A MULTI VARIABLE APPROACH TO PERTURBED

1 downloads 0 Views 6MB Size Report
COS,cj> y,(cp) = a-^jtl)-(i+{e^) COS f-je^. cos zcf -h SoCfstnc^. W.Ccj» = ( 2 - e „4e :-ie :)-(2 -4-e .-4 -|e^-^^e ,^)cpsc(> 4- sm ^(^ — je.-c^^ cos (ƒ> ...... Page 213 ...
A MULTI VARIABLE APPROACH TO PERTURBED AEROSPACE VEHICLE MOTION

P a u l u s Theodorus L e o n a r d

Maria

v a n Woerkom

A DISSERTATION PRESENTED TO THE FACULTY OP PRINCETON UNIVERSITY IN CANDIDACY POR THE DEGREE OP DOCTOR OP PHILOSOPHY

RECOMMENDED POR ACCEPTANCE BY THE DEPARTMENT OP AEROSPACE AND MECHANICAL

JUNE , 1972

SCIENCES

Copyright

by

P a u l u s Theodorus L e o n a r d M a r i a van Woerkom 1972

ii

. Por t h o s e who

are seen i n g l i m p s e s ,

or d w e l l i n l a n d s u n e x p l o r e d , o r l i v e i n p o e t s ' songs.

Rabindranath

iii

Tagore

ABSTRACT The

I n v e s t i g a t i o n s presented

on the development of u n i f o r m l y

in this dissertation

v a l i d , asymptotic,

focus

approxi-

mate s o l u t i o n s to n o n l i n e a r , o r d i n a r y d i f f e r e n t i a l

equations

containing a small parameter. Systematic

use

i s made of t h e M u l t i V a r i a b l e Approach.

T h i s method i s based on the extension

"method of e x t e n s i o n " ,

of the Independent v a r i a b l e i n t o a m u l t i

a l domain of g e n e r a l l y n o n l i n e a r , independent

involving dimension-

" c l o c k s " , and

e x t e n s i o n of the dependent v a r i a b l e i n t o an a s y m p t o t i c The r e q u i r e m e n t of u n i f o r m v a l i d i t y

of t h e a s y m p t o t i c

series. solution

d e t e r m i n e s the e x p l i c i t dependence of c e r t a i n f u n c t i o n s c u r r i n g i n the a s y m p t o t i c and

the e x p l i c i t

by The

invoking

s e r i e s on a c e r t a i n number of c l o c k s ,

dependence of t h o s e

independent v a r i a b l e ; any

oc-

c l o c k s on t h e

remaining indeterminacy

original i s removed

the c o n c e p t of " r e s t r i c t i o n of number of clocks'.'

method i s shown to g e n e r a l i z e v a r i o u s well-known asymp-

t o t i c perturbation The

techniques.

M u l t i V a r i a b l e Approach i s a p p l i e d t o t h r e e

t a n t problems i n a e r o s p a c e

v e h i c l e m o t i o n , v i z . : t h e motion

of the l i n e a r , harmonic o s c i l l a t o r w i t h s l o w l y frequency;

impor-

varying

the o r b i t a l motion of a s p a c e v e h i c l e i n the

e q u a t o r i a l plane of an a e r o s p a c e

of an o b l a t e p l a n e t ; and

t h e o r b i t a l motion

v e h i c l e around a s p h e r i c a l l y

iv

symmetric p l a n e t .

and

p e r t u r b e d by l i f t -

spherically for

and

drag f o r c e s g e n e r a t e d

symmetric atmosphere s u r r o u n d i n g

both c o n s t a n t d e n s i t y atmosphere and

d e n s i t y atmosphere. The compared a n a l y t i c a l l y through

by

a

that planet -

quasi-exponential

approximate s o l u t i o n s obtained

and

are

numerically with s o l u t i o n s obtained

a p p l i c a t i o n of d i f f e r e n t

techniques. A

critical

r e v i e w of r e l a t e d a n a l y s e s and/or r e s u l t s a v a i l a b l e

in

liter-

a t u r e , i s presented f o r f u r t h e r comparison. The

t h r e e problems o u t l i n e d above a r e f o r m u l a t e d

mathe-

m a t i c a l l y i n t h e form o f t h e l i n e a r , harmonic o s c i l l a t o r t u r b e d by n o n l i n e a r t e r m s . The

M u l t i V a r i a b l e Approach i s

e q u a l l y a p p l i c a b l e to d i f f e r e n t i a l e q u a t i o n s of c l a s s e s ; s e v e r a l examples a r e d i s c u s s e d .

V

different

per-

ACKNOWLEDGEMENTS

This

i n v e s t i g a t i o n v/as s u p p o r t e d

f i n a n c i a l l y by t h e

O f f i c e o f Space S c i e n c e and A p p l i c a t i o n s ,

NASA

Headquarters,

under NASA Grant NGR 31-001-152. Mr,J.W.Haughey was t h e NASA Program Monitor. F i n a n c i a l support was a l s o p r o v i d e d through t h e Fulbright

- Hays

U,S, Government Program

, i n t h e form o f

a t r a v e l g r a n t . The I n s t i t u t e o f I n t e r n a t i o n a l E d u c a t i o n was the Program Monitor. The through

c o m p l e t i o n o f t h e i n v e s t i g a t i o n was made p o s s i b l e t h e cooperation of s e v e r a l persons. I n p a r t i c u l a r ,

the a u t h o r w i s h e s t o acknowledge : Her M a j e s t y J u l i a n a , Queen o f The N e t h e r l a n d s , f o r h a v i n g granted the opportunity f o r uninterrupted Professor

Dr. P,M,Llon, f a c u l t y a d v i s o r ,

research; f o r continued

I n t e r e s t , t r u s t , and s u p p o r t ; Professor

Dr, W.A,Sirlgnano, and Dr, P , T , 6 e y l i n g o f The B e l l

Telephone L a b o r a t o r i e s ,

f o r deepening

t h e a u t h o r ' s under-

s t a n d i n g o f t h e s u b j e c t . They, a s w e l l a s Dr, J,M.Gormally and Dr. R . P r l n g l e , J r . , s u g g e s t e d

Improvements i n t h e manu-

script; Mrs.

A l e x a n d r a B . S h u l z y c k i and Miss Mary C . A l l a n , f o r s k i l f u l

a s s i s t a n c e i n numerical

studies;

vi

Miss Rosemary E . H e i n z , f o r p a i n s t a k i n g l y d r a f t i n g t h e many figures; Miss P r a n c e s

Allison, forefficient

secretarial assistance;

S e n o r i t a I r i s Arbona T o r r e s , f o r t y p e w r i t i n g t h e b e t t e r p a r t of t h e m a n u s c r i p t ; Mrs. T h e r e s a

Buttenbaum, f o r p r o v i d i n g

a s s i s t a n c e throughout t h e a u t h o r ' s

administrative

years at Princeton

University. Some s u g g e s t i o n s made by Dr. R.V.Ramnath a t t h e i n i t i a l s t a g e of t h e i n v e s t i g a t i o n , a r e a p p r e c i a t e d . S p e c i a l t h a n k s a r e due t o t h e a u t h o r ' s u n f a i l i n g confidence

was a c o n s t a n t

source

parents,

whose

of e n c o u r a g e -

ment and s t r e n g h t . T h i s d i s s e r t a t i o n c a r r i e s Number 10'17-T i n t h e r e c o r d s of t h e Department o f A e r o s p a c e and M e c h a n i c a l Princeton University.

vii

Sciences,

TABLE OF CONTENTS Page TITLE

PAGE

ABSTRACT

. .

1 .



Iv

ACKNOWLEDGEMENTS

vll

TABLE OF CONTENTS

viii

L I S T OF FIGURES

CHAPTER ONE. 1.1 1.2 1.3 l.il CHAPTER TWO.

2.1 2.2 2.3 2.4 2.5 2.6 2.7 CHAPTER THREE.

3.1 3.2 3.3 3.4. 3.5 3.6 3.7 3.8 3.9 3.10

.

xl

INTRODUCTION

1.1

Background Dissertation objectives D i s s e r t a t i o n synopsis References

1.1 1.9 1.°10 1.12

DEVELOPMENT OP THE MULTI VARIABLE APPROACH

2.1

Introduction Fundamental c o n c e p t s and t h e One V a r i a b l e E x p a n s i o n Method Two V a r i a b l e - and M u l t i V a r i a b l e E x p a n s i o n Methods Hybrid Multi V a r i a b l e Expansion Methods G e n e r a l i z e d M u l t i p l e S c a l e s Approach M u l t i V a r i a b l e Approach References HARMONIC OSCILLATOR WITH SLOWLY VARYING FREQUENCY . . .

.

Introduction One V a r i a b l e E x p a n s i o n Method Two V a r i a b l e E x p a n s i o n Method G e n e r a l i z e d M u l t i p l e S c a l e s Approach M u l t i V a r i a b l e Approach Some r e s u l t s from l i t e r a t u r e Comparison References Figures Appendices

vlll

2.1 2.5 . 2.11 2.15 2.22 2.28 2.33

3.1 3.1 3.4 3.6 3.16 3.21 3.30 3.33 3.37 3.39 3.44

CHAPTER POUR.

4.1 4.2 4.3 4.4 4.5

4.6 4.7 4.8 CHAPTER P I V E . 5.1 5.2' 5.3 5.4 5.5 5.6 5.7 5.8 CHAPTER S I X .

6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.9 CHAPTER SEVEN.

7.1 7.2 7.3 7.4 7.5 7.6 7.7 7.8 7.9

DEVELOPMENT OP THE THREE DIMENSIONAL EQUATIONS OP MOTION POR AEROSPACE VEHICLES

4.1

Introduction ^• G r a v i t a t i o n a l - and aerodynamic a c c e l e r a t i o n vectors j D e r i v a t i o n of t h e e q u a t i o n s of motion 4.13 Two d i m e n s i o n a l motion ' • ^9 Remarks on n u m e r i c a l i n t e g r a t i o n 4*23 References ;'-24 Pigures 2'29 Appendices 4.33 THE EQUATORIAL PROBLEM

.

.

,

.

5.1

Introduction M u l t i V a r i a b l e Approach A n a l y t i c a l comparison Numerical comparison Summary References Pigures Appendices

5.1 5.5 5.13 5.25 5.27 5.28 5.31 5.36

AERODYNAMICALLY PERTURBED PLIGHT THROUGH A CONSTANT-DENSITY ATMOSPHERE . . .

6.1

Introduction M u l t i V a r i a b l e Approach D i s c u s s i o n of r e s u l t s Comparison w i t h l i t e r a t u r e Numerical comparison Summary References Pigures Appendices

6.1 6.3 6.10 6.13 6.l6 6.19 6.20 • 6.21 6.29

AERODYNAMICALLY PERTURBED PLIGHT THROUGH A VARIABLE-DENSITY ATMOSPHERE . . .

7.1

Introduction M u l t i V a r i a b l e Approach D i s c u s s i o n of r e s u l t s Comparison w i t h l i t e r a t u r e Numerical comparison Summary References Pigures Appendices

7.1 7-3 7.14 7-17 7.26 7.29 7.30 7.32 7.43

ix

CHAPTER EIGHT. 8.1 8.2 8.3 8.4

SUMMARY AND RECOMMENDATIONS Summary Further Investigations Recommendations References

L I S T OP FIGURES F i g u r e No. 3.1

Caption F a s t time for cu^

Page

(p and t r a n s f o r m e d /^--Uy

fast

3.2

Function

3.3

Exact

3.4

E n v e l o p e s o f d e v i a t i o n s A U-^^^ , and A Umv ( S = 0.025)

3.5

- i - lit)- "^-^^-^^ , where X s o l u t i o n Ug (£ = 0.025)

Envelopes of d e v i a t i o n s and

A U„v

time (Po / ' x=e^^^

3.39 3.39 3.40

> 3.41

a U^-y , '^^Ugms ?

( £ = 0. 1 )

3.42

3.6

Oscillatory, ballistic

3.7

Angle o f a t t a c k OC v e r s u s

4.1

C o o r d i n a t e systems

4.2

Aerodynamic a c c e l e r a t i o n v e c t o r s

4.3

Comparison o f d e n s i t y model ( 4 . l 4 ) w i t h R e f . 4 . 2 9 . Match p o i n t s a t 200 and 300 km. a l t i t u d e ( y = 0 . 8867 X 10 9 m.)

4.31

Comparison o f d e n s i t y model ( 4 . 1 4 ) w i t h R e f . 4 . 2 9 . Match p o i n t s a t 6OO and 700 km. a l t i t u d e ( y = 0.3797 X 10^ m.)

4.32

5.1

Phase p l a n e

5.31

5.2

Quasi-elliptic

5.3

Exact

5.4

E n v e l o p e s o f d e v i a t i o n s AV/ov , /^My^ , aW„v , A Wp^ii, , and A Wg^^ (£ = 0 . 0 1 , e ^ = 0.1)

5.34

E n v e l o p e s o f d e v i a t i o n s A Wov j a Wtv , A W„v > AWp^ip^ , and A W g ^ ^ ( £ = 0 . 0 1 , e„ = 0.9)

5.35

4.4

5.5

flight

3.43

time t

3.43

4.29 Q^o

diagram trajectory

solution

(£ = 0 , 0 1 ,

xi

4.30

5.32 e^ = 0.9)

5.33

F i g u r e No. 6.1

6.2

Caption E f f e c t of the s m a l l angle f u n c t i o n of c e n t r a l a n g l e tricity Exact solution (£ = 10-\

6.3

6.4

6.6

6.7

Kg v e r s u s

= 10-2, C l / C p

E f f e c t of l i f t 10-\

7.1

7.2

7.3

7.4

7.5

7.6

6.21 central

angle

= 0)

6-22

angle 6.23

on

e^ = 10'^

Cl/Co

= 1)

.

