x$%@ @He%%: STRUCTURAL PARAMETERS

18 downloads 0 Views 586KB Size Report
~fl$~3%+9EUi9HR%E&H. Q%@A% Pi. %miTH9 $q%%f&a5NtfifiB$R$UQtkBk9. &@%113%-Fg3&*5RR%o Nk*I$9%&m. @B8&Ni%H1Btk%fTiTZ&% El P%k*I$9.
2009 % 9

4%

a

Sep. 2009

ENGINEERING MECHANICS

87

z:a a T-HBB~R~~D%B~~~E@~JE~%NB%~R~~J~%O %z%B3m+$$g2m%a%NHlJE%l FAE

tLStTBBiR3U BFi%Nsa@ezEmREH, El !T%z$kmB*&$$ l uBN@m+$$@m%mK%o ti%, K % a I3 $%%NB%~+A$i&+t, EZ-+B%%N, N@-+$$@M%%fiS%B%%Nmfiu%E@EW l'@JB?!J2l' M@H#%, d ElJ@3%B%%NP94EB%$R@o %G, ZX~IU%E~I~EB@UEEN~@I~E~~% B%iR3U%$5,#N@-+B%iH%uR$$~2m%%fiS%%$3s%N~%z~am#3s0 &G, &F-+@%%N @SEa6H%mfiu%BnfiEWrdB?U%#lUE9 SR Ukfi+$$g2l@il%, &EZ%NEBe%uHdtgBT, x$%@ %@@HHUB$UPAE tLStTTiH3U, #sBBx%m%%StTTtLB0 %%3!d%z%m%NB%iR3(%%qs, Traa HB%W%NB%BBiR3uz?kqtTo #Big: %&I@%; iR%U; AHBE;$$g2RJ%; %316%%; HIIE; PAELL; U$2 0

@He%%: TP183; 0235

&!&iR59:

A

STRUCTURAL PARAMETERS IDENTIFICATION METHODOLOGY WITH DIRECT USE OF ACCELERATION TIME SERIES AND ITS VERIFICATION *XU

in'.^, LU ping3, SONG ~ a n ~ - b i n ~ ~

(1. College of Civil Engineering, Hunan University, Changsha, 410082, Hunan, China;

2. Key Laboratory of Building Safety and Energy Efficiency (Hunan University), Ministry of Education, Changsha, 410082, China;

3. SINO-COAL International Engineering Group, Chongqing Design & Research Institute, Chongqing, 400016; 4. Department of Mechanical Engineering, University of Houston, Houston, TX 77204-4006, USA)

Abstract: A novel time domain neural networks based structural stiffness and damping parameters identification methodology with the direct use of structural acceleration time series is proposed, which is called hrect soft parametric identification (DSPI). The theoretical fundamentals of the methodology is explained and the architecture of the two neural networks is described according to the discrete time solution of the state space equation of the structural vibration differential equation. An evaluation index called the root mean square of the acceleration prediction difference vector (RMSAPDV) is defined and employed to identify structural parameters. Based on an acceleration-based neural network modeling (ANNM) for the reference structure which parameters are determined by an estimation of an object structure, and a parameter evaluation neural network(PENN) that describes the relation between structural parameters and the components of the corresponding RMSAPDVs, the inter-storey stiffness and damping ratio of a frame model structure excited by a shaking table with known mass distribution, are identified by the direct use of acceleration measurements. Compared with the identified structural parameters from sweep frequency tests, results show that structural parameters can be identified with acceptable

accuracy and the proposed method is an applicable approach closing to real-time direct identifications. Key words: structural parameter; identification; acceleration; neural network; shaking table test; stiffness; damping ratio; time series

*SI*+ RHB%$U$*&B6$%B&K% ~ f l $ ~ 3 % + 9 E U i 9 H R % E &Q H% @ A % Pi %miTH9 $q%%f&a5NtfifiB$R$UQtkBk9 &@%113%-Fg3&*5RR%oNk*I$9%&m @B8&Ni%H1Btk%fTiTZ&% El P%k*I$9 ~ ~ m l ~ m s ~ f ~ i ~ ~~ ~ m ~f ~i 2 m - ~

