geelong-gl-australia-national_tidal_centre. Port Adelaide, AUS. 1976â2014 port_adelaide_outer-oh-australia-national_tidal_centre. Wallaroo, AUS. 1987â2014.
Journal of Geophysical Research Oceans Supporting Information for Can we model the effect of observed sea level rise on tides? M. Schindelegger1, J.A.M. Green2, S.‐B. Wilmes2,3, I.D. Haigh4 1Institute of Geodesy and Geoinformation, University of Bonn, Bonn, Germany 2School of Ocean Sciences, Bangor University, Menai Bridge, UK 3College of Earth, Ocean, and Atmosphere Science, Oregon State University, Corvallis OR, USA 4Ocean and Earth Science, National Oceanography Centre Southampton, University of Southampton, UK
Contents of this file Tables S1 to S5 Figures S1 to S4
Introduction Table S1 and Figure S1 complement the SAL considerations of the main article with results from timing experiments and a plot of the M2 errors incurred by taking the time step‐wise spherical harmonic transformation to degree instead of . Figure S2 highlights how uncertainties in GIA‐induced crustal motion affect the M2 responses to relative SLR in the Northwest Atlantic and in the Gulf of Mexico. The adopted expectation and standard deviation ( ) fields of global uplift rates were taken from Caron et al. [2018], who derived their statistics from a multitude of GIA forward models with varying ice sheet histories and 1D Earth structures. Values of across the Northwest Atlantic forebulge area are . . ; cf. Figure 3 of Caron et al. [2018]’s supporting information. Estimates of mean crustal subsidence in the implemented scenarios are . (expectation), . (expectation ), and . (expectation ), roughly consistent with the range of plausible values deduced by Tamisiea [2011]. Figure S3 displays changes in the M2 response to SLR with altimetric sea level rates replaced by a spatially constant trend imposed at the sea surface. Tables S2 to S4 provide additional information on the tide gauge analysis, including time spans and exact data sources of the 45 observing sites (Table S2) and numerical trend estimates for M2 (Table S3) and the K1 constituent (Table S4). A comparison of measured and modeled K1 responses to SLR is given in Figure S4, while Table S5 summarizes the RMS variability of relative tidal trends in both tide gauge data and model simulations. Note that observed K1 trends are insignificant at the majority of the stations, prohibiting a meaningful evaluation of the model skill for this particular constituent.
1
Table S1. Serial and parallel model execution times using different SAL implementationsa,b,c SAL treatment Scalar Online, Online,
1 thread 0.825 s ( ) 1.631 s (98%) 1.122 s (36%)
8 threads 0.199 ( ) 0.300 s (51%) 0.231 s (16%)
Entries list wall‐clock times for one time step in our ⁄ ° runs on an Intel Xeon E5‐2650v2 (2.6 GHz) with 8 cores. Numbers in brackets denote increase in computation times relative to runs based on the scalar SAL scheme. a
b
The inherent model time step is 3 s, leading to wall‐clock times of 41 h for 17 days of integration with in the SAL decomposition.
c
The SAL overhead for serial execution (98%) implies that parallelization efficiently speeds up the SHT part of the code; the model itself scales with an approximate factor of 1.6 for doubled CPU resources.
Figure S1. M2 RMS error (cm) of a ⁄ ° tidal integration with spherical harmonic transforms in the SAL computation truncated at instead of . The M2 solution using is taken as reference.
2
Figure S2. Modeled response of M2 amplitudes (cm) in the Northwest Atlantic and the Gulf of Mexico to a non‐uniform SLR of 0.5 m based on three different maps of crustal motions: (a) GIA expectation signal minus (standard deviation), (b) unperturbed expectation signal, and (c) expectation signal plus . GIA statistics were taken from Caron et al. [2018].
Figure S3. M2 amplitude differences (cm) between 0.5‐m SLR simulations using spatially varying absolute sea level trends (Figure 3a in the main text) and a uniform increase in absolute sea level. ICE‐6G_C was adopted as crustal motion model in both simulations (that is, relative sea level changes are still non‐uniform in both cases). Differences are plotted in the sense trend‐SLR minus uniform‐SLR, so that positive values indicate larger positive (or smaller negative) M2 trends in the trend‐SLR run.