6.25

D e v i a t i o n A K versus c e n t r a l angle ( £ = 10-^ e^ = 10-2, c u / c p = 0 )

6.26

Deviation

a U versus

Deviation ( d = 10"^

central Cl/Cp

angle

= 0)

6.27

AU versus c e n t r a l angle = 10'^ Cu/co = 0; R e f . 6 . 1 )

6.28

B e h a v i o r o f e ' I ^ ( ^ ) as a f u n c t i o n of t h e parameter ^

7.32

B e h a v i o r of I^^C^) a s a f u n c t i o n o f t h e p a r a m e t e r s m and i

7.33

Exact solution ( £ = lO"'', e ^ =

K^. v e r s u s c e n t r a l a n g l e 10-2, y = i.33i|6, c i / c p = 0 )

7.34

E x a c t s o l u t i o n U^ v e r s u s c e n t r a l a n g l e (£.= 10-\ = 1 0 ' ^ ^ = 1.3346, Ct/cp = 0 )

7.35

E f f e c t o f l i f t on K ^ ( £ = 10-\ e^^ = 1 0 - ^ ^ = 1.3346, ci/co

=1)

7.36

= 1)

7.37

E f f e c t o f l i f t on K e (£.= 10-^ e^^ = 10"^^^= 1.3346,. cu/cd = - D

7.38

E f f e c t of l i f t

on Ue

(£,= 10-\ e^^= 10-^ (?= 1.3346, ci/cp

7.7

6.24

E f f e c t o f l i f t on Ua ( £ = lO-'', e^ = 10'', C l / C p = 1 )

(

O

unrWmly

m

t

Ta-t The tude

symbol

i s t h e c l a s s i c a l Bachmann-Landau o r d e r o f magni-

symbol ( e . g . , R e f . 2 . 7 ) . The

sequence

( 2 . 3 ) i s c a l l e d a uniformly v a l i d

to t h e e x a c t s o l u t i o n

Xt^^)

a c c u r a t e to the order N i f the

d i f f e r e n c e between t h e e x a c t s o l u t i o n and remains

of t h e o r d e r Y

u n i f o r m l y i n t h e time Then, one

where t h e sum The r i g h t

approximation

as sio

the asymptotic

sequence

( t f i x e d ) ; mathematically

domain.

can w r i t e :

21

is

called

t h e N-th

order approximation

hand s i d e i s known as t h e P o i n c a r e ' a s y m p t o t i c

t o )Cc^;ê). expan-

s i o n of X(é5Ê)with r e s p e c t t o t h e a s y m p t o t i c sequence Returning to ( 2 . 2 ) , viewed

:

t h e power s e r i e s

a s an a s y m p t o t i c e x p a n s i o n

I n view of ( 2 . 5 ) s

one

arrives

f o r m u l a t i o n of t h e N-th

In

£,•

i n t h e s e n s e of

will

. now

be

PolncareV

a t t h e f o l l o w i n g well-known

order approximation

Ha©

2.7

to the exact s o l u t i o n

:

containing

the sequence o f gauges

approximation Introduces t h e domain

t^Co,T]

. The

an e r r o r o f the o r d e r £.

. prom t h e P o i n c a r e - C a u c h y theorem

i n f e r s t h a t t h e domain of u n i f o r m v a l i d i t y decreases now

be

towards z e r o . The

reformulated

uniformly It The

throughout

i n c r e a s e s as

one Ê

c o n d i t i o n of u n i f o r m v a l i d i t y

( 2 . 4 ) can

:

i n t e-co^r] (n = 1 , 2 , . . . , N ) .

f o l l o w s t h a t t h e r a t i o )(n/x„.i (^) must r e m a i n bounded i n t . c o n d i t i o n of u n i f o r m v a l i d i t y

a "boundedness The

can t h e r e f o r e a l s o be

condition".

e x p a n s i o n ( 2 . 6 ) i s known under s u c h names as

fundamental p e r t u r b a t i o n

expansion, i n i t i a l l y

expansion, Poincare' expansion, Poisson

valid

t h e method o f a p p l i c a t i o n i s c a l l e d

:

perturbation

e x p a n s i o n , and

I n t h i s d i s s e r t a t i o n i t i s r e f e r r e d t o as t h e One s i o n , and

called

so

on.

V a r i a b l e Expan-

t h e One

Variable

E x p a n s i o n Method. A p p l i c a t i o n of t h e method i s s t r a i g h t f o r w a r d . A t t e m p t i n g f i n d an a p p r o x i m a t e s o l u t i o n t o substitute

( 2 . 1 ) accurate

( 2 . 6 ) i n t h e r i g h t hand s i d e and

£ = 0 . C o l l e c t i n g terms c o n t a i n i n g them e q u a l

to the order

l i k e powers o f £

and

t o z e r o , r e s u l t s i n a s y s t e m of N d i f f e r e n t i a l fundamental assumption t h a t

solved exactly for £

=0,

2.8

to completely

setting equa-

( 2 . 1 ) can

the s y s t e m b f N d i f f e r e n t i a l

solved r e c u r s i v e l y , leading

E*^ ,

expand t h a t s i d e about

t i o n s . I n v i e w of t h e

can be

to

be

equations

determined

e x p r e s s i o n s f o r XnCb v a l u e o f £.

( " = 0,1,2,...,N

s u c c e s s i v e l y ) * Por a given

, t h e e r r o r i n v o l v e d i n t h e a p p r o x i m a t i o n w i l l be N-f 1

of t h e o r d e r £ o

^

0

f o r s m a l l enough v a l u e s o f t ; u s u a l l y , f o r

(Ve) .

I n many c a s e s , t h e e r r o r w i l l grow t o l a r g e r v a l u e s a s t i n c r e a s e s . T h i s s e c u l a r t y p e o f n o n u n i f o r m l t y may o r may n o t be o f i m p o r t a n c e , depending

on t h e time domain o f i n t e r e s t . I n

t h e s t u d y o f t h e p e r t u r b e d motion o f p l a n e t s . i n t h e s o l a r

system,

f o r example, t h e domain o f u n i f o r m v a l i d i t y may be o f t h e o r d e r of s e v e r a l d e c a d e s , w h e r e a s ,

I n t h e s t u d y o f t h e p e r t u r b e d motion

of f a s t - o s c i l l a t i n g p a r t i c l e s , t h e domain o f u n i f o r m might

validity

be o f t h e o r d e r o f m i l l i s e c o n d s o n l y . The l a t t e r time

span

may be f a r t o o s m a l l from t h e p o i n t o f view o f a p h y s i c i s t , w h i l e t h e former time span may be q u i t e s a t i s f a c t o r y

from t h e

point of* view o f an a e r o s p a c e e n g i n e e r , b u t a g a i n u n s a t i s f a c t o r y from t h e p o i n t o f v i e w o f an a s t r o n o m e r . Thus a r o s e t h e d e s i r e t o improve t h e One V a r i a b l e E x p a n s i o n Method, i n o r d e r t o I n c r e a s e t h e domain o f u n i f o r m v a l i d i t y solution. A significant

of the approximate

s t e p i n t h a t d i r e c t i o n was made through

t h e i n t r o d u c t i o n o f t h e Two V a r i a b l e E x p a n s i o n Method, t o be presented i n the next

Section.

* I t s h o u l d be noted t h a t t h e r e a r e no a p r i o r i r e a s o n s why t h e d i f f e r e n t i a l e q u a t i o n ( 2 . 1 ) s h o u l d be l i n e a r f o r 6 = 0 . An example o f a n o n l i n e a r " o n e , o c c u r r i n g i n f l u i d i s g i v e n i n Ref.2.8,p.170.

2.9

mechanics,

Por more d e t a i l e d

d i s c u s s i o n s of the elements

of a s y m p t o t i c

t h e o r y , t h e r e a d e r i s r e f e r r e d t o t h e fundamental

studies

of

Poincare'', p u b l i s h e d i n t h e A c t a M a t h e m a t i c a ( R e f s . 2 . 4 , 5 ) and i n h i s t h r e e volumes "Les Methodes N o u v e l l e s

..."(Ref.2.6),

In /

2.9

p a r t i c u l a r V o l . 1 ; furthermore, to the c o n c i s e study of E r d e l y l as w e l l as t o t h e books by C o l e ^ * 7 and Van

' ,

Dyke^'-^^, both 2

c o n t a i n i n g worked-out s i m p l e e x a m p l e s . The

s t u d i e s by G o r m a l l y

11

'

must a l s o be mentioned. I n l i t e r a t u r e d e a l i n g with aerospace v e h i c l e

motion,

several i l l u m i n a t i n g applications are a v a i l a b l e ; i n p a r t i c u l a r , the determination of : 1. t h e t r a j e c t b r i e s o f s a t e l l i t e s o b l a t e n e s s and

drag

around

( G e y l i n g ^ * - ' - ^ * ^ ^ ) , by

the E a r t h , perturbed a magnetic

(Geyling^*"'"^, and Westerman^'"''^), and by s o l a r 2. t h e t r a j e c t o r y

o f a low t h r u s t

field

pressure(Levin^'-^^)

s p a c e v e h i c l e around

the

Sun

( W e s s e l l n g ^ * -^7) j 3 . the t r a j e c t o r y

of a r e - e n t r y v e h i c l e t h r o u g h

atmosphere (Hanin^*''•^, and 4. t h e t r a j e c t o r y

the E a r t h ' s

Shen^*-"-^);

o f an a n t i - a i r c r a f t

p r o j e c t i l e , p e r t u r b e d by

2.20

atmospheric

drag

(Milenski

V

);

i n a d d i t i o n t o S e c t i o n s 3 . 2 , 5 . 3 . 2 , a n d Appendix 6 A o f dissertation.

2.10

by

this

2 , 3 Two

V a r i a b l e - and

M u l t i V a r i a b l e E x p a n s i o n Methods

A recently introduced,

p o w e r f u l and

elegant

asymptotic

e x p a n s i o n method, d e s i g n e d t o I n c r e a s e t h e domain of u n i f o r m validity, The

i s the Two

V a r i a b l e E x p a n s i o n Method

method i n v o l v e s the i n t r o d u c t i o n of two

a " f a s t t i m e " to = t

associated with

v a r i a t i o n s i n the dependent

perturbed

"times"

;

Variable

the unperturbed,

( m o t i o n - ) v a r i a b l e ; and

» associated with

- bI

distinct

, a l s o o c c u r r i n g i n t h e One

E x p a n s i o n Method, and

(Refs.2.7,21).

the slow m o d i f i c a t i o n

fast

a "slow t i m e " of the

motion t h r o u g h t h e i n f l u e n c e of t h e p e r t u r b a t i o n

unterms.

Mathematically formulated : N

%a;E) where

=

X(é...:£)

= -

H

e-^-VnCU

d e n o t e s t h e dependence on the two

H-

Ö

t i m e s éot=^

A p p l i c a t i o n of the method i s s t r a i g h t f o r w a r d . e x p a n s i o n ( 2 . 8 ) i n ( 2 . 1 ) and terms c o n t a i n i n g

expand

l i k e powers of

£,

..

around

and

on

s o l v e d r e c u r s i v e l y . The

to f o l l o w s

i^z^et'

Substitute

s e t t i n g them e q u a l

to

equations

e x p l i c i t dependence of

from i n t e g r a t i o n of t h e

e q u a t i o n f o r ) ( ^ . The

and

£. = 0 . C o l l e c t i n g

z e r o , r e s u l t s i n a s y s t e m of N p a r t i a l d i f f e r e n t i a l t h a t can be

(2.9)

(n-th)

differential

e x p l i c i t dependence of X^^ oi^ t^ f o l l o w s

from the boundedness c o n d i t i o n :

(to,t)

bounded

( R e f . 2 . 2 1 s t a t e s t h a t e a c h X« s h o u l d this i s incorrect).



2.11

|or

i eZo.o^)

be bounded; i n g e n e r a l ,

(2.g)

G e n e r a l l y , t h e N-th o r d e r a p p r o x i m a t i o n t h u s remains

uniformly v a l i d

i n t h e domain

obtained

^ ^OCi^jCRefs . 2 . 2 1 , 2 2 ) .

T h i s c o n s t i t u t e s a c o n s i d e r a b l e Improvement o v e r t h e domain o f uniform v a l i d i t y Method. I f I t

a s s o c i a t e d w i t h t h e One V a r i a b l e E x p a n s i o n

t u r n s out t h a t t h e r a t i o Xn+

c a n a l s o be accomodated w i t h Por

the case w < o

leads to i d e n t i c a l

, and t h e c a s e o f i m a g i n a r y

f u n c t i o n tvcsif)-

e.

s o l u t i o n I s obtained.

mate s o l u t i o n s f o r t h i s p a r t i c u l a r f r e q u e n c y

Thus, f o r t h i s c a s e , t h e equation

9

' ,

suggested

The a p p r o x i -

f u n c t i o n a r e com-

pared with t h e exact s o l u t i o n , both a n a l y t i c a l l y

coceif) — e

tu

some minor changes i n t h e a n a l y s i s .

the s p e c i a l frequency

by Cheng and Wu^'\an e x a c t

y o

and n u m e r i c a l l y .

