Vibration Control Design for a Plate Structure with ... - MDPI

3 downloads 0 Views 8MB Size Report
Jul 8, 2017 - To suppress the structure's vibration, ERF and MRF dampers are ...... ER Fluids, MR Fluids and Associated Technology, Sheffield, UK, 10–14.
applied sciences Article

Vibration Control Design for a Plate Structure with Electrorheological ATVA Using Interval Type-2 Fuzzy System Chih-Jer Lin 1, *, Chun-Ying Lee 2 and Ying Liu 1 1 2

*

Graduate Institute of Automation Technology, National Taipei University of Technology, Taipei 10608, Taiwan; [email protected] Department of Mechanical Engineering, National Taipei University of Technology, Taipei 10608, Taiwan; [email protected] Correspondence: [email protected]; Tel.: +886-227-712-171 (ext. 4328)

Academic Editor: Antonio Fernández-Caballero Received: 16 May 2017; Accepted: 3 July 2017; Published: 8 July 2017

Abstract: This study presents vibration control using actively tunable vibration absorbers (ATVA) to suppress vibration of a thin plate. The ATVA is made of a sandwich hollow structure embedded with electrorheological fluid (ERF). ERF is considered to be one of the most important smart fluids and it is suitable to be embedded in a smart structure due to its controllable rheological property. ERF’s apparent viscosity can be controlled in response to the electric field and the change is reversible in 10 microseconds. Therefore, the physical properties of the ERF-embedded smart structure, such as the stiffness and damping coefficient, can be changed in response to the applied electric field. A mathematical model is difficult to be obtained to describe the exact characteristics of the ERF embedded ATVA because of the nonlinearity of ERF’s viscosity. Therefore, a fuzzy modeling and experimental validations of ERF-based ATVA from stationary random vibrations of thin plates are presented in this study. Because Type-2 fuzzy sets generalize Type-1 fuzzy sets so that more modeling uncertainties can be handled, a semi-active vibration controller is proposed based on Type-2 fuzzy sets. To investigate the different performances by using different types of fuzzy controllers, the experimental measurements employing both type-1 fuzzy and interval type-2 fuzzy controllers are implemented by the Compact RIO embedded system. The fuzzy modeling framework and solution methods presented in this work can be used for design, performance analysis, and optimization of ATVA from varying harmonic vibration of thin plates. Keywords: electrorheological fluid; semi-active vibration control; tunable vibration absorber; type-1 fuzzy control; interval type-2 fuzzy control

1. Introduction Smart materials and vibration control technology can suppress vibration of flight vehicles and allow them to operate beyond the traditional flutter boundary, improve ride comfort, and minimize vibration fatigue damage [1]. Due to the controllable and varied physical properties of smart materials, they are also used for living infrastructures, mechanical structures, and seismic vibration controls for decades [2–35]. Smart materials and structures that possess electromechanical characteristics have been widely used for active vibration control or semi-active vibration control, such as piezoelectric damper [4–8], eddy current damper [9], magnetostrictive spring [10], magneto-rheological fluid (MRF) damper [11–13], electro-rheological fluid (ERF) damper [14–17], shape memory alloy (SMA) [18–21], and electromagnetic and piezoelectric shunt damper [22–35]. Smart materials have one or more properties changed by the external stimuli, such as temperature, stress, electric field or magnetic field.

Appl. Sci. 2017, 7, 707; doi:10.3390/app7070707

www.mdpi.com/journal/applsci

Appl. Sci. 2017, 7, 707

2 of 27

Active vibration control uses piezoelectric ceramics to generate the force or displacement based on the external applied voltage [4–9]. To suppress the structure’s vibration, ERF and MRF dampers are widely used as semi-active element in suspension systems [11–17]. ER and MR fluids are transformed from the liquid state into the solid state in milliseconds by applying an electric or a magnetic field. Shape memory alloys can change its material properties based on temperature [18–21]. Since Frahm proposed the original dynamic vibration absorber (DVA) in a decade, DVAs are successfully applied in the vibration control of civil structures, naval architectures, and aerospace [36,37]. The DVA consist of a stiffness element, a damping component, and an oscillator. The working principle of the DVA is to transfer the vibration energy to the oscillators by a specified design for a certain frequency range. Because the effective working frequency span of DVAs is narrow only for a certain designed frequency range, Den Hartog et al. considered the optimal tuning of the absorber parameters including damping to improve the DVA’s design [38]. Furthermore, the optimal determinations of parameters were investigated for the absorber with nonlinear damping and different loading characteristics in the following studies [39]. Among the above studies, the absorbers’ parameters are constant and time invariant; therefore, the vibration absorber is passive. To improve the performance of the passive vibration absorbers, many researchers investigated semi-active and active designs [40,41]. The semi-active absorbers have the capability of tuning their working resonant frequencies by adjusting the stiffness and/or damping of the absorbers. One of the adjustments can be realized either through the active change of geometry or through the material properties of the constituents. Thus, they are called actively tuned vibration absorbers (ATVAs) [42]. The other types of ATVA are made of the smart materials whose physical properties can be controlled by the external input. Among all ATVA designs, the ones involved with the use of smart materials, such as piezoelectric materials [4–9], magnetorheological elastomer (MRE) [12], electrorheological fluid (ERF) [16,17], and shape memory alloy and shape memory polymer [19], are frequently seen. ATVAs have advantages of being more stable in system performance and simpler in controller design. Since Winslow discovered the electrorheological effect [43], the reversible and controllable material properties make ERF attractive for many applications, such as vibration dampers, shock absorbers, clutches, and valves [44–49]. ERFs comprise micrometer-size dielectric particles in insulating liquid, so that their apparent viscosity is varying in response to the applied electric field. Based on electrorheological properties of ERFs, many researchers developed different applications and systems using ERF. For a hollow cantilevered beam filled with ER fluid, in the absence of the electric field, the ERF produces the shear force only caused by the fluid resistance. However, if a certain level of electric field is supplied to the ERF, a shear stiffness arises owing to the pre-yielding behavior of the ERF. Therefore, the stiffness of the beam can be tuned by controlling the intensity of the electric field applied to the ERF. Choi et al. investigated the vibration properties for hollow cantilevered beams filled with ER fluid and derived an empirical model for predicting the vibration characteristics in responding to electric field [48]. Many studies focus on the progress of ER materials in modeling the mechanisms and rheology of electrorheological fluids. There are several literature reviews about material properties including water-containing system such as silica gel, polymer, cellulose, and water-free system such as aluminosilicate, carbonaceous, semiconducting polymers [50–57]. During the past decades, effective semi-active suspension and absorber systems featuring ERF has been proposed by many investigators. Yalcintas et al. proposed a semi-active vibration control for ER adaptive beams and illustrated their capabilities by experiments [58]. Rahn et al. designed a feedback vibration controller for the cantilevered ER beam [59]. Wei et al. studied the vibration control of rotating flexible beams and investigated the feasibility of ER fluids by experiments [60]. Choi et al. proposed an ER damper for cylindrical suspension system of small-sized vehicles [61]. However, because ER fluids change from Newtonian flow to Bingham plastic with response to the applied electric field, the damping and stiffness of the ATVA is very nonlinear. Therefore, accurate parameters of ERF models are generally difficult to obtain so that there are modeling uncertainties for the ATVA

Appl. Sci. 2017, 7, 707

3 of 27

systems. The vibration controller must have the adaptive capability and the robustness to the modeling uncertainties and the external disturbance. The damping force of ERF consists a viscous damping without an electric field. With an electric field, The ERF can provide a Coulomb friction damping force for vibration control. Generally, the Coulomb friction damping force is in proportion to the square of voltage applied to the ERF [62]. The relation between the applied voltage and the Coulomb friction is intensively nonlinear. The controller based on the linear control theory is difficult to design to achieve the required performance. Therefore, these systems were mostly modeled by highly nonlinear differential equations, thus making it difficult when considering controller design. Various controller design schemes were proposed to manipulate ERF absorber systems, such as the intelligent control, adaptive control, and robust control. Takawa et al. designed a fuzzy controller to deal with the nonlinearity for a hybrid smart composite beam actuated by piezoceramics and ERF [62]. Choi et al. proposed a robust control of electrorheological suspension system subjected to parameter uncertainties associated with sprung mass of the vehicle and the ER damper [63]. Because the membership functions of type-1 fuzzy sets do not have uncertainties associated with them, the modeling uncertainties of ERF cannot be described in the membership function of the type-1 fuzzy set. Recently, more and more researchers around the world are studying about type-2 fuzzy sets and systems for various applications [64–76]. Membership functions of type-2 fuzzy set are different from the one of type-1 fuzzy set. For type-2 fuzzy sets, the membership functions are three-dimensional. The first two dimensions are the same as the type-1 fuzzy set, but the third dimension is called its footprint of uncertainty (FOU). An interval type-2 fuzzy set was proposed to reduce the complicated computation of type-2 fuzzy set [73]. Because the third-dimension value of the interval type-2 fuzzy sets is the same everywhere, the FOU can be used to describe the third dimension value. To improve the performance of the ATVA, we proposed an interval type-2 semi-active controller to deal with the modeling uncertainties and the nonlinearity of ERF. This paper is organized as follows. Section 2 describes the fabrication of the ERF sandwich beam and the characteristic measurement of the ERF embedded ATVA in the frequency domain. It also describes the experimental setup to measure the dynamic response of the ERF embedded sandwich beam. Section 3 describes the design and analysis of a thin plate with the ERF embedded ATVA to suppress its varying harmonic vibration. The governing equations for this structure were derived by using principle of minimum total potential energy. The ANSYS software is used to simulate the vibration’s frequency response for the different applied electric fields to the ERF. In Section 4, the frequency response of the smart structure is measured to establish the fuzzy expert database for the vibration controller. Based on the experimental results, a type-2 fuzzy controller is proposed to accomplish the semi-active vibration control. In Section 5, the real-time vibration control is performed to validate the proposed controller using NI compact RIO. Finally, Section 6 draws conclusions. 2. Sandwich-Type ATVA with ER Materials Embedded 2.1. Design of the Sandwich ATVA with ER Materials Embedded Before equiping a thin plate with ER embedded ATVAs, the vibration’s frequency response of a sandwich ATVA embedded with ER material is studied firstly. The design of the sandwich beam with ER material embedded is as same as our previous reasearch in [16,17]. Figure 1 describes a schematic diagram of a sandwich beam embedded with ER material. The top and bottom plates of sandwich beam are made of aluminum with the thickness of 0.3 mm. The ERF dam has four edges made of rubber and the ER fluid is confined in the volume between the rubber edges and aluminum plates. The ER fluid consists of two components: corn starch and silicon oil (KF-96-20cs), where the weight fraction of the corn-starch suspensions is around 45%–50%. The two aluminum plates also function as the electrodes of the applied electric field. An acrylic pad is used as the rigid spacer for the clamped side. The dimensions and the specifications of the ATVA are described in Table 1.

Appl. Sci. 2017, 7, 707    Appl. Sci. 2017, 7, 707

4 of 26 4 of 27

  (a) 

  (b) 

(c) 

Figure  1.  Diagram  and  and dimension  of  the  sandwich  beam  with  ER  ER (electrorheological)  fluid  Figure 1. Diagram dimension of the sandwich beam with (electrorheological) fluid embedded [17]. (a): exploded view; (b): side view; (c): front view.  embedded [17]. (a) exploded view; (b) side view; (c) front view. Table 1. Specifications of the ERF (electrorheological fluid) sandwich beam.  Table 1. Specifications of the ERF (electrorheological fluid) sandwich beam.