3
Table S2. Start and end dates of the analyzed tide gauge records from UHSLC and GESLA‐2 [Woodworth et al., 2017], with exact station names included for the latter archive Lower Escuminac, CAN Halifax, CAN Yarmouth, CAN Bar Harbor, USA Portland, USA Boston, USA Nantucket, USA New London, USA Sandy Hook, USA Atlantic City, USA Cape May, USA Lewes, USA Reedy Point, USA Chesapeake Bay, USA Annapolis, USA Charleston, USA St. Petersburg, USA Key West, USA Smogen, SWE Esbjerg, DEN Cuxhaven, GER Delfzijl, NED Hoek van Holland, NED Lowestoft, GBR Aberdeen, GBR Wick, GBR Ullapool, GBR Millport, GBR Port Patrick, GBR Heysham, GBR Newlyn, GBR Cherbourg, FRA Brest, FRA Townsville, AUS Gladstone, AUS Brisbane, AUS Spring Bay, AUS Williamstown, AUS Geelong, AUS Port Adelaide, AUS Wallaroo, AUS Port Lincoln, AUS Fremantle, AUS Port Hedland, AUS Broome, AUS
Time Span
GESLA‐2 name (if not UHSLC site)
1986–2014 1935–2012 1985–2014 1979–2013 1937–2014 1935–2014 1977–2014 1939–2014 1976–2014 1975–2012 1966–2014 1957–2014 1982–2014 1976–2014 1950–2014 1935–2014 1950–2014 1950–2014 1960–2014 1977–2014 1935–2014 1971–2014 1971–2006 1964–2014 1981–2014 1972–2014 1985–2014 1978–2014 1968–2014 1964–2014 1935–2009 1985–2013 1953–2014 1980–2014 1982–2014 1985–2014 1986–2014 1976–2014 1976–2014 1976–2014 1987–2014 1967–2014 1970–2014 1985–2014 1989–2016
lowerescuminac,nb‐02000‐canada‐meds yarmouth,ns‐00365‐canada‐meds barharbor,frenchmanbay,me‐8413320‐usa‐noaa sandyhook‐8531680‐usa‐noaa atlantic_city‐264a‐usa‐uhslc reedypoint‐8551910‐usa‐noaa annapolis_navalacademy_‐8575512‐usa‐noaa st.petersburg‐8726520‐usa‐noaa smogen‐020‐sweden‐smhi esbjerg‐130121‐denmark‐dmi cuxhaven‐cuxhaven‐germany‐bsh delfzijl‐del‐nl‐rws hoekvanholla‐hvh‐nl‐rws lowestoft‐p024‐uk‐bodc aberdeen‐p038‐uk‐bodc wick‐p035‐uk‐bodc ullapool‐p043‐uk‐bodc millport‐p049‐uk‐bodc portpatrick‐p063‐uk‐bodc heysham‐p050‐uk‐bodc cherbourg‐cherbourg‐france‐refmar townsville‐tl‐australia‐national_tidal_centre gladstone‐gd‐australia‐national_tidal_centre brisbane‐bb‐australia‐national_tidal_centre spring_bay‐sb‐australia‐national_tidal_centre williamstown‐wm‐australia‐national_tidal_centre geelong‐gl‐australia‐national_tidal_centre port_adelaide_outer‐oh‐australia‐national_tidal_centre wallaroo‐wo‐australia‐national_tidal_centre port_lincoln‐pl‐australia‐national_tidal_centre fremantle‐fm‐australia‐national_tidal_centre port_hedland‐ph‐australia‐national_tidal_centre
4
Table S3. Secular trends in amplitude and phase lag fitted to the annual M2 estimates of stations specified in Table S2