(3.1) i s s u b j e c t e d t o ( R e f . 3 . ^ ) :

Ufo) =1 0

»

(o) —

1

oiU> I t may be noted t h a t t h e f r e q u e n c y

f u n c t i o n s u g g e s t e d by

Cheng and Wu i s not t h e o n l y one l e a d i n g t o an e x a c t s o l u t i o n to

( 3 • 1 ) . O t h e r such f u n c t i o n s a r e , e.g.,

3.2

cs.a)

where 0(,.

»ft» 'V,»

a r e c o n s t a n t s , and m I s a p o s i t i v e

The f o r m e r two f u n c t i o n s l e a d t o e x a c t B e s s e l f u n c t i o n s , while the l a t t e r terms of t h e c o n f l u e n t

alert

l e a d s t o an e x a c t

of turning points

3.3

wave

o n e - d i m e n s i o n a l harmonic

) . P o r any c h o i c e o f f r e q u e n c y

to the occurrence

solution i n

i s r e l a t e d to the Schrodinger

f o r the unperturbed, l i n e a r ,

oscillator

s o l u t i o n s i n terms o f

h y p e r g e o m e t r l c f u n c t i o n or i n terms o f t h e

Weber f u n c t i o n ( t h e e q u a t i o n equation

integer.

f u n c t i o n one must be ( v i d e S e c t i o n 3.7

).

3.2 One V a r i a b l e E x p a n s i o n Method A c c o r d i n g t o t h e One V a r i a b l e E x p a n s i o n Method, p r e s e n t e d i n S e c t i o n 2.2, one assumes N

an a p p r o x i m a t e s o l u t i o n o f t h e form :

n=o I n view o f t h e a s s u m p t i o n t h a t U)

i s analytical i n £

, one may

= 0 :

expand tu' i n a T a y l o r s e r i e s around S

which may be r e w r i t t e n a s : lAJ^(eif)

=

Y L

'^n

(E(ff

.

(3.1,)

n = 0

where t h e c o n s t a n t

i s defined as :

cecff

S u b s t i t u t i n g the expansions (3.3)

and (3.^) i n ( 3 . 1 ) ,

combining terms c o n t a i n i n g l i k e powers o f £

, and s e t t i n g them

equal to zero, y i e l d s t h e f o l l o w i n g system of d i f f e r e n t i a l e q u a t i o n s , t o be s o l v e d r e c u r s i v e l y ; e"

i

terms

-j-

[J„

=

0

CS.S")

-|

Ut

—-diLPl]^

C3.(()'

é f terms

:

1 ^

ci (f^ ' and s o on. The zeï'oeth o r d e r term to (3.5)

t



•••



i s g i v e n by t h e c o m p l e t e

'

3.,'^.

solution

where Q,^ b, a r e i n t e g r a t i o n c o n s t a n t s . The to

first

(3.6).

on y

o r d e r term Uj i s g i v e n by t h e c o m p l e t e s o l u t i o n

The dependence o f t h e r i g h t hand s i d e óf t h i s

becomes c o m p l e t e l y

equation

known a f t e r s u b s t i t u t i o n o f t h e e x p r e s -

s i o n f o r U, -(-

Ul =

^ {ci> COS f

-

-f-

(3.9)

Lf>)

i),

d if' y i e l d i n g t h e complete s o l u t i o n :

(3-9) _ ^

(|» | ( Q . c o s

- j - b„S/n I f ) - f

Thus, t h e g e n e r a l , f i r s t

One n o t e s

v a l i d i t y \elJi/\)J , i s s e e n t o i n c r e a s e mono-

. I n view of ( 3 . I D , t h e system

t o t h e c a n o n i c a l form o f R e f . 3 . 5

iR

^

1.

dcj)/

U(o)

^

to^

=

o

clip

/

^

I)

difo

^ 3.6

(0) ,

-

i

: -

0

(3.1-2) i s

( 3 . 1 5 ) can be

The

problem

and

slow v a r i a b l e s

s o l v e d by u s i n g

(J)^andand(^^ (A as t h e

fast

C3 .„~ ^i(f^)

where c _

LO

Ca(0) •

CO'h

Co(0)

aj(o)-l

4The

expression f o r

UP

wco)| .

tocl(|> . Sin

IjD

a g r e e s f u l l y w i t h R e f s . 3 . 2 and 3.5.

Por t h e s p e c i a l c o n d i t i o n s ( 3 . 2 ) , t h e s e e x p r e s s i o n s to

reduce

: ^^f

rr



2/,

£V The

s e c u l a r term I n Ug d e s e r v e s

frequency

s p e c i a l a t t e n t i o n . Por t h e

f u n c t i o n ( 3 . 2 ) , one f i n d s t h a t f o r I n c r e a s i n g if

transformed

fast

time ifo r e a c h e s a l i m i t v a l u e :

I n o t h e r words, a s t h e " o l d " f a s t t i m e y? grows w i t h o u t the "new" f a s t

time

that I s I n i t i a l l y v a l l d

bound,

r e a c h e s an upper bound a s y m p t o t i c a l l y

( P i g . 3 . 1 ) . One I s t h u s c o n f r o n t e d

after restriction

, the

w i t h an a s y m p t o t i c

expansion

I n t h e e x t e n d e d domain ( and t h a t ,

( ^o,t ^

t i m e s . The r e g i o n " o f u n i f o r m

), becomes v a l l d validity 3.:V3 '

f o r much l a r g e r

f o l l o w s from c o n d i t i o n

( 3 . 2 9 ) ; one h a s , i n g e n e r a l :

where t h e c o n s t a n t Ci,z(0) and (3.2),

reflects

t h e magnitudes of t h e

i s of t h e o r d e r one.

this

Por t h e s p e c i a l

frequency f u n c t i o n

(if) i s s k e t c h e d i n P i g . 3 . 2 . A maximum o c c u r s , with ^ c f ) - f ^ —

=: ^

the c o n d i t i o n of uniform v a l i d i t y

which

coefficients

can be w r i t t e n a s :

The b e h a v i o r of (|?*:3|^/3

^

OCi)

for

. I t follows that

i s s a t i s f i e d i n the r e g i o n :

c o n s t i t u t e s an Improvement o v e r t h e r e g i o n ( 3 . 1 0 ) o b t a i n e d

by t h e One

V a r i a b l e E x p a n s i o n Method.

Summarizing t h e most I m p o r t a n t 1. The Two cannot

V a r i a b l e E x p a n s i o n Method, employing l i n e a r

be a p p l i e d t o e q u a t i o n

Kevorkian"^

(3.1);

^

i s determined

a p r i o r i through

t h e n o b t a i n a z e r o e t h o r d e r approximate and

o r d e r approximate

determined

a

require-

two

through

authors

the

(2.9;3.23).

K e v o r k i a n - C o l e a n a l y s e s have been extended

a second

(j)^ ,

s o l u t i o n , whose depen-

slow t i m e s i s d e t e r m i n e d

c o n d i t i o n of uniform v a l i d i t y 2. The

time

not I n t r i n s i c t o t h e a s y m p t o t i c method. The

dence on both f a s t

times,

n o n l i n e a r t i m e s a r e needed.

and C o l e ^ ' ^ employ a n o n l i n e a r , f a s t

whose dependence on ment

a s p e c t s of t h i s S e c t i o n :

s o l u t i o n . The

here, to

second o r d e r term i s

c o m p l e t e l y though a p p l i c a t i o n o f t h e c o n c e p t

" r e s t r i c t i o n o f number of c l o c k s "

(Section 2.6).

3.14

yield

of

3. The second o r d e r term i s found t o c o n t a i n

a quasi-secular

term; i . e . , a term which becomes unbounded i n t h e cf^ -domain, but

which r e m a i n s bounded i n t h e

-domain.

The a s s o c i a t e d

r e g i o n o f unlfórm v a l i d i t y h a s been d e t e r m i n e d .

3.15

3»4 G e n e r a l i z e d M u l t i p l e S c a l e s Approach It

was p o i n t e d

out t h a t d i r e c t

a p p l i c a t i o n o f t h e Two

V a r i a b l e E x p a n s i o n Method t o t h e problem o f t h e l i n e a r , o s c i l l a t o r with slowly varying frequency, Cole did succeed

I n o b t a i n i n g an Improved

falls.

harmonic

K e v o r k i a n and

zeroeth

order

approxi-

m a t i o n U^((^„^ 7 ^ i n s t e a d o f r e p e a t i n g t h e e n t i r e a n a l y s i s , o n l y t h e most i m p o r t a n t s t e p s a r e I n d i c a t e d ( i n t r o d u c i n g minor m o d i f i c a t i o n s ) . Ramnath c o n s i d e r s t h e d i f f e r e n t i a l e q u a t i o n *

The

connection

b e t w e e n • ( 3 . 1 ) and ( 3 . 4 5 ) i s g i v e n by : UJ

»

* Ref.

3.7,

:

equation

(3.2.12)

3.16

here

Following Ref. 3.7,

one e x t e n d s

y a \ \ )

1 ^

t h e time domain o n l y : yen,,)

where t h e c l o c k s Xo^i a r e g i v e n by :

Substitution i n (3.45) differential parameter

X

l e a d s t o the f o l l o w i n g system of t h r e e

e q u a t i o n s , o r d e r e d a c c o r d i n g t o powers o f t h e l a r g e

X '

terms :

t

| ^

terms :

jk

^

/V terms :

-j-

COCTp) V



2i

-

1^-

O O

OMp

Zl 0

O'^j")

=

where

One now s e e k s a s o l u t i o n t o (3.47'^) i n t h e p a r t i c u l a r form :

C l e a r l y , t h i s form s a t i s f i e s t h e e q u a t i o n o n l y i f t h e c l o c k r function

s a t i s f i e s the equation ;

l e a d i n g t o t h e i m a g i n a r y c l o c k Lt

As

and

are linearly

i n (3.48)

Independent

o f t h e form :

with respect to the f a s t

c l o c k Vi , e a c h i s used s e p a r a t e l y t o g e n e r a t e t h e e x p l i c i t

depen-

dence o f t h e unknown f u n c t i o n s o(f on t h e i r argument. S u b s t i t u t i o n i

of each y. I n t h e X

equation y i e l d s

3.17

:

C o l l e c t i n g r e s u l t s and r e s t r i c t i n g a l o n g t h e p h y s i c a l (Ref. 3.7) 2

yields

line

: Ca

Cs.s-o")

e i »i 'i

' which

CO

00

c a n be r e w r i t t e n a s C3

Using t h e connection solution

. COS

Co -de

X



Ciy

( 3 * 4 6 ) , one f i n a l l y o b t a i n s t h e a p p r o x i m a t e

:

w 1 ' COS i

CO- cltj' —

(3.5-0*)

C

where Cj^^ a r e i n t e g r a t i o n c o n s t a n t s . The e x p r e s s i o n i s I d e n t i c a l t h e ones o b t a i n e d i n R e f s . 3 . 2 and 3 . 5 .

to

Some remarks c o n c e r n i n g t h e e r r o r a s s o c i a t e d w i t h t h e above approximation

a r e a p p r o p r i a t e . The s o l u t i o n

(3.50) s a t i s f i e s the

A* and. A e q u a t i o n s , but n o t t h e A d e q u a t i o n . U s i n g < 3 . 4 6 ) , i t f o l l o w s t h a t t h e £" and 2 but not

the £

Initially.

connection

e^équations a r e s a t i s f i e d , 2

e q u a t i o n . T h i s l e a d s t o an e r r o r o f t h e o r d e r £

I n t e r e s t i n g l y enough, t h e i n i t i a l c o n d i t i o n s do n o t

I n t r o d u c e an e r r o r , a s t h e f u n c t i o n y

h a s n o t been .expanded i n

an a s y m p t o t i c s e r i e s . U s i n g , t h e n o r m a l i z e d f r e q u e n c y

( üJ (o) = i

),

one h a s :

y(o)

y.



y(o)

4- y,co)

^

èlc) :^f\hlco)^ -kV^-CCi-C)

d

-h c,

AicCo)>^(oU

~ l c c < -I-

hence :

Oa)



=

Ca) - C ^ C A )

(3.5-0

X 3.18

The

initial

conditions

and

y^ a r e s e e n t o l e a d t o e x p r e s s i o n s

f o r C| c o n t a i n i n g terms of t h e o r d e r one n o t a t i o n , o f t h e o r d e r one expansions special

and

£

and '/^ ; o r , i n t h e

(techniques using

l e a d t o c o n s t a n t s of t h e o r d e r one

:

which a g r e e s c o m p l e t e l y w i t h t h e z e r o e t h o r d e r term of t h e above e r r o r s t u d y

mate s o l u t i o n ) g i v e n by

: with the f i r s t

( or, i n

order

approxi-

(3.40).