L  W 150 mm  W 30 mm 150 mm Adhesives 30 mm ERF% Adhesives ERF% 45%  Silicone Sealant  L

Silicone Sealant

45%

h1 w1 0.3 mm h1 2.5 mm 0.3 mm Volume Weight Volume 7.25 mL 28.6 g  7.25 mL

h2 w1 h2 2 mm  2.5 mm 2 mm Equivalent density  3  Weight Equivalent density 2118.52 kg/m 28.6 g

2118.52 kg/m3

2.2. Expermental Setup to Measure the Dynamic Response of the ERF Embedded Sandwich Beam  2.2. Expermental Setup to Measurediagram  the Dynamic Response of the ERF Embedded Sandwich Beam Figure  2  depicts  a  schematic  of  the  experimental  setup  for  measuring  the  dynamic  characteristics of the sandwich beam with ER fluid embedded. To measure the vibration response of  Figure 2 depicts a schematic diagram of the experimental setup for measuring the dynamic the ERF embedded sandwich beam as the external electric field is applied, the experimental process  characteristics of the sandwich beam with ER fluid embedded. To measure the vibration response of is similar to our previous researches as follows [16,17].    the ERF embedded sandwich beam as the external electric field is applied, the experimental process is to our previous researches as follows [16,17]. (1) similar The  left  side of  the  sandwich  beam  is  clamped  on  top  of an  electromagnetic vibration shaker  (LDS V406) which provides the exciting force to the ERF embedded beam.    (1) The left side of the sandwich beam is clamped on top of an electromagnetic vibration shaker (2) A  laser  displacement  sensor  (Keyence  LC2440;  Keyence  Corporation,  Osaka,  Japan)  and  a  (LDS V406) which provides the exciting force to the ERF embedded beam. non‐contacting  eddy‐current  displacement  probe  (Keyence  AH‐416;  Keyence  Corporation,  (2)Osaka, Japan) are used to measure the displacements of the input excitation (the clamped side  A laser displacement sensor (Keyence LC2440; Keyence Corporation, Osaka, Japan) and a non-contacting eddy-current displacement probe (Keyence AH-416; Keyence Corporation, Osaka, on the shaker) and the free end of the ERF embedded beam.  Japan) are used to measure the displacements of the input excitation (the clamped side on the (3) A high‐voltage power amplifier is used to provide the electric field to the ER fluid via the two  shaker) and the free end of the ERF embedded beam. electrodes of the aluminum plates, which is located on the left side of the ERF embedded beam.  (3) A high-voltage power amplifier is used to provide the electric field to the ER fluid via the two (4) When the different electric fields are applied to the ERF, a dynamic signal analyzer (HP 35665A,  electrodes the aluminum plates, which locatedthe  on the left side of the ERF embedded beam. Agilent,  Santa ofClara,  CA,  USA)  is  used  to is analyze  dynamic  characteristics  of  the  ERF  (4)sandwich beam. The vibration signal is provided to the shaker at the frequency from 0 to 200  When the different electric fields are applied to the ERF, a dynamic signal analyzer (HP 35665A, Agilent, Santa Clara, CA, USA) is used to analyze the dynamic characteristics of the ERF sandwich Hz to actuate the ERF embedded beam.  beam. The vibration signal is provided to the shaker at the frequency from 0 to 200 Hz to actuate (5) The time response signals are captured by the dynamic signal analyzer (HP 35665A). Then, the  the ERF embedded beam. frequency response is obtained by using fast Fourier transform (FFT) in HP 35665A. The same  (5)experimental  The time response signals are captured the dynamic signal analyzer (HP Then, steps  were  repeated  for  the by electric  field  varying  from  0  to  2  (35665A). 0.25 the kV/mm )  in  frequency response is obtained by using fast Fourier transform (FFT) in HP 35665A. The same ( kV/mm ) increments.   

Appl. Sci. 2017, 7, 707

5 of 27

Appl. Sci. 2017, 7, 707   

5 of 26

experimental steps were repeated for the electric field varying from 0 to 2 (kV/mm) in 0.25 (6) Figure 2 is the scheme view and diagram to measure the transmissibility of the ERF embedded  (kV/mm) increments. TVA with the corresponding electric field. Figure 3 shows the transmissibility of the TVA as the  (6) different  Figure 2 iselectric  the scheme and diagram to measure the electric  transmissibility of the to  ERF embedded field  view is  applied  to  the  ERF.  For  each  field  applied  the  ERF,  the  TVA with the corresponding electric field. Figure 3 shows the transmissibility of the TVA as the damping  ratios  of  ERF  can  be  obtained  using  the  half‐power  point  bandwidth  method  as  different electric field is applied to the ERF. For each electric field applied to the ERF, the damping follows according to the 1st mode frequency.  ratios of ERF can be obtained using the half-power point bandwidth method as follows according f f to the 1st mode frequency.   L R ,  f 2− f fR , ζ= L 2f

A

where the  and f R fare (as shown in Fig. 4) and  where the ffLL  and the frequencies with the amplitude of √A (as  shown in Figure 4) and R are the frequencies with the amplitude of  2 2 f is the 1st mode frequency. Table 2 describes damping ratios of the ERF for each electric field f   is the 1st mode frequency. Table 2 describes damping ratios of the ERF for each electric field  obtained by the half-power point bandwidth method. (7) obtained by the half‐power point bandwidth method.  According to the 1st mode frequency of the ERF embedded sandwich beam in Figure 3, the (7) According  the modulus 1st  mode of frequency  of  the  embedded  sandwich  in optimization Figure  3,  the  equivalent to  shear the ERF can be ERF  obtained by using the goalbeam  driven equivalent  shear  modulus  of  the  ERF  can  be  obtained  by  using  the  goal  driven  method in ANSYS Workbench. In the simulation, the goal is to find the optimal shearoptimization  modulus of method in ANSYS Workbench. In the simulation, the goal is to find the optimal shear modulus  ERF to make the simulated 1st mode frequency of the ERFATVA be consistent with the actual of ERF to make the simulated 1st mode frequency of the ERFATVA be consistent with the actual  value obtained by the experiments. Therefore, the damping ratio and shear modulus of the ERF value obtained by the experiments. Therefore, the damping ratio and shear modulus of the ERF  are used in the ANSYS model. are used in the ANSYS model.   

(a) 

(b) 

Figure 2. 2.  (a) (a) Photograph Photograph  view; view;  (b) (b) schematic schematic  diagram diagram  for for measuring measuring  the the characteristic characteristic  of of the the ERF ERF  Figure sandwich beam.  sandwich beam.

Appl. Sci. 2017, 7, 707   

6 of 26

Appl. Sci. 2017, 7, 707 Appl. Sci. 2017, 7, 707   

6 of 27 6 of 26 0.00kV/mm 0.25kV/mm 0.00kV/mm 0.50kV/mm 0.25kV/mm 0.75kV/mm 0.50kV/mm 1.00kV/mm 0.75kV/mm 1.25kV/mm 1.00kV/mm 1.50kV/mm 1.25kV/mm 1.75kV/mm 1.50kV/mm 2.00kV/mm 1.75kV/mm 2.25kV/mm 2.00kV/mm 2.25kV/mm

25 25 20 20 15 M a g n itu d e (d B ) M a g n itu d e (d B )

15 10

10

5

5

0

0

-5 -5 -10 -10 -15 -15

20 20

40

60

40

80 100 Frequency(Hz) 80 100 Frequency(Hz)

60

120 120

140 140

160 160

Figure 3. Transmissibility results of the ER sandwich beam with the corresponding electric field.  Figure 3. Transmissibility results of the ER sandwich beam with the corresponding electric field. Figure 3. Transmissibility results of the ER sandwich beam with the corresponding electric field. 

   

    Figure 4. Frequencies ff L and and f Rf used in the half-power point bandwidth method. Figure 4. Frequencies    used in the half‐power point bandwidth method.  L

R

Figure 4. Frequencies  f L and f R   used in the half‐power point bandwidth method.  Table 2. Damping ratio of the ERF-ATVA (actively tunable vibration absorbers) for different Table 2. Damping ratio of the ERF‐ATVA (actively tunable vibration absorbers) for different electric  electric fields. fields.  Table 2. Damping ratio of the ERF‐ATVA (actively tunable vibration absorbers) for different electric  fields.  E (kV/mm)

Damping  F (Hz) Amplitude (dB) Damping Ratio (ζ) E (kV/mm)  F (Hz)  Amplitude (dB) Ratio (ζ)  0.0363 Damping  0 29.5 23.473 E (kV/mm)  F (Hz)  Amplitude (dB) 0.25 29.75 29.5  21.777 Ratio (ζ)  0  23.473  0.0363  0.0432 0.5 30.5 20.127 0.25  29.75  21.777  0.0432  0.0573 0  29.5  23.473  0.0363  0.75 32.75 19.658 0.0574 30.5  20.127  0.0573  0.25 0.5  29.75  21.777  0.0432  1 33 18.705 0.0587 32.75  19.658  0.0574  0.0589 0.5 0.75  30.5  20.127  0.0573  1.25 34.5 17.700 33  18.705  0.0587  0.0593 0.75 1  32.75  19.658  0.0574  1.5 36 17.457 1.75 3733 34.5  17.961 17.700  0.0589  0.0529 1 1.25  18.705  0.0587  2 37.25 18.075 17.457  0.0593  0.0560 1.25 1.5  34.5 36  17.700  0.0589  2.25 38.25 18.774 0.0512 17.961  0.0529  1.5 1.75  36 37  17.457  0.0593  37.25  18.075  0.0560  1.75 2  37  17.961  0.0529  2.25  38.25  18.774  0.0512  2  37.25  18.075  0.0560  2.25  38.25  18.774  0.0512  3. Design and Analysis of the ERF Embedded ATVA for a Plate Structure  3. Design and Analysis of the ERF Embedded ATVA for a Plate Structure 

Appl. Sci. 2017, 7, 707

7 of 27

Appl. Sci. 2017, 7, 707   

7 of 26

3. Design and Analysis of the ERF Embedded ATVA for a Plate Structure 3.1. Governing Equations of the ERF Embedded Beam  3.1. Governing Equations of the ERF Embedded Beam Before we investigate vibration control of a thin plate using the self‐designed ERF embedded  Before we investigateof vibration control of a with  thin plate using the self-designed ERFtwo  embedded ATVA,  the  characteristics  the  sandwich  plate  ER  material  embedded  between  plates  ATVA, the characteristics of the sandwich plate with ER material embedded between two plates should should be studied first. The physical principle of electrorheological TVA is to change the material  be studied(both  first. The physical of of  electrorheological TVA is to change the material properties  stiffness  and principle damping)  ERF  via  the  controllable  electric  field;  then, properties we  can  (both stiffness and damping) of ERF via the controllable electric field; then, we can actively shift the actively shift the resonant frequencies of the structure away from excitation frequencies to attenuate  resonant frequencies of the structure away from excitation frequencies to attenuate the vibration due the vibration due to the varying properties of the TVA embedded ERF. In the range of the applied  to the varying properties of the TVA embedded ERF. In the range of the applied electric field used electric field used in this study, the mode shape of the tuned structure should remain similar shape  in this study, the mode shape of the tuned structure should remain similar shape because of the far because of the far apart modal frequencies for different modes. Consider a sandwich plate with ER  apart modal frequencies for different modes. Consider a sandwich plate with ER material embedded material embedded between two face plates as shown in Figure 5, the governing equations for this  structure  were  derived  principle  of 5,minimum  total equations potential for energy  and  written  as  the  between two face plates using  as shown in Figure the governing this structure were derived following [14].  using principle of minimum total potential energy and written as the following [14].

  Figure 5. Schematic diagram of the sandwich plate with ER material embedded between two plates. Figure 5. Schematic diagram of the sandwich plate with ER material embedded between two plates. 

  22 2 2 ∂2 uu1 1 Eh ∂2 u1u1  νEh GG Eh11 ∂22uu11 Eh11 w  ∂ ν1 1 + GG x x dd∂w + G = 0 0 (1) (1) ρ11 hh1 ∂t2 2 ++1 − ν2 ∂x2 2 ++hh11G G 2 2++  + hh1G + (xu1u−1 uu3 )3 − x 2 hh ∂y 2 ∂x x 1 -  x x  y h2h2 t y 11−- ν  ∂x∂y 2   2 Gy Gy d ∂w νEh ∂ u1 ∂2 v Eh ∂2 v ∂2 v 2 ρ1 h1 2v21 +  Eh 12 + h1 G + h1 G 2v 21 + Eh 1 2 2v 21 +G (v1 − v3 ) −G d w = 0 (2)  u  1 1h1 ∂t21   1 −12ν  h1G  ∂x∂y  h1G ∂x21  1 −12ν ∂y21  hy2 v1  v3   hy 2 ∂y  0 (2)  1     x 1   ∂2yv t x y h h y Eh3 ∂2 u3  ∂2 u3  νEh ∂2 u3 G2x Gx2d ∂w 3 3 ρ3 h3 2 + + h G + + h G − u − u + =0 (3) ( 3 3 3) ∂x∂y h2 1 h2 ∂x ∂t 1 − ν2 ∂x2 ∂y2 1 − ν2 2 2  2u Eh3  2u3 G d w   2 u3   Eh   2v3 G 2 v3  hEh ∂ u ∂ ∂ v3  Gyx  u1  u3   Gyxd ∂w  0 (3)  3h3 ∂22v33 νEh  h G  G 3 3 3 3 3 3   2 2 2 2 ρ3 h3t 2 +1   2x+ h3 G y + h3 G1 ∂x2 + 1 − ν2∂y x2y − hh22 (v1 − v3 ) + hh22 ∂yx= 0 (4) ∂x∂y ∂t 1−ν       3 3 3 E(h31 + E(h31 +h33 ) ∂4 w ∂2 w G 23 ∂4 w 2 2 h3 ) ∂4 w 2νE( h1 + h3 ) 3 h3 )3∂t2 + 12 + (hv + hG) 2 2 + G d2 w 4 + (ρ1 h1 + ρv2 h3 2 +ρ3 Eh   u2 2 Eh 4 + v  3h3 2    h32G  (1−ν 3) ∂xh3G 623(1−ν ) 3 2 3 123  3 y ∂xv1∂y v 3  12(1−y ν ) ∂y 0 (4) (5) 2 2 t Gxd1∂2 w + Gy d ∂2w+ xGyx d − ∂u1 +x ∂u3 1+ Gy d − y ∂v1 +h∂v h2 y 2 3 = q ( x, y ) h h h ∂x ∂x h ∂x ∂x ∂x2 ∂y2 2

