

(3)

(𝑧 ∈ π‘ˆ; 𝑝 ∈ N) .

For 𝑓, 𝑔 ∈ A(𝑝), we say that the function 𝑓 is subordinate to 𝑔 denoted by 𝑓(𝑧) β‰Ί 𝑔(𝑧), if there exists a Schwarz function 𝑀, that is, 𝑀 ∈ A with 𝑀(0) = 0 and |𝑀(𝑧)| < 1, 𝑧 ∈ π‘ˆ, such that 𝑓(𝑧) = 𝑔(𝑀(𝑧)) for all 𝑧 ∈ π‘ˆ. It is well known that, if the function 𝑔 is univalent in π‘ˆ, then 𝑓(𝑧) β‰Ί 𝑔(𝑧) is equivalent to 𝑓(0) = 𝑔(0) and 𝑓(π‘ˆ) βŠ‚ 𝑔(π‘ˆ) (see [1, 2]).

σΈ€ 

π‘š,π›Ώβˆ’1 π‘š,𝛿 𝑧(Lπ‘š,𝛿 𝑐,𝑝,πœ† 𝑓 (𝑧)) = (𝑐 + 𝑝) L𝑐,𝑝,πœ† 𝑓 (𝑧) βˆ’ 𝑐L𝑐,𝑝,πœ† 𝑓 (𝑧) ,

(5) σΈ€ 

π‘š+1,𝛿 π‘š,𝛿 πœ†π‘§(Lπ‘š,𝛿 𝑐,𝑝,πœ† 𝑓 (𝑧)) = 𝑝L𝑐,𝑝,πœ† 𝑓 (𝑧) βˆ’ 𝑝 (1 βˆ’ πœ†) L𝑐,𝑝,πœ† 𝑓 (𝑧) . (6)

By specializing the parameters 𝑐, πœ†, 𝛿, 𝑝, and π‘š, we obtain the following operators: 𝛿 (i) L1,𝛿 𝑐,𝑝,0 𝑓(𝑧) = 𝐾𝑐,𝑝 𝑓(𝑧) (see [3]); 𝛿 (ii) L0,𝛿 π‘Žβˆ’1,1,πœ† 𝑓(𝑧) = 𝐿 π‘Ž 𝑓(𝑧) (see [4, 5]); 𝛿 (iii) L1,𝛿 1,𝑝,0 𝑓(𝑧) = I𝑝 𝑓(𝑧) (see [6, 7]); π‘š (iv) Lπ‘š,0 𝑐,𝑝,πœ† 𝑓(𝑧) = π·πœ†,𝑝 𝑓(𝑧) (see [8]);

2

Journal of Mathematics 𝛿 (v) L1,𝛿 𝑐,1,0 𝑓(𝑧) = P𝑐 𝑓(𝑧) (see [9, 10]);

Remark 2. The function 𝑓 ∈ A(𝑝) is in the class Sπ‘š,𝛿 𝑐,𝑝,πœ† (𝛼; 𝐴, 𝐡) if and only if

(vi) L1,1 𝑐,1,0 𝑓(𝑧) = L𝑐 𝑓(𝑧) (see [11]);

󡄨󡄨 󡄨󡄨 σΈ€  󡄨 󡄨󡄨 𝑧(Lπ‘š,𝛿 󡄨󡄨 1 𝑐,𝑝,πœ† 𝑓 (𝑧)) 1 βˆ’ 𝐴𝐡 󡄨󡄨󡄨󡄨 𝐴 βˆ’ 𝐡 󡄨󡄨 βˆ’ 𝛼) βˆ’ , ( 󡄨< 󡄨󡄨 𝑝 βˆ’ 𝛼 1 βˆ’ 𝐡2 󡄨󡄨󡄨󡄨 1 βˆ’ 𝐡2 (9) Lπ‘š,𝛿 𝑓 (𝑧) 󡄨󡄨 𝑐,𝑝,πœ† 󡄨󡄨 󡄨󡄨

𝛿 (vii) L1,𝛿 1,1,0 𝑓(𝑧) = I 𝑓(𝑧) (see [12]); π‘š (viii) Lπ‘š,0 𝑐,1,πœ† 𝑓(𝑧) = Dπœ† 𝑓(𝑧) (see [13]);

(ix)

Lπ‘š,0 𝑐,1,1 𝑓(𝑧)

𝑧 ∈ π‘ˆ, for 𝐡 =ΜΈ βˆ’ 1,

π‘š

= D 𝑓(𝑧) (see [14]).

σΈ€ 

By using the multiplier operator Lπ‘š,𝛿 𝑐,𝑝,πœ† 𝑓(𝑧), we define the following classes of functions. Definition 1. For fixed parameters 𝐴 and 𝐡, with βˆ’1 ≀ 𝐡 < 𝐴 ≀ 1 and 𝑝 > 𝛼, we say that the function 𝑓 ∈ A(𝑝) is in the class Sπ‘š,𝛿 𝑐,𝑝,πœ† (𝛼; 𝐴, 𝐡) if it satisfies the following subordination condition: 1 ( π‘βˆ’π›Ό

𝑧(Lπ‘š,𝛿 𝑐,𝑝,πœ† 𝑓 (𝑧)) Lπ‘š,𝛿 𝑐,𝑝,πœ† 𝑓 (𝑧)

σΈ€ 

βˆ’ 𝛼) β‰Ί

1 + 𝐴𝑧 . 1 + 𝐡𝑧

(7)

𝑧(Lπ‘š,𝛿 𝑐,𝑝,πœ† 𝑓 (𝑧)) 1βˆ’π΄ 1 βˆ’ 𝛼) > ( , Re π‘š,𝛿 π‘βˆ’π›Ό 2 L𝑐,𝑝,πœ† 𝑓 (𝑧) 𝑧 ∈ π‘ˆ, for 𝐡 = βˆ’1.

Definition 3. The function 𝑓 ∈ A(𝑝) is in the class Sπ‘š,𝛿 𝑐,𝑝,πœ† (𝛼; 𝜌) if it satisfies the following the inequality: σΈ€ 

𝑧(Lπ‘š,𝛿 𝑐,𝑝,πœ† 𝑓 (𝑧)) 1 Re ( βˆ’ 𝛼) > 𝜌, π‘βˆ’π›Ό Lπ‘š,𝛿 𝑐,𝑝,πœ† 𝑓 (𝑧)

π‘š,𝛿 Sπ‘š,𝛿 𝑐,𝑝,πœ† (𝛼; 𝐴, 𝐡) βŠ‚ S𝑐,𝑝,πœ† (𝛼;

βˆ— (i) S1,0 1,𝑝,0 (𝛼; 𝐴, 𝐡) = S𝑝 (𝛼; 𝐴, 𝐡) was studied by Cho et al. [15]; 𝛿 (ii) S1,𝛿 1,𝑝,0 (𝛼; 𝐴, 𝐡) = S𝑝 (𝛼; 𝐴, 𝐡) was studied by Aouf et al. [16];

π‘š,𝛿 Sπ‘š,𝛿 𝑐,𝑝,πœ† (𝛼; 𝐴, 𝐡) = S𝑐,𝑝,πœ† (𝛼;

For complex numbers π‘Ž, 𝑏, and 𝑐, the Gaussian hypergeometric function is defined by

∞

π‘Ž β‹… 𝑏 𝑧 π‘Ž (π‘Ž + 1) β‹… 𝑏 (𝑏 + 1) 𝑧2 + + β‹…β‹…β‹… 𝑑 1! 𝑑 (𝑑 + 1) 2!