Summarizing t h e most I m p o r t a n t 1. The

the

1

± view

asymptotic

o n l y ) . Por

c a s e ( 3 . 2 ) , one deduces from (3.50,51)

£

a s p e c t s of t h i s S e c t i o n :

dependent v a r i a b l e i s not expanded i n t h e form of an

aymptotlc

s e r i e s . Assuming a l i n e a r

slow c l o c k Vg and

a non-

l i n e a r f a s t c l o c k TTi , t h e e x p l i c i t dependence o f t h e f a s t on t h e o r i g i n a l explicit

time i s d e t e r m i n e d

through

clock

c o n s t r u c t i o n . The

dependence of t h e approximate s o l u t i o n on t h e slow c l o c k

i s determined

through

e x p l o i t a t i o n of the l i n e a r

Independence

of t h e components o f t h e complete s o l u t i o n t o t h e l o w e s t 2 0 V , £ ) equation.

order

2. The

approxi-

>

s o l u t i o n o b t a i n e d d i f f e r s from t h e K e v o r k i a n - C o l e

mation ( f o r g e n e r a l frequency

f u n c t i o n and g e n e r a l i n i t i a l

t i o n s ) i n that the i n t e g r a t i o n constants a l s o c o n t a i n f i r s t c o r r e c t i o n terms.( K f a c t i o n of t h e two

, £^ ) . T h i s f a c t , t o g e t h e r w i t h t h e

condiorder satis-

lowest order d i f f e r e n t i a l equations, leads to

the c o n c l u s i o n t h a t the s o l u t i o n obtained c o n s t i t u t e s a

first

o r d e r a p p r o x i m a t e s o l u t i o n , c o n t a i n i n g an e r r o r o f t h e o r d e r o f

3.19

X" , or

£

. Por t h e s p e c i a l c o n d i t i o n s ( 3 . 2 ) , t h i s

agrees completely with the f i r s t s o l u t i o n o b t a i n e d by thë Two

solution

o r d e r p a r t of t h e a p p r o x i m a t e

V a r i a b l e E x p a n s i o n Method.

3.2Ö

3.5 M u l t i V a r i a b l e Approach The

M u l t i V a r i a b l e Approach ( S e c t i o n 2.6) I s now

t o t h e problem o f t h e p e r t u r b e d yield

harmonic o s c i l l a t o r

(3.1), to

a s e c o n d . o r d e r approximate s o l u t i o n f r e e o f s e c u l a r t e r m s .

Several nonlinear

c l o c k s a r e u s e d ; they

are constructed

ously using the c o n d i t i o n of uniform v a l i d i t y . l y s i s presented ing

applied

linear

i n the previous

Unlike

S e c t i o n , no a s s u m p t i o n

rigorthe anaconcern-

Independence o f t h e s o l u t i o n - c o m p o n e n t s i s needed;

t h i s property

makes t h e method e q u a l l y a p p l i c a b l e t o l i n e a r and

nonlinear d i f f e r e n t i a l

equations,

a s i s shown i n C h a p t e r s

Five

through Seven. As t h e f r e q u e n c y citly, and

f u n c t i o n contains the product

i t i s d e s i r a b l e to Introduce

slow c l o c k s

:

expli-

t h e f o l l o w i n g system o f f a s t

y •r 0

where t h e f a s t y

and s l o w c l o c k s

, w h i l e t h e slow c l o c k

^o^,,,^.., a r e n o n l i n e a r f u n c t i o n s i s a linear

t u r n s o u t , however, t h a t t h i s p a r t i c u l a r treatment

of the d i f f e r e n t i a l equation

f u n c t i o n of ^

. I t

c h o i c e of c l o c k s f o r the

of the s e c u l a r type

(3.1),

i s equivalent to a similar

choice of c l o c k s f o r the treatment

an a s s o c i a t e d d i f f e r e n t i a l

equation

the d e f i n i t i o n

0=

transforms

of

of

of the matching type. Indeed,

(3.1) to :

cl 02 and

the i n i t i a l conditions a r e transformed

J(o) zr

O

»



3.21

(o) -

to ;

-i

O.siv)

(3.53,54)

C l e a r l y , problem

leads t o nonunlformlties of the ( S a n d r l - )

matching t y p e . The t r a n s f o r m a t i o n 0 = ey?was I n t r o d u c e d

t o show

t h a t t h e M u l t i V a r i a b l e Approach c a n be u s e d t o d e a l w i t h ential and

equatlorts l e a d i n g t o n o n u n l f o r m l t i e s o f t h e s e c u l a r t y p e

of t h e matching type The

alike.

c l o c k s ^o,

o f t h e o r d e r o f y> ,

One t h e n must

r e w r i t e the equation as : r.2

4where t h e new f u n c t i o n

£

.. i s o f t h e o r d e r one f o r (j>

. This re-ordered equation c l e a r l y asymptotic approximation, v a l i d t i o n o f t h e One V a r i a b l e zeroeth

f o r large

y?

to a different . Indeed,

E x p a n s i o n Method ( e . g . ) l e a d s

and ( 3 . 8 7 )

Increases exponentially between ( 3 . 8 5 )

(j>

difference

and t h e o t h e r a p p r o x i m a t e s o l u t i o n s

solutions also Increases

to a

f o r l a r g e (j) . N o t i n g t h e s i m i l a r i t y

( i g n o r i n g U^^^ ) , i t t h e n f o l l o w s

small

shows t h a t t h e i r

applica-

(3.87)*.

o r d e r term which i s p r e c i s e l y o f t h e form

Comparison o f ( 3 . 8 5 )

for

leads

of the order

obtained

that t h e e r r o r of each of these

exponentially

f o r l a r g e ij? ( a s w e l l a s

, see ( 3 . 8 5 ) ) .

* A more c o m p l i c a t e d example o f t h e need t o r e - e v a l u a t e t h e o r d e r o f magnitude o f t h e terms o f t h e d i f f e r e n t i a l

equation

as t h e Independent v a r i a b l e I n c r e a s e s , i s p r e s e n t e d by S h i and 3 11 Eckstein-"

, who a n a l y z e d low t h r u s t s p a c e v e h i c l e

e x h i b i t i n g a s i n g u l a r i t y near the escape point an i n f i n i t e v a l u e

f o r the r a d i a l distance 3.34

trajectories

(i.e.,

at a finite

predicting time).

More g e n e r a l l y , the r e a s o n

f o r the occurrence

validity

i n the decrease

for large ^

lies

towards z e r o ; f o r t h e p a r t i c u l a r c h o i c e

turning point at i n f i n i t y : For other

one

may

deals with

, such

expect

results

a much

the accuracy

of t h e v a r i o u s

/,

slower

approximations

Dt» UTV

values for

» UsM-i 3 UMV '

yield

^^tme r e p r e s e n t a t i v e

have been p l o t t e d i n Pigs.3.3-5. Pig.3.3 shows

behavior

the

s o l u t i o n o v e r s e v e r a l I n t e r v a l s of c^? , f o r

of t h e e x a c t

= 0.025. F i g s . 3 . 4 , 5 show t h e e n v e l o p e o f t h e

between the n u m e r i c a l

v a l u e of the exact

"deviation"

s o l u t i o n and

the

numeri-

cal

v a l u e of e a c h of the t h r e e a p p r o x i m a t e s o l u t i o n s ; i . e . , o f

for

each of the v a l u e s

= 0.025 and

£

£ = 0.1.

I t i s seen

the M u l t i V a r i a b l e Approach ( U^,^ ) y i e l d s t h e most a p p r o x i m a t i o n . As if mations decreases

I n c r e a s e s , the accuracy roughly

e x p o n e n t i a l l y , as p r e d i c t e d .

the o s c i l l a t i o n d i e s out s e c u l a r . The

and

and

BESY s u b r o u t i n e s

r e s p . These subroutines

on an IBM

approxi-

Initially,

purely

360/9I compu-

f o r t h e c a l c u l a t i o n of

can be used o n l y f o r £ )^

they must be r e w r i t t e n i f s m a l l e r v a l u e s of £

3.35

that

Increases,

t h e growth becomes almost

c a l c u l a t i o n s were e x e c u t e d

t e r , u s i n g BESJ

^

:

accurate

of a l l t h r e e

t h e e r r o r s d i s p l a y a s h o r t p e r i o d o s c i l l a t i o n ; as

and y

a {e/p .

as to= e

some more d e t a i l , a computer program has been w r i t t e n t o

numerical

£

(3.2)

oj

growth. I n order to study

in

of the frequency

choices

or a l t e r n a t i v e l y , l e t t i n g ^-j» - t o , one error

of nonuniform

are used.

0.02;

The

above o b s e r v a t i o n s l e a d t o a word o f c a u t i o n c o n c e r n i n g t h e

I n t e r p r e t a t i o n of t h e concept of

of uniform

validity.

asymptotic expansions, uniform v a l i d i t y

f o l l o w i n g term'of t h e e x p a n s i o n to t h e p r e v i o u s term for

a l l (j'eCo.co')

the expansion

I f t h i s t u r n s out t o be t r u e

(compare S e c t i o n 3 . 5 ) ,

shows, however, t h a t , a l t h o u g h has been o b t a i n e d

i s obtained i f each

i s a s y m p t o t i c a l l y s m a l l compared

(Section 2.2).

"uniformly v a l i d

I n the theory

t h e n some a u t h o r s

f o r a l l t i m e s " . The example "uniform

(Sections 3 . 4 , 5 ) ,

validity

call

(3.1,2)

f o ra l l times"

the error Involved i s i n

g e n e r a l a f u n c t i o n o f time and may i n c r e a s e beyond bounds, t h e r e by d e s t r o y i n g t h e u n i f o r m

validity

after

finite

times

( ^ C^"^).

T h i s shows t h a t one may c o n c l u d e whether o r n o t a n a s y m p t o t i c expansion i s "uniformly v a l i d "

only a f t e r

h a v i n g c a l c u l a t e d an

I n f i n i t e number o f terms ( N-> ^-o ) . U s u a l l y , t h i s ble.

P o r a f i n i t e number o f terms t h e n , a c o n c l u s i o n about t h e

domain o f u n i f o r m tical

c a n be drawn o n l y a f t e r

either analy-

differential

equation

( R e f s . 3 . 6 , 7 ) , or a f t e r

numeri-

c o m p a r i s o n o f t h e a^)^)roximate s o l u t i o n w i t h t h e n u m e r i c a l l y

determined (see

validity

s t u d y o f t h e growth o f t h e p r e v i o u s l y n e g l e c t e d terms i n

the o r i g i n a l cal

i s not f e a s i -

"exact" s o l u t i o n of the o r i g i n a l

a l s o Chapter

Eight).

3.36

differential

equation,

3.8 References

3.1

L a n g e v l n , P . , and De B r o g l l e , M . , e d s . L a T h e o r i e du Rayonnement e t l e s Quanta. C o n s e l l s c l e n t l f i q u e de P h y s i q u e sous l e s a u s p i c e s de M.E.Solvay, a B r u x e l l e s , 1 9 1 1 , G a u t h l e r - V l l l a r s , P a r i s , 1 9 1 2 , pp. 4 4 6 - 4 5 0 .

3.2

C o l e , J.D. P e r t u r b a t i o n Methods I n A p p l i e d M a t h e m a t i c s . P u b l i s h i n g Company,Waltham, Mass., 1968.

3.3

Blalsdell

Morse,P.M., and Peshbach,H. Methods o f T h e o r e t i c a l P h y s i c s , P a r t s I and I I . H l l l Book Company,Inc.,New Y o r k , 1 9 5 3 .

Mc Graw-

3.4

Cheng,H., and Wu,T.T. "An Aging S p r i n g " . S t u d i e s i n A p p l i e d M a t h e m a t i c s , V o l . X L I X , No.2,June 1 9 7 0 , pp. 1 8 3 - 1 8 5 .

3.5

Kevorkian,J. "The T w o - V a r i a b l e E x p a n s i o n P r o c e d u r e f o r t h e Approximate S o l u t i o n of C e r t a i n Non-Linear D i f f e r e n t i a l Equations". L e c t u r e s i n A p p l i e d M a t h e m a t i c s , V o l . 7 : Space M a t h e m a t i c s , Part 3 , J.B.Rosser, ed., American Mathematical S o c i e t y , 1966, pp. 2 0 6 - 2 7 5 .

3.6

Ramnath,R.V. A M u l t i p l e Time S c a l e s Approach t o t h e A n a l y s i s o f L i n e a r Systems. Ph.D. d i s s e r t a t i o n , Department o f A e r o s p a c e and Mechanical S c i e n c e s , Princeton U n i v e r s i t y , Princeton,N.J., 1 9 6 7 ; a l s o : R e p o r t APPDL-TR-68-60, USAP P l i g h t Dynamics L a b o r a t o r y , W r i g h t - P a t t e r s o n APB., Ohio, O c t o b e r I 9 6 8 .

3.7

Ramnath,R.V., and S a n d r l , G . "A G e n e r a l i z e d M u l t i p l e S c a l e s Approach t o a C l a s s o f L i n e a r D i f f e r e n t i a l Equations". J o u r n a l of Mathematical A n a l y s i s and A p p l i c a t i o n s , Vol.28,No.2,November 1 9 6 9 , pp. 3 3 9 - 3 6 4 .

3.8

Watson,G.N. A T r e a t i s e on t h e T h e o r y o f B e s s e l F u n c t i o n s . Cambridge U n i v e r s i t y P r e s s , 1948.

3.37

Second e d i t i o n

!

3.9

Allen,H.J. Motion of a B a l l i s t i c M i s s i l e A n g u l a r l y M i s a l i g n e d w i t h t h e P l i g h t Path upon E n t e r i n g t h e Atmosphere and i t s E f f e c t upon Aerodynamic H e a t i n g , Aerodynamic L o a d s , and M i s s D i s t a n c e . NACA TN 4048, O c t o b e r 1957.