2

2

2

4 h3   4w dE= h )ithGlayer, (h13h21 h w  E (h  h )  thickness w  E (hofthe w 2 is the where ρi and hi are the mass respectively. +33 )h2+   (h13  h33 ) 2 2     1h1   2h2  3h3  2  density and  4 2 2  4 t 12(1  ) x 6(1  ) 3 x y 12(1  ) y         height between the mid-planes modulus, shear  of the face-plates.   E, G, and ν are the Young’s    modulus (5) and Poisson’s Gxv1andvG Gy d 2of 2the y are the shear moduli of the ER core in x Gxd 2  2w ratio w plates, Gxd  respectively; u1 u3  Gand yd  3          q ( x , y ) 2 and y axes, h2 xrespectively. h2 y 2 In the h2 above x  v3 denote the in-plane displacements at x equations, x  h2 u1 , v1x, u3 ,and mid-planes of the bottom and the top plates, and w represents the same lateral displacement for all where ρi and hi are the mass density and thickness of the ith layer, respectively.  2

3 1

3 3 2

4

3 1

3 3

 d

h h1  h2  3   is  the  height  between  the  mid‐planes  of  the  face‐plates.  E,  G,  and  ν  are  the  2 2

Young’s modulus, shear modulus and Poisson’s ratio of the plates, respectively; and Gx and Gy are  the shear moduli of the ER core in x and y axes, respectively. In the above equations, u1, v1, u3, and v3  Appl. Sci. 2017, 7, 707 8 of 27 denote the in‐plane displacements at mid‐planes of the bottom and the top plates, and w represents  the  same  lateral  displacement  for  all  three  layers.  It  should  be  mentioned  that  only  the  kinetic  energies  associated  with  the  displacements  three  axial  directions  are  considered  whereas  the  three layers. It should be mentioned that onlyin  the kinetic energies associated with the displacements rotary inertia for all layers is neglected.  in three axial directions are considered whereas the rotary inertia for all layers is neglected. Since we are interested in the response of the system when it is subjected to single harmonic  Since we are interested in the response of the system when it is subjected to single harmonic excitation,  the steady steady  state  response  the excitation same  excitation  frequency.  Under  harmonic  excitation, the state response willwill  be inbe  thein  same frequency. Under harmonic excitation, excitation,  the  shear  stiffness  of  the  ER  fluid  can  be  expressed  as  a  complex  variable  which  is  the shear stiffness of the ER fluid can be expressed as a complex variable which is function of the function  of  the  applied  electric  field.  The  complex  moduli  of  two ER  fluid  parts: and storage  applied electric field. The complex moduli of ER fluid contain parts:contain  storagetwo  modulus loss modulus and loss modulus. The damping of the ER fluid should relate closely to the loss modulus.  modulus. The damping of the ER fluid should relate closely to the loss modulus. Of course, this Of course, this structural damping can be converted into equivalent viscous damping if necessary.  structural damping can be converted into equivalent viscous damping if necessary. Because the main Because the main focus of this work is on the development of control algorithm, further theoretical  focus of this work is on the development of control algorithm, further theoretical formulation in this formulation in this regard is not pursued.  regard is not pursued. 3.2. Simulation Study to Obtain a Suitable Width of the ERF Embedded ATVA for a Plate Using ANSYS  3.2. Simulation Study to Obtain a Suitable Width of the ERF Embedded ATVA for a Plate Using ANSYS In the present work, a 1‐mm‐thick 6061 aluminum alloy plate (shown in Figure 6) is used for  In the present work, a 1-mm-thick 6061 aluminum alloy plate (shown in Figure 6) is used for studying  the semi-active semi‐active  vibration  control.  Figure  6  shows  that ERF two embedded ERF  embedded  ATVA  are  studying the vibration control. Figure 6 shows that two ATVA are attached attached to the plate with the dimension of 200 × 200 × 0.5 (mm). In this case study, the width of the  to the plate with the dimension of 200 × 200 × 0.5 (mm). In this case study, the width of the ERF ERF embedded beam is limited in the range of 20–36 mm. To obtain the suitable width of the ERF  embedded beam is limited in the range of 20–36 mm. To obtain the suitable width of the ERF embedded  embedded ATVA  ATVA for  for this  this plate  plate structure,  structure, the  the ANSYS  ANSYS software  software is  is used  used to  to simulate  simulate the  the vibration’s  vibration’s frequency response for the different electric fields applied to the ERF.    frequency response for the different electric fields applied to the ERF.

Figure 6. Thin plate with the ERF embedded ATVAs.

 

Figure 6. Thin plate with the ERF embedded ATVAs. 

In this simulation study, the material properties of the ATVA is set up according to the viscous In this simulation study, the material properties of the ATVA is set up according to the viscous  coefficients and the equivalent shear modulus obtained by the previous experimental results in coefficients  the 7equivalent  modulus  obtained  by shapes the  previous  experimental  in  Section 2.1. and  Figure shows theshear  first three vibration mode of this plate structureresults  with the Section 2.1. Figure 7 shows the first three vibration mode shapes of this plate structure with the ERF  ERF embedded ATVA obtained by using ANSYS software. When the electric fields of 0 kV/mm and embedded ATVA obtained by using ANSYS software. When the electric fields of 0 kV/mm and 2  2 kV/mm are applied to the ERF embedded ATVA, respectively, we can obtain the frequency shifts of kV/mm are applied to the ERF embedded ATVA, respectively, we can obtain the frequency shifts of  this structure equipped with the ERF embedded ATVA at the first three vibration modes. To obtain the this structure equipped with the ERF embedded ATVA at the first three vibration modes. To obtain  suitable width of the ERF embedded ATVA and its width is changed from 20 to 36 mm in the simulation the suitable width of the ERF embedded ATVA and its width is changed from 20 to 36 mm in the  studies. With the ERF embedded ATVA whose width is between 20 and 36 mm, Table 2 shows the simulation studies. With the ERF embedded ATVA whose width is between 20 and 36 mm, Table 2  resulting frequency shifts at the vibration models of this structure as the electric field is changed from shows the resulting frequency shifts at the vibration models of this structure as the electric field is  0 to 2 kV/mm. The simulation results show that the ATVA can change the resonant frequencies of the changed from 0 to 2 kV/mm. The simulation results show that the ATVA can change the resonant  main structure as the different external electric field is applied. Therefore, the vibration of the main frequencies  main  structure  as  electric the  different  electric  field  is  applied.  Therefore,  structure canof  bethe  controlled if a suitable field isexternal  applied to the ERF embedded ATVA. Based onthe  the vibration  of  the  main  structure  can  be  controlled  if  a  suitable  electric  field  is  applied  to  the  ERF  simulation results in Table 2, to obtain the superior performance in suppressing vibration for the ATVA, embedded ATVA. Based on the simulation results in Table 2, to obtain the superior performance in  the ATVA’s width is chosen as 36 mm in the following experimental setup, because the summation of the frequency shifts at the first three mode is maximal as w = 36 mm. With using the ANSYS software to simulate the vibration’s frequency response for the different applied electric field to the ERF, Figure 8 shows the frequency responses of the plate structure with the ERF embedded ATVA (w = 36) as different electric fields are applied (0 kV/mm–2 kV/mm) and Table 3 describes the Frequency shifts at

suppressing  vibration  for  the  ATVA,  the  ATVA’s  width  is  chosen  as  36  mm  in  the  following  experimental setup, because the summation of the frequency shifts at the first three mode is maximal  as w = 36 mm. With using the ANSYS software to simulate the vibration’s frequency response for the  different  applied  Appl. Sci. 2017, 7, 707 electric  field  to  the  ERF,  Figure  8  shows  the  frequency  responses  of  the  9plate  of 27 structure with the ERF embedded ATVA (w = 36) as different electric fields are applied (0 kV/mm–2  kV/mm)  and  Table  3  describes  the  Frequency  shifts  at  the  vibration  models  of  this  structure  the vibration models of this structure equipped with the ERF embedded ATVA (with the width from equipped with the ERF embedded ATVA (with the width from 20 to 36 mm) for the electric field  20 to 36 mm) for the electric field changed from 0 to 2 kV/mm. To validate the simulation result, the changed from 0 to 2 kV/mm. To validate the simulation result, the experimental setup for frequency  experimental setup for frequency measurements is presented in the following section. measurements is presented in the following section.   

  (a)   

  (b)   

  (c)    Figure  7.  The  first  three  simulated  vibration  mode  shapes  of  this  plate  structure  with  the  ERF  Figure 7. The first three simulated vibration mode shapes of this plate structure with the ERF embedded embedded ATVA. (a): First mode; (b): Second mode; (c): Third mode.  ATVA. (a) First mode; (b) Second mode; (c) Third mode.

Appl. Sci. 2017, 7, 707   

10 of 26

Appl. Sci. 2017, 7, 707

10 of 27

Table 3. Frequency shifts at the vibration models of this structure equipped with the ERF embedded  ATVA (with the width from 20 to 36 mm) for the electric field changed from 0 to 2 kV/mm.  Table 3. Frequency shifts at the vibration models of this structure equipped with the ERF embedded ATVA (with 1st Mode Variation (Hz) the width from 20 to 36 mm) for the electricVariation field changed from3rd Mode Variation (Hz) 0 to 2 kV/mm. W (mm)  2nd Mode (Hz)

20 

1.362 

W (mm) 22 

1st Mode Variation (Hz) 1.331 

20 24  22 26  24 28  26 30  28 30 32  32 34  34 36  36

1.362 1.406  1.331 1.378  1.406 1.392  1.378 1.374  1.392 1.374 1.357  1.357 1.399  1.399 1.361  1.361

1.811 

10.069 

2nd Mode1.724  Variation (Hz)

3rd Mode Variation (Hz) 10.756 

1.811 1.939  1.724 1.862  1.939 1.825  1.862 1.86  1.825 1.86 1.963  1.963 1.941  1.941 2.001 

10.069 14.912  10.756 16.391  14.912 17.613  16.391 18.352  17.613 18.352 18.790  18.790 18.980  18.980 19.157 

2.001

19.157

80

0 kV/mm 0.25 kV/mm 0.5 kV/mm

70

0.75 kV/mm 1 kV/mm 1.25 kV/mm 1.5 kV/mm

Amplitude (dB)

60

2 kV/mm

50

40

30

20

10

0

-10

0

20

40

60 80 Frequency (Hz)

100

120

140

  Figure 8. Simulated frequency responses of the plate structure with the ERF embedded ATVA (w = 36) Figure 8. Simulated frequency responses of the plate structure with the ERF embedded ATVA (w =  as different electric fields are applied. 36) as different electric fields are applied. 

3.3. Experimental Validations 3.3. Experimental Validations  Figure 9a presents the schematic diagram of the experimental setup for measuring the dynamic Figure 9a presents the schematic diagram of the experimental setup for measuring the dynamic  properties of the plate structure with the ERF embedded ATVA. The plate was clamped with the properties of the plate structure with the ERF embedded ATVA.  The plate  was  clamped  with  the  aluminum alloy fixture located on a cast iron platform and the impulse technique was employed in the aluminum alloy fixture located on a cast iron platform and the impulse technique was employed in  measurement. The input excitation was provided by an impact hammer (PCB 084A17) and the induced the  measurement.  The input excitation was provided by an impact hammer (PCB 084A17) and the  vibration was measured by a non-contacting eddy-current displacement probe (Keyence AH-416). induced  vibration  was  measured  by  a  non‐contacting  eddy‐current  displacement  probe  (Keyence  Both input and output signals were processed by a dynamic spectrum analyzer (Novian-N94) and the AH‐416).  Both  input  and  output  signals  were  processed  by  a  dynamic  spectrum  analyzer  corresponding frequency response was obtained. To validate the simulation results, there are 36 points (Novian‐N94) and the corresponding frequency response was obtained. To validate the simulation  (as shown in Figure 9b) located at the structure for the experiments to obtain its dynamic properties. results, there are 36 points (as shown in Figure 9b) located at the structure for the experiments to  The eddy-current displacement probe is located at the 26th point and the impact hammer hits the other obtain its dynamic properties. The eddy‐current displacement probe is located at the 26th point and  35 points to obtain the frequency responses. According to the experimental results, the mode shapes of the  impact  hammer  hits  the  other  35  points  to  obtain  the  frequency  responses.  According  to  the  the first three modes are obtained as shown in Figure 10. Comparing the mode shapes of simulation experimental results, the mode shapes of the first three modes are obtained as shown in Figure 10.  results (Figure 7) with the experimental outcome (Figure 10), we found that the experimental data Comparing the mode shapes of simulation results (Figure 7) with the experimental outcome (Figure  were consistent with simulation results. 10), we found that the experimental data were consistent with simulation results. 