(π‘Ž)π‘˜ (𝑏)π‘˜ π‘§π‘˜ , (𝑑)π‘˜ π‘˜! π‘˜=0

=βˆ‘

(11)

π‘Ž, 𝑏 ∈ C,

𝑑 ∈ C \ {0, βˆ’1, βˆ’2, . . .} , (8) where (πœ†)π‘˜ = πœ†(πœ†+1) β‹… β‹… β‹… (πœ†+π‘˜βˆ’1) and (πœ†)0 = 1. The series (8) converges absolutely for 𝑧 ∈ π‘ˆ, hence it represents an analytic function in π‘ˆ (see [18, Chapter 14]). If 𝐡 =ΜΈ βˆ’ 1, from the fact that β„Ž(𝑧) = β„Ž(𝑧), 𝑧 ∈ π‘ˆ, we deduce that the image β„Ž(π‘ˆ) is symmetric with respect to the real axis, and that β„Ž maps the unit disc π‘ˆ onto the disc |𝑀 βˆ’ (1 βˆ’ 𝐴𝐡)/(1 βˆ’ 𝐡2 )| < (𝐴 βˆ’ 𝐡)/(1 βˆ’ 𝐡2 ). If 𝐡 = βˆ’1, the function β„Ž maps the unit disc π‘ˆ onto the half plan Re 𝑀 > (1 βˆ’ 𝐴)/2, hence we obtain the following.

1βˆ’π΄ ), 1βˆ’π΅

1βˆ’π΄ ) ⇐⇒ 𝐡 = βˆ’1. 1βˆ’π΅

(12)

We note that when 𝑐 = 1 and π‘š = 0, the class S1,𝛿 1,𝑝,0 (𝛼; 𝜌) = S𝛿𝑝 (𝛼; 𝜌) was studied by Aouf et al. [16]. Let us consider the first-order differential subordination

π‘š (iii) Sπ‘š,0 𝑐,1,πœ† (0; 𝐴, 𝐡) = Sπœ† (𝐴, 𝐡) was studied by Patel [17].

(π‘Ž, 𝑏, 𝑑; 𝑧) = 1 +

𝑧 ∈ π‘ˆ,

where 𝜌 < 1; from (9) and (10) it follows, respectively, that

We note that

2 𝐹1

(10)

𝐻 (πœ‘ (𝑧) , π‘§πœ‘σΈ€  (𝑧)) β‰Ί β„Ž (𝑧) .

(13)

A univalent function π‘ž is called its dominant, if πœ‘(𝑧) β‰Ί π‘ž(𝑧) for all analytic functions πœ‘ that satisfy this differential subordination. A dominant π‘žΜƒ is called the best dominant, if π‘žΜƒ(𝑧) β‰Ί π‘ž(𝑧) for all dominants π‘ž. For the general theory of the first-order differential subordination and its applications, we refer the reader to [1, 2]. The object of the present paper is to obtain several inclusion relationships and other interesting properties of functions belonging to the subclasses Sπ‘š,𝛿 𝑐,𝑝,πœ† (𝛼; 𝐴, 𝐡) and

Sπ‘š,𝛿 𝑐,𝑝,πœ† (𝛼; 𝜌) by using the theory of differential subordination. To establish our main results, we will require the following lemmas. Lemma 4 (see [19]). Let 𝛽, 𝛾 ∈ C, and let β„Ž be a convex function with Re [π›½β„Ž (𝑧) + 𝛾] > 0,

𝑧 ∈ π‘ˆ.

(14)

If 𝑝 is analytic in π‘ˆ, with 𝑝(0) = β„Ž(0), then 𝑝 (𝑧) +

𝑧𝑝󸀠 (𝑧) β‰Ί β„Ž (𝑧) 󳨐⇒ 𝑝 (𝑧) β‰Ί β„Ž (𝑧) . 𝛽𝑝 (𝑧) + 𝛾

(15)

Journal of Mathematics

3

Lemma 5 (see [20]). Let 𝛽 > 0, 𝛽 + 𝛾 > 0, and consider the integral operator 𝐽𝛽,𝛾 defined by 𝐽𝛽,𝛾 (𝑓) (𝑧) = [

𝑧

𝛽+𝛾 ∫ 𝑓𝛽 (𝑑) π‘‘π›Ύβˆ’1 𝑑𝑑] 𝑧𝛾 0

1/𝛽

,

(16)

where the powers are the principal ones. If 𝜎 ∈ [βˆ’π›Ύ/𝛽, 1) then the order of starlikeness of the class 𝐽𝛽,𝛾 (π‘†βˆ— (𝜎)), that is, the largest number 𝛿(𝜎; 𝛽, 𝛾) such that 𝐽𝛽,𝛾 (π‘†βˆ— (𝜎)) βŠ‚ π‘†βˆ— (𝛿), is given by the number 𝛿(𝜎; 𝛽, 𝛾) = inf {Re q(𝑧) : 𝑧 ∈ π‘ˆ}, where π‘ž (𝑧) =

𝛾 1 βˆ’ , 𝛽𝑄 (𝑧) 𝛽

1

1βˆ’π‘§ ) 𝑄 (𝑧) = ∫ ( 1 βˆ’ 𝑑𝑧 0

2𝛽(1βˆ’πœŽ)

(17) 𝑑𝑑.

𝑧𝑔󸀠 (𝑧) > 𝛿 (𝜎; 𝛽, 𝛾) 𝑔 (𝑧)

(𝑧 ∈ π‘ˆ) ,

Lemma 6 (see [21]). Let πœ™ be analytic in π‘ˆ with πœ™(0) = 1 and πœ™(𝑧) =ΜΈ 0 for 0 < |𝑧| < 1, and let 𝐴, 𝐡 ∈ C with 𝐴 =ΜΈ 𝐡, |𝐡| ≀ 1. βˆ—

(i) Let 𝐡 =ΜΈ 0 and 𝛾 ∈ C = C \ {0} satisfy either |(𝛾(𝐴 βˆ’ 𝐡)/𝐡) βˆ’ 1| ≀ 1 or |(𝛾(𝐴 βˆ’ 𝐡)/𝐡) + 1| ≀ 1. If πœ™ satisfies π‘§πœ™σΈ€  (𝑧) 1 + 𝐴𝑧 β‰Ί 1+ π›Ύπœ™ (𝑧) 1 + 𝐡𝑧

(20)

πœ™ (𝑧) β‰Ί (1 + 𝐡𝑧)𝛾(π΄βˆ’π΅)/𝐡 ,

(21)

then

and this is the best dominant. (ii) Let 𝛾 ∈ Cβˆ— be such that |𝛾𝐴| < πœ‹, and if πœ™ satisfies π‘§πœ™σΈ€  (𝑧) β‰Ί 1 + 𝐴𝑧 π›Ύπœ™ (𝑧)

(22)

then πœ™ (𝑧) β‰Ί 𝑒𝛾𝐴𝑧 ,

(23)

and this is the best dominant.

(2) Moreover, if we suppose in addition that 𝐴≀1+(

π‘βˆ’π‘ 1 1βˆ’π΅ + ), ) (𝛼 + π‘βˆ’π›Ό 2 2

(26)

π‘š,𝛿 Sπ‘š,π›Ώβˆ’1 𝑐,𝑝,πœ† (𝛼; 𝐴, 𝐡) βŠ‚ S𝑐,𝑝,πœ† (𝛼; 𝜌 (𝑝, 𝛼, 𝑐, 𝐴, 𝐡)) ,

(27)

𝜌 (𝑝, 𝛼, 𝑐, 𝐴, 𝐡) =

1 π‘βˆ’π›Ό 𝑝+𝑐 𝐹 (1, 2 (𝑝 βˆ’ 𝛼) βˆ’ 𝐡) / (1 βˆ’ 𝐡) , 𝑝 + 𝑐 + 1; 1/2) (𝐴 2 1 βˆ’ (𝛼 + 𝑐) ] , (28)

is the best possible. Proof. Let 𝑓 ∈ Sπ‘š,π›Ώβˆ’1 𝑐,𝑝,πœ† (𝛼; 𝐴, 𝐡), and put 𝑔 (𝑧) = 𝑧(

Lπ‘š,𝛿 𝑐,𝑝,πœ† 𝑓 (𝑧) 𝑧𝑝

1/(π‘βˆ’π›Ό)

)

(𝑧 ∈ π‘ˆ) ,

(29)

the function 𝑔 is analytic in π‘ˆ, with 𝑔(0) = 0 and 𝑔󸀠 (0) = 1. Differentiating (29) logarithmically with respect to 𝑧, we have σΈ€ 