~fiE@!JsmRE@$uRamBM%m%fi@B$u tfifiiE%uE&BN&a%fim3*1B$ui&H1Btk %fTiW&R*?ZZE&9 &S&% 30 FSEIP%k% EWE T T ? ~ R R-210 [' E+&iZY9$$@M2&qUZ%i3iq%1B@4F% fi%-H@tEitBE%, m E n 2 % f t RJiEXd, MW!Jb$%@WF!J TT?2EHr3-510 -4% v m % @ T sf sf$$@ M2&HtfifiZ1BiR%U E E~YU%%fiBBE+ffifi[~-~~. kWl9 Yun N Bahng gf $$@M%$!JH f t i z@ % @ %!%$8# % f i E & N B 2 % &IYI WUbBB%fT T ZS~RRI[~] XU % @ ~ T S T $ @ @ M % B B S H % f t @3E @\ BS%E%nr;ilEw$2mZs%fi@BtE%IJE%, # -----------------9

*

A

:

#@@$I&% ANNM

1

I

its!d~

I

%I%: #ElSUPl&% PENN

% &RMSAPDV

I

Ei 1 &TBnBEW@E+$g3m%N%@SBiE%UZ%%E Fig. 1 Flowchart of the proposed acceleration time series based parametric identification methodology with neural networks

iH3lJ $*%B & rn%@BBiR%UEt& 8B#%E 0

$%$urn

@$~%B~fiEH~fiJ@?U2l'a8&&#%. %k,

1 E Z , X @ J L \ B ~ + $ $ % M ? & , lip&% ZLB@&%qU+tB&B%%@&%@lB&hu% B % B T ~ % H $ U % B ~ ~ I ~ E D %G@B-'P $@, %&8Bf:hu%B @ J E 8 $ $ % Fhy?&@%(~cceleration-based Neural Network Modeling, ANNM)$U B?!@ ANNM u8i!&%A5@~+a%&9~2l'48&kH %. @B%$$*2M?&@@8BB+fi&@%%@& if! %d 81 $9 % % (Parametric Evaluation Neural %8%BSx9 @ $ I % G 8 ANNM g&8i!%B% Network, P E W ) .

wRH#% %-$%B%%@UBB'f$u%B8B%% % ~ ~ $ u % B I J ~ ~ E D $ ~ ~ B P u ~ ~ PI i+%B%%m8-+4FB%+g@, rnH%RH%% EJ4FBBik$$@M%&@8@Bo BTH El $Z%% A % i t B + % 5z* EilB%%fi8EB. W~JB8iPHERSo% u , E.L!#@jll%%f8 ANNM %%i!~lB%%@m%H G&*-+$$@M%#B@%B&B%%@8$u% $ U % B @ I E H @ , $aT$%Z: E @ I E H R I B ? U ~ M ~ @ I B %%$$@M%B@ %, xk ..f = ANNM(jiC-2, Xk-l) , k = 2 , - - -N , (5) EB%%%-%4Fs%fitg% TmM-+$Q&B%%8sa#%E@m 8 : Xi %%WII~B%%@% k %i%HAUPB9;1J i%H#&E9 % % @ @ B % % t 4 8 4 F B B f i $ $ @ M : Xk-, $0 Xk-, k-2 %@%k-1 $AtJgejM %@@8BtkB&$o $u%BafiE n Q EilB%1B%@8sa%%E$2%: %=%, El?* M+%B%%@~G$HH%@& MX+Cx+Kx= Iuu (1) @ R B % + H 8 % B % @ , #+tBX&%B%%@ 0

.

-+

H+A~~~~@~u%~%BT~~ X m , (k = l , 2 , - . , N) %j3$11%8 ANNM

I

,

0

% G , %HB%FJ$U%B@JE

8%A5@E9qL!fq$d@Em

. B'fBH,

~il'f%B%@@B%%@

Square of Acceleration Prediction Difference Vector, RMSAPDV) N T EIm={EI~) E I ~ ) EImmJ , j=l,...,Nm

.