(cm)
Lower Escuminac, CAN Halifax, CAN Yarmouth, CAN Bar Harbor, USA Portland, USA Boston, USA Nantucket, USA New London, USA Sandy Hook, USA Atlantic City, USA Cape May, USA Lewes, USA Reedy Point, USAa Chesapeake Bay, USA Annapolis, USA Charleston, USA St. Petersburg, USA Key West, USA Smogen, SWE Esbjerg, DEN Cuxhaven, GER Delfzijl, NED Hoek van Holland, NED Lowestoft, GBR Aberdeen, GBR Wick, GBR Ullapool, GBR Millport, GBR Port Patrick, GBR Heysham, GBR Newlyn, GBR Cherbourg, FRA Brest, FRA Townsville, AUS Gladstone, AUS Brisbane, AUS Spring Bay, AUS Williamstown, AUS Geelong, AUS Port Adelaide, AUS Wallaroo, AUS Port Lincoln, AUS Fremantle, AUS Port Hedland, AUS Broome, AUS
25 63 165 156 136 137 44 36 68 58 71 60 76 38 13 77 16 18 10 72 136 134 79 69 129 101 149 111 133 315 171 186 205 74 120 70 30 24 27 50 17 24 5 170 240
∆ (mm cy‐1) ‐20 ± 3 ‐17 ± 2 51 ± 21 60 ± 17 59 ± 4 23 ± 4 34 ± 5 7 ± 1 12 ± 4 ‐13 ± 4 ‐17 ± 6 ‐22 ± 2 62 ± 19 ‐8 ± 2 ‐24 ± 1 21 ± 2 15 ± 3 4 ± 1 33 ± 2 111 ± 12 89 ± 10 180 ± 18 71 ± 10 ‐73 ± 4 ‐32 ± 8 13 ± 4 ‐17 ± 4 42 ± 7 34 ± 3 64 ± 12 14 ± 2 66 ± 12 21 ± 4 43 ± 6 23 ± 9 32 ± 9 ‐63 ± 9 22 ± 2 28 ± 4 87 ± 6 ‐21 ± 4 ‐14 ± 2 4 ± 1 ‐26 ± 7 ‐63 ± 17
% ∆ (cy‐1) ‐7.8 ± 1.3 ‐2.7 ± 0.3 3.1 ± 1.3 3.8 ± 1.1 4.4 ± 0.3 1.7 ± 0.3 7.8 ± 1.3 1.9 ± 0.3 1.7 ± 0.6 ‐2.2 ± 0.7 ‐2.4 ± 0.8 ‐3.7 ± 0.4 8.1 ± 2.5 ‐2.0 ± 0.5 ‐19.2 ± 1.0 2.7 ± 0.3 9.0 ± 1.6 2.2 ± 0.4 31.4 ± 2.2 15.4 ± 1.6 6.5 ± 0.7 13.5 ± 1.3 9.0 ± 1.2 ‐10.5 ± 0.6 ‐2.5 ± 0.6 1.2 ± 0.4 ‐1.1 ± 0.3 3.7 ± 0.6 2.5 ± 0.2 2.0 ± 0.4 0.8 ± 0.1 3.5 ± 0.6 1.0 ± 0.2 5.8 ± 0.9 1.9 ± 0.8 4.6 ± 1.2 ‐21.2 ± 3.1 9.5 ± 0.9 10.4 ± 1.3 17.3 ± 1.2 ‐12.9 ± 2.3 ‐5.8 ± 0.7 7.0 ± 2.1 ‐1.5 ± 0.4 ‐2.6 ± 0.7
∆ (° cy‐1)
‐1.2 ± 1.8 1.8 ± 0.4 ‐3.1 ± 0.6 ‐2.6 ± 0.8 0.3 ± 0.2 ‐0.8 ± 0.2 ‐4.9 ± 0.9 1.6 ± 0.3 ‐5.2 ± 0.9 ‐0.6 ± 0.4 ‐0.8 ± 0.5 2.4 ± 0.4 4.1 ± 1.0 ‐0.5 ± 0.5 ‐1.2 ± 0.7 ‐2.7 ± 0.3 ‐7.0 ± 0.8 ‐1.0 ± 0.4 16.5 ± 3.1 0.4 ± 2.2 ‐4.4 ± 0.3 ‐5.5 ± 0.7 1.8 ± 1.3 3.5 ± 0.4 0.7 ± 0.5 0.4 ± 0.5 ‐0.3 ± 0.3 ‐1.3 ± 0.5 0.5 ± 0.4 ‐0.6 ± 0.3 ‐2.5 ± 0.2 ‐1.4 ± 0.7 1.0 ± 0.2 ‐0.8 ± 0.9 1.8 ± 0.9 12.0 ± 1.3 3.1 ± 1.5 0.3 ± 1.3 4.3 ± 0.9 ‐2.1 ± 0.9 4.0 ± 2.6 ‐4.4 ± 0.8 0.5 ± 1.9 ‐1.2 ± 0.5 ‐1.9 ± 0.7
a
Results in Ross et al. [2017] imply a negative phase trend in the Reedy Point observations, which would resolve the mismatch with our numerical predictions of response coefficients in Figure 7b of the main text. The Ross et al. [2017] estimate of the M2 phase response to SLR is however inconsistent with their own Figure 4, possibly affected by an inadvertent switch in sign.