𝑧(Lπ‘š,𝛿 𝑧𝑔󸀠 (𝑧) 𝑐,𝑝,πœ† 𝑓 (𝑧)) 1 πœ™ (𝑧) = = ( βˆ’ 𝛼) 𝑔 (𝑧) π‘βˆ’π›Ό Lπ‘š,𝛿 𝑐,𝑝,πœ† 𝑓 (𝑧)

(30)

(𝑧 ∈ π‘ˆ) , then, using (5) in (30), we obtain (𝑐 + 𝑝)

Lπ‘š,π›Ώβˆ’1 𝑐,𝑝,πœ† 𝑓 (𝑧) Lπ‘š,𝛿 𝑐,𝑝,πœ† 𝑓 (𝑧)

(31)

= (𝑝 βˆ’ 𝛼) πœ™ (𝑧) + (𝛼 + 𝑐) . By differentiating both sides of (31) logarithmically with respect to 𝑧 and multiplying by 𝑧, we have

2. Inclusion Relationships Unless otherwise mentioned, we assume throughout this paper that βˆ’1 ≀ 𝐡 < 𝐴 ≀ 1,

𝑝 > 𝛼,

𝛿 β‰₯ 0,

𝑐 > βˆ’π‘,

𝑝 ∈ N,

π‘šβˆˆZ

πœ† β‰₯ 0,

π‘š,𝛿 then Sπ‘š,π›Ώβˆ’1 𝑐,𝑝,πœ† (𝛼; 𝐴, 𝐡) βŠ‚ S𝑐,𝑝,πœ† (𝛼; 𝐴, 𝐡).

Γ—[

𝛽+𝛾 1 βˆ’ 𝛾] . [ 𝛽 2 𝐹1 (1, 2𝛽 (1 βˆ’ 𝜎) , 𝛽 + 𝛾 + 1; 1/2) (19)

1+

Μ‡ (1) Supposing that Lπ‘š,𝛿 𝑐,𝑝,πœ† 𝑓(𝑧) =ΜΈ 0 for all 𝑧 ∈ π‘ˆ = π‘ˆ \ {0},

(18)

where 𝛿 (𝜎; 𝛽, 𝛾) =

(25)

where the bound

Moreover, if 𝜎 ∈ [𝜎0 , 1), where 𝜎0 = max{(𝛽 βˆ’ 𝛾 βˆ’ 1)/2𝛽; βˆ’π›Ύ/𝛽} and 𝑔 = 𝐽𝛽,𝛾 (𝑓)(𝑧) with 𝑓 ∈ π‘†βˆ— (𝜎), then Re

(𝑝 βˆ’ 𝛼) (1 βˆ’ 𝐴) + (𝛼 + 𝑐) (1 βˆ’ 𝐡) β‰₯ 0.

then

𝛽+π›Ύβˆ’1

𝑑

Theorem 7. Let

and the power is the principal one.

(24)

σΈ€ 

𝑧(Lπ‘š,π›Ώβˆ’1 𝑐,𝑝,πœ† 𝑓 (𝑧)) 1 ( βˆ’ 𝛼) π‘βˆ’π›Ό Lπ‘š,π›Ώβˆ’1 𝑐,𝑝,πœ† 𝑓 (𝑧) = πœ™ (𝑧) +

σΈ€ 

π‘§πœ™ (𝑧) . (𝑝 βˆ’ 𝛼) πœ™ (𝑧) + (𝛼 + 𝑐)

(32)

4

Journal of Mathematics

Combining (32) together with 𝑓 ∈ Sπ‘š,π›Ώβˆ’1 𝑐,𝑝,πœ† (𝛼; 𝐴, 𝐡), we obtain that the function πœ™ satisfies the Briot-Bouquet differential subordination as follows:

(33)

1 + 𝐴𝑧 β‰Ί ≑ β„Ž (𝑧) . 1 + 𝐡𝑧

Now we will use Lemma 4 for the special case 𝛽 = 𝑝 βˆ’ 𝛼 and 𝛾 = 𝛼 + 𝑐. Since β„Ž is a convex function in π‘ˆ, a simple computation shows that 𝑧 ∈ π‘ˆ,

(34)

whenever (25) holds, we have πœ™(𝑧) β‰Ί β„Ž(𝑧); that is, 𝑓 ∈ Sπ‘š,𝛿 𝑐,𝑝,πœ† (𝛼; 𝐴, 𝐡). If in addition, we suppose that the inequality (26) holds, then all the assumptions of Lemma 5 are verified for the above values of 𝛽, 𝛾, and 𝜎 = (1 βˆ’ 𝐴)/ (1 βˆ’ 𝐡). Then it follows the inclusion Sπ‘š,π›Ώβˆ’1 𝑐,𝑝,πœ† (𝛼; 𝐴, 𝐡) βŠ‚ Sπ‘š,𝛿 𝑐,𝑝,πœ† (𝛼; 𝜌(𝑝, 𝛼, 𝑐, 𝐴, 𝐡)), where the bound 𝜌(𝑝, 𝛼, 𝑐, 𝐴, 𝐡) given by (28) is the best possible. From Theorem 7, according to the definitions (7) and (11), we deduce the next inclusions.

Corollary 8. Let 𝑝 > 𝛼, such that (25) holds.

βŠ‚

(𝛼; 𝜌 (𝑝, 𝛼, 𝑐, 𝐴, 𝐡)) ,

(36)

where 𝜌(𝑝, 𝛼, 𝑐, 𝐴, 𝐡) is given by (28). As a consequence of the last inclusion, one has 𝜌(𝑝, 𝛼, 𝑐, 𝐴, 𝐡) β‰₯ (1 βˆ’ 𝐴)/(1 βˆ’ 𝐡). For the special case 𝐡 = βˆ’1, Theorem 7 reduces to the following. Corollary 9. Let π‘Ž β‰₯ βˆ’(𝑐 + 𝛼)/(𝑝 βˆ’ 𝛼). Μ‡ (1) Supposing that Lπ‘š,𝛿 𝑐,𝑝,πœ† 𝑓(𝑧) =ΜΈ 0 for all 𝑧 ∈ π‘ˆ, then π‘š,𝛿 Sπ‘š,π›Ώβˆ’1 𝑐,𝑝,πœ† (𝛼; π‘Ž) βŠ‚ S𝑐,𝑝,πœ† (𝛼; π‘Ž) .

2𝛼 + 𝑐 βˆ’ 𝑝 + 1 𝛼+𝑐 ;βˆ’ }, 2 (𝑝 βˆ’ 𝛼) (𝑝 βˆ’ 𝛼)

(37)

βˆ’ (𝛼 + 𝑐) ] , is the best possible. Theorem 10. Let 𝑓 ∈ Sπ‘š,𝛿 𝑐,𝑝,πœ† (𝛼; 𝜌), where 𝜌 < 1 and 𝜌 > 𝛼, then 𝑓 ∈ Sπ‘š,π›Ώβˆ’1 𝑐,𝑝,πœ† (𝛼; 𝜌) for |𝑧| < 𝑅(𝑝, 𝛼, 𝑐, 𝜌), where

𝑅 (𝑝, 𝛼, 𝑐, 𝜌) = min {π‘Ÿ > 0 : πœƒ (𝑝, 𝛼, 𝑐, 𝜌, π‘Ÿ) = 0} , πœƒ (𝑝, 𝛼, 𝑐, 𝜌, π‘Ÿ) = 2π‘Ÿ ((1 βˆ’ π‘Ÿ) (𝑝 βˆ’ 𝛼)

(41)

󡄨 Γ— 󡄨󡄨󡄨(1 βˆ’ 𝜌) (1 βˆ’ π‘Ÿ) 󡄨 βˆ’1 󡄨 󡄨 βˆ’ σ΅„¨σ΅„¨σ΅„¨πœŒ + (𝛼 + 𝑐) / (𝑝 βˆ’ 𝛼)󡄨󡄨󡄨 (1 + π‘Ÿ)󡄨󡄨󡄨) .

