Increasing EMI problems. âTechnology trends of electronic devices. â RF signals and clock pulses of digital ICs are in the same frequency range.
A Stretchable EMI Measurement Sheet with 8 x 8 Coil Array, 2V Organic CMOS Decoder, and -70dBm EMI Detection Circuits in 0.18µm CMOS K. Ishida, N. Masunaga, Z. Zhou, T. Yasufuku, T. Sekitani, *U. Zschieschang, *H. Klauk, M. Takamiya, T. Someya, and T. Sakurai University of Tokyo *Max Planck Institute
Outline z Background & motivation z Stretchable EMI measurement sheet Direct Si-organic circuits collaboration
z 2V organic CMOS decoder circuit z Stretchable interconnect z Si CMOS EMI measurement circuit
z Measurement results z Conclusion 2
Increasing EMI problems z Technology trends of electronic devices z RF signals and clock pulses of digital ICs are in the same frequency range. z The increase of LSI power consumption causes the increase of noise emission. z Electronic devices have 3D-structures and packaging is dense.
Î Locating EMI sources is getting difficult. 3
Motivation of EMI measurement sheet Conventional
Probe EMI
Scan
Proposed
Wrap
Analog DC to DC converter Magnetic field probe
Difficult to locate the EMI source
EMI measurement sheet
Easy to locate the EMI source 4
Technology requirements
EMI measurement sheet
zWrap 3D-structures ÎStretchable, flexible zLarge area decoder circuit Î2V organic CMOS zInterconnection ÎStretchable interconnect zPick up EMI up to 1GHz ÎSi CMOS LSI
Direct Si-organic circuits collaboration 5
Outline z Background & motivation z Stretchable EMI measurement sheet Direct Si-organic circuits collaboration
z 2V organic CMOS decoder circuit z Stretchable interconnect z Si CMOS EMI measurement circuit
z Measurement results z Conclusion 6
A0 Sel
Sel 7 Sel 6
PCB Si LSI
Out 6 2x2 EMI meas. circuits Clock
4 x 4 PCBs Sel 1 Sel 0
Out 7
Out 1 PCB
Si LSI
Stretchable interconnect
Clock
Out 0
Organic CMOS column selector
A1
2 x 2 Antenna coils
A2
Organic CMOS row decoder
System block diagram
Out
7
Prototype of EMI measurement sheet Rubber sheet (Silicone elastomer)
Antenna coil 12cm
Si CMOS LSI EMI measurement circuit Stretchable Interconnect (CNTs)
2V organic CMOS decoder circuits 8
Outline z Background & motivation z Stretchable EMI measurement sheet Direct Si-organic circuits collaboration
z 2V organic CMOS decoder circuit z Stretchable interconnect z Si CMOS EMI measurement circuit
z Measurement results z Conclusion 9
Device structure of organic CMOS Gate length (20µm)
Gate width (50µm)
Au (Drain) evaporation Pentacene (pMOS) NTCDI (nMOS) evaporation
Au (Source)
SAM (2.1nm) dip-coating, drying Al (Gate) evaporation
AlOx (3.6nm) oxygen plasma
Polyimide or Si Gate oxide thickness (~6nm) Î2V operation
SAM:Phosphonic acid self-assembled monolayers NTCDI:Fluoroalkyl naphthalenetetracarboxylic di-imide H. Klauk, et al., Nature, vol. 445, 2007.
10
Organic CMOS inverter measurement Static characteristic 2V
VOUT
W/L=50μm/20μm (nMOS, pMOS)
VOUT [V]
VIN
2 Gain=42 1
0
0
1
2
VIN [V]
Inverter gain of 42 is achieved with 2V. Organic CMOS can drive Si CMOS directly. 11
Organic CMOS decoder circuit 3 to 8 decoder schematic A2 A2 A0 A0 SEL Sel. 7 Sel. 6 Sel. 5
4.6mm
Microphotograph
20.2mm
Sel. 4 Sel. 3 Sel. 2 Sel. 1 Sel. 0 12
Outline z Background & motivation z Stretchable EMI measurement sheet Direct Si-organic circuits collaboration
z 2V organic CMOS decoder circuit z Stretchable interconnect z Si CMOS EMI measurement circuit
z Measurement results z Conclusion 13
Process of stretchable interconnect Carbon nanotubes (CNTs)
> 4 mm
Ionic liquid (BMITFSI) Grinding to disentangle CNTs
Fluorinated copolymer
CNTs dispersed gel Stirring / Sonication
Air-drying Stretchable interconnect film BMITFSI:1-butyl-3-methyl imidazoliumbis (trifluoromethanesulfonyl) imide T. Sekitani, et al., Science, vol. 321, 2008. 14
Demonstration of stretchability
30mm, 12Ω
Pull
42mm, 17Ω
Stretch (+40%) 15
Outline z Background & motivation z Stretchable EMI measurement sheet Direct Si-organic circuits collaboration
z 2V organic CMOS decoder circuit z Stretchable interconnect z Si CMOS EMI measurement circuit
z Measurement results z Conclusion 16
How do you measure EMI ? Target EMI noise 30MHz to 1GHz (CISPR)
Capture noise waveform ADC
X Expensive process X Clock distribution & interference X Unsuitable for arrayed system
10GHz or higher?