3.10

Curtlss,H.C.,Jr. An A n a l y t i c a l Study of t h e Dynamics of A i r c r a f t i n Unsteady P l i g h t . Ph.D. d i s s e r t a t i o n . Department of A e r o s p a c e and Mechanical S c i e n c e s , Princeton U n i v e r s i t y , Prlnceton,N.J., 1965; a l s o : T e c h n i c a l Report 6 5 - 4 8 , USAAVLABS, O c t o b e r I 9 6 5 .

3.11

S h l , Y . Y . , and E c k s t e i n , M . C . "An Approximate S o l u t i o n f o r A s c e n d i n g Low T h r u s t T r a j e c t o r i e s w i t h o u t S i n g u l a r i t y " . AIAA J o u r n a l , V o l . 5 , N o . 1 , J a n u a r y I 9 6 7 , pp. 1 7 0 - 1 7 2 .

3.12 Ehrenfest,P. "On a d i a b a t l c changes of a s y s t e m i n c o n n e c t i o n w i t h t h e quantum t h e o r y " . P r o c e e d i n g s , K o n i n k l i j k e Akademie van Wetenschappen t e Amsterdam. Vol.XIX,No.3,1917,pp. 5 7 6 - 5 9 7 . •1

3.38

3.39

env.

I0-'

3.42

Local Horizontal

Ascending Flight ( / o < 0 ) Descending Flight (/o>0) Pig.3.7

Angle of a t t a c k

0< v e r s u s

3.43

time t

A p p e n d i x 3A : O s c i l l a t o r y , B a l l i s t i c Consider

t h e motion

Flight

i n t h e v e r t i c a l plane o f a b a l l i s t i c

r e - e n t r y v e h i c l e t h r o u g h a v a r i a b l e - d e n s i t y atmosphere. With t h e a s s u m p t i o n s o f an a x i a l l y

symmetric body, s m a l l angle o f a t t a c k

o(, , z e r o a e r o d y n a m i c d a m p i n g , l i n e a r i z e d a e r o d y n a m i c moment z.

• d

angle

, constant v e l o c i t y

, and c o n s t a n t f l i g h t

(Pig.3.6), the equation of motion

around

path

the center of

g r a v i t y o f t h e v e h i c l e c a n be w r i t t e n as :

where M d e n o t e s t h e r o t a t i o n a l moment a r o u n d g r a v i t y , S t h e aerodynamic r e f e r e n c e a r e a , reference lenght,

t h e moment o f i n e r t i a ,

the center of t

t h e aerodynamic «

— r

, and o f e q u a t i o n s

t h r o u g h o u t t h e domain

0^(^-4=^

£} ) t h r o u g h o u t t h e d o m a i n ( 3 C - 2 , 4 ,6^ ) ( e r r o r o f o r d e r s} ) •

P a r e n t h e t i c a l l y , i t may be n o t e d t h a t t h e h a r m o n i c l a t o r problem

oscil-

( 3 . 1 ) can' a l s o be s o l v e d by t h e M e t h o d o f A v e r a g i n g .

•One must t h e n t r a n s f o r m e q u a t i o n ( 3 . 1 ) t o t h e s t a n d a r d

form

(compare e q u a t i o n (3A-5)) :

+ where

1

U clU

One o b s e r v e s I m m e d i a t e l y from order

£

that the p e r t u r b a t i o n term £ grows _ T t o o r d e r one as I n c r e a s e s f r o m z e r o t o o r d e r 1/

o r , e q u l v a l e n t l y , as (j? i n c r e a s e s f r o m z e r o t o o r d e r |-i,n. ^ .• T h i s result

i s i n accordance w i t h those o b t a i n e d from d i f f e r e n t

siderations

(compare e q s . ( 3 C - 2 t h r o u g h 6 ) ) .

region of uniform v a l i d i t y

i s g i v e n by :

3.49

con-

Thus, here a g a i n , t h e O ^ (f

^

^

.

;

H.1

CHAPTER I V DEVELOPMENT OF THE THREE DIMENSIONAL EQUATIONS OP MOTION FOR AEROSPACE VEHICLES ^1.1 I n t r o d u c t i o n I n the previous

Chapter, s e v e r a l asymptotic

perturbation

methods have been a p p l i e d t o t h e problem o f t h e harmonic

oscil-

l a t o r w i t h s l o w l y v a r y i n g f r e q u e n c y . The approximate s o l u t i o n s obtained have been compared a n a l y t i c a l l y and n u m e r i c a l l y ,

there-

by r e v e a l i n g a r e l a t i v e s u p e r i o r i t y o f t h e M u l t l V a r i a b l e Approach. The

same t u t o r i a l

framework i s now s e t up w i t h r e s p e c t

t o the

p e r t u r b e d m o t i o n o f unpowered, l i f t i n g aerospace v e h i c l e s around a massive, o b l a t e , r o t a t i o n a l l y symmetric p r i m a r y

body surrounded

by an atmosphere. In. a c t u a l p h y s i c a l s i t u a t i o n s , i n p a r t i c u l a r m o t i o n around the E a r t h , one has i n a d d i t i o n t o o b l a t e n e s s -

and aerodynamic

p e r t u r t : ( a t i o n 0 , o, whole clariH o f perfcurbatlono due t o phenomena such as : d e v i a t i o n s from r o t a t i o n a l symmetry o f t h e p r i m a r y body; g r a v i t a t i o n due t o non-primary bodies;' t i d a l a t t i t u d e motions; electromagnetic sure; r e l a t i v i t y

friction;

effects; solar radiation

pres-

e f f e c t s , and so on. Whether o r n o t any o f these

a d d i t i o n a l p e r t u r b a t i o n s must be t a k e n i n t o account depends on the p h y s i c a l s i t u a t i o n encountered. For n e a r - E a r t h m o t i o n of, r e l a t i v e l y compact aerospace v e h i c l e s , t h e above c l a s s o f p e r t u r b a t i o n s may u s u a l l y be n e g l e c t e d done i n t h e p r e s e n t

study.

(e.g.,Refs.4.1-3); t h i s i s also

To study t h e m o t i o n o f t h e v e h i c l e , a s u i t a b l e frame o f r e f e r e n c e must be i n t r o d u c e d . The s i m p l e s t choice

i s an I n e r t i a l ,

planeto-

c e n t r i c frame, v/hose o r i g i n c o i n c i d e s w i t h t h e c e n t e r o f mass o f the p r i m a r y body ( p l a n e t ) . The g e n e r a l , t h r e e d i m e n s i o n a l of t h e v e h i c l e w i t h r e s p e c t t o t h i s frame o f r e f e r e n c e

motion

then

f o l l o w s from t h e v e c t o r e q u a t i o n :

— s u b j e c t t o t h e i n i t i a l c o n d i t i o n s V (o) r a d i u s v e c t o r i s denoted by r

dr and

dO)

. Here, t h e

( o r i g i n a t i n g from t h e c e n t e r o f t h e

frame o f r e f e r e n c e ) , t h e t o t a l a c c e l e r a t i o n v e c t o r by a

, the

g r a v i t a t i o n a l v e c t o r by Q.. > and t h e aerodynamic a c c e l e r a t i o n v e c t o r by The

.

a n a l y t i c a l study o f (^.1) o f f e r s g r e a t c h a l l e n g e s t o

a p p l i e d m a t h e m a t i c i a n s . I n g e n e r a l , no exact

s o l u t i o n can be ob-

t a i n e d ; one must be s a t i s f i e d w i t h an approximate s o l u t i o n , e i t h e r a n a l y t i c a l or numerical.

I t o f t e n t u r n s out t h a t c e r t a i n t r a n s -

f o r m a t i o n s o f v a r i a b l e s may s i m p l i f y t h e a n a l y s i s , o r make t h e s o l u t i o n o b t a i n e d more t r a n s p a r e n t f o r p h y s i c a l i n t e r p r e t a t i o n . Three such t r a n s f o r m a t i o n s o f t h e independent v a r i a b l e come immed i a t e l y t o mind : 1. The t r a n s f o r m a t i o n t ( V ) from time t o v e l o c i t y , has found a p p l i c a t i o n i n s e v e r a l s t u d i e s (e .g. ,Ref s . ^ . ^1-7). T h i s t r a n s f o r m a t i o n i s s u i t a b l e o n l y i f t h e f u n c t i o n a l dependence between t and V I s m o n o t o n i c , such as occurs i n d r a g dominated f l i g h t , or on escape t r a j e c t o r i e s . I n t h e p r e s e n t

l\.2

study o f p e r t u r b e d

Kepler m o t i o n , a s i n g u l a r i t y

(dV/dt = 0) i n t h e t r a n s f o r m a t i o n

occurs a t l e a s t t w i c e p e r r e v o l u t i o n , making t h i s t y p e o f t r a n s formation unsuitable. 2. Another such t r a n s f o r m a t i o n : t ( r ) from t i m e t o r a d i u s . I s sometimes used (e.g.,Refs.^.8,9). T h i s t r a n s f o r m a t i o n i s s u i t a b l e • f o r monotonlcaliy ascending or descending

f l i g h t . Again, I n t h e

p r e s e n t study o f p e r t u r b e d Kepler m o t i o n , a s i n g u l a r i t y ( d r / d t = 0 ) i n t h e t r a n s f o r m a t i o n occurs a t l e a s t t w i c e p e r r e v o l u t i o n , making t h i s type o f t r a n s f o r m a t i o n t o o , u n s u i t a b l e . 3. The t r a n s f o r m a t i o n t ( ^ ) from t i m e t o " e v o l u t i o n a n g l e " i s used i n t h e p r e s e n t s t u d y . For t h r e e d i m e n s i o n a l m o t i o n , t h e angle (j> I s i n t e r p r e t e d as t h e c e n t r a l angle i n t h e i n s t a n t a n e o u s o r e v o l v i n g o r b i t a l p l a n e . Thus, t h e s o l u t i o n t o t h e e q u a t i o n s o f m o t i o n becomes g e o m e t r i c a l l y i n t e r p r e t a b l e . I t should be p o i n t e d out

that a singularity

(dj^/dt = 0 ) i n t h e t r a n s f o r m a t i o n occurs

for

l o c a l l y v e r t i c a l f l i g h t . For i n i t i a l l y n o n - v e r t i c a l

and s m a l l v a l u e s o f t h e aerodynamic l i f t

flight

p e r t u r b a t i o n as c o n s i d e r e d

i n t h e p r e s e n t s t u d y , t h e f u n c t i o n a l dependence between t and (j> I s monotonic , and t h e r e f o r e

suitable.

Of course, t r a n s f o r m a t i o n o f t h e independent v a r i a b l e i s n o t a b s o l u t e l y necessary, as i t s monotony makes i t a s u i t a b l e S t u d i e s i n v o l v i n g t i m e as t h e independent e.g.,Refs.4.10,ll,12,32.

^.3

variable.

v a r i a b l e a r e found

In,

In

a d d i t i o n t o t r a n s f o r m a t i o n of the independent v a r i a b l e , i t may

be d e s i r a b l e t o t r a n s f o r m

the dependent v a r i a b l e . Three

important

cases employing such t r a n s f o r m a t i o n (some i n v o l v i n g s i m u l t a n e o u s t r a n s f o r m a t i o n of the independent v a r i a b l e ) are : 1. Gauss' f o r m u l a t i o n of Lagrange's p l a n e t a r y

equations. This i s

b a s i c a l l y a v a r i a t i o n o f parameters f o r m u l a t i o n . I t i n v o l v e s f i r s t order, nonlinear d i f f e r e n t i a l equations, describing dependence o f t h e o s c u l a t i n g o r b i t elements on t i m e

six

the

(e.g.,Refs.

13-15). 2. The

displacement f o r m u l a t i o n , d e s c r i b i n g t h e p o s i t i o n of

vehicle r e l a t i v e t o a Cartesian

coordinate

the

system which moves w i t h

a f i c t i t i o u s v e h i c l e i n t h e u n p e r t u r b e d , two d i m e n s i o n a l o r b i t . The

p o s i t i o n Is described

by a l i n e a r i z e d system o f t h r e e

coupled,

second o r d e r d i f f e r e n t i a l e q u a t i o n s , c o n t a i n i n g t h e c e n t r a l angle ( or time ) of the f i c t i t i o u s v e h i c l e as Independent v a r i a b l e (e.g. , R e f s . i J . 1 3 , l ^ , l 6 , 1 7 ) . 3. The

harmonic o s c i l l a t o r f o r m u l a t i o n , employing a s p h e r i c a l

coordinate

system. I n t r o d u c i n g a new

i n v e r s e of the r a d i u s , and a n g l e , one

varla'ble p r o p o r t i o n a l t o t h e

transforming

from time t o e v o l u t i o n

o b t a i n s a coupled system o f two f i r s t o r d e r and

two

second o r d e r , n o n l i n e a r d i f f e r e n t i a l e q u a t i o n s , c o n t a i n i n g

the

e v o l u t i o n angle as Independent v a r i a b l e . T h i s system i s e q u i v a l e n t t o t h a t of two harmonic o s c i l l a t o r s c o n t a i n i n g s m a l l l i n g p e r t u r b a t i o n terms. Examples of t h e a p p l i c a t i o n o f

coup-

this

method t o two d i m e n s i o n a l m o t i o n are found e.g., t h r e e d i m e n s i o n a l m o t i o n i s t r e a t e d i n t h i s way

i n Refs.4.18-20 ; e.g.,

i n Refs.