𝑧(Lπ‘š,𝛿 𝑐,𝑝,πœ† 𝑓 (𝑧)) 1 𝑒 (𝑧) = βˆ’ 𝛼) (𝑧 ∈ π‘ˆ) , ( π‘βˆ’π›Ό Lπ‘š,𝛿 𝑐,𝑝,πœ† 𝑓 (𝑧) (42)

σΈ€ 

𝑧(Lπ‘š,π›Ώβˆ’1 𝑐,𝑝,πœ† 𝑓 (𝑧)) 1 ( βˆ’ 𝛼) π‘βˆ’π›Ό Lπ‘š,π›Ώβˆ’1 𝑐,𝑝,πœ† 𝑓 (𝑧) = 𝑒 (𝑧) +

(43)

𝑧𝑒󸀠 (𝑧) . (𝑝 βˆ’ 𝛼) 𝑒 (𝑧) + (𝛼 + 𝑐)

If we denote π‘˜(𝑧) = (𝑒(𝑧) βˆ’ 𝜌)/(1 βˆ’ 𝜌), then π‘˜(0) = 1 and Re π‘˜(𝑧) > 0, 𝑧 ∈ π‘ˆ and substituting in (43) we obtain 𝑧(Lπ‘š,π›Ώβˆ’1 𝑐,𝑝,πœ† 𝑓 (𝑧)) 1 ( βˆ’ 𝛼) βˆ’ 𝜌 π‘βˆ’π›Ό Lπ‘š,π›Ώβˆ’1 𝑐,𝑝,πœ† 𝑓 (𝑧) = (1 βˆ’ 𝜌)

(38)

then

Γ— [π‘˜ (𝑧) +

π‘š,𝛿 Sπ‘š,π›Ώβˆ’1 𝑐,𝑝,πœ† (𝛼; π‘Ž) βŠ‚ S𝑐,𝑝,πœ† (𝛼; 𝜌 (𝑝, 𝛼, 𝑐, π‘Ž)) ,

(40)

σΈ€ 

(2) If we suppose in addition that π‘Ž β‰₯ max {βˆ’

𝑝+𝑐 𝐹 (1, 2 (𝑝 βˆ’ 𝛼) βˆ’ π‘Ž) , 𝑝 + 𝑐 + 1; 1/2) (1 2 1

is analytic in π‘ˆ with 𝑒(0) = 1 and Re 𝑒(𝑧) > 𝜌. Using (5) in (42) and taking the logarithmic differentiation in the resulting equation, we obtain

(2) If we suppose in addition that (26) holds, then

Sπ‘š,𝛿 𝑐,𝑝,πœ†

Γ—[

σΈ€ 

1βˆ’π΄ ). 1βˆ’π΅ (35)

π‘š,𝛿 Sπ‘š,π›Ώβˆ’1 𝑐,𝑝,πœ† (𝛼; 𝐴, 𝐡) βŠ‚ S𝑐,𝑝,πœ† (𝛼; 𝐴, 𝐡)

1 π‘βˆ’π›Ό

Proof. Since 𝑓 ∈ Sπ‘š,𝛿 𝑐,𝑝,πœ† (𝛼; 𝜌), the function 𝑒 given by

Μ‡ (1) Supposing that Lπ‘š,𝛿 𝑐,𝑝,πœ† 𝑓(𝑧) =ΜΈ 0 for all 𝑧 ∈ π‘ˆ, then π‘š,𝛿 π‘š,𝛿 Sπ‘š,π›Ώβˆ’1 𝑐,𝑝,πœ† (𝛼; 𝐴, 𝐡) βŠ‚ S𝑐,𝑝,πœ† (𝛼; 𝐴, 𝐡) βŠ‚ S𝑐,𝑝,πœ† (𝛼;

𝜌 (𝑝, 𝛼, 𝑐, π‘Ž) =

π‘§πœ™σΈ€  (𝑧) πœ™ (𝑧) + (𝑝 βˆ’ 𝛼) πœ™ (𝑧) + (𝛼 + 𝑐)

Re {(𝑝 βˆ’ 𝛼) β„Ž (𝑧) + (𝛼 + 𝑐)} > 0,

where the bound

(39)

π‘§π‘˜σΈ€  (𝑧) ], (𝑝 βˆ’ 𝛼) (1 βˆ’ 𝜌) π‘˜ (𝑧) + 𝜌 (𝑝 βˆ’ 𝛼) + (𝛼 + 𝑐) (44)

Journal of Mathematics

5 Theorem 11. Let 𝛼 + πœ‡ > 0 and

hence σΈ€ 

(𝛼 + πœ‡) (1 βˆ’ 𝐡) + (𝑝 βˆ’ 𝛼) (1 βˆ’ 𝐴) β‰₯ 0.

𝑧(Lπ‘š,π›Ώβˆ’1 𝑐,𝑝,πœ† 𝑓 (𝑧)) 1 Re βˆ’ 𝛼) βˆ’ 𝜌 ( π‘š,π›Ώβˆ’1 π‘βˆ’π›Ό L𝑐,𝑝,πœ† 𝑓 (𝑧)

(i) Supposing that πΉπœ‡,𝑝 (𝑓(𝑧)) =ΜΈ 0 for all 𝑧 ∈ π‘ˆΜ‡ = π‘ˆ \ {0}, then

β‰₯ (1 βˆ’ 𝜌) 󡄨 󡄨 Γ— [Re π‘˜ (𝑧) βˆ’ (σ΅„¨σ΅„¨σ΅„¨σ΅„¨π‘§π‘˜σΈ€  (𝑧)󡄨󡄨󡄨󡄨) ((𝑝 βˆ’ 𝛼) 󡄨󡄨 βˆ’1 󡄨 󡄨 Γ— 󡄨󡄨󡄨(1 βˆ’ 𝜌) π‘˜ (𝑧) βˆ’ σ΅„¨σ΅„¨σ΅„¨πœŒ + ((𝛼 + 𝑐) / (𝑝 βˆ’ 𝛼))󡄨󡄨󡄨󡄨󡄨󡄨) ] . (45)

π‘š,𝛿 πΉπœ‡,𝑝 (Sπ‘š,𝛿 𝑐,𝑝,πœ† (𝛼; 𝐴, 𝐡)) βŠ‚ S𝑐,𝑝,πœ† (𝛼; 𝐴, 𝐡) .

𝐴≀1+(

Re π‘˜ (𝑧) β‰₯

1βˆ’π‘Ÿ , 1+π‘Ÿ

(46)

|𝑧| = π‘Ÿ < 1,

πœ‡ + 2𝛼 βˆ’ 𝑝 + 1 1βˆ’π΅ ) min { ; πœ‡ + 𝛼} , π‘βˆ’π›Ό 2

then π‘š,𝛿 πΉπœ‡,𝑝 (Sπ‘š,𝛿 𝑐,𝑝,πœ† (𝛼; 𝐴, 𝐡)) βŠ‚ S𝑐,𝑝,πœ† (𝛼; π‘Ÿ (𝑝, 𝛼, πœ‡, 𝐴, 𝐡)) ,

(47)

β‰₯ (1 βˆ’ 𝜌) [1 βˆ’ πœƒ (𝑝, 𝛼, 𝑐, 𝜌, π‘Ÿ)] Re π‘˜ (𝑧) , |𝑧| = π‘Ÿ.