Appl. Sci. 2017, 7, 707 Appl. Sci. 2017, 7, 707   

11 of 27

(a) 

(b) 

11 of 26

Figure 9. Experimental setup to measure the dynamic properties of the plate structure with the ERF  embedded ATVA. (a): schematic diagram; (b): measurement point in the front view. 

Moreover, the experimental data (in Figure 10) can help us to determine the suitable points for  the following case studies, because the displacement probe and the stimulating input should not be  located at vibration nodes to improve the precision of the frequency response. Figure 11 presents the  experimental  setup  to  measure  the  dynamic  properties  of  the  structure  with  different  external  electrical  fields.  For  measuring  the  vibration  mode  of  the  structure,  an  electromagnetic  shaker  is  used  to  stimulate  the  structure  as  shown  in  Figure  11.  During  measurement,  a  random  excitation  signal was generated by the dynamic signal analyzer and further amplified by the power amplifier  to  drive  the  shaker.  One  eddy‐current displacement probe was used to measure the input and the  other one was used to measure the output displacement with the largest amplitude at each vibration  mode. Tables 4–6 show the experimental results for the first three modes of this structure as different  (a)  (b)  external electric fields (0 kV/mm–2 kV/mm) were applied. Based on the experimental data in Table 4,  Figure 9. Experimental setup to measure the dynamic properties of the plate structure with the ERF  Figure 9. Experimental setup to measure the dynamic properties of the plate structure with the ERF the damping ratios of the ATVA can be obtained.    embedded ATVA. (a): schematic diagram; (b): measurement point in the front view.  embedded ATVA. (a) schematic diagram; (b) measurement point in the front view.

Moreover, the experimental data (in Figure 10) can help us to determine the suitable points for  the following case studies, because the displacement probe and the stimulating input should not be  located at vibration nodes to improve the precision of the frequency response. Figure 11 presents the  experimental  setup  to  measure  the  dynamic  properties  of  the  structure  with  different  external  electrical  fields.  For  measuring  the  vibration  mode  of  the  structure,  an  electromagnetic  shaker  is  used  to  stimulate  the  structure  as  shown  in  Figure  11.  During  measurement,  a  random  excitation  signal was generated by the dynamic signal analyzer and further amplified by the power amplifier  to  drive  the  shaker.  One  eddy‐current displacement probe was used to measure the input and the  other one was used to measure the output displacement with the largest amplitude at each vibration  mode. Tables 4–6 show the experimental results for the first three modes of this structure as different  (a)  (b) (c)  external electric fields (0 kV/mm–2 kV/mm) were applied. Based on the experimental data in Table 4,  the damping ratios of the ATVA can be obtained.    Figure 10. Experimental mode shapes of this plate structure with the ERF embedded ATVA at the  Figure 10. Experimental mode shapes of this plate structure with the ERF embedded ATVA at the first first three vibration modes. (a): the first mode ; (b): the second mode; (c): the third mode.  three vibration modes. (a) the first mode; (b) the second mode; (c) the third mode.

According  to  the  experimental  results in  Table  4,  the  first  mode’s  frequency is  changed from  Moreover, the experimental data (in Figure 10) can help us to determine the suitable points for 11.625 to 13.375 Hz when the external electric field varies from 0 to 2 kV/mm; the variation of the  the following case studies, because the displacement probe and the stimulating input should not be frequency is 15.05% and the variation of the amplitude is almost 37.01% (from 16.1 dB to 10.14 dB).  located at vibration nodes to improve the precision of the frequency response. Figure 11 presents In  Table  5,  the  second  mode’s  frequency  is  changed  from  18.375  to  18.5  Hz  when  the  external  the experimental setup to measure the dynamic properties of the structure with different external electric field varies from 0 to 2 kV/mm; the variation of the frequency is only 0.68%. Because the  electrical fields. For measuring the vibration mode of the structure, an electromagnetic shaker is used amplitude at E = 0 kV/mm is 17.87 dB and the amplitude at E = 1 kV/mm is 12.42 dB, the maximal  to stimulate the structure as shown in Figure 11. During measurement, a random excitation signal variation  of  the  amplitude  is  almost  30.49%  for  the  second  mode.  In  Table  6,  the  third‐mode  (a) dynamic signal analyzer and (b) further amplified by the power (c)  was generated by the amplifier to drive frequency  is  changed  from  77  to  78.625  Hz  when  the  external  electric  field  varies  from  0  to  2  the shaker. One eddy-current displacement probe was used to measure the input and the other one Figure 10. Experimental mode shapes of this plate structure with the ERF embedded ATVA at the  was used to measure the output displacement with the largest amplitude at each vibration mode. first three vibration modes. (a): the first mode ; (b): the second mode; (c): the third mode.  Tables 4–6 show the experimental results for the first three modes of this structure as different external According  to  the  experimental  Table  4, Based the  first  frequency is data changed from  electric fields (0 kV/mm–2 kV/mm)results in  were applied. onmode’s  the experimental in Table 4, the 11.625 to 13.375 Hz when the external electric field varies from 0 to 2 kV/mm; the variation of the  damping ratios of the ATVA can be obtained. frequency is 15.05% and the variation of the amplitude is almost 37.01% (from 16.1 dB to 10.14 dB).  According to the experimental results in Table 4, the first mode’s frequency is changed from In  Table  5,  the  second  mode’s  frequency  is  changed  from  18.375  to  18.5  Hz  when  the  external  11.625 to 13.375 Hz when the external electric field varies from 0 to 2 kV/mm; the variation of the electric field varies from 0 to 2 kV/mm; the variation of the frequency is only 0.68%. Because the  frequency is 15.05% and the variation of the amplitude is almost 37.01% (from 16.1 dB to 10.14 dB). amplitude at E = 0 kV/mm is 17.87 dB and the amplitude at E = 1 kV/mm is 12.42 dB, the maximal  In Table 5, theof second mode’s frequency is changed from 18.375 to 18.5 when thethird‐mode  external electric variation  the  amplitude  is  almost  30.49%  for  the  second  mode.  In Hz Table  6,  the  fieldfrequency  varies from 0 to 2 kV/mm; the variation of the frequency is only 0.68%. Because the at is  changed  from  77  to  78.625  Hz  when  the  external  electric  field  varies  from amplitude 0  to  2  E = 0 kV/mm is 17.87 dB and the amplitude at E = 1 kV/mm is 12.42 dB, the maximal variation of the amplitude is almost 30.49% for the second mode. In Table 6, the third-mode frequency is changed from 77 to 78.625 Hz when the external electric field varies from 0 to 2 (kV/mm); the variation of the frequency is only 2.1%. Because the amplitude of E = 0 kV/mm is 20.79 dB and the amplitude of

Appl. Sci. 2017, 7, 707  Appl. Sci. 2017, 7, 707  

12 of 26 12 of 27

(kV/mm); the variation of the frequency is only 2.1%. Because the amplitude of E = 0 kV/mm is  E = 1 kV/mm is 17.41 dB, the maximal variation of the amplitude is almost 16.25% for the second mode. 20.79 dB and the amplitude of E = 1 kV/mm is 17.41 dB, the maximal variation of the amplitude is  With observing between the external electric field the damping coefficient of theelectric  ATVA, almost  16.25% the for relation the  second  mode.  With  observing  the and relation  between  the  external  we found that the dynamic properties of the ERF embedded ATVA are very nonlinear. Therefore, field and the damping coefficient of the ATVA, we found that the dynamic properties of the ERF  the semi-active controller should be adaptive to tune its damping coefficients properly according embedded ATVA are very nonlinear.  Therefore, the semi‐active controller should be adaptive to  to the external vibration with different frequency. Therefore, a fuzzy modeling and experimental tune its damping coefficients properly according to the external vibration with different frequency.  validations offuzzy  ERF-based ATVAand  from stationary random vibrations of thin plates are presented in the Therefore,  a  modeling  experimental  validations  of  ERF‐based  ATVA  from  stationary  following section. random vibrations of thin plates are presented in the following section. 

  (a) 

(b)

Figure  11. Experimental Experimental  setup  measure  the  dynamic  properties  the structure smart  structure  with  Figure 11. setup to to  measure the dynamic properties of the of  smart with different different external electrical filed. (a): side view ; (b): front view.  external electrical filed. (a) side view; (b) front view. Table 4. Frequency and amplitude of the first mode vibration response for this structure equipped  Table 4. Frequency and amplitude of the first mode vibration response for this structure equipped with with the ERF embedded ATVA according to the electric field (0–2 kV/mm).  the ERF embedded ATVA according to the electric field (0–2 kV/mm). E (kV/mm) 0 0.5 1 1.5 2

E (kV/mm)  0  0.5  1  1.5  2 

F (Hz) Amplitude (dB) Damping Ratio (ζ)  F (Hz) Amplitude (dB) Damping Ratio (ζ) 11.625 16.103  0.0218  11.625 16.103 0.0218 11.875 10.142  0.0140  11.875 10.142 0.0140 12  12.677  12 12.677 0.0205  0.0205 12.375 15.809  12.375 15.809 0.0541  0.0541 13.375 11.629 0.0329  0.0329 13.375 11.629 

Table 5. Frequency and amplitude of the second mode vibration response for this structure equipped  Table 5. Frequency and amplitude of the second mode vibration response for this structure equipped with the ERF embedded ATVA according to the electric field (0–2 kV/mm).  with the ERF embedded ATVA according to the electric field (0–2 kV/mm). E (kV/mm) 0 0.5 1 1.5 2

E (kV/mm)  F (Hz) Amplitude (dB) Damping Ratio (ζ)  F (Hz) Amplitude (dB) Damping Ratio (ζ) 0  18.375 17.876  0.0156  18.375 17.876 0.0156 0.5  18.125 14.201  0.0129  18.125 14.201 0.0129 1  18.25 12.423  18.25 12.423 0.0212  0.0212 18.5 14.365 0.0151  0.0151 1.5  18.5  14.365  18.5 15.304 0.0119  0.0119 2  18.5  15.304 

Table 6. Frequency and amplitude of the third mode vibration response for this structure equipped Table 6. Frequency and amplitude of the third mode vibration response for this structure equipped  with the ERF embedded ATVA according to the electric field (0–2 kV/mm). with the ERF embedded ATVA according to the electric field (0–2 kV/mm).  E (kV/mm) 0 0.5 1 1.5 2

 

E (kV/mm)  0  0.5  1  1.5  2 

F (Hz) Damping Ratio (ζ)  F (Hz) Amplitude (dB) Amplitude (dB) Damping Ratio (ζ) 77  20.795  0.0083  77 20.795 0.0083 77.625 19.547  77.625 19.547 0.0087  0.0087 77.875 17.414  77.875 17.414 0.0108  0.0108 78.125 18.382 0.0122  0.0122 78.125 18.382  78.625 17.588 0.0119 78.625 17.588  0.0119 

Appl. Sci. 2017, 7, 707

13 of 27

4. Semi-Active Vibration Control of the Thin Plate Using the ERF Embedded ATVA 4.1. Experimental Setup for the Thin Plate with Varying Harmonic Vibrations In our previous research, we have designed a semi-active controller for the cantilever beam equipped with the ERF embedded ATVA for the vibration at specified frequencies [17]. However, the thin plate’s vibration mode shape is different from the cantilever beam. Figure 10 shows the plate’s vibration modes, where the locations with the maximum displacement vary with the vibration modes. As shown in Figure 10a, the first mode shape of the plate is similar to the one of the cantilever beam; the maximum displacement appears at the free end. Therefore, to measure the vibration of the first mode, the displacement sensor can be located at the edge of the free end. However, as shown in Figure 10b, the maximum displacement of the second mode appears at the both side of the free end. If we need to measure the vibrations of both the first and second modes, the middle point of the free end is not a good choice to locate the displacement sensor. Even though the middle point of the free end can measure the vibration of the first mode, this location is not sensitive to the vibration of the second mode. As a result, to measure the vibration of the second mode, the displacement sensor should be located at both sides of the free end. With observing the mode shape of the third mode in Figure 10c, we found that the location with the maximum displacement appears at the middle point of the free end for the third vibration mode. Therefore, to measure the vibration of the third mode, we need to locate the sensor at the middle point to obtain the best sensitivity to the vibrations. Obviously, the choice of displacement sensor’s location of the third mode is in conflict with the ones of the first and second modes. With consideration of measuring the multi-mode vibrations, we proposed to use two displacement sensors to measure the response of the plate for the different vibration modes. On the one hand, an eddy-current displacement sensor is located at the upper side of the free end to measure the vibrations of the first and second modes; on the other hand, the other displacement sensor is located at the middle of the free end to measure the vibration of the third mode. Figure 12 shows the schematic diagram of semi-active vibration control architecture for the ERF embedded ATVA. Two eddy-current displacement sensors are located at the middle and the upper of the free end to measure the vibration of the plate; the embedded controller (cRIO-9074) is used to implement the real-time control system. The analog input module (NI 9234) is employed to capture the feedback signals of the displacement sensors and the analog output module (NI 9263) is used to provide the analog signal according to the proposed semi-active vibration controller. Then, the output signal of NI 9263 is amplified via the high-voltage power amplifier (Trek 609A) to produce the required electric field to the ERF material. In this paper, we proposed a type-2 fuzzy controller, which has two inputs and one output as shown in Figure 12. The first input is the vibration frequency, which is obtained by fast-Fourier transformation (FFT) of the measured displacement signals; the second input is the root-mean-square value (RMS) of the displacement of the plate’s free end. The RMS value of displacements and the vibration frequency are fed back to a fuzzy controller, which produces the required output voltage to the high-voltage power amplifier. Consequently, we will discuss how to design the type-2 fuzzy controller to establish the input–output mapping between the vibration signal and the required electric field of ERF material.