4.13,14,21,22. I n t h i s d i s s e r t a t i o n , t h e harmonic o s c i l l a t o r f o r m u l a t i o n i s adopted.

I t has t h e advantage o f immediate g e o m e t r i c a l d e s c M p t l o n

of t h e m o t i o n o f t h e v e h i c l e as f u n c t i o n o f t h e e v o l u t i o n a n g l e ; moreover, i t leads t o b o t h convenient m a t h e m a t i c a l a n a l y s i s a c c u r a t e r e s u l t s . Expressions

f o r t h e g r a v i t a t i o n a l - and

aerody-

namic a c c e l e r a t i o n v e c t o r s i n (4.1) are d e r i v e d i n S e c t i o n T r a n s f o r m a t i o n o f (4.1) t o t h e harmonic o s c i l l a t o r i s c a r r i e d out i n S e c t i o n 4.3.

Pour cases o f two

m o t i o n are deduced I n S e c t i o n 4.4.

and

4.2.

formulation

dimensional

Remarks on t h e n u m e r i c a l

inte-

g r a t i o n o f t h e e q u a t i o n s o f m o t i o n are p r e s e n t e d i n S e c t i o n 4.5'.

4.5

4.2 G r a v i t a t i o n a l - and Aerodynamic A c c e l e r a t i o n V e c t o r s

4.2.1 Coordinate

Systems

The g r a v i t a t i o n a l - and aerodynamic a c c e l e r a t i o n v e c t o r s must be s p e c i f i e d c o m p l e t e l y b e f o r e t h e e q u a t i o n s

o f m o t i o n (4.1) can

be s o l v e d . To reach t h i s g o a l , t h r e e u n i t v e c t o r systems a r e now I n t r o d u c e d , each d e f i n i n g a c o o r d i n a t e

system,(Pig.4.1).

The b a s i c c o o r d i n a t e system i s an i n e r t i a l , p l a n e t o c e n t r i c c o o r d i n a t e system, d e f i n e d by t h e i n e r t i a l , p l a n e t o c e n t r i c u n i t v e c t o r system

Tv.,y^z

f o l l o w s : t h e o r i g i n o f t h e system c o i n -

cides w i t h t h e c e n t e r o f mass o f t h e p r i m a r y body; t h e u n i t v e c t o r Tz

l i e s along t h e a x i s o f r o t a t i o n a l symmetry o f t h e p r i m a r y

body, and i s d i r e c t e d towards t h e N o r t h Pole ( f i x e d w i t h r e s p e c t to i n e r t i a l

space); t h e u n i t v e c t o r Tx i s p e r p e n d i c u l a r t o Tz ,

i t s d i r e c t i o n Is f i x e d w i t h respect t o i n e r t i a l vector

i s g i v e n by ïy =

X Tx

space;

The r a d i u s V



the unit i s defined

w i t h r e s p e c t t o t h i s system. The a n a l y s i s i s s i m p l i f i e d i f two moving c o o r d i n a t e

systems

are I n t r o d u c e d , d e f i n e d by t h e f o l l o w i n g u n i t v e c t o r systems : 1. t h e moving, o r b i t a l s p h e r i c a l u n i t v e c t o r system Ty.^h,e ' o r i g i n c o i n c i d e s w i t h t h e c e n t e r o f mass o f t h e v e h i c l e , and r - ^

7 - Z A ^ ^ »

——

7 .

_

7 ^ 7

-

U%

ir

(H.Z)

2. t h e moving, e q u a t o r i a l s p h e r i c a l u n i t v e c t o r system 1^^^ ^ ; I t s o r i g i n c o i n c i d e s w i t h t h e c e n t e r o f mass o f t h e v e h i c l e , and J- ^

iz X Tr

COS X where X

denotes t h e l a t i t u d e .

^

Ü

=

Tr X Lu



^ ^

Truncation of the series a f t e r the

2.6X10

term t h u s leads t o a v e r y

s m a l l e r r o r compared t o t h e two l e a d i n g terms. I n view o f t h e o b j e c t i v e s o f t h i s d i s s e r t a t i o n , t h e p o t e n t i a l (4.5) may t h e r e f o r e be approximated

to: r

where t h e p o l y n o m i a l e x p r e s s i o n f o r

(©4) has been I n t r o d u c e d , and

where "J^ i s t h e "oblateness c o e f f i c i e n t " . I t may be noted t h a t t h e above p o t e n t i a l i s i d e n t i c a l t o t h e p o t e n t i a l g e n e r a t e d by a p o i n t mass and a quadrupole o r i g i n , r = 0. a

o f c o n s t a n t moment, b o t h l o c a t e d a t t h e

One now o b t a i n s f o r t h e g r a v i t a t i o n a l v e c t o r : 7

=

V

u

COS X

c)U

7

tH.8)

-

where t h e p a r t i a l d e r i v a t i v e s f o l l o w i m m e d i a t e l y from

(4.7).

4.2.3

Aerodynamic A c c e l e r a t i o n

Vector

The aerodynamic a c c e l e r a t i o n i s due t o t h e m o t i o n o f t h e v e h i c l e t h r o u g h t h e atmosphere s u r r o u n d i n g

t h e p r i m a r y body. I n

g e n e r a l , one has : a^-

+

cTu

t h e aerodynamic

factor,

reference

area S, and t h e v e h i c u l a r mass m (an i l l u m i n a t i n g study o f t h e e x p e r i m e n t a l e v a l u a t i o n o f these q u a n t i t i e s I s found I n Ref.^,24). The l i f t

a c c e l e r a t i o n v e c t o r i s o f a somewhat more

compli-

cated f o r m , a l l o w i n g an a r b i t r a r y bank angle "y^ ( F i g . 4.2) : dr 2 • dt _ where Ct

denotes t h e l i f t •>

M —

c o e f f i c i e n t , and where :

H

( a n g u l a r momentum)

F i n a l l y , one o b t a i n s f o r t h e aerodynamic a c c e l e r a t i o n a^—

Qo +

at

=

a, l ,

-\- a,

-h Qu ^

vector c^-ii-)

where Qp and ÖI are s p e c i f i e d by ( 4 . 1 0 , 1 1 ) , and where a^-^^^j^ f o l l o w immediately f r o m a^.t . I t remains t o s p e c i f y t h e d e n s i t y f u n c t i o n ^ and t h e aerodynamic c o e f f i c i e n t s C l p o c c u r r i n g I n 4.8

(4.12).

4 . 2 . 4 A n a l y t i c a l D e n s i t y Model I n o r d e r t o be a b l e t o t r e a t the problem

of aerodynamlcally

p e r t u r b e d m o t i o n a n a l y t i c a l l y , an a n a l y t i c a l e x p r e s s i o n f o r t h e d i s t r i b u t i o n o f t h e atmospheric

density ^

around

body must be i n t r o d u c e d i n e q u a t i o n ( 4 . 1 2 ) . The

the primary

s i m p l e s t model

t h a t comes t o mind i s t h a t o f a s p h e r i c a l l y symmetric,

steady

s t a t e d e n s i t y d i s t r i b u t i o n . Such a model i s a s t r o n g s i m p l i f i c a t i o n o f the a c t u a l d e n s i t y d i s t r i b u t i o n , as i t n e g l e c t s such phenomena as

: atmospheric

r o t a t i o n , o b l a t e n e s s o f the atmosphere,

s o l a r f l u x and r a d i a t i o n d i s t u r b a n c e s , t h e r m a l atmospheric

con-

d u c t i o n , and so on ( e . g . , R e f s . 3 . 1 5 > 2 5 , 2 6 ) . A n a l y t i c a l models t h a t take such phenomena I n t o account

do e x i s t ; o f t e n , however, t h e s e

models are e x t r e m e l y awkward t o use i n a n a l y t i c a l s t u d i e s . I n t h i s d i s s e r t a t i o n , a s o - c a l l e d "design d e n s i t y model" i s c o n s i d e r e d . I t i s o b t a i n e d from t h e a c t u a l d e n s i t y d i s t r i b u t i o n by a v e r a g i n g w i t h r e s p e c t t o l o n g i t u d e , l a t i t u d e , and t i m e , l e a d i n g t o t h e f u n c t i o n a l form :

Some o f these models are l i s t e d i n Appendix 4A. Each model i s matched t o t h e averaged, a c t u a l d e n s i t y p r o f i l e a v a i l a b l e i n l i t e r a t u r e , a t some a l t i t u d e

( r = r^ ) , u s u a l l y t h e p e r l c e n t e r o f

t h e u n p e r t u r b e d o r b i t . A number o f c o n s t a n t s a v a i l a b l e i n t h e model a l l o w s matching

at other a l t i t u d e s

( r = r, , ,

) as w e l l .

The models p r e s e n t e d i n Appendix 4A c l e a r l y I n v o l v e d i f f e r e n t a c c u r a c i e s over t h e a l t i t u d e r e g i o n under c o n s i d e r a t i o n ; t h e most

4.9

r e s t r i c t i v e model I s t h e l i n e a r one, t h e most g e n e r a l models a r e the power law model and Bruno's model.(The e f f e c t o f e r r o r s

In

the d e n s i t y model on t h e p r e d i c t e d m o t i o n o f s a t e l l i t e s has been I n v e s t i g a t e d by s e v e r a l a u t h o r s f o r t h e case o f n e a r - c i r c u l a r s a t e l l i t e o r b i t s ; e.g., see R e f . 4 . 2 7 ) . I t i s now proposed t o use a d e n s i t y model o f t h e type r e l a t e d t o Bruno's model, by t a k i n g f ( r ) = Y = c o n s t a n t ;

(4.13)

thus :

The model a l l o w s m a t c h i n g t o t h e averaged d e n s i t y p r o f i l e a t two p o i n t s . One o f these p o i n t s

(r„ ) should be l o c a t e d near o r a t t h e

i n i t i a l p e r l c e n t e r , as t h e p e r t u r b a t i o n e f f e c t s a r e most

signifi-

cant i n t h a t r e g i o n . As t h e p e r l c e n t e r descent r a t e i s r a t h e r low ( R e f . 4 . 1 5 , p . 1 5 5 ) , t h i s c h o i c e o f matching p o i n t w i l l f a c t o r y f o r long times. distance higher orbits,

remain s a t i s -

The second p o i n t s h o u l d be t a k e n a t some

a r above t h e f i r s t

p o i n t ; i t must, o f c o u r s e , n o t be

t h a n t h e i n i t i a l apocenter. Thus, f o r s m a l l - e c c e n t r i c i t y A r must be t a k e n a c c o r d i n g l y

enough, f o r l a r g e - e c c e n t r i c i t y o r b i t s ,

small. I n t e r e s t i n g l y a r must a l s o be t a k e n

r a t h e r s m a l l , as accuracy o f t h e d e n s i t y model counts most I n a r e g i o n o f o n l y about 100 km. w i d t h

(e.g.,Ref.4.28) j u s t above

p e r l c e n t e r , where t h e main p e r t u r b a t i o n e f f e c t s a r e g e n e r a t e d . Numerical s t u d i e s have been c a r r i e d o u t t o compare t h e accur a c y o f t h e proposed model ( 4 . l 4 ) , t o a d e s i g n model p r e s e n t e d by

4.29 P a e t z o l d and Zschorner * I n Pigs.4.3,4

. Some r e p r e s e n t a t i v e

r e s u l t s are shown

( A r = 100 km., R = 6378.2 km,, p e r l c e n t e r a t

4.10

200

km. and 600

km. r e s p e c t i v e l y ) . Por h i g h p e r l c e n t e r

altitudes,

t h e accuracy o f t h e model I s v e r y good over a wide a l t i t u d e

region.

Por lov/ p e r l c e n t e r a l t i t u d e s , t h e accuracy i s good over a somewhat l i m i t e d r e g i o n c o n t a i n i n g t h e two match p o i n t s ; t h r o u g h c a r e f u l choice o f t h e two match p o i n t s , t h e e f f e c t s of t h e d e n s i t y I n a c c u r a c y on t h e m o t i o n o f t h e v e h i c l e may

average o u t , however.

One must bear i n mind t h a t i n t h e course cf t i m e , " u p d a t i n g " ( i . e . , r e p e a t i n g t h e matching p r o c e s s ) o f t h e parameters o f t h e d e n s i t y model may be necessary, i n o r d e r t o m a i n t a i n accuracy w i t h r e s p e c t t o t h e averaged d e n s i t y model.

4.11

4.2.5

Aerodynamic C o e f f i c i e n t s O r b i t i n g aerospace v e h i c l e s g e n e r a l l y f l y a t a l t i t u d e s

above

about 140 km. One may t h e n assume (Refs.4.15,24,30) t h a t t h e m o t i o n takes p l a c e i n t h e f r e e m o l e c u l a r f l o w regime. an a p p r o p r i a t e , v a r i a b l e drag c o e f f i c i e n t

Studies c o n s i d e r i n g

are found i n Refs.

2 8 , 3 0 . Most s t u d i e s t r e a t t h e drag c o e f f i c i e n t

4.26,

as a c o n s t a n t ; t h i s

s i m p l i f i e s t h e a l g e b r a c o n s i d e r a b l y . S t u d i e s employing

a

lift

c o e f f i c i e n t a r e v i r t u a l l y n o n - e x i s t e n t , as i t i s u s u a l l y assumed t h a t space v e h i c l e s tumble

(Refs.4.30,31), thereby averaging out

the e f f e c t s o f l i f t . The p r e s e n t study assumes a g e n e r a l l y nonzero, c o n s t a n t coefficient

lift

( a p p l i c a b l e , e . g . , t o t h e m o t i o n o f space s h u t t l e s and

of s t a b i l i z e d s a t e l l i t e s ) , and a nonzero, c o n s t a n t drag

4.12

coefficient.