--•

%P%I%EH +, BZL$u%Bi+@#%@4$u% E%%@%HhI%BoH T 5 2 B E % B K J % @ , B ;f$(3)8$(4), q UiZBa%@&% k Hbd8%H$~ BB@E%*&% k-1 Hb%@% k-2 Hb!IFJ%H$U B B R Z , k#%& Lee $a Yun 8B%+&&E 81[1410'f 2,3uB*-+$$@M?&tg@%B&%

- - a

3 1 B*S&@BI Parameters of the reference structure Table 1

$0M%U@tlL&m%&@&%URMSAPDV %

m

&Fft@J$ll%%?lB%$II$& PENN, &$ll%m PENN U#$!j% RMSAPDV 5j%&B&21's7m@&%%o %Z%, %giJll El $5%@Kf$nSB~fiEB$@{+ ANNM b!J%A, @?wit$$$El#%%& RMSAPDV, PENN m%h9 & e$ll

%Zl%fim

m

##fz{?%

&Atl PENN @?mit-B$ Elbi%N139%&B&~

2.3

ANNMsPENN@f$Q&

% T B ! I R B U S R ~ J U S + % F ~ %Hi&%% ~~~, @13n%RB$$9%47%B@@0 %E%P%%@I I2 Em @ @ J B H , j!?B%B%@b9kT&!tkB@% 1.OHz- 10.OHzo g8@@% m&@,fJLJ%B{?%%k8J9 %H Hilber-Hughes-Taylor ~(HHT)$&~~$$B%%&

fufitil%@AtlBuSB~I;iJE~l$$3[~~~~ &T&#kR%Eb E%@ur;jJ)Gi$~@!lJ\, [email protected] $11 6.33s i$l'iilB 3s ~$R%@@JEB$$~{F%$II% ANNM $U PENN @I

%?la0 & S ( S ) ~ % UHT$2BtlA+I2 , &B%&9 ANNM m%AL$$$$2?&El% 4, %$E$$%%& % 2, ANNM m%@J%&fiLl@ 4

%so

H 2 E$J6%% Fig.2 Shaking table test

2.2

+~Z!!S+Qrn$tB+3@

u H 4 ANNMM% Fig.4 Architecture of the ANNM

$2@jia%@mPBE%%$d(~ayleigh)PRE,PB &TS%tg@EP$*Rxm El ~z%&m%[!J E%%N U%Z&3LlT%S: B@k. ~ J U F J ~ % A B ~8% &btBBm%+E + C=a,M+a,K (9) S@%,3uB 3 %?is0 @%%N%uU@%&@%rn 3 : a,%E%tC@~PBE%B: a, %WdBtd@UPB $ &B%+EBt%$o% ~ m B w i J E 6 ~ ~% , ~ E%Bo H5%&8tJ%&m+A%l&it9 @S%%Mtf%L3n %NPBE BCJPBE tC%B$m%%m%z%[161:

;tzwm!

H3 Fig.3 Computational model

5 2 ANNM @ f%!I3iZ% I Table 2 Prediction error of ANNM

$(io)+i%

m- n

%Xd%Z%

f~

m- % n@&. f;

a 3(8)@Zt(l OC)@@-:

%3

((kl,...,kn,...,k,)m,em)=PENN(EIm) &+ m %%% m

(11)

+%a%&.

PENN m@$@J&B&3$(ll), #%@JtUH 5 @f?j?.kR%f$%mB RMSAPDV %%&&%(@I]

-1

I

i?$ [ElI s

B ~ P Ht B ~ ) m m # ~ iissmmmaa8a , RMSAPDV X$%&@?&m&gg%@Bm%$& 1.5 EfEL9-"]. W f $ X i a j + 12FBEtBE!, R%B%AE ?$%n;%W% 2, . f t - X d X $ E % & ~ ~ + Q ~ ~ S ( 3 RMSAPDV, $$ikbE?$@ZBH%

MKffi+EI's7W!J@@-+PHB tL

.