=

1 π‘βˆ’π›Ό

Γ—[

Since the right hand side term of the inequality (47) is nonnegative whenever |𝑧| ≀ 𝑅(𝑝, 𝛼, 𝑐, 𝜌) is given by (41), using the fact that the real part of an analytic function is harmonic, we deduce that 𝑓 ∈ Sπ‘š,π›Ώβˆ’1 𝑐,𝑝,πœ† (𝛼; 𝜌) for |𝑧| < 𝑅(𝑝, 𝛼, 𝑐, 𝜌). For a function 𝑓 ∈ A(𝑝), let the integral operator πΉπœ‡,𝑝 : A(𝑝) β†’ A(𝑝) defined by Saitoh [23] and Saitoh et al. [24]

𝑝+πœ‡ 2 𝐹1 (1, 2 (𝑝 βˆ’ 𝛼) (𝐴 βˆ’ 𝐡) / (1 βˆ’ 𝐡) , πœ‡ + 𝑝 + 1; 1/2) βˆ’ (πœ‡ + 𝛼) ] , (54)

is the best possible. Proof. Let 𝑓 ∈ Sπ‘š,𝛿 𝑐,𝑝,πœ† (𝛼; 𝐴, 𝐡), and suppose that πΉπœ‡,𝑝 (𝑓(𝑧)) =ΜΈ 0 for all 𝑧 ∈ π‘ˆ.Μ‡ Let

πœ‡ + 𝑝 𝑧 πœ‡βˆ’1 ∫ 𝑑 𝑓 (𝑑) 𝑑𝑑 π‘§πœ‡ 0 ∞

πœ‡+𝑝 π‘˜ π‘Žπ‘§ π‘˜+πœ‡ π‘˜ π‘˜=𝑝+1

= 𝑧𝑝 + βˆ‘

𝑔 (𝑧) = 𝑧(

∞

πœ‡+𝑝 π‘˜ = (𝑧𝑝 + βˆ‘ 𝑧 ) βˆ— 𝑓 (𝑧) π‘˜+πœ‡ π‘˜=𝑝+1

(𝑧 ∈ π‘ˆ; πœ‡ > βˆ’π‘) .

(55)

σΈ€ 

𝑧(Lπ‘š,𝛿 𝑧𝑔󸀠 (𝑧) 𝑐,𝑝,πœ† πΉπœ‡,𝑝 (𝑓 (𝑧))) 1 = πœ™ (𝑧) = βˆ’ 𝛼) ( π‘š,𝛿 𝑔 (𝑧) π‘βˆ’π›Ό L𝑐,𝑝,πœ† πΉπœ‡,𝑝 (𝑓 (𝑧))

σΈ€ 

(𝑧 ∈ π‘ˆ) . βˆ’

πœ‡Lπ‘š,𝛿 𝑐,𝑝,πœ† πΉπœ‡,𝑝

π‘š,𝛿 Lπ‘š,𝛿 𝑐,𝑝,πœ† πΉπœ‡,𝑝 (𝑓 (𝑧)) = πΉπœ‡,𝑝 (L𝑐,𝑝,πœ† 𝑓 (𝑧)) ,

(𝑓 (𝑧)) ,

𝑓 ∈ 𝐴 (𝑝) .

(56)

(49) Now, by using (49) in (56), we obtain (𝑝 + πœ‡)

We now prove the next result.

)

then 𝑔 is analytic in π‘ˆ, with 𝑔(0) = 0 and 𝑔󸀠 (0) = 1. Taking the logarithmic differentiation in (55), we have

From (4) and (48), we have

= (πœ‡ +

𝑧𝑝

1/(π‘βˆ’π›Ό)

(𝑧 ∈ π‘ˆ) ,

= 𝑧 2 𝐹1 (1, πœ‡ + 𝑝; πœ‡ + 𝑝 + 1; 𝑧)

𝑝) Lπ‘š,𝛿 𝑐,𝑝,πœ† 𝑓 (𝑧)

Lπ‘š,𝛿 𝑐,𝑝,πœ† πΉπœ‡,𝑝 (𝑓 (𝑧))

(48)

𝑝

𝑧(Lπ‘š,𝛿 𝑐,𝑝,πœ† πΉπœ‡,𝑝 (𝑓 (𝑧)))

(53)

π‘Ÿ (𝑝, 𝛼, πœ‡, 𝐴, 𝐡)

σΈ€ 

𝑧(Lπ‘š,π›Ώβˆ’1 𝑐,𝑝,πœ† 𝑓 (𝑧)) 1 Re βˆ’ 𝛼) βˆ’ 𝜌 ( π‘βˆ’π›Ό Lπ‘š,π›Ώβˆ’1 𝑐,𝑝,πœ† 𝑓 (𝑧)

βˆ— 𝑓 (𝑧)

(52)

where the bound

together with the inequality (45), we get

πΉπœ‡,𝑝 (𝑓 (𝑧)) =

(51)

(ii) Moreover, if we suppose in addition that

By using the well-known results [22] 2π‘Ÿ 󡄨󡄨 σΈ€  󡄨󡄨 σ΅„¨σ΅„¨π‘§π‘˜ (𝑧)󡄨󡄨 ≀ 󡄨 󡄨 1 βˆ’ π‘Ÿ2 Re π‘˜ (𝑧) ,

(50)

Lπ‘š,𝛿 𝑐,𝑝,πœ† 𝑓 (𝑧) Lπ‘š,𝛿 𝑐,𝑝,πœ† πΉπœ‡,𝑝 (𝑓 (𝑧))

= (𝑝 βˆ’ 𝛼) πœ™ (𝑧) + (πœ‡ + 𝛼) . (57)

6

Journal of Mathematics

By differentiating in both sides of (57) logarithmical with respect to 𝑧 and multiplying by 𝑧, we have σΈ€ 

𝑧(Lπ‘š,𝛿 𝑐,𝑝,πœ† 𝑓 (𝑧)) 1 βˆ’ 𝛼) ( π‘βˆ’π›Ό Lπ‘š,𝛿 𝑐,𝑝,πœ† 𝑓 (𝑧) = πœ™ (𝑧) +

(58)

σΈ€ 

π‘§πœ™ (𝑧) . (𝑝 βˆ’ 𝛼) πœ™ (𝑧) + (πœ‡ + 𝛼)

Since 𝑓 ∈ Sπ‘š,𝛿 𝑐,𝑝,πœ† (𝛼; 𝐴, 𝐡), from (58), we obtain that the function πœ™ satisfies the Briot-Bouquet differential subordination π‘§πœ™σΈ€  (𝑧) 1 + 𝐴𝑧 β‰Ί ≑ β„Ž (𝑧) . πœ™ (𝑧) + (𝑝 βˆ’ 𝛼) πœ™ (𝑧) + (πœ‡ + 𝛼) 1 + 𝐡𝑧

Taking 𝐡 = βˆ’1 in Theorem 11, we obtain the next corollary. Corollary 12. Let 𝛼 + πœ‡ > 0 and π‘Ž β‰₯ βˆ’(πœ‡ + 𝛼)/(𝑝 βˆ’ 𝛼). Μ‡ (1) Supposing that Lπ‘š,𝛿 𝑐,𝑝,πœ† πΉπœ‡,𝑝 (𝑓(𝑧)) =ΜΈ 0 for all 𝑧 ∈ π‘ˆ, then (𝛼; π‘Ž)) βŠ‚

Sπ‘š,𝛿 𝑐,𝑝,πœ†

(𝛼; π‘Ž) .

πœ‡ + 2𝛼 βˆ’ 𝑝 + 1 πœ‡ + 𝛼 ;βˆ’ }, π‘βˆ’π›Ό 2 (𝑝 βˆ’ 𝛼)

Lπ‘š,π›Ώβˆ’1 𝑐,𝑝,πœ† 𝑓 (𝑧) Lπ‘š,𝛿 𝑐,𝑝,πœ† 𝑓 (𝑧)

(

Lπ‘š,𝛿 𝑐,𝑝,πœ† 𝑓 (𝑧) 𝑧𝑝

(61)

{(1 + 𝐡𝑧) π‘ž1 (𝑧) = { π‘’πœˆ(𝑐+𝑝)𝐴𝑧 {

) β‰Ί π‘ž1 (𝑧) ,

(66)

𝜈(𝑐+𝑝)(π΄βˆ’π΅)/𝐡

if 𝐡 ≠ 0, if 𝐡 = 0,

(67)

is the best dominant. Proof. Let us put πœ™ (𝑧) = (

Lπ‘š,𝛿 𝑐,𝑝,πœ† 𝑓 (𝑧) 𝑧𝑝

𝜈

)

(𝑧 ∈ π‘ˆ) ,

Lπ‘š,π›Ώβˆ’1 π‘§πœ™σΈ€  (𝑧) 𝑐,𝑝,πœ† 𝑓 (𝑧) = 1+ 𝜈 (𝑐 + 𝑝) πœ™ (𝑧) Lπ‘š,𝛿 𝑐,𝑝,πœ† 𝑓 (𝑧)

(68)

(69)

1 + 𝐴𝑧 . β‰Ί 1 + 𝐡𝑧

(62)

Now the assertions of Theorem 13 follows by using Lemma 6 for the special case 𝛾 = 𝜈(𝑐 + 𝑝).