Appl. Sci. 2017, 7, 707   Appl. Sci. 2017, 7, 707 

14 of 27 14 of 26

  Figure 12. Experimental schematic diagram of semi-active vibration control architecture for the ERF Figure 12. Experimental schematic diagram of semi‐active vibration control architecture for the ERF  embedded ATVA. embedded ATVA. 

4.2. Semi‐Active Vibration Control Using the Interval Type‐2 Fuzzy  4.2. Semi-Active Vibration Control Using the Interval Type-2 Fuzzy The fuzzy rules of semi‐active control are usually obtained by using the expert database or the  The fuzzy rules of semi-active control are usually obtained by using the expert database or the relation  input and and output output  from  experimental  results  [17].  In  this  paper,  to  establish  the  relation between  between input from experimental results [17]. In this paper, to establish the fuzzy fuzzy  controller’s  rule atbase  at  the  different  frequencies,  we  measure  the  vibration  of  the  controller’s rule base the different frequencies, we measure the vibration responseresponse  of the structure structure  with ATVA the  ERF  with  different  applied  electric  field  at  different  then,  with the ERF withATVA  different applied electric field at different frequency; then,frequency;  according to the according to the experimental results, the optimal electric field at different frequency is recorded to  experimental results, the optimal electric field at different frequency is recorded to establish the expert establish the expert database of the fuzzy rules.    database of the fuzzy rules. In all experiments, a sinusoidal signal is input to the shaker’s amplifier at follows.  In all experiments, a sinusoidal signal is input to the shaker’s amplifier at follows.

r (t )  A sin( 2ft )   (6) r (t) = A sin(2π f t) (6) where A is the amplitude of the input signal and f is the frequency of the sinusoidal signal.  where A is the amplitude of the and f is the frequency of the sinusoidal signal. The  signal  is  amplified  to input drive signal the  electromagnetic  vibration  shaker  and  then  the  shaker  The signal is amplified to drive the electromagnetic vibration shaker and then the shaker provides provides the stimulating vibration to the structure. Consequently, the electric field of the ATVA is  the stimulating vibration to the structure. Consequently, the electric field of the ATVA is tuned at tuned  at  different  levels  of  0–2  (kV/mm)  to  perform  the  vibration  experiments;  the  vibration  different levels of 0–2 (kV/mm) to perform the vibration experiments; the vibration displacement of displacement of the structure is measured by the eddy‐current displacement sensors and recorded  the structure is measured by the eddy-current displacement sensors and recorded by the NI CRIO by the NI CRIO 9074 simultaneously.  9074For  simultaneously. an  external  vibration  produced  by  the  shaker  with  the  sinusoidal  signals  of  different  For an external vibration produced by the shaker with the sinusoidal signals of different amplitudes at 8–80 Hz, Tables 7 and 8 record the frequency responses of this smart structure with  amplitudes atdifferent  8–80 Hz,external  Tables 7electric  and 8 record the frequency ofvibration  this smart structure with respect  to  the  field  applied  to  ERF, responses where  the  displacement  is  respect to the different external electric field applied to ERF, where the vibration displacement is computed by using the root mean square (RMS) value of the eddy‐current sensor’s output. In these  computed by usingRMS  the root mean square (RMS)sensor  value of the eddy-current sensor’s output. In these tables,  the  smaller  value  of  displacement  implies  that  the  ATVA  has  better  ability  of  tables, the smaller RMS value of displacement sensor implies that the ATVA has better ability of absorbing  vibration.  In  the  same  column,  the  bold‐face  type  number  shows that  the  structure  has  absorbing vibration. Inwith  the same column, bold-face typevibration.  number shows that the structure hasfirst  the the  smaller  vibration  suffering  the the same  external  For  example,  check  the  smaller vibration with suffering the same external vibration. For example, check the first column of column of Table 7, if A = 50 mV and f = 8 Hz, the best choice for the controller is E = 1.5 (kV/mm),  Table 7, if A = 50 mV and f = 8 Hz, the best choice for the controller is E = 1.5 (kV/mm), because the because the vibration displacement of the structure is the smallest with this electric field of E = 1.5  vibrationFor  displacement of theof  structure is the smallest with this electric field of EHz,  = 1.5 kV/mm. For the kV/mm.  the  first  mode  vibration  with  the  frequency  range  of  8–17  the  experimental  first mode of vibration with the frequency range of 8–17 Hz, the experimental results show that the results show that the ATVA has the better performance with the larger external electric field. These  ATVA has the better performance with the larger external electric field. These experimental results experimental  results  imply  that  the  ATVA  has  better  ability  of  absorbing  vibration  if  its  viscous  imply that the ATVA has better ability of absorbing vibration if its viscous coefficient is larger for the coefficient is larger for the frequencies at the first vibration mode. However, for the second mode of  frequencies at the first vibration mode. However, for the second mode of vibration, the optimal external vibration, the optimal external electric field is different from the first mode. With the exception of  electric field is different from the first mode. With the exception of the vibration at the frequency of the vibration at the frequency of 21 Hz, the ATVA has better ability of absorbing vibration with a  21 Hz, the ATVA has better ability of absorbing vibration with a smaller electric field at the frequencies smaller electric field at the frequencies of 19, 23 and 25 Hz. With the vibration at the frequency of 21  Hz, the ATVA with the electric field of E = 1 kV/mm has better ability of absorbing vibration than  the others. 

Appl. Sci. 2017, 7, 707

15 of 27

of 19, 23 and 25 Hz. With the vibration at the frequency of 21 Hz, the ATVA with the electric field of E = 1 kV/mm has better ability of absorbing vibration than the others. Table 7. Frequency responses of this smart structure with respect to the different external electric field applied to ERF for the external vibration at 8–25 Hz. Shaker Amplitude (mVpk )

50

100

200

8 Hz Displacement (mVrms ) E (kV/mm)

E (kV/mm)

E (kV/mm)

E (kV/mm)

1 1.5 2

1 1.5 2

0 0.5 1

0 0.5 1

98 82 86

201 181 162

413 363 338

50

100

200

10 Hz Displacement (mVrms ) 162 148 129

312 267 218

633 515 403

13 Hz Displacement (mVrms )

17 Hz Displacement (mVrms )

17 14 8

98 85 72

35 28 13

68 53 27

194 181 155

378 363 352

19 Hz Displacement (mVrms )

21 Hz Displacement (mVrms )

33 36 37

28 25 26

75 77 78

153 158 159

54 52 53

110 106 108

23 Hz Displacement (mVrms )

25 Hz Displacement (mVrms )

21 22 22

16 17 16

41 41 41

80 82 81

34 34 34

69 70 71

Table 8. Frequency responses of this smart structure with respect to the different external electric field applied to ERF for the external vibration at 74–80 Hz. Shaker Amplitude (mVpk )

E (kV/mm)

E (kV/mm)

1 1.5 2

0 0.5 1 1.5

50

100

200

50

100

200

74 Hz Displacement (mVrms )

76 Hz Displacement (mVrms )

4 3 5

9 8 10

7 6 8

13 12 14

20 19 20

39 37 37

78 Hz Displacement (mVrms )

80 Hz Displacement (mVrms )

26 18 16 14

15 15 20 23

53 33 29 23

104 68 58 47

30 30 41 46

61 60 78 87

In addition, for the third vibration mode, the ability of absorbing vibration for the ATVA is changed again. According to the experimental results in Table 8, with the exception of the vibration at the frequency of 88 Hz, the ATVA has better ability of absorbing vibration with the electric field of E = 1.5 kV/mm for the vibration with the frequency of 74, 76, and 78 Hz. From the experimental results in Tables 7 and 8, it is obvious that the relation between the optimal electric field and the vibration frequency of the smart structure is nonlinear. In some cases, the amplitude of vibration is also influence the performance of the proposed ATVA. Therefore, we need to design a semi-active vibration controller to produce the optimal electric field with respect to the vibration. Because of the nonlinear relation between the optimal electric field and the ability of absorbing vibration, a type-2 fuzzy controller is proposed to establish the input–output mapping according to the experimental results.

Appl. Sci. 2017, 7, 707   Appl. Sci. 2017, 7, 707 

16 of 27 16 of 26

type‐2 fuzzy set (IT2FS) [72]. For the IT2FS, a type‐reducer is needed to convert to a type‐1 fuzzy set  Type-2 Fuzzy Controller Design for ATVA before defuzzification is carried out as shown in Figure 14. To obtain the output of the IT2FS, we  need two fuzzy rule tables; however, the same fuzzy rule table is used in this case as shown in Table  An interval type-2 Fuzzy Logic System (FLS) is studied for vibration control in the presence of 9.  After  obtaining  the  inference  the  type‐reducer  are  used  obtain  the  system modeling uncertainties [17].output,  The type-2 fuzzy system and  has adefuzzifier  similar structure withto  type-1 fuzzy, but the major difference is that the rule base D has and consequents using type-2 fuzzy sets. input–output relation and the two signals ( , f) were fed back to the proposed fuzzy controller.  rmsantecedents First, the first mode of vibration is considered, a Gaussian function with a known standard deviation Appl. Sci. 2017, 7, 707    16 of 26 and a uniform weighting were used to represent a footprint of uncertainty as shaded in Figure 13. Because of using such a uniform weighting, it is usually called an interval type-2 fuzzy set (IT2FS) [72]. type‐2 fuzzy set (IT2FS) [72]. For the IT2FS, a type‐reducer is needed to convert to a type‐1 fuzzy set  For the IT2FS, a type-reducer is needed to convert to a type-1 fuzzy set before defuzzification is carried before defuzzification is carried out as shown in Figure 14. To obtain the output of the IT2FS, we  out as shown in Figure 14. To obtain the output of the IT2FS, we need two fuzzy rule tables; however, need two fuzzy rule tables; however, the same fuzzy rule table is used in this case as shown in Table  the same obtaining  fuzzy rule the  tableinference  is used inoutput,  this case as type‐reducer  shown in Table 9. After obtaining inference output, 9.  After  the  and  defuzzifier  are the used  to  obtain  the  the type-reducer and defuzzifier are used to obtain the input–output relation and the two signals input–output relation and the two signals ( Drms , f) were fed back to the proposed fuzzy controller.  (Drms , f ) were fed back to the proposed fuzzy controller.

  (a) 

(b)

Figure  13.  Type‐2  fuzzy  membership  function  for  the  two  inputs:  (a)  the  root‐mean‐square  (rms)  value of displacement; (b) vibration frequency.  Table 9. Right and left fuzzy rule tables for the first mode. 

Drms 

VS  S  M    (a)  (b) VS  B  VB  VB  Figure 13. 13. Type-2 Type‐2 fuzzy fuzzy  membership  function  for  inputs:  (a)  the  root‐mean‐square  (rms)  Figure membership function for thethe  twotwo  inputs: (rms) value S  VB  V (a) the root-mean-square VB  value of displacement; (b) vibration frequency.  of displacement; (b) vibration frequency. M  M  VB  M  f 

Table 9. Right and left fuzzy rule tables for the first mode. 