Convert to DC (proposed) Rectifier
9 Relaxing clock speed 9 No interference 9 Suitable for array
Slow clock CISPR: Comité International Spécial des Perturbations Radioélectriques 17
Schematic of EMI measurement LSI Target EMI noise 30MHz to 1GHz Sample/Hold PCB
Si LSI Differential amps
Rectifier VAMP
Comparator VSH
VOUT
VRECT Antenna coil
≈70dB@100MHz (µVÎmV)
Reset Convert EMI noise to DC voltage (VSH) Î Relaxing clock speed No clock distribution & interference issue
VREF Comp. clock. (100kHz) 18
Operation of EMI measurement Small EMI
VAMP
V Amplified ≈70dB V Rectified
VRECT V Sampled & held
VSH (DC out)
t V VREF t
V “L” “L”“L”“L” “L”
V
t Rectified Converted to DC t
VREF
Converted to DC
Comp. V clock VOUT
V
Large EMI
t
t
V
t V
All “H”
t VOUT is set to high during each pre-charge cycle.
t t 19
Outline z Background & motivation z Stretchable EMI measurement sheet Direct Si-organic circuits collaboration
z 2V organic CMOS decoder circuit z Stretchable interconnect z Si CMOS EMI measurement circuit
z Measurement results z Conclusion 20
Die microphotograph of Si LSI 0.9 mm
0.18µm CMOS process
0.2mm
2.9 mm
0.9mm 21
Measured Si-organic collaboration VDD=2V
L L H
Stretchable interconnect VDD=2V (12cm) V1 Organic CMOS Si LSI V2
V3
V1 V2 V3 V4
V4
2V 2V 1s
2V organic CMOS enables the direct connection of silicon-organic circuits. 22
Conventional EMI measurement Magnetic field probe Magnetic probe -50dBm@267MHz
Memory module in laptop PC
Output spectrum of the probe
267MHz EMI is observed around memory. 23
Proposed EMI measurement LSI for EMI measurement sheet Comp.Clock(100kHz)
VOUT Reference All low Î No EMI VOUT Antenna coil and LSI for EMI measurement sheet
On the memory 81% high Î EMI detected
EMI around the memory is detected by Si LSI. 24
Movie of proposed EMI measurement
No EMI
EMI detected 25
Calibration for EMI measurement LSI Reference Spectrum analyzer
Signal generator (EMI emulator) Swept sinusoidal wave up to 1GHz
Power spectrum Comp. Clock 100kHz EMI measurement Si CMOS LSI
Oscilloscope
Sweep VREF
EMI measurement LSI is calibrated. ÎEMI power can be determined. 50% pulse density 26
DC output voltage (VSH) [mV]
Measured DC voltage vs. EMI 900 DR 25dB 850 800
3
750
M 0 0
50
0M
Hz
Hz
9
00
z H M
z H 1G
700 650
-80
-70 -60 -50 Magnetic field power [dBm]
-40
EMI up to 1GHz is converted into DC. EMI power can be determined by DC voltage.
27
Magnetic field power [dBm]
Measured frequency response 0 -10 -20 -30 -40
DC output, VSH=850mV
-50 -60
845mV 844mV
-70 -80 100
200 300 500 700 1000 Frequency [MHz]
Frequency response is fairly flat up to 1GHz.
28
Summary of organic devices Pentacene (pMOS) Organic CMOS material NTCDI (nMOS) Supply voltage 2V Inverter gain 42 Gate oxide thickness 6nm Gate width / gate length 50µm / 20µm 0.53 cm2/Vs (pMOS) Mobility 0.03 cm2/Vs (nMOS) Fluorinated copolymer, Stretchable interconnect material CNT Stretchability Resistivity
40% 0.02 Ωcm 29
Summary of Si LSI Silicon LSI technology Supply voltage Minimum detectable noise power
0.18µm CMOS 1.8V -70dBm
Dynamic range
25dB
Maximum detectable noise frequency
1GHz
Sampling frequency
100kHz
Power consumption
110mW
Core area
0.18mm2 30
Conclusion z Direct Si-organic collaboration for the first time z2V organic CMOS decoder circuit zStretchable interconnect zSilicon CMOS EMI measurement LSI
z EMI noise power is converted into DC voltage. zNMOS rectifier zComparator clock:100kHz not jamming EMI
z Experimentally demonstrated zUp to 1GHz EMI zMinimum noise power:-70dBm zDynamic range:25dB 31