π‘Ÿ (𝑝, 𝛼, πœ‡, π‘Ž)

Putting 𝐡 = βˆ’1 and 𝐴 = 1βˆ’2𝜌, 0 ≀ 𝜌 < 1, in Theorem 13, we obtain the following corollary.

1 π‘βˆ’π›Ό Γ—[

𝜈

then πœ™ is analytic in π‘ˆ, with πœ™(0) = 1 and πœ™(𝑧) =ΜΈ 0 for all 𝑧 ∈ π‘ˆ.Μ‡ By differentiating both sides of (68) logarithmical with respect to 𝑧 and using (5), we have

where the bound

=

(65)

where

then π‘š,𝛿 πΉπœ‡,𝑝 (Sπ‘š,𝛿 𝑐,𝑝,πœ† (𝛼; π‘Ž)) βŠ‚ S𝑐,𝑝,πœ† (𝛼; π‘Ÿ (𝑝, 𝛼, πœ‡, π‘Ž)) ,

1 + 𝐴𝑧 1 + 𝐡𝑧

β‰Ί

implies

(60)

(2) If we suppose in addition that π‘Ž β‰₯ max {βˆ’

Μ‡ If 𝑓 ∈ A(𝑝) with Lπ‘š,𝛿 𝑐,𝑝,πœ† 𝑓(𝑧) =ΜΈ 0 for all 𝑧 ∈ π‘ˆ, then

(59)

Now we will use Lemma 4 for the special case 𝛽 = 𝑝 βˆ’ 𝛼 and 𝛾 = πœ‡ + 𝛼; we have πœ™(𝑧) β‰Ί β„Ž(𝑧), that is, πΉπœ‡,𝑝 ∈ Sπ‘š,𝛿 𝑐,𝑝,πœ† (𝛼; 𝐴, 𝐡). If we suppose in addition that the inequality (52) holds, then all the assumptions of the Lemma 5 are satisfied for 𝛽, 𝛾, and 𝜎 = (1 βˆ’ 𝐴)/(1 βˆ’ 𝐡), hence it follows π‘š,𝛿 the inclusion πΉπœ‡,𝑝 (Sπ‘š,𝛿 𝑐,𝑝,πœ† (𝛼; 𝐴, 𝐡)) βŠ‚ S𝑐,𝑝,πœ† (𝛼; π‘Ÿ(𝑝, 𝛼, πœ‡, 𝐴, 𝐡)), and the bound π‘Ÿ(𝑝, 𝛼, πœ‡, 𝐴, 𝐡) given by (54) is the best possible.

πΉπœ‡,𝑝 (Sπ‘š,𝛿 𝑐,𝑝,πœ†

Theorem 13. Let 𝜈 ∈ Cβˆ— , and let 𝐴, 𝐡 ∈ C with 𝐴 =ΜΈ 𝐡 and |𝐡| ≀ 1. Suppose that 󡄨󡄨 𝜈 (𝑐 + 𝑝) (𝐴 βˆ’ 𝐡) 󡄨󡄨 󡄨󡄨 󡄨󡄨 󡄨󡄨 󡄨󡄨 ≀ 1 or βˆ’ 1 󡄨󡄨 󡄨󡄨 𝐡 󡄨 󡄨 󡄨󡄨 𝜈 (𝑐 + 𝑝) (𝐴 βˆ’ 𝐡) 󡄨󡄨 󡄨󡄨 󡄨󡄨 (64) 󡄨󡄨 󡄨󡄨 ≀ 1, if 𝐡 =ΜΈ 0, + 1 𝐡 󡄨󡄨󡄨 󡄨󡄨󡄨 πœ‹ , if 𝐡 = 0. |𝜈𝐴| ≀ 𝑐+𝑝

Corollary 14. Assume that 𝜈 ∈ Cβˆ— satisfies either 󡄨󡄨󡄨2𝜈 (𝑐 + 𝑝) (1 βˆ’ 𝜌) βˆ’ 1󡄨󡄨󡄨 ≀ 1 or 󡄨 󡄨 󡄨󡄨 󡄨󡄨 󡄨󡄨2𝜈 (𝑐 + 𝑝) (1 βˆ’ 𝜌) + 1󡄨󡄨 ≀ 1, if 𝐡 =ΜΈ 0,

πœ‡+𝑝 2 𝐹1 (1, 2 (𝑝 βˆ’ 𝛼) (1 βˆ’ π‘Ž) , πœ‡ + 𝑝 + 1; 1/2)

Μ‡ If 𝑓 ∈ A(𝑝) with Lπ‘š,𝛿 𝑐,𝑝,πœ† 𝑓(𝑧) =ΜΈ 0 for all 𝑧 ∈ π‘ˆ, then

βˆ’ (πœ‡ + 𝛼) ] , (63) is the best possible.

(70)

Re

Lπ‘š,π›Ώβˆ’1 𝑐,𝑝,πœ† 𝑓 (𝑧) Lπ‘š,𝛿 𝑐,𝑝,πœ† 𝑓 (𝑧)

>𝜌

(71)

Journal of Mathematics

7 Corollary 16. If 𝑓 ∈ Sπ‘š,𝛿 𝑐,𝑝,πœ† (𝛼; 𝐴, 𝐡), then for |𝑧| = π‘Ÿ < 1, the next inequalities hold

implies (

Lπ‘š,𝛿 𝑐,𝑝,πœ† 𝑓 (𝑧) 𝑧𝑝

𝜈

) β‰Ί π‘ž2 (𝑧) = (1 βˆ’ 𝑧)βˆ’2𝜈(𝑐+𝑝)(1βˆ’πœŒ) ,

(72)

and π‘ž2 is the best dominant.

π‘Ÿπ‘ (1 βˆ’ π΅π‘Ÿ)(π‘βˆ’π›Ό)(π΄βˆ’π΅)/𝐡 , for 𝐡 =ΜΈ 0, 󡄨 󡄨󡄨 π‘š,𝛿 󡄨󡄨L𝑐,𝑝,πœ† 𝑓 (𝑧)󡄨󡄨󡄨 β‰₯ { 𝑝 󡄨 󡄨 π‘Ÿ exp [βˆ’ (𝑝 βˆ’ 𝛼) π΄π‘Ÿ] , for 𝐡 = 0,

3. Properties Involving the Multiplier Operator Lπ‘š,𝛿 𝑐,𝑝,πœ† Theorem 15. If 𝑓 ∈ Sπ‘š,𝛿 𝑐,𝑝,πœ† (𝛼; 𝐴, 𝐡), then for all 𝑠, 𝑑 ∈ C with |𝑠| ≀ 1, |𝑑| ≀ 1 and 𝑠 =ΜΈ 𝑑, the next subordination holds 1 + 𝐡𝑧𝑠 (π‘βˆ’π›Ό)(π΄βˆ’π΅)/𝐡 { , for 𝐡 =ΜΈ 0 ) {( β‰Ί { 1 + 𝐡𝑧𝑑 { {exp [(𝑝 βˆ’ 𝛼) 𝐴𝑧 (𝑠 βˆ’ 𝑑)] , for 𝐡 = 0. (73)