Drms  f  VS  S  M 

VS 





B  VB  M 

VB  V  VB 

VB  VB  M 

  Figure 14. Main inference structure of type-2 fuzzy system. Figure 14. Main inference structure of type‐2 fuzzy system.  Table 9. Right and left fuzzy rule tables for the first mode. For type‐2 fuzzy system, Figure 15 shows the inference operation to obtain the output by using  the  following  equations.  After  obtaining  the  inference  output,  we  used  the  type‐reducer  and  Drms VS S M defuzzifier to obtain the input–output relation as shown in Figure 16.  f VS S M

B VB N   f   u A ( xi ) VB V i 1 M VB Figure 14. Main inference structure of type‐2 fuzzy system. 

VB VB   M

(7)

For type‐2 fuzzy system, Figure 15 shows the inference operation to obtain the output by using  the  following  equations.  After  obtaining  the  inference  output,  we  used  the  type‐reducer  and  defuzzifier to obtain the input–output relation as shown in Figure 16. 

Appl. Sci. 2017, 7, 707

17 of 27

For type-2 fuzzy system, Figure 15 shows the inference operation to obtain the output by using the following equations. After obtaining the inference output, we used the type-reducer and defuzzifier to obtain the input–output relation as shown in Figure 16. N

Appl. Sci. 2017, 7, 707    Appl. Sci. 2017, 7, 707   

f =

17 of 26 17 of 26(7)

∏ u Ae (xi )

i =1

N

f

where N is the number of the inputs.  where N is the number of the inputs.  where N is the number of the inputs.

 

fNN  u A  ( xi ) f   u Ai(1 xi ) = i 1 u Ae ( xi ) i =1

(8) (8)(8)



f1

f1

f1

f1 f

f2

f2

f

f2

f

f

f2

 

 

Figure 15. Inference operation to obtain the output.  Figure 15. Inference operation to obtain the output. Figure 15. Inference operation to obtain the output. 

 

Figure 16. Main inference structure of the proposed type-2 fuzzy controller   of the first mode.

Figure 16. Main inference structure of the proposed type‐2 fuzzy controller of the first mode.  Figure 16. Main inference structure of the proposed type‐2 fuzzy controller of the first mode. 

As shown in Figure 16, we can obtain the optimal voltage by the input–output lookup relation  As shown in Figure 16, we can obtain the optimal voltage by the input–output lookup relation  of the fuzzy controller. Then, the proposed semi‐active vibration controller generates the required  of the fuzzy controller. Then, the proposed semi‐active vibration controller generates the required  voltage  through  the  high  voltage  power  amplifier  to  actuate  the  ATVA  for  absorbing  vibration.  voltage  through  the  high  voltage  power  amplifier  to  actuate  the  ATVA  for  absorbing  vibration. 

Appl. Sci. 2017, 7, 707

18 of 27

As shown in Figure 16, we can obtain the optimal voltage by the input–output lookup relation of the fuzzy controller. Then, the proposed semi-active vibration controller generates the required voltage through the high  voltage power amplifier to actuate the ATVA for absorbing vibration. According Appl. Sci. 2017, 7, 707  18 of 26 to Tables 8 and 9, the input–output relation of the type-2 fuzzy controller is shown in Figure 17 for the electric field according to the specified rules in Figures 16 and 17. Therefore, the fuzzy controller  the second and third modes. It is obvious that the fuzzy rules are different from the fuzzy rule of the should have the adaptive tuning ability to obtain the superior performance for the vibration with  first vibration mode. Therefore, for the different vibration mode, we should tune the electric field varying  frequency.  Consequently,  we  proposed  a  type‐2  fuzzy  controller  with  a  switching‐mode  according to the specified rules in Figures 16 and 17. Therefore, the fuzzy controller should have the rule as follows.  adaptive tuning ability to obtain the superior performance for the vibration with varying frequency. Consequently, we proposed a type-2 fuzzy controller with a switching-mode rule as follows.

  (a) 

(b) 

Figure 17. Main inference structure of the proposed type‐2 fuzzy controller of the second and third  Figure 17. Main inference structure of the proposed type-2 fuzzy controller of the second and third mode. (a): the second mode’s inference structure ; (b): the third mode’s inference structure.  mode. (a) the second mode’s inference structure; (b) the third mode’s inference structure.

4.3. Semi‐Active Vibration Controller with a Switching‐Mode Rule for ATVA  4.3. Semi-Active Vibration Controller with a Switching-Mode Rule for ATVA Because of the nonlinear dynamic properties of theviaERF Capture the displacement the embedded ATVA with response to the vibration at different frequencies, a semi-active control with a switching-mode rule is eddy-current vibration sensors proposed to determine the optimal electric field for the ATVA. There are two reasons why the switching LOOP action is necessary. The first reason is that the location with the maximum displacement may vary for the different vibration mode. Therefore, in Section 4.1, we proposed to use two displacement sensors Obtain the vibration frequency to better measure the response of the plate for Using the different vibration mode. The second reason is that FFT the electric field of the ATVA should be adaptively tuned for the different vibration mode (as shown in Figures 16 and 17) to obtain the superior ability of absorbing vibration for the ATVA. Therefore, we proposed a fuzzy controller of the ATVA attenuating the undesired vibration by using the Obtain for the rms value of Displacement frequency-dependent control strategy [7]. Figure 18 shows the proposed switching algorithm of the fuzzy controller according to the frequency response to tune the electric field adaptively and Figure 19 is the real-time embedded code for the NI CRIO 9074. First, we established the type-2 fuzzy controllers for the three vibration Check the vibration mode modes using the look-up tables as shown in Figures 16 and 17. Second, the displacements of the structure are captured by the CRIO 9074. Third, the vibration frequency is obtained from the FFT of the displacements. Then, the real-time program uses the resulting frequency to distinguish which the First Mode Second Mode Third Mode vibration mode is and switch the input to the suitable controller to produce the control voltage. Fuzzy Fuzzy Fuzzy Controller

Controller

Controller

Output the control voltage

  Figure 18. Proposed switching algorithm of the fuzzy controller according to the frequency response. 

Because of the nonlinear dynamic properties of the ERF embedded ATVA with response to the  vibration  at  different  frequencies,  a  semi‐active  vibration  control  with  a  switching‐mode  rule  is  proposed  to  determine  the  optimal  electric  field  for  the  ATVA.  There  are  two  reasons  why  the 

  (a) 

(b) 

Figure 17. Main inference structure of the proposed type‐2 fuzzy controller of the second and third  mode. (a): the second mode’s inference structure ; (b): the third mode’s inference structure.  Appl. Sci. 2017, 7, 707

19 of 27

4.3. Semi‐Active Vibration Controller with a Switching‐Mode Rule for ATVA  Capture the displacement via the eddy-current sensors LOOP

Obtain the vibration frequency Using FFT

Appl. Sci. 2017, 7, 707   

Obtain the rms value of Displacement

19 of 26

switching action is necessary. The first reason is that the location with the maximum displacement  may  vary  for  the  different  vibration  mode.  Therefore,  in  Section  4.1,  we  proposed  to  use  two  displacement sensors to better measure the response of the plate for the different vibration mode.  Check the vibration mode The second reason is that the electric field of the ATVA should be adaptively tuned for the different  vibration mode (as shown in Figures 16 and 17) to obtain the superior ability of absorbing vibration  for the ATVA. Therefore, we proposed a fuzzy controller of the ATVA for attenuating the undesired  First Mode Second Mode Third Mode vibration by using the frequency‐dependent control strategy [7].    Fuzzy Fuzzy Fuzzy Figure  18  shows  the  proposed  switching  algorithm  of  the  fuzzy  controller  according  to  the  Controller Controller Controller frequency  response  to  tune  the  electric  field  adaptively  and  Figure  19  is  the  real‐time  embedded  code for the NI CRIO 9074. First, we established the type‐2 fuzzy controllers for the three vibration  modes  using  the  look‐up  tables  as  shown  in  Figures  16  and  17.  Second,  the  displacements  of  the  Output structure are captured by the CRIO 9074. Third, the vibration frequency is obtained from the FFT of  the control voltage the  displacements.  Then,  the  real‐time  program  uses  the  resulting  frequency  to  distinguish  which  the vibration mode is and switch the input to the suitable controller to produce the control voltage.      Figure 18. Proposed switching algorithm of the fuzzy controller according to the frequency response. Figure 18. Proposed switching algorithm of the fuzzy controller according to the frequency response. 

Because of the nonlinear dynamic properties of the ERF embedded ATVA with response to the  vibration  at  different  frequencies,  a  semi‐active  vibration  control  with  a  switching‐mode  rule  is  proposed  to  determine  the  optimal  electric  field  for  the  ATVA.  There  are  two  reasons  why  the 

Figure 19. Real-time embedded code for the NI CRIO 9074.

 

5. Experimental Results and Discussion Figure 19. Real‐time embedded code for the NI CRIO 9074.  5.1.5. Experimental Results and Discussion  Case I: External Vibration at the Specified Frequency The excitation signals at the frequencies from 8 to 78 Hz are inputted to the shaker to vibrate the 5.1. Case I: External Vibration at the Specified Frequency  structure to validate the proposed semi-active controller. To compare the performance of the proposed

The excitation signals at the frequencies from 8 to 78 Hz are inputted to the shaker to vibrate  the  structure  to  validate  the  proposed  semi‐active  controller.  To  compare  the  performance  of  the  proposed controller for different vibration modes, we designed five case studies to investigate the  vibration  absorbing  ability  of  the  ATVA.  Figures  20–22  compare  the  vibration  responses  with  no  control  with  the  ones  of  the  proposed  controller  at  the  frequency  of  8,  10,  18,  20,  75  and  77  Hz, 

Appl. Sci. 2017, 7, 707   

20 of 26

Table 10. Experimental results at the frequencies of 8, 10, 18, 20, 75 and 77 Hz using the type‐1 and  type‐2 fuzzy controller.  Appl. Sci. 2017, 7, 707

20 of 27

Type‐1 Fuzzy Controller Type‐2 Fuzzy  Excitation Frequency (Hz)  (%)  Controller (%)  controller for different the vibration 8  vibration modes, we designed 81.4  five case studies to investigate 81.5  absorbing ability of the ATVA. Figures 20–22 compare the vibration responses with no control with 10  19.9  36.1  the ones of the proposed Hz, where the fuzzy 18  controller at the frequency 38.3 of 8, 10, 18, 20, 75 and 7740.9  controller is turned on at t = 2.5 s. The vibration reduction rate (VRR) is defined as follows. 20  24.8  40.3  77  88.6  with vibration control89.7  RMS value o f the amplitude VRR = 79  54.2  RMS value o f37.3  the original amplitude   Type-2 (8Hz) 0.6

2 Displacement Electric Field 1.5

0

1

-0.3

-0.6

Electric Field (kV/mm)

Displacement (mm)

0.3

0.5

0

0 8

4 Time (s)

 

(a) Type-2 (10Hz) 0.6

1.5

0

1

-0.3

-0.6

2

Electric Field (kV/mm)

Displacement (mm)

0.3

Displacement Electric Field

0.5

0

4 Time (s)

0 8

 

(b)  Figure 20. Experimental results of the smart structure for the external vibration at 8 and 10 Hz with  Figure 20. Experimental results of the smart structure for the external vibration at 8 and 10 Hz with the pk. (a): the response at 8 Hz; (b): the response at 10 Hz .  the stimulating signal of 200 mV stimulating signal of 200 mVpk . (a) the response at 8 Hz; (b) the response at 10 Hz.