5
Table S4. Secular trends in amplitude and phase lag fitted to the annual K1 estimates of stations specified in Table S2 Lower Escuminac, CAN Halifax, CAN Yarmouth, CAN Bar Harbor, USA Portland, USA Boston, USA Nantucket, USA New London, USA Sandy Hook, USA Atlantic City, USA Cape May, USA Lewes, USA Reedy Point, USA Chesapeake Bay, USA Annapolis, USA Charleston, USA St. Petersburg, USA Key West, USA Smogen, SWE Esbjerg, DEN Cuxhaven, GER Delfzijl, NED Hoek van Holland, NED Lowestoft, GBR Aberdeen, GBR Wick, GBR Ullapool, GBR Millport, GBR Port Patrick, GBR Heysham, GBR Newlyn, GBR Cherbourg, FRA Brest, FRA Townsville, AUS Gladstone, AUS Brisbane, AUS Spring Bay, AUS Williamstown, AUS Geelong, AUS Port Adelaide, AUS Wallaroo, AUS Port Lincoln, AUS Fremantle, AUS Port Hedland, AUS Broome, AUS
(cm) 21 10 14 14 14 14 9 7 10 11 10 10 9 6 6 10 16 9 0 5 7 7 7 12 11 11 11 11 11 12 6 9 6 34 27 21 14 10 10 25 33 24 17 24 25
∆ (mm cy‐1) ‐13 ± 8 5 ± 2 2 ± 5 1 ± 3 5 ± 1 0 ± 1 3 ± 2 ‐4 ± 1 1 ± 3 ‐3 ± 3 ‐1 ± 2 ‐4 ± 2 12 ± 4 ‐2 ± 3 5 ± 2 6 ± 1 1 ± 2 0 ± 1 2 ± 1 7 ± 7 5 ± 2 9 ± 5 6 ± 5 ‐1 ± 4 2 ± 6 5 ± 3 ‐2 ± 4 20 ± 5 17 ± 4 22 ± 5 3 ± 1 14 ± 5 4 ± 1 7 ± 3 7 ± 4 ‐7 ± 7 4 ± 2 14 ± 2 11 ± 2 14 ± 3 26 ± 7 4 ± 2 16 ± 2 ‐7 ± 4 ‐8 ± 3
% ∆ (cy‐1) ‐6.0 ± 4.0 5.0 ± 1.7 1.4 ± 3.3 0.8 ± 2.3 3.7 ± 0.8 ‐0.3 ± 0.7 3.6 ± 2.4 ‐5.2 ± 1.4 1.0 ± 2.5 ‐3.1 ± 2.6 ‐0.7 ± 2.0 ‐4.2 ± 1.5 12.9 ± 5.0 ‐4.2 ± 4.6 8.3 ± 2.9 5.4 ± 0.9 0.8 ± 1.2 ‐0.2 ± 1.0 60.7 ± 46.0 13.8 ± 12.3 7.0 ± 2.9 12.5 ± 6.1 8.5 ± 7.1 ‐0.5 ± 3.2 1.5 ± 5.5 4.4 ± 2.5 ‐2.2 ± 3.8 17.7 ± 4.3 15.7 ± 3.3 17.8 ± 4.3 4.3 ± 1.3 14.4 ± 5.7 6.5 ± 2.0 2.0 ± 0.8 2.7 ± 1.6 ‐3.2 ± 3.3 3.1 ± 1.7 14.7 ± 1.8 11.5 ± 2.5 5.5 ± 1.2 7.7 ± 2.1 1.6 ± 0.9 9.4 ± 1.4 ‐2.8 ± 1.5 ‐3.1 ± 1.2
∆ (° cy‐1)
‐5.9 ± 3.5 1.0 ± 0.7 ‐2.4 ± 1.2 ‐1.4 ± 1.2 1.4 ± 0.5 ‐0.6 ± 0.4 ‐4.0 ± 1.2 ‐3.2 ± 0.9 ‐5.1 ± 1.9 ‐1.2 ± 1.9 ‐1.9 ± 1.5 2.6 ± 0.9 ‐1.7 ± 3.6 ‐4.0 ± 1.9 74.2 ± 50.0 ‐2.2 ± 0.6 ‐6.9 ± 0.9 0.5 ± 36.4 ‐183.4 ± 65.9 ‐17.8 ± 10.4 0.8 ± 1.9 ‐1.8 ± 3.6 ‐4.7 ± 3.7 ‐0.3 ± 2.0 ‐0.5 ± 2.7 0.4 ± 1.4 ‐1.0 ± 1.7 6.0 ± 2.7 2.2 ± 2.2 3.0 ± 2.5 ‐0.6 ± 0.8 ‐1.2 ± 2.7 0.3 ± 1.3 ‐1.0 ± 0.5 ‐48.7 ± 61.7 5.5 ± 1.3 0.3 ± 1.1 ‐3.0 ± 1.3 0.1 ± 1.2 ‐1.8 ± 0.8 ‐3.7 ± 1.5 ‐3.4 ± 0.6 ‐2.6 ± 1.0 ‐1.3 ± 0.7 ‐1.7 ± 0.8