4.3 D e r i v a t i o n o f t h e Transformed E q u a t i o n s o f M o t i o n The

e q u a t i o n s o f motion

harmonic o s c i l l a t o r

( 4 . 1 ) a r e now t r a n s f o r m e d t o t h e

formulation.

S u b s t i t u t i n g t h e r e l a t i o n s Fj = H Ü

(4.2), In the

and f = T

angular momentum ( 4 . 1 1 ) , y i e l d s : 6Ï

~

Define t h e " e v o l u t i o n a n g l e "

(j) ^ ( S e c t i o n 4 . 1 )

:

r2 where i t i s assumed t h a t t h e m o t i o n i s c a l c u l a t e d from t = 0 on Equation

( 4 . 1 5 ) t h e n becomes :

S u b s t i t u t i o n o f t h e a c c e l e r a t i o n v e c t o r s ( 4 . 8 ) and ( 4 . 1 2 ) i n t h e equations o f motion

( 4 . 1 ) leads t o :

Taking t h e t i m e - d e r i v a t i v e o f t h e a n g u l a r momentum y i e l d s : dg dt T r a n s f o r m i n g from t i m e t t o t h e e v o l u t i o n angle ^

according t o

( 4 . 1 6 ) , and t a k i n g t h e i n n e r p r o d u c t w i t h Th , leads t o t h e s c a l a r equation : dhi

_

dip

jn! L \A

[

c o a ^

}iia,.T,)

-1-

del

cH.i^)

J

0^

S i m i l a r l y , a p p l y t h e t r a n s f o r m a t i o n ( 4 . 1 6 ) and s u b s t i t u t e (4.18) i n t h e d o u b l e , o u t e r p r o d u c t TkXfrKX ^ 1 ; t h i s gives t h e vector equation : du

_ _ r l ^f c o s A

c r v , . r x ) -1- au\u

(4.20)

A s i m i l a r d i f f e r e n t i a l e q u a t i o n i s found by t a k i n g t h e d e r i v a t i v e Lq zz

of

Iw X

substitute

ly

w i t h r e s p e c t t o t h e e v o l u t i o n angle

, and

(4.17,20); t h i s g i v e s :

S i m i l a r l y , t a k i n g t h e d e r i v a t i v e o f (4.17) w i t h r e s p e c t t o Cj) , and s u b s t i t u t i n g

(4.21), gives :

At t h i s stage o f t h e a n a l y s i s , i t i s c o n v e n i e n t t o i n t r o d u c e the

variables : Ic ~

^/H^

a n g u l a r momentum f u n c t i o n

U

Vy*

radius function

Zi

The above d i f f e r e n t i a l e q u a t i o n s t h e n t r a n s f o r m t o

dlr — — d Cj)

r

-7—

Le

ciü _ dcf

_ A

dtf

u.cosX- i n CÜ.Ix) - I - a k V u èo( J

I

00'.

J CW.24)

d(f^ dt

UM

c)o(

_

/ÏT

-

2A'fu.cosA. ^ ( r , . r , ) uM • èok

4.14

-

Oe] J

A d i f f e r e n t i a l e q u a t i o n f o r u ( ^ ) i s more d i f f i c u l t t o d e r i v e . Transforming the d e r i v a t i v e d r / d t r e l a t i o n s "r^rT^

with the a i d of the

, t = t ( y > ) , and subsequent use o f ( 4 . 2 4 ) ,

leads t o an e x p r e s s i o n o f t h e form n where ..j. ^ ^

_

7-

Lb

are f u n c t i o n s o f U

, It , Cn h /sir\

Sin 2£/

( f ) ^ zz

i

have

been accounted f o r . The e q u a t i o n s (4.4?) agree i n substance w i t h those presented i n R e f . 4 . 4 l .

4.22

V

4.5 Remarks on Numerical

Integration

To v e r i f y the accuracy

of a n a l y t i c a l approximations

equations o f motion presented

I n the previous Sections,

t o the numerical

I n t e g r a t i o n must be r e v e r t e d t o whenever no e x a c t , a n a l y t i c a l solution is available

or s u i t a b l e f o r comparison.

The n u m e r i c a l i n t e g r a t i o n o f system (4.1) can be

performed

a c c o r d i n g t o s e v e r a l methods (Refs.4.47,48). Cowell's method, involving d i r e c t i n t e g r a t i o n i n Cartesian coordinates, i s favored i f t h e g r a v i t a t i o n a l and aerodynamic p e r t u r b a t i o n s ( £^

resp

)

are o f t h e o r d e r of one or l a r g e r ( " s t r o n g " p e r t u r b a t i o n s ; examples : boost and r e - e n t r y t r a j e c t o r i e s ) . Encke's method, i n v o l v i n g

inte-

g r a t i o n of t h e d i f f e r e n t i a l e q u a t i o n s f o r t h e s p a t i a l d i f f e r e n c e between t h e a c t u a l t r a j e c t o r y and an u n p e r t u r b e d , r e f e r e n c e

tra-

j e c t o r y , i s f a v o r e d i f the p e r t u r b a t i o n s are s m a l l e r t h a n t h e order o f one, or i f they are moderate and a c t i n g over a r e s t r i c t e d segment o f t h e t r a j e c t o r y

(examples : l u n a r and

interplanetary

t r a j e c t o r i e s ) . The method o f v a r i a t i o n o f parameters, continuous

involving

" r e c t i f i c a t i o n " of a reference o r b i t , i s favored i f

t h e p e r t u r b a t i o n s are v e r y s m a l l compared t o one low t h r u s t - , s m a l l drag-, and o b l a t e n e s s

( examples :

influenced motion).

I n t h e p r e s e n t s t u d y , t h e p e r t u r b a t i o n s are assumed t o be very s m a l l : oé parameters may

£„ ^

I , Thus, t h e method o f v a r i a t i o n o f

be employed w i t h p r o f i t . The harmonic o s c i l l a t o r

f o r m u l a t i o n o f t h e equations o f m o t i o n , developed i n t h i s Chapter, i s s u i t a b l e par e x c e l l e n c e f o r d i r e c t a p p l i c a t i o n o f t h e method o f v a r i a t i o n o f parameters;

v i d e Chapters Six and

4.23

Seven.

4.6

References

4.1

Spitzer,L.,Jr. "Perturbations of a S a t e l l i t e O r b i t " . Jour-nal of the B r i t i s h I n t e r p l a n e t a r y Society,Vol.9,No.3,May 1950 ,pp.131-136.

4.2

Roberson,R.E. " O r b i t a l Behavior o f E a r t h S a t e l l i t e s " , P a r t I . J o u r n a l o f thé F r a n k l i n I n s t i t u t e ^Vol.264,No.3,September 1957,PP•181-202.

4.3

Kaula,W.M. C e l e s t i a l Geodesy. NASA TN D-1155, March

4.4

4.5

1962.

Chapman,D.R. An Approximate A n a l y t i c a l Method f o r S t u d y i n g E n t r y P l a n e t a r y Atmospheres. NASA TR R-11, 1959. C i t r o n , S . J . , andMelr,T.C. "An A n a l y t i c a l S o l u t i o n f o r E n t r y i n t o P l a n e t a r y AIAA Journal,Vol.3,No.3,March 1965,PP.470-475.

into

Atmospheres".

4.6

Nayfeh,A.H. "Comments on'An A n a l y t i c a l S o l u t i o n f o r E n t r y i n t o P l a n e t a r y Atmospheres'". AIAA J o u r n a l , V o l . 4 , N o . 4 , A p r i l 1966,p.758.

4.7

Citron,S.J. "Reply by Author t o A.H.Nayfeh". AIAA J o u r n a l , V o l . 4 , N o . 4 , pp.758-760.

4.8

Brogllo,L. "Lois de s i m i l i t u d e dans l e c a l c u l des t r a j e c t o i r e s de r e n t r e e e t de 1 ' a b l a t i o n f r o n t a l e des e n g i n s " . A s t r o n a u t i c a A c t a , V o l . 7 , Pasc.1,1961,pp.21-34.

4.9

Willes,R.E.,Francisco,M.C.,Reld,J.G., andLim,W.K. An A p p l i c a t i o n o f Matched A s y m p t o t i c Expansions t o H y p e r v e l o c i t y P l i g h t Mechanics. AIAA Paper No.67-598,I967.

.4.10

T l n g , L . , and Brofman,S. "On Take-Off from C i r c u l a r O r b i t by Small T h r u s t " . Z e l t s c h r l f t für angewandte Mathematik und Physik,Band 44,HeftlO/11, 1964,pp.417-428"

4.11 Brofman,W. "Approximate A n a l y t i c a l S o l u t i o n f o r S a t e l l i t e O r b i t s Subj e c t e d t o Small T h r u s t or Drag". AIAA J o u r n a l , V o l . 5 , N o . 6 , June 1967,pp.1121-1128.

4.24

4.12

Connor,M.A. " G r a v i t y Turn Through t h e Atmosphere". J o u r n a l o f S p a c e c r a f t and Rockets,Vol.3,No.8,August I 9 6 6 , p p . I 3 0 8 - I 3 I I .

4.13

Geyllng,F.T. " P e r t u r b a t i o n Methods f o r S a t e l l i t e O r b i t s " . The B e l l System T e c h n i c a l J o u r n a l , V o l . X L I I I , N o . 3 ,May 1964,pp.847-884.

4.14

G e y l i n g j F . T . , and Westerman,H.R. I n t r o d u c t i o n t o O r b i t a l Mechanics. Addlson-Wesley Reading,Mass.,1971.

4.15

King-Hele,D. Theory o f S a t e l l i t e O r b i t s i n an Atmosphere. London,1964.

Publ.

Co.,

Butterworths,

4.16

B r e a k w e l l , J . V . , and Roberson,R.E. O r b i t a l and A t t i t u d e Dynamics. AIAA Recorded L e c t u r e s e r i e s No.2, August 1969, P r i n c e t o n , M.0.

4.17

Cowley,J.R. The E f f e c t o f t h e Subsolar Atmospheric Bulge on S a t e l l i t e Re-Entry L a t i t u d e s . SUDAAR No.36O, Department o f A e r o n a u t i c s and A s t r o n a u t i c s , S t a n f o r d U n i v e r s i t y , S t a n f o r d , C a l i f o r n i a , October I 9 6 8 .

4.18

Roberson,R.E. " E f f e c t o f A i r Drag on E l l i p t i c S a t e l l i t e O r b i t s " . J e t Propulsion,Vol.28,No.2,February 1958 , p p . 9 0 - 9 6 .

4.19

Zee,C.H. " T r a j e c t o r i e s o f S a t e l l i t e s under t h e I n f l u e n c e o f A i r Drag". Progress i n A s t r o n a u t i c s and A e r o n a u t i c s , V o l . l 4 : C e l e s t i a l Mechanics and A s t r o d y n a m i c s , V.G.Szebehely,ed., Academic Press,New York,1964,pp.101-112.

4-.20 • Newton,R.R. "Motion o f a S a t e l l i t e i n an Atmosphere o f Low G r a d i e n t " . ARS Journal,Vol.32,No.5,May I962,pp.770-772. 4.21

Kevorkian,J. "The Two-Variable Expansion Procedure f o r t h e Approximate S o l u t i o n o f C e r t a i n Non-Linear D i f f e r e n t i a l E q u a t i o n s " . L e c t u r e s i n A p p l i e d Mathematics,Vol.7 : Space Mathematics, P a r t 3 , J,B.Rosser,ed.,American M a t h e m a t i c a l S o c i e t y , 1966, pp.206-275.

4.25

4.22

P e t t y , C M . , and Breakwell,J.V. " S a t e l l i t e O r b i t s about a P l a n e t w i t h R o t a t i o n a l Symmetry". J o u r n a l o f t h e F r a n k l i n I n s t i t u t e , V o l . 2 7 0 , N o . 4 , O c t o b e r I96O, pp.259-282.

4.23

Kozai,Y. "Numerical R e s u l t s on t h e G r a v i t a t i o n a l P o t e n t i a l o f t h e E a r t h from O r b i t s " . The Use o f A r t i f i c i a l S a t e l l i t e s f o r Geodesy, G.Veis,ed.,North-Holland P u b l i s h i n g Company, Amsterdam, I963,PP.305-315.

4.24

King-Hele,D.G., and Walker,D.M.C. "Upper-Atmosphere D e n s i t y d u r i n g t h e Years 1957 t o I 9 6 I , determined from S a t e l l i t e O r b i t s " . Space Research I I , H.C. van de H u l s t e t a l . , e d s . , N o r t h - H o l l a n d P u b l i s h i n g Company,Amsterdam, 196I,pp.918-957•

4.25

Broglio,L. "Lo S t u d i o D e l l ' A l t a Atmosfera Mediante I I S a t e l l i t e San Marco I I " . L ' A e r o t e c h n i c a M i s s l l l E Spazio,Vol.50,No.1, f e b b r a i o 1971,PP.9-18.

4.26

Benson,R.H., Flelschman,E.F., and H i l l , R . J . " E a r t h - O r b i t a l L i f e t i m e and S a t e l l i t e Decay". A s t r o n a u t i c s & Aeronautics,Vol.6,No.1,January I968 ,pp.38-45.