With the external vibration at the frequency close to the first vibration mode of the structure,  Figure  20  shows  that  the  type‐2  fuzzy  controller  has  better  vibration‐reduction  ability  with  the  frequency of 8 Hz, whose VRR is 81.5%. The VRR with the frequency of 8 Hz is better than the one  with  the  frequency  of  10  Hz,  whose  reduction  rate  is  36.1%.  When  the  external  vibration’s  frequency is close to the second vibration mode, Figure 21 shows that the proposed controller has  the VRR of about 40%. With the external vibration at the frequency close to the third mode of the 

frequency of 77 Hz, whose VRR is about 89%. Table 10 summarizes the results at the frequencies of  8, 10, 18, 20, 75 and 77 Hz using the proposed controller, the experimental results is compared with  the ones using type‐1 fuzzy controller [16] in the previous studies. According to the experimental  results, the proposed type‐2 fuzzy controller has better performance of absorbing vibration than the  type‐1 fuzzy control.    Appl. Sci. 2017, 7, 707

21 of 27

 

Type-2 (18Hz) 0.4

2 Displacement Electric Field 1.5

0

1

-0.2

-0.4

Electric Field (kV/mm)

Displacement (mm)

0.2

0.5

0

0 8

4 Time (s)

(a) Type-2 (20Hz) 0.2

2 Displacement Electric Field 1.5

0

1

-0.1

-0.2

Electric Field (kV/mm)

Displacement (mm)

0.1

0.5

0

4 Time (s)

0 8

 

(b) Figure 21. Experimental results of the smart structure for the external vibration at 18 and 20 Hz with  Figure 21. Experimental results of the smart structure for the external vibration at 18 and 20 Hz with the stimulating signal of 200 mV . (a): the response at 18 Hz ; (b): the response at 20 Hz.  the stimulating signal of 200 mVpk pk . (a) the response at 18 Hz; (b) the response at 20 Hz. Table 10. Experimental results at the frequencies of 8, 10, 18, 20, 75 and 77 Hz using the type-1 and type-2 fuzzy controller. Excitation Frequency (Hz)

Type-1 Fuzzy Controller (%)

Type-2 Fuzzy Controller (%)

8 10 18 20 77 79

81.4 19.9 38.3 24.8 88.6 37.3

81.5 36.1 40.9 40.3 89.7 54.2

Appl. Sci. 2017, 7, 707 Appl. Sci. 2017, 7, 707   

22 of 27 22 of 26 Type-2 (75Hz)

0.1

Displacement Electric Field

1.5

0

1

-0.05

-0.1

Electric Field (kV/mm)

Displacement (mm)

0.05

2

0.5

0

0 8

4 Time (s)

 

(a) Type-2 (77Hz) 0.6

2

Displacement Electric Field 1.5

0

1

-0.3

-0.6

Electric Field (kV/mm)

Displacement (mm)

0.3

0.5

0

4 Time (s)

0 8

 

(b) Figure 22. Experimental results of the smart structure for the external vibration at 75 and 77 Hz with  Figure 22. Experimental results of the smart structure for the external vibration at 75 and 77 Hz with the stimulating signal of 200 mV . (a): the response at 75 Hz; (b): the response at 77 Hz.  the stimulating signal of 200 mVpk pk . (a) the response at 75 Hz; (b) the response at 77 Hz.

5.2. Case II: External Vibration with the Varying Frequency  With the external vibration at the frequency close to the first vibration mode of the structure, To 20 test  the  applicability  of  the  proposed  fuzzy  controller  for  the  external  vibration  with  the  Figure shows that the type-2 fuzzy controller has better vibration-reduction ability with the varying frequency, an external excitation of 8 Hz was applied to the main structure at t = 0 s. Then,  frequency of 8 Hz, whose VRR is 81.5%. The VRR with the frequency of 8 Hz is better than the we changed the frequency of the excitation from 8 to 16 Hz at t = 3 s. Figure 23 shows the measured  one with the frequency of 10 Hz, whose reduction rate is 36.1%. When the external vibration’s time response of the structure’s displacement. Figure 23 validates that the proposed fuzzy controller  frequency is close to the second vibration mode, Figure 21 shows that the proposed controller has has  the  adaptive  ability  to  suppress  vibration  efficiently  and  rapidly,  if third the  frequency  of  the VRR of about 40%. With the external vibration at the frequency closeeven  to the mode of the external vibration is changed. Figure 23 shows that the VRR of the proposed control at the frequency  structure, Figure 22 shows that the proposed type-2 fuzzy controller has the best performance at the of  8  Hz  is of almost  electric  field  output  of  2  kV/mm,  with of the  frequency 77 Hz,86.5%  whosewith  VRRthe  is about 89%. Table 10 summarizes thewhich  resultsis  at consistent  the frequencies 8, previous  20. the The  electric controller, field  output  of  1.8  kV/mm  is  obtained  by  using  10, 18, 20, result  75 andin  77 Figure  Hz using proposed the experimental results is compared with the  the proposed controller and the VRR of 16 Hz is almost 29.4%. Therefore, the experimental result shows  ones using type-1 fuzzy controller [16] in the previous studies. According to the experimental results, that the proposed controller validates the vibration reduction ability for the external vibration with  the two frequencies of 8 and 16 Hz. From the above experimental results, we found the fact that the  proposed ATVA has the superior ability of absorbing vibration for this plate at the first and third 

Appl. Sci. 2017, 7, 707

23 of 27

the proposed type-2 fuzzy controller has better performance of absorbing vibration than the type-1 fuzzy control. 5.2. Case II: External Vibration with the Varying Frequency To test the applicability of the proposed fuzzy controller for the external vibration with the varying frequency, an external excitation of 8 Hz was applied to the main structure at t = 0 s. Then, we changed the frequency of the excitation from 8 to 16 Hz at t = 3 s. Figure 23 shows the measured time response of the structure’s displacement. Figure 23 validates that the proposed fuzzy controller has the adaptive ability to suppress vibration efficiently and rapidly, even if the frequency of external vibration is changed. Figure 23 shows that the VRR of the proposed control at the frequency of 8 Hz is almost 86.5% with the electric field output of 2 kV/mm, which is consistent with the previous result in Figure 20. The electric field output of 1.8 kV/mm is obtained by using the proposed controller and the VRR of 16 Hz is almost 29.4%. Therefore, the experimental result shows that the proposed Appl. Sci. 2017, 7, 707    23 of 26 controller validates the vibration reduction ability for the external vibration with the two frequencies of 8 and 16 Hz. From the above experimental results, we found the fact that the proposed ATVA has vibration  modes  (8  Hz  and  77  Hz).  For  the  second  mode,  the  VRR  of  the  ATVA  is  reduced  from  the superior ability of absorbing vibration for this plate at the first and third vibration modes (8 Hz 81.5% (for the first mode) to 40.9%. Except for the vibration frequency of 8 Hz, the proposed type‐2  and 77 Hz). For the second mode, the VRR of the ATVA is reduced from 81.5% (for the first mode) to fuzzy controller has better VRR than the type‐1 fuzzy control.    40.9%. Except for the vibration frequency of 8 Hz, the proposed type-2 fuzzy controller has better VRR than the type-1 fuzzy control. 4 Uncontrolled Type-2 fuzzy control Electric field

2

1.5 0 1

Electric Field (kV/mm)

Displacement (mm)

2

-2 0.5

-4

0

1

2

3

4 Time (s)

5

6

7

0 8

 

Figure 23. Time response of the structure’s displacement for the real-time experiment for the external Figure 23. Time response of the structure’s displacement for the real‐time experiment for the external  vibration with the varying frequencies. vibration with the varying frequencies. 

6. Conclusions 6. Conclusions  A semi-active fuzzy controller for using a self-designed actively tunable vibration absorbers A  semi‐active  fuzzy  controller  for  using  a  self‐designed  actively  tunable  vibration  absorbers  (ATVA) is presented to suppress vibration of a thin plate. The ATVA is made of a sandwich (ATVA) is presented to suppress vibration of a thin plate. The ATVA is made of a sandwich hollow  hollow structure embedded with the electrorheological fluid (ERF). To implement the proposed structure  embedded  with  the  electrorheological  fluid  (ERF).  To  implement  the  proposed  fuzzy  fuzzy controller, the fuzzy rules are determined based on the experimental database for the specified controller,  the  fuzzy  rules  are  determined  based  on  the  experimental  database  for  the  specified  frequencies and amplitudes. Because there are uncertainties in modeling of the nonlinear characteristics frequencies  and  amplitudes.  Because  there  are  uncertainties  in  modeling  of  the  nonlinear  of ERF TVA, the proposed type-2 fuzzy controller shows better performance than the type-1 fuzzy characteristics of ERF TVA, the proposed type‐2 fuzzy controller shows better performance than the  controller. To confirm the consistency of the simulation and experimental results, the proposed type‐1  fuzzy  controller. To confirm the consistency of the simulation and experimental results, the  proposed controllers are implemented in the real‐time embedded controller (NI CompactRIO 9074;  National  Instruments  Corporation,  Austin,  TX,  USA).  The  experimental  results  show  that  the  proposed ATVA has the superior ability of absorbing vibration for this plate at the first and third  vibration modes (8 Hz and 77 Hz). The vibration reduction rate (VRR) of the plate structure using  the proposed ATVA is 81.5% for the first vibration mode. For the second vibration model, the VRR 

Appl. Sci. 2017, 7, 707

24 of 27

controllers are implemented in the real-time embedded controller (NI CompactRIO 9074; National Instruments Corporation, Austin, TX, USA). The experimental results show that the proposed ATVA has the superior ability of absorbing vibration for this plate at the first and third vibration modes (8 Hz and 77 Hz). The vibration reduction rate (VRR) of the plate structure using the proposed ATVA is 81.5% for the first vibration mode. For the second vibration model, the VRR of the plate structure using the proposed ATVA is 40.9%. The proposed type-2 fuzzy controller has the best performance at the frequency of 77 Hz, whose VRR is about 89%. The experimental results verified the effectiveness of the proposed semi-active vibration controller using the interval type-2 fuzzy system. Acknowledgments: The authors would like to thank the Ministry of Science and Technology of the Republic of China, Taiwan for financially/partially supporting this research under Contract No. MOST 104-2221-E-027-026 and MOST 105-2221-E-027-041. The authors also thanks the partially fund supporting from Project for developing the model university of science and technology. Author Contributions: Chih-Jer Lin conceived and designed the experiments; Chun-Ying Lee contributed reagents/materials/analysis tools; Ying Liu performed the experiments and analyzed the data; and Chih-Jer Lin wrote the paper. Conflicts of Interest: The authors declare no conflict of interest.

References 1.

2. 3. 4. 5. 6. 7.

8. 9. 10. 11. 12. 13. 14. 15. 16.

Carlson, J.D.; Catanzarite, D.M.; St. Clair, K.A. Commercial magneto-rheological fluid device. In Proceedings of the 5th International Conference ER Fluids, MR Fluids and Associated Technology, Sheffield, UK, 10–14 July 1995; pp. 20–28. Giurgiutiu, V. Review of Smart-Materials Actuation Solutions for Aeroelastic and Vibration Control. J. Intell. Mater. Syst. Struct. 2000, 11, 525–544. [CrossRef] Valliappan, S.; Qi, K. Review of seismic vibration control using ‘smart materials’. Struct. Eng. Mech. 2001, 11, 617–636. [CrossRef] Vautier, B.J.G.; Moheimani, S.O.R. Vibration reduction of resonant structures using charge controlled piezoelectric actuators. Electron. Lett. 2003, 39, 1036–1038. [CrossRef] Moheimani, S.O.R.; Vautier, B.J.G. Resonant control of structural vibration using charge-driven piezoelectric actuators. IEEE Trans. Control Syst. Tech. 2005, 13, 1021–1035. [CrossRef] Rodriguez-Fortun, J.M.; Orus, J.; Alfonso, J.; Gimeno, F.B.; Jose, A.; Castellanos, J.A. Flatness-Based Active Vibration Control for Piezoelectric Actuators. IEEE/ASME Trans. Mech. 2013, 18, 221–229. [CrossRef] Steiger, K.; Mokrý, P. Finite element analysis of the macro fiber composite actuator: Macroscopic elastic and piezoelectric properties and active control thereof by means of negative capacitance shunt circuit. Smart Mater. Struct. 2015, 24, 025026. [CrossRef] Zhang, S.; Yan, B.; Luo, Y.; Miao, W.; Xu, M. An Enhanced Piezoelectric Vibration Energy Harvesting System with Macro Fiber Composite. Shock Vib. 2015, 2015, 916870. [CrossRef] Beek, T.V.; Pluk, K.; Jansen, H.; Lomonova, E. Optimisation and measurement of eddy current damping in a passive tuned mass damper. IET Electr. Power Appl. 2016, 10, 641–648. [CrossRef] Scheidler, J.J.; Asnani, V.M.; Dapino, M.J. Dynamically tuned magnetostrictive spring with electrically controlled stiffness. Smart Mater. Struct. 2016, 25, 035007. [CrossRef] Olabi, A.G.; Grunwald, A. Design and application of magnetorheological fluid. Mater. Des. 2007, 28, 2658–2664. [CrossRef] Weber, F.; Maslanka, M. Frequency and damping adaptation of a TMD with controlled MR Damper. Smart Mater. Struct. 2012, 21, 055011. [CrossRef] Lin, C.J.; Yau, H.T.; Lee, C.Y.; Tung, K.H. System Identification and Semiactive Control of a Squeeze-Mode Magnetorheological Damper. IEEE/ASME Trans. Mech. 2013, 18, 1691–1701. [CrossRef] Lee, C.Y.; Cheng, C.C. Dynamic Characteristics of Sandwich Beam with Embedded Electro-Rheological Fluid. J. Intell. Mater. Syst. Struct. 1998, 9, 60–68. [CrossRef] Sun, Y.; Thomas, M. Control of torsional rotor vibrations using an electrorheological fluid dynamic absorber. J. Vib. Control 2011, 17, 1253–1264. [CrossRef] Lin, C.J.; Lee, C.Y.; Cheng, C.H.; Chen, G.F. Vibration Control of a Cantilever Beam Using a Tunable Vibration Absorber Embedded with ER Fluids. Int. J. Aerosp. Ind. Mechatron. Manuf. Eng. 2013, 7, 1412–1418.