𝑝

𝑑 Lπ‘š,𝛿 𝑐,𝑝,πœ† 𝑓 (𝑧𝑠) 𝑠𝑝 Lπ‘š,𝛿 𝑐,𝑝,πœ† 𝑓 (𝑧𝑑) Proof. If 𝑓 ∈

Sπ‘š,𝛿 𝑐,𝑝,πœ† (𝛼; 𝐴, 𝐡), σΈ€ 

𝑧(Lπ‘š,𝛿 𝑐,𝑝,πœ† 𝑓 (𝑧))

β‰Ί

Lπ‘š,𝛿 𝑐,𝑝,πœ† 𝑓 (𝑧)

from (7) it follows that

𝑝 + [𝑝𝐡 + (𝑝 βˆ’ 𝛼) (𝐴 βˆ’ 𝐡)] 𝑧 ≑ π‘˜ (𝑧) . 1 + 𝐡𝑧 (74)

Moreover, the function π‘˜ defined by (74) and the function β„Ž given by 𝑧 𝑠 𝑑 (75) βˆ’ ) 𝑑𝑒 β„Ž (𝑧) ≑ β„Ž (𝑧; 𝑠, 𝑑) = ∫ ( 1 βˆ’ 𝑠𝑒 1 βˆ’ 𝑑𝑒 0 are convex in π‘ˆ. By combining a general subordination theorem [25, Theorem 4] with (74), we get σΈ€ 

(

𝑧(Lπ‘š,𝛿 𝑐,𝑝,πœ† 𝑓 (𝑧)) Lπ‘š,𝛿 𝑐,𝑝,πœ† 𝑓 (𝑧)

βˆ’ 𝑝) βˆ— β„Ž (𝑧) (76)

(𝑝 βˆ’ 𝛼) (𝐴 βˆ’ 𝐡) 𝑧 βˆ— β„Ž (𝑧) . 1 + 𝐡𝑧 For every analytic function πœ™ in π‘ˆ with πœ™(0) = 0, we have 𝑠𝑧 πœ™ (𝑒) (77) πœ™ (𝑧) βˆ— β„Ž (𝑧) = ∫ 𝑑𝑒, 𝑒 𝑑𝑧 and thus, from (76) and (77), we deduce β‰Ί

𝑠𝑧

(Lπ‘š,𝛿 𝑐,𝑝,πœ† 𝑓 (𝑒))

𝑑𝑧

Lπ‘š,𝛿 𝑐,𝑝,πœ† 𝑓 (𝑒)

∫ (

σΈ€ 

βˆ’

𝑝 ) 𝑑𝑒 𝑒

β‰Ί (𝑝 βˆ’ 𝛼) (𝐴 βˆ’ 𝐡) ∫

𝑠𝑧

𝑑𝑧

(78)

𝑑𝑒 . 1 + 𝐡𝑒

(Lπ‘š,𝛿 𝑐,𝑝,πœ† 𝑓 (𝑒))

𝑑𝑧

Lπ‘š,𝛿 𝑐,𝑝,πœ† 𝑓 (𝑒)

exp (∫ (

σΈ€ 

𝑝 ) 𝑑𝑒) 𝑒

βˆ’

β‰Ί exp ((𝑝 βˆ’ 𝛼) (𝐴 βˆ’ 𝐡) ∫

𝑠𝑧

𝑑𝑧

𝑑𝑒 ), 1 + 𝐡𝑒

and by simplification, we get the assertion of Theorem 15.

(79)

(81)

󡄨 󡄨󡄨 Lπ‘š,𝛿 𝑓 (𝑧) 󡄨󡄨󡄨 󡄨󡄨 󡄨󡄨 󡄨󡄨arg 𝑐,𝑝,πœ† 󡄨󡄨 󡄨󡄨 𝑧𝑝 󡄨󡄨 󡄨󡄨 󡄨 󡄨 (𝑝 βˆ’ 𝛼) (𝐴 βˆ’ 𝐡) βˆ’1 { sin (|𝐡| π‘Ÿ) , for 𝐡 =ΜΈ 0, { |𝐡| ≀{ { for 𝐡 = 0. {(𝑝 βˆ’ 𝛼) π΄π‘Ÿ,

(82)

All of the estimates asserted here are sharp. Proof. Taking 𝑠 = 1 and 𝑑 = 0 in (73) and using the definition of subordination, we obtain Lπ‘š,𝛿 𝑐,𝑝,πœ† 𝑓 (𝑧) 𝑧𝑝

(π‘βˆ’π›Ό)(π΄βˆ’π΅)/𝐡 , {(1 + 𝐡𝑀(𝑧)) ={ exp [(𝑝 βˆ’ 𝛼) 𝐴𝑀 (𝑧)] , {

for 𝐡 ≠ 0, for 𝐡 = 0, (83)

where 𝑀 is analytic function in π‘ˆ with 𝑀(0) = 0 and |𝑀(𝑧)| ≀ 1 for 𝑧 ∈ π‘ˆ. According to the well-known Schwarz’s theorem, we have |𝑀(𝑧)| ≀ |𝑧| for all 𝑧 ∈ π‘ˆ. (i) If 𝐡 > 0, then we find from (83) that 󡄨󡄨 π‘š,𝛿 󡄨 󡄨󡄨 L𝑐,𝑝,πœ† 𝑓 (𝑧) 󡄨󡄨󡄨 󡄨󡄨 󡄨󡄨 = exp [ (𝑝 βˆ’ 𝛼) (𝐴 βˆ’ 𝐡) log |1 + 𝐡𝑀 (𝑧)|] 󡄨󡄨 𝑝 󡄨󡄨󡄨 𝑧 𝐡 󡄨󡄨 󡄨󡄨 󡄨 = |1 + 𝐡𝑀 (𝑧)|(π‘βˆ’π›Ό)(π΄βˆ’π΅)/𝐡 ≀ (1 + π΅π‘Ÿ)(π‘βˆ’π›Ό)(π΄βˆ’π΅)/𝐡 . (84) (ii) If 𝐡 < 0, we can easily obtain 󡄨󡄨 π‘š,𝛿 󡄨 󡄨󡄨 L𝑐,𝑝,πœ† 𝑓 (𝑧) 󡄨󡄨󡄨 󡄨󡄨 󡄨󡄨 = |1 + 𝐡𝑀 (𝑧)|(π‘βˆ’π›Ό)(π΄βˆ’π΅)/βˆ’π΅ 𝑝 󡄨󡄨󡄨 󡄨󡄨󡄨 𝑧 󡄨󡄨 󡄨󡄨 ≀ [(1 + π΅π‘Ÿ)βˆ’1 ]

This last subordination implies 𝑠𝑧

π‘Ÿπ‘ (1 + π΅π‘Ÿ)(π‘βˆ’π›Ό)(π΄βˆ’π΅)/𝐡 , for 𝐡 =ΜΈ 0, 󡄨 󡄨󡄨 π‘š,𝛿 󡄨󡄨L𝑐,𝑝,πœ† 𝑓 (𝑧)󡄨󡄨󡄨 ≀ { 𝑝 (80) 󡄨 󡄨 π‘Ÿ exp [(𝑝 βˆ’ 𝛼) π΄π‘Ÿ] , for 𝐡 = 0,

(π‘βˆ’π›Ό)(π΄βˆ’π΅)/βˆ’π΅

(85)

= (1 + π΅π‘Ÿ)(π‘βˆ’π›Ό)(π΄βˆ’π΅)/𝐡 . This proves the inequality (80) for 𝐡 =ΜΈ 0. Similarly, we can prove the other inequalities in (80) and (81). Now, for |𝑧| = π‘Ÿ and 𝐡 =ΜΈ 0, we observe from (83) that 󡄨 󡄨󡄨 Lπ‘š,𝛿 𝑓 (𝑧) 󡄨󡄨󡄨 (𝑝 βˆ’ 𝛼) (𝐴 βˆ’ 𝐡) 󡄨 󡄨󡄨 󡄨󡄨 = 󡄨󡄨arg 𝑐,𝑝,πœ† 󡄨󡄨arg (1 + 𝐡𝑀 (𝑧))󡄨󡄨󡄨 󡄨󡄨 󡄨󡄨 󡄨 󡄨 𝑧𝑝 |𝐡| 󡄨󡄨 󡄨󡄨 󡄨 󡄨 (86) (𝑝 βˆ’ 𝛼) (𝐴 βˆ’ 𝐡) βˆ’1 ≀ sin (|𝐡| π‘Ÿ) , |𝐡| and for 𝐡 = 0, (82) is a direct consequence of (83).