3,

(a) El

.ft-81JR%% -1.5 1

&I2

&E 1

NTs71s (b) El &E2

6 @%%%l;h~%E@lE&fZNk.k Fig.6 Comparison between the acceleration determined by integration and those predicted by the trained ANNM

BIB@EIB

.

RMSAPDV

%r$ll% PENN,

%3%%-%& BN%IPS-%&a %%4-, X$3Hii;%%&b!JB&m.ft&%B-EZ%TE@m, TE, FJUBZLg-2 $Ilk%%,

El5 P E N N ~ % Fig.5 Architecture of the PENN

%Hb&@-%m%&B%@*&&%EP5%&.

% 3 %%%$53%+&@m%a%El&@!JE,

PHB

tL@@.ft-Xu% 5%- 6%, 7%, %&q-p% 300 $$Z% 5 PENN b!lijll% $gH+tB%f9B%%&m%-E$u%=Em &@&, fim&& 300 +%@%&. %E3?flHt%% &mBB%&%&&m2l'flkm,Gm& H %XPF, ~ I I % @ ~ I ~ I @ F ~ ~ % & $ ~ ~ % & @QI%@*z , &%2&+BB%XPF%$qgH&o %Tf$%%@R l%I6J&#%&X$ ANNM %f?$Il%. ANNM B E $ @ Bm2IqgBBgH&%iRXljtgt%2rq rn#% , -$q %Z& BZL;i@f@%.$X+ ANNM b!J%E$$ z ~ ~ B g f i ~ ~ ~ m ~ r q k H~mt n ~ @ Z H@ 1 6 , 2 z?A0%jllg% RP-3% H KJBBtH&, +t%#X$ErniRXlJtg i% ANNM fi$%~@&f$%@%%&m% k $$u&

2.4 ANNM

,\\\

Enl;il)G%% k-1

3% @ $% I& tid)

a

$$fl

k-2

9

PENN % $h~%E$~Ert,Iqm $%, @& PENN mjllg%&B, aZL$Il@i@J f$% RMSAPDV %%&Bj&2r's7 m@N%%.

6 %@%%&BZL%@$R%%~~~$D%EDI~I Egll%%l ANNM %8!1 b!J$U%@OT;i]

E@I& tL@, m%m%4FRm20 B%%&$t%% 3.35s 3id 6.33s Ffr's7g2.98s m$~%@nl;i]@Ff B@ ANNM B~lmFI~r~&mnu%EFfB2r's3% H E @ ~ W $ Z R @ M X $ E @ ~ ~ 2E%Z0 R~U% q!X,!,,@%%@mqkB%&?$!! ANNM g%Z@m %@a

53 Table 3

~ ~ ~ ~ ~ w l ~ l f ~ m r n ~

Stiffness of associated structures

Z$ll%b!J ANNM m%$iA9it%%-%k!h%&J@El?J RMSAPDVo % G 9 ]@s 135 ? % B % & l ? j RMSAPDV {$%$II% PENN lB%$iAE&R, fi%$ikb EBBJ~J%@E~%-%B%NB~~%NB&(NIJB, PH B tk), Rf PENN Sf?$ll goPENN RE$$%?%& H m#&%$$@%o &%%E$$tGZ& H % 6, j l l % f%%fi&% 5 xo$I/%%%%, PENN m@Z$U z? 4 ~n%NNl~B%wEm$ll%@E@~l~, % S o

fiPHB%wEm%z@w@%o % 4 PENN ~ l l % # B 3 $ E ~ Table 4 Relative error of trained PENN

El 7 BtZ%fil@%nt-iQ Fig.7 Fourier transfer spectrum of the object structure

~ N E ~ ~ ~ I i # ~ ( % ) 8% 1 EECCl HUE? % 2 EEI'ClHUE? IBE :'k

3.1

$8$R$lj

2.71 4.67 9.89

z#Z

%!lH%$@l H#%%N%&Gm%-E, %IE$u %l$VfiIEW$g{$% E$ll% ANNM l@%$iA&B, -id%t~2rl@Em RMSAPDVo%%]@RMSAPDV {