6
Figure S4. As Figure 7 of the main article but for the K1 tide. Shown are observed (black circles) and modeled (red squares) response coefficients in (a) amplitude and (b) phase lag per meter of SLR. Circles without filling signify stations with insignificant amplitude trends (23 locations) or insignificant phase trends (27 locations). Numbers to the left of the station labeling indicate mean K1 amplitudes. Table S5. RMS values of observed and modeled trends in M2 and K1 amplitudes and phasesa,b North America European Shelf Australia Global a
M2 Amplitude In situ Model 6.1 7.9 9.6 1.4 10.7 5.1 8.6 5.6
Phase In situ Model 2.8 2.5 5.0 4.1 4.3 1.7 4.1 2.9
K1 Amplitude In situ Model 4.9 2.2 14.9 1.2 5.8 1.8 10.6 1.8
Phase In situ Model 18.1 2.2 47.3 1.4 14.0 0.8 30.6 1.6
All 45 tide gauge stations are considered. Amplitudes are reckoned in % cy‐1, phases in ° cy‐1; see Müller et al. [2011] for similar comparisons.
b
7
References Caron, L., E.R. Ivins, E. Larour, S. Adhikari, J. Nilsson, and G. Blewitt (2017), GIA model statistics for GRACE hydrology, cryosphere, and ocean science, Geophys. Res. Lett., 45, 2203– 2212, https://doi.org/10.1002/2017GL076644. Müller, M., B. Arbic, and J. Mitrovica (2011), Secular trends in ocean tides: Observations and model results, J. Geophys. Res., 116, C05013, doi:10.1029/2010JC006387. Ross, A.C., R.G. Najar, M. Li, S.B. Lee, F. Zhang, and W. Liu (2017), Fingerprints of sea level rise on changing tides in the Cheseapeake and Delaware Bays, J. Geophys. Res. Oceans, 122, 8102–8125, doi:10.1002/2017JC012887. Tamisiea, M.E. (2011), Ongoing glacial isostatic contributions to observations of sea level change, Geophys. J. Int., 186, 1036–1044, doi:10.1111/j.1365‐246X.2011.05116.x. Woodworth, P.L., J.R. Hunter, M. Marcos, P. Caldwell, M. Menendez, and I. Haigh (2017), Towards a global higher‐frequency sea level data set, Geosci. Data J., 3, 50–59, doi:10.1002/gdj3.42.
8