Appl. Sci. 2017, 7, 707

17. 18. 19. 20. 21. 22. 23. 24.

25. 26. 27. 28. 29. 30. 31. 32.

33. 34. 35. 36. 37. 38. 39. 40. 41. 42. 43.

25 of 27

Lin, C.J.; Lee, C.Y.; Liu, Y.; Cheng, C.H. Interval Type-2 Fuzzy Vibration Control of a ERF Embedded Smart Structure. Int. Sci. Index Mechan. Mechatron. Eng. 2014, 8, 1215–1221. Song, G.; Ma, N.; Li, H.-N. Applications of shape memory alloys in civil structures. Eng. Struct. 2006, 28, 1266–1274. [CrossRef] Lee, C.Y.; Chen, C.C.; Yang, T.H.; Lin, C.J. Structural vibration control using a tunable hybrid shape memory material vibration absorber. J. Intell. Mater. Syst. Struct. 2012, 23, 1725–1734. [CrossRef] Damanpack, A.R.; Bodaghi, M.; Aghdam, M.M.; Shakeri, M. On the vibration control capability of shape memory alloy composite beams. Compos. Struct. 2014, 110, 325–334. [CrossRef] Lee, C.Y.; Pai, C.A. Design and implementation of tunable multi-degree-of-freedom vibration absorber made of hybrid shape memory helical springs. J. Intell. Mater. Syst. Struct. 2016, 27, 1047–1060. [CrossRef] Soltani, P.; Kerschen, G.; Tondreau, G.; Deraemaeker, A. Piezoelectric vibration damping using resonant shunt circuits: An exact solution. Smart Mater. Struct. 2014, 23, 125014. [CrossRef] Guo, K.; Jiang, J. Independent modal resonant shunt for multimode vibration control of a truss-cored sandwich panel. Int. J. Dyn. Control 2014, 2, 326–334. [CrossRef] Yan, B.; Zhang, X.; Luo, Y.; Zhang, Z.; Xie, S.; Zhang, Y. Negative impedance shunted electromagnetic absorber for broadband absorbing: Experimental investigation. Smart Mater. Struct. 2014, 23, 125044. [CrossRef] Qureshi, E.M.; Shen, X.; Chen, J. Vibration control laws via shunted piezoelectric transducers: A review. Int. J. Aeronaut. Space Sci. 2014, 15, 1–19. [CrossRef] Yan, B.; Luo, Y.; Zhang, X. Structural multimode vibration absorbing with electromagnetic shunt damping. J. Vib. Control 2016, 22, 1604–1617. [CrossRef] Necasek, J.; Vaclavik, J.; Marton, P. Digital synthetic impedance for application in vibration damping. Rev. Sci. Instrum. 2016, 87, 024704. [CrossRef] [PubMed] Kelley, C.R.; Kauffman, J. Adaptive Synchronized Switch Damping on an Inductor: A Self-Tuning Switching Law. Smart Mater. Struct. 2017, 26. [CrossRef] McDaid, A.J.; Mace, B.R. A Robust Adaptive Tuned Vibration Absorber Using Semi-Passive Shunt Electronics. IEEE Trans. Ind. Electron. 2016, 63, 5069–5077. [CrossRef] Tao, J.; Jing, R.; Qiu, X. Sound absorption of a finite micro-perforated panel backed by a shunted loudspeaker. J. Acoust. Soc. Am. 2014, 135, 231–238. [CrossRef] [PubMed] Shen, W.; Zhu, S.; Zhu, H.; Xu, Y.-L. Electromagnetic energy harvesting from structural vibrations during earthquakes. Smart Struct. Syst. 2016, 18, 449–470. [CrossRef] Yan, B.; Zhang, S.; Zhang, X.; Wang, C.; Wu, C. Self-powered electromagnetic energy harvesting for the low power consumption electronics: Design and experiment. Int. J. Appl. Electromagn. Mech. 2017, 54, 1–11. [CrossRef] Pérez-Díaz, J.; Valiente-Blanco, I.; Cristache, C. Z-Damper: A New Paradigm for Attenuation of Vibrations. Machines 2016, 4, 12. [CrossRef] Vaclavik, J.; Kodejska, M.; Mokry, P. Wall-plug efficiency analysis of semi-active piezoelectric shunt damping systems. J. Vib. Control 2016, 22, 2582–2590. [CrossRef] Yan, B.; Wang, K.; Hu, Z.; Wu, C.; Zhang, X. Shunt Damping Vibration Control Technology: A Review. Appl. Sci. 2017, 7, 494. [CrossRef] Frahm, H. Device for damping vibrations of bodies. U.S. Patent No. 989958, 18 April 1911. Korenev, B.G.; Reznikov, L.M. Dynamic Vibration Absorbers, Theory and Technical Applications; Wiley: New York, NY, USA, 1993. Den Hartog, J.P. Mechanical Vibration, 4th ed.; Dover Publication: New York, NY, USA, 1985. Zilletti, M.; Elliott, S.J.; Rustighi, E. Optimisation of dynamic vibration absorber to minimize internal power dissipation. J. Sound Vib. 2012, 331, 4093–4100. [CrossRef] Kela, L.; Vahaoja, P. Recent studies of adaptive tuned vibration absorbers/neutralizers. Appl. Mech. Rev. 2009, 62, 060801. [CrossRef] Brennan, M.J. Some recent developments in adaptive tuned vibration absorbers/neutralizers. Shock Vib. 2006, 13, 531–543. [CrossRef] Ghorbani-Tanha, A.K.; Rahimian, M.; Noorzad, A. A novel semiactive variable stiffness device and its application in a new semiactive tuned vibration absorber. J. Eng. Mech. 2011, 137, 390–399. [CrossRef] Winslow, W.M. Induced Fibration of Suspensions. J. Appl. Phys. 1949, 20, 1137–1140. [CrossRef]

Appl. Sci. 2017, 7, 707

44. 45. 46. 47. 48. 49. 50. 51. 52. 53. 54. 55.

56. 57. 58. 59. 60. 61. 62. 63. 64. 65. 66. 67. 68. 69. 70.

26 of 27

Yin, J.B.; Zhao, X.P. Electrorheology of nanofiber suspensions. Nanoscale Res. Lett. 2011, 6, 256. [CrossRef] [PubMed] Conrad, H.; Sprecher, A.F. Characteristics and mechanisms of electrorheological fluids. J. Stat. Phys. 1991, 64, 1073–1091. [CrossRef] Weiss, K.D.; Coulter, J.P.; Carlson, J.D. Electrorheological fluid under elongation, compression and shearing. J. Intell. Mater. Syst. Struct. 1993, 4, 13. [CrossRef] Block, H.; Rattray, P. Recent developments in ER fluids. In Progress in Electrorheology; Havelka, K.O., Filisko, F.E., Eds.; Plenum Press: New York, NY, USA, 1995; pp. 19–42. Choi, S.B.; Park, Y.K.; Cheong, C.C. Active vibration control of intelligent composite laminate structures incorporating an electro-rheological fluid. J. Intell. Mater. Syst. Struct. 1996, 7, 411–419. [CrossRef] See, H. Advances in modeling the mechanisms and rheology of electrorheological fluids. Korea-Australia Rheol. J. 1999, 11, 169–195. Hao, T. Electrorheological suspensions. Adv. Colloid. Interface Sci. 2002, 97, 1–35. [CrossRef] See, H. Advances in electro-rheological fluids: Materials, modelling and applications. J. Ind. Eng. Chem. 2004, 10, 1132–1145. Sung, J.H.; Cho, M.S.; Choi, H.J.; Jhon, M.S. Electrorheology of semiconducting polymers. J. Ind. Eng. Chem. 2004, 10, 1217–1229. Zhao, X.P.; Yin, J.B. Advances in electrorheological fluids based on inorganic dielectric materials. J. Ind. Eng. Chem. 2006, 12, 184–198. Quadrat, O.; Stejskal, J. Polyaniline in electrorheology. J. Ind. Eng. Chem. 2006, 12, 352–361. Zhao, X.P.; Yin, J.B.; Tang, H. New advances in design and preparation of electrorheological materials and devices. In Smart Materials and Structures: New Research; Reece, P.L., Ed.; Nova Science Publishing: New York, NY, USA, 2007; pp. 1–66. Kim, D.H.; Kim, Y.D. Electrorheological properties of polypyrrole and its composite ER fluids. J. Ind. Eng. Chem. 2007, 13, 879–894. Choi, H.J.; Jhon, M.S. Electrorheology of polymers and nanocomposites. Soft Matter 2009, 5, 1562. [CrossRef] Yalcintas, M.; Coulter, J.P.; Don, D.L. Structural modeling and optimal control of electro-rheological material based adaptive beams. Smart Mater. Struct. 1995, 4, 207–214. [CrossRef] Rahn, C.D.; Joshi, S. Modeling and control of an electro-rheological sandwich beam. J. Vib. Acoust. 1998, 120, 221–227. [CrossRef] Wei, K.X.; Meng, G.W.; Zhang, M. Vibration characteristics of a rotating beam filled with electrorheological fluid. J. Intell. Mater. Syst. Struct. 2007, 18, 1165–1173. [CrossRef] Choi, S.B.; Han, Y.M.; Sung, K.G. Vibration Control of Vehicle Suspension System Featuring ER Shock Absorber. Int. J. Appl. Electrom. 2008, 27, 189–204. Takawa, T.; Fukuda, T.; Nakashima, K. Fuzzy control of vibration of a smart CFRP laminated beam. Smart Mater. Struct. 2000, 9, 215–219. [CrossRef] Choi, S.B.; Han, S.S. H-infinite control of electrorheological suspension system subjected to parameter uncertainties. Mechatronics 2003, 13, 639–657. [CrossRef] Zadeh, L.A. The concept of a linguistic variable and its application to approximate reasoning-I. Inf. Sci. 1975, 8, 199–249. [CrossRef] Mendel, J.M. Uncertain Rule-Based Fuzzy Logic Systems: Introduction and New Directions; Prentice-Hall: Upper-Saddle River, NJ, USA, 2001. Kovacic, Z.; Balenovic, M.; Bogdan, S. Sensitivity based self learning fuzzy logic control for a servo system. IEEE Control Syst. Mag. 1998, 18, 41–51. [CrossRef] Lee, H.; Tomizuka, M. Robust adaptive control using a universal approximator for SISO nonlinear systems. IEEE Trans. Fuzzy Syst. 2000, 8, 95–106. Wang, J.S.; Lee, C.S. Self-adaptive neuro-fuzzy inference systems for classification application. IEEE Trans. Fuzzy Syst. 2002, 10, 790–802. [CrossRef] Golea, N.; Golea, A.; Benmahammed, K. Fuzzy model reference adaptive control. IEEE Trans. Fuzzy Syst. 2002, 10, 436–444. [CrossRef] Hojati, M.; Gazor, S. Hybrid adaptive fuzzy identification and control of nonlinear systems. IEEE Trans. Fuzzy Syst. 2002, 10, 198–210. [CrossRef]

Appl. Sci. 2017, 7, 707

71. 72. 73. 74. 75. 76.

27 of 27

Mendel, J.M. Fuzzy Sets for Words: A New Beginning. In Proceedings of the International Conference on Fuzzy Systems (IEEE FUZZ), St. Louis, MO, USA, 26–28 May 2003; pp. 37–42. Mendel, J.M. Computing derivatives in interval type-2 fuzzy logic systems. IEEE Trans. Fuzzy Syst. 2004, 12, 84–98. [CrossRef] Wang, C.H.; Cheng, C.S.; Lee, C.T. Dynamical optimal training for interval type-2 fuzzy neural network (T2FNN). IEEE Trans. Syst. Man Cybern. Part B 2004, 34, 1462–1477. [CrossRef] Mendel, J.M. Type-2 Fuzzy Sets and Systems: An Overview. IEEE Comput. Intell. Mag. 2007, 2, 20–29. [CrossRef] Kuo, C.T.; Lee, C.H. Network-based Type-2 Fuzzy System with Water Flow Like Algorithm for System Identification and Signal Processing. Smart Sci. 2016, 3, 21–34. [CrossRef] Wang, K.A.; Peng, Y.K.; Wang, F.C. The Development and Control of a Long-Stroke Precision Stage. Smart Sci. 2017, 5, 85–93. [CrossRef] © 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

Suggest Documents