%$$?%Ukb H #%%@b!JN!@$U PHE tLo t;a\Xd%%$nS 5 %So E$ll%b!J PENN b!J%$iA,

5E 5 H &%@GBiE3IJ%S Table 5

Parameters identification results of the object structure

(a) El &@ 1

Fig.8 Comparisons between the acceleration responses determined by integration and test measurements

[7]

[8]

[9]

non-parametric damage detection through the use of neural networks [J]. Earthquake Engineering and Structural Dynamics, 1998,27(6): 997- 1010. Worden K. Structural fault detection using a novelty measure [J]. Journal of Sound and Vibration, 1997, 201(1): 85- 101. Yun C B, Bahng E Y. Substructural identification using neural networks [J]. Computers and Structures, 2000, 77: 41 -52. Xu B, Wu Z S, Chen G. Direct identification of structural parameters from dynamic responses with neural networks [J]. Engineering Applications of Artificial Intelligence, 2004, 17(8): 93 1-943.

[lo] Xu B, Wu Z S, Yokoyama K. A soft post-earthquake damage identification methodology using vibration time series [I]. Smart Materials and Structures, 2005, 14(3): s116-s124. [11] Xu B, Chen G, Wu Z S. Parametric identification for a truss structure using axial strain [J1. Computer-Aided Civil and Infrastructure Engineering, 2007,22: 34-46.

[l]

[2]

[3]

[4]

[5]

[6]

Wu Z S, Xu B, Harada T, Review on structural health monitoring for infrastructure [J]. Journal of Applied Mechanics, JSCE, 2003,6: 1043- 1054. Doebling S W, Farrar C R, Prime M B. A summary review of vibration-based damage identification methods [J]. Shock and Vibration Digest, 1998, 30(2): 91 - 105. Chang C C, Roschke P. Neural network modeling of a magnetorheological damper [J]. Journal of Intelligent Material Systems and Structures, 1998,9: 755 -764. Ghaboussi J, Joghataie A. Active control of structures using neural networks [J]. Journal of Engineering Mechanics, ASCE, 1995, 121(4): 555 -567. Feng M Q, Kim D K, Yi J-H, Chen Y. Baseline models for bridge performance monitoring [J]. Journal of Engineering Mechanics, ASCE, 2004, 130(5): 562- 569. Nakamura M, Masri S F, Chassiakos A G. A method for

[12] Wu Z S, Xu B, Yokoyama K. Decentralized parametric damage based on neural networks [J]. Computer-Aided Civil and Infrastructure Engineering, 2002, 17: 175184. [13] Xu B, Wu Z S, Yokoyama K. A localized identification c method with neural networks and its application to structural health monitoring [J]. Journal of Structural Engineering, JSCE, 2002,48A: 4 19-427. [14] Lee C G, Yun C B. Parameter identification of linear structural dynamic systems [J]. Computers and Structures, 1991,40(6): 1475- 1487. [15] %!ti$ .L 4ma. % R J % h % a h % $ h - S ~ i j E i j ~ E I ~ Y r n @ B 3 & [ M ] .% 4 &. ALJz&Ik*R4+E*R P R W l , +B@%$5%SifR%%*. ALG: $%Ilkdj%%k,2006: 201 -208. Wilson E L. Static & dynamic analysis of structures-A physical approach with emphasis on earthquake engineering [MI. 4th ed. Translated by Civi King Software Technology Co., Ltd., and China Institute of Building Standard Design and Research. Beijing: China Architecture & Building Press, 2006: 201 - 208. (in Chinese) [I61 % ~ 5 kR, $%$ J. %&%bhY[M]. % 2 &(!%%Tkk). %&. ALZ: &%&Bkb&?k, 2006: 183192. Clough R, Penzien J. Dynamics of structures [MI. 2nd ed (Revised). Translated by Wang Guangyuan. Beijing: Higher Education Press, 2006: 183- 192. (in Chinese)

+ma!

z%s,

Suggest Documents