8

Journal of Mathematics

It is easy to see that all of the estimates in Corollary 16 are sharp, being attained by the function 𝑓0 defined by Lπ‘š,𝛿 𝑐,𝑝,πœ† 𝑓0 (𝑧) = {

𝑧𝑝 (1 + 𝐡𝑧)(π‘βˆ’π›Ό)(π΄βˆ’π΅)/𝐡 , 𝑧𝑝 exp [(𝑝 βˆ’ 𝛼) 𝐴𝑧] ,

for 𝐡 ≠ 0, for 𝐡 = 0.

(87)

Remark 17. (i) Putting 𝑐 = 1 and π‘š = 0 in our results, we obtain the results obtained by Aouf et al. [16]. (ii) By specializing the parameters 𝑐, πœ†, 𝛿, 𝑝, and π‘š, we obtain various results for different operators defined in Section 1.

Acknowledgment The authors thank the referees for their valuable suggestions which led to improvement of this paper.

References [1] T. Bulboaca, Differential Subordinations and Superordinations, Recent Results, Hous of Scientific Book, Cluj-Napoca, Romania, 2005. [2] S. S. Miller and P. T. Mocanu, Differential Subordinations: Theory and Applications, Series on Monographs and Texbooks in Pure and Applied Mathematics, no. 225, Marcel Dekker, New York, NY, USA, 2000. [3] S. M. Khairnar and M. More, β€œOn a subclass of multivalent 𝛽-uniformly starlike and convex functions defined by a linear operator,” IAENG International Journal of Applied Mathematics, vol. 39, no. 3, pp. 1–9, 2009. [4] M. K. Aouf, β€œSome inclusion relationships associated with the Komatu integral operator,” Mathematical and Computer Modelling, vol. 50, no. 9-10, pp. 1360–1366, 2009. [5] M. K. Aouf, β€œThe Komatu integral operator and strongly closeto-convex functions,” Bulletin of Mathematical Analysis and Applications, no. 3, pp. 209–219, 2011. [6] S. Shams, S. R. Kulkarni, and J. M. Jahangiri, β€œSubordination properties for 𝑝-valent functions defined by integral operator,” International Journal of Mathematics and Mathematical Sciences, vol. 2006, Article ID 94572, 3 pages, 2006. [7] A. Ebadian, S. Shams, Z. G. Wang, and Y. Sun, β€œA class of multivalent analytic functions involving the generalized Jung-KimSrivastava operator,” Acta Universitatis Apulensis, vol. 18, pp. 265–277, 2009. [8] M. K. Aouf, R. M. El-Ashwah, and S. M. El-Deeb, β€œSome inequalities for certain 𝑝-valent functions involving extended multiplier transformations,” Proceedings of the Pakistan Academy of Sciences, vol. 46, no. 4, pp. 217–221, 2009. [9] Y. Komatu, β€œOn analytic prolongation of a family of integral operators,” Mathematica (Cluj), vol. 32, no. 55, pp. 141–145, 1990. [10] R. K. Raina and I. B. Bapna, β€œOn the starlikeness and convexity of a certain integral operator,” Southeast Asian Bulletin of Mathematics, vol. 33, pp. 101–108, 2009. [11] S. D. Bernardi, β€œConvex and starlike univalent functions,” Transactions of the American Mathematical Society, vol. 135, pp. 429–446, 1969. [12] A. Ebadian and S. Najafzadeh, β€œUniformly starlike and convex univalent functions by using certain integral operator,” Acta Universitatis Apulensis, vol. 20, pp. 17–23, 2009.

[13] F. M. Al-Oboudi, β€œOn univalent functions defined by a generalized Salagean operator,” International Journal of Mathematics and Mathematical Sciences, vol. 27, pp. 1429–1436, 2004. [14] G. S˘al˘agean, β€œSubclasses of univalent functions,” in Complex Analysis. 5th Romanian-Finnish Seminar, vol. 1013 of Lecture Notes in Mathematics, pp. 362–372, Springer, Berlin, Germany, 1983. [15] N. E. Cho, O. S. Kwon, and H. M. Srivastava, β€œInclusion relationships and argument properties for certain subclasses of multivalent functions associated with a family of linear operators,” Journal of Mathematical Analysis and Applications, vol. 292, no. 2, pp. 470–483, 2004. [16] M. K. Aouf, T. Bulboaca, and A. O. Mostafa, β€œSubordination properties of subclasses of 𝑝-valent functions involving certain operators,” Publicationes Mathematicae, vol. 73, no. 3-4, pp. 401– 416, 2008. [17] J. Patel, β€œInclusion relations and convolution properties of certain sub-classes of analytic functions defined by a generalized Salagean operator,” Bulletin of the Belgian Mathematical Society Simon Stevin, vol. 15, pp. 33–47, 2008. [18] E. T. Whittaker and G. N. Watson, A Course of Modern Analysis: An Introduction to the General Theory of infinite Processes and of Analytic Functions; With an Account of the Principal Transcendental Functions, Cambridge University Press, Cambridge, UK, 4th edition, 1927. [19] P. J. Eenigenburg, S. S. Miller, P. T. Mocanu, and M. O. Reade, β€œOn a Briot-Bouquet differential subordination,” in General Inequalities 3, vol. 64 of International Series of Numerical Mathematics, pp. 339–348, Birkhauser, Basel, Switzerland, 1983. [20] P. T. Mocanu, D. Ripeanu, and I. Serb, β€œThe order of starlikeness of certain integral operators,” Mathematica (Cluj), vol. 23(46), no. 2, pp. 225–230, 1981. [21] M. Obradovic and S. Owa, β€œOn certain properties for some classes of starlike functions,” Journal of Mathematical Analysis and Applications, vol. 145, no. 2, pp. 357–364, 1990. [22] T. H. Macgregor, β€œRadius of univalence of certain analytic functions,” Proceedings of the American Mathematical Society, vol. 14, pp. 514–520, 1963. [23] H. Saitoh, β€œOn certain class of multivalent functions,” Mathematica Japonica, vol. 37, pp. 871–875, 1992. [24] H. Saitoh, S. Owa, T. Sekine, M. Nunokawa, and R. Yamakawa, β€œAn application of a certain integral operator,” Applied Mathematics Letters, vol. 5, no. 2, pp. 21–24, 1992. [25] St. Ruscheweyh and T. Sheil-Small, β€œHadamard products of Schlicht functions and the PΒ΄olya-Schoenberg conjecture,” Commentarii Mathematici Helvetici, vol. 48, no. 1, pp. 119–135, 1973.

Advances in

Operations Research Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

Advances in

Decision Sciences Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

Journal of

Applied Mathematics

Algebra

Hindawi Publishing Corporation http://www.hindawi.com

Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

Journal of

Probability and Statistics Volume 2014

The Scientific World Journal Hindawi Publishing Corporation http://www.hindawi.com

Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

International Journal of

Differential Equations Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

Volume 2014

Submit your manuscripts at http://www.hindawi.com International Journal of

Advances in

Combinatorics Hindawi Publishing Corporation http://www.hindawi.com

Mathematical Physics Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

Journal of

Complex Analysis Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

International Journal of Mathematics and Mathematical Sciences

Mathematical Problems in Engineering

Journal of

Mathematics Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

Volume 2014

Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

Discrete Mathematics

Journal of

Volume 2014

Hindawi Publishing Corporation http://www.hindawi.com

Discrete Dynamics in Nature and Society

Journal of

Function Spaces Hindawi Publishing Corporation http://www.hindawi.com

Abstract and Applied Analysis

Volume 2014

Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

International Journal of

Journal of

Stochastic Analysis

Optimization

Hindawi Publishing Corporation http://www.hindawi.com

Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

Volume 2014