4.27

Karrenberg,H.K., L e v i n , E . , and Lewis,D.H. "Variation of S a t e l l i t e Position with Uncertainties i n the Mean Atmospheric D e n s i t y " . ARS Journal,Vol.32,No.4, A p r i l 1962,pp.576-582.

4.28

Hunzlker,R.R. " E f f e c t s o f t h e V a r i a t i o n o f Drag C o e f f i c i e n t on t h e Ephemeris o f E a r t h S a t e l l i t e s " . A s t r o n a u t i c a A c t a , V o l . 1 5 , No.3,February 1970,pp.I6I-I67.

4.29

Paetzold,H.K., and Zschorner,H. "The S t r u c t u r e o f t h e Upper Atmosphere and i t s V a r i a t i o n s a f t e r S a t e l l i t e O b s e r v a t i o n s " . Space Research I I , H.C. van de H u l s t e t a l . , e d s . , N o r t h - H o l l a n d P u b l i s h i n g Company, Amsterdam, I96I,pp.958-973.

4.30

Groves,G.V. "The I n f l u e n c e o f t h e Upper Atmosphere on S a t e l l i t e O r b i t s " . Mathematische Methoden der Himmelsmechanik und A s t r o n a u t i k , E.Stiefel,Herausgeber,Bibliographisches Institut-Mannheim, 1966,pp.147-170.

4.26

4.31

Sentman,L.H., and Nelce,S.E. "Drag C o e f f i c i e n t s f o r Tumbling S a t e l l i t e s " . J o u r n a l o f S p a c e c r a f t and Rockets,Vol.4,No.9,September 196?,PP.12701272.

4.32

Porster,K. " S a t e l l i t e Dynamics f o r Small E c c e n t r i c i t y I n c l u d i n g Drag and T h r u s t " . AIAA Journal,Vol.1,No.11,November I 9 6 3 , pp.2621-2623.

4.33

PitzpatrickjP.M. P r i n c i p l e s o f C e l e s t i a l Mechanics. Academic Press,New Y o r k , 1970.

4.34

Billik,B. "Survey o f Current L i t e r a t u r e on S a t e l l i t e L i f e t i m e s " . ARS Journal,Vol.32,No.11,November I 9 6 2 , p p . I 6 4 l - l 6 5 0 .

4.35

Kork,J. " S a t e l l i t e Lifetimes i nE l l i p t i c Orbits". Journal of the Aerospace Sciences.Vol.29,No.11,November 1962,pp.1273-1290, 1299.

4.36

Izsak,I.G. " P e r i o d i c Drag P e r t u r b a t i o n s o f A r t i f i c i a l S a t e l l i t e s " . The A s t r o n o m i c a l Journal,Vol.65,No.6,August I96O ,pp.355357.

4.37

Brogllo,L. "A General Theory on Space and Re-Entry S i m i l a r T r a j e c t o r i e s " . AIAA J o u r n a l , V o l . 2 , N o . 1 0 , O c t o b e r 1964,pp.1774-1781.

4.38

Westerman,H.R. "Secular E f f e c t s o f Atmospheric Drag on S a t e l l i t e O r b i t s " . The A s t r o n o m i c a l Journal,Vol.68,No.6.August I963,pp.382-384.

4.39

Westerman,H.R. "On S a t e l l i t e L i f e t i m e s " . The A s t r o n o m i c a l J o u r n a l . V o l . 6 8 . No.6,August 1963,pp.385-38F;

4.40

Bruno,C. Secular P e r t u r b a t i o n s o f an E a r t h S a t e l l i t e . Seminar, Department o f Aerospace and Mechanical S c i e n c e s , P r i n c e t o n U n i v e r s i t y , P r i n c e t o n , N . J . , March 12,1970.

4.41

Anthony,M.L., and PosdlokjG.E. "Planar Motions About an Oblate P l a n e t " . ARS J o u r n a l . V o l . 3 1 , No.9,September I96I,pp.1225-1232.

4.27

4.42

Anthony,M.L., and Perko,L.M. " V e h i c l e M o t i o n I n t h e E q u a t o r i a l Plane o f a P l a n e t : a Second Order A n a l y s i s I n E l l l p t l c l t y " . ARS J o u r n a l . V o l . 3 1 , No.10,October I 9 6 I , p p . I 4 l 3 - l 4 2 1 .

4.43

Klng-Hele,D.G. "The e f f e c t o f t h e e a r t h ' s o b l a t e n e s s on t h e o r b i t o f a near s a t e l l i t e " . Proceedings o f t h e Royal S o c i e t y , S e r i e s A, Vol.247, 19 58,pp. 119^2.

4.44

Brenner,J.L. "The M o t i o n o f an E q u a t o r i a l S a t e l l i t e o f an O b l a t e P l a n e t " . B a l l i s t i c M i s s i l e and Space T e c h n o l o g y , V o l . I l l : Guidance, N a v i g a t i o n , T r a c k i n g , and Space P h y s i c s , D.P.LeGalley,ed. , Academic Press,New York,I960,pp.259-289.

4.45

Brenner,J.L. "The E q u a t o r i a l O r b i t o f a Near-Earth S a t e l l i t e " . ARS J o u r n a l , Vol.32,No.10,October I962,pp.I56O-I563.

4.46

Dallas,S.S. P r e d i c t i o n o f t h e P o s i t i o n and V e l o c i t y o f a S a t e l l i t e A f t e r Many R e v o l u t i o n s . T e c h n i c a l Report 32-1267, J e t P r o p u l s i o n L a b o r a t o r y , C a l i f o r n i a I n s t i t u t e o f Technology, Pasadena, C a l i f o r n i a , A p r i l 1970.

4.47

Baker,R.M.L.,Westrom,G.B.,Hilton,C.G.,Gersten,R.H., A r s e n a u l t , J . L . , and Browne,E.J. E f f i c i e n t P r e c i s i o n O r b i t Computation Techniques . A s t r o d y n a m i c a l Report No.3, U n i v e r s i t y o f C a l i f o r n i a , Los A n g e l e s , June 1959.

4.48

Conte,S.D. "The Computation o f S a t e l l i t e O r b i t T r a j e c t o r i e s " . Advances i n Computers,Vol. 3,F.L.Alt and M.Rublnof f ,eds.. , Academic Press,New York,I962,pp.1-76.

4.28

North Pole

Pig.4.1

Coordinate systems 0 = c e n t e r o f mass o f p r i m a r y P = l o c a t i o n o f v e h i c l e , a t d i s t a n c e r from 0 OAC

= equatorial

plane

APB

= p r o j e c t i o n of t r a j e c t o r y Instantaneous radius r

L = longitude,

on sphere w i t h

\ = latitude,

»

1 = Instantaneous

inclination

4.29

10-"*

10-'^

IO-'2

I0-"

p{kg/m^)

Appendix 4A : Some S t a t i c D e n s i t y Models

Type

Mathematical

Ref.

Model

Linear where o({ = c o n s t a n t , > 0

Porster

Hyperbolic h 20 Newton^'"^^

= constant, > 0

where

Power law* where

Yi,?,?,

Pltzpatrlck^*33

~ constant

Klng-Hele^'J-5,24 Pltzpatrlck^•33 Billik^.34 Kork^-35

Standard Exponential where

Averaged Exponential

^l = c o n s t a n t , > o

where

and

Zee^-19

= c o n s t a n t , >• 0, 2Tfn4i) r cIq

r„ —

^ly) (varies seculai

J iltn.

* T h i s model g e n e r a l i z e s t h e models used by B i l l i k ^ ' 3 ^ ,

Kork^'35^

I z s a k ^ ' 3 ^ , and B r o g l l o ' * ' 3 7 , ,

continued

4.33

Appendix 4A-contlnued

Type

M a t h e m a t i c a l Model

Ref.

Modified Exponential* where

= constant, > 0

Roberson^ • -^^

Bruno Model where

= "K-o +

XiV

4-

XiV^

Bruno^-^0

Xo,j^2 = constant Geyllng'^*!^ and Westerman^'38>39 employ t h e f a c t o r R"^ I n s t e a d o f y;~

, where R denotes t h e p l a n e t a r y e q u a t o r i a l r a d i u s .

4.34

Appendix 4B : The V e c t o r System f o r ^r'.e,^ The v e c t o r system w r i t t e n below can be solved f o r

ir>^Q^y, (.(j))

p r o v i d e d t h e s o l u t i o n s K,U,o(,(^) t o system (4.34,36) a r e known.

cli

d Ü dtf Cl. str?

1 -4- T M f Si d t f /

(MB-2)

'0

d (P

XdlLf dtf; subject t o the i n i t i a l conditions :

(MB-4)

CO) =

4^

I t may be noted t h a t any one o f t h e above t h r e e v e c t o r

differential

e q u a t i o n s may be r e p l a c e d by t h e v e c t o r e q u a t i o n (4.2) :

4.35

Appendix 4c : Q u a n t i t i e s Depending on K,U. and o( .

Dimension

Relation

Quantity

Radius r

m.

Time

sec.

t 0

Angular Momentum H

mVsec.

Radial V e l o c i t y

m/sec.

Normal V e l o c i t y

m/sec.

Total Velocity

m/sec.

Longitude L

' ^ - ^ ' - ( ^ ^ ' ' a .

^

Leo.

(rad.)

c >

Latitude

X

(rad.)

Ac(f)=oC

Inclination i

(rad.)

4.36

CHAPTER V THE EQUATORIAL PROBLEM 5•1 I n t r o d u c t i o n Consider t h e n o n l i n e a r , second o r d e r d i f f e r e n t i a l

equation

( 4 . 4 5 ) , which d e s c r i b e s t h e t r a j e c t o r y o f a space v e h i c l e I n t h e e q u a t o r i a l plane o f an o b l a t e p l a n e t . W i t h t h e d e f i n i t i o n s :

the d i f f e r e n t i a l e q u a t i o n can be w r i t t e n I n t h e normal form :

é

f

Let t h e I n i t i a l p o s i t i o n o f t h e v e h i c l e c o i n c i d e w i t h an apse of t h e t r a j e c t o r y , and. l e t t h e I n i t i a l v e l o c i t y be and

( 5 . 1 ) , one a r r i v e s a t t h e f o l l o w i n g I n i t i a l

. Using

(4.36)

conditions f o r the

d i f f e r e n t i a l equation f o r W : W(0) =

where

1^ —

L

^

^

V>^/(M/ro) — 1 + ^ 0

£0)

=

>0

C^.S)

0

(velocity

By c o n s i d e r i n g t h e case o f u n p e r t u r b e d m o t i o n

parameter)

(£ = 0 ) , i t

i s r e a d i l y shown t h a t t h e K e p l e r e c c e n t r i c i t y e^ i s r e l a t e d t o t h e v e l o c i t y parameter ft^

a c c o r d i n g t o e^^ =

1 j.

(S".W)

Thus, i n t h e case o f u n p e r t u r b e d m o t i o n , t h e parameter r e g i o n 0< L

< 1 y i e l d s e l l i p t i c motion w i t h the i n i t i a l p o s i t i o n a t

apocenter;

I, = 1

y i e l d s c i r c u l a r motion; the region

i
-2 y i e l d s b o l i c motion.

hyper-

Equation

(5.2) a l l o w s s e v e r a l more p h y s i c a l I n t e r p r e t a t i o n s .

For example, I t d e s c r i b e s t h e t r a j e c t o r y o f a s l o w l y moving, i n f i n i t e l y n m a l l mano i n a weak, o p h o r i c a l l y Hymmetric, o t a t l c , E i n s t e i n g r a v i t a t i o n a l f i e l d generated ("Schwarzschlld

by a heavy, s p h e r i c a l mass

e x t e r i o r s o l u t i o n " ; s e e Appendix 5A). I t a l s o

d e s c r i b e s t h e o s c i l l a t o r y m o t i o n o f a mass hung from a s p r i n g w i t h a " s p r i n g c o n s t a n t " t h a t v a r i e s l i n e a r l y w i t h a m p l i t u d e , and of t h e v e r t i c a l component o f t h e o s c i l l a t i o n s o f t h e bob o f a s p h e r i c a l pendulum ( e . g . , R e f . 5 . 7 ) . Moreover, i t i s d i r e c t l y

related

t o t h e " s a t e l l i t e e q u a t i o n " ( R e f . 5 . 8 ) , which d e s c r i b e s t h e t r a j e c tory of a l i g h t ray i n the r e l a t l v i s t l c g r a v i t a t i o n a l

field

mentioned above (Appendix 5B). Some c h a r a c t e r i s t i c s o f t h e s o l u t i o n a r e o b t a i n e d r e a d i l y from t h e phase plane diagram ( P i g . 5 . 1 ) . The two s i n g u l a r p o i n t s i n t h e diagram a r e g i v e n by : Ws, =: ^ ~ ^^-^^

I-f

£

+

OCS')

(center) (5-. 5-)

The

I n i t i a l p o i n t , ? , l i e s on t h e a b s c i s s a , a t a d i s t a n c e io

t h e o r i g i n . I n view o f t h e assumption o f s m a l l £

from

, i^—Od),

and

P l i e s always f a r t o t h e l e f t o f t h e saddle p o i n t : o< Vprzl^

^s»'

The d i f f e r e n t i a l e q u a t i o n f o r W y i e l d s t h e f i r s t i n t e g r a l :

5.2 9

where t h e c o n s t a n t

i s determined t h r o u g h t h e i n i t i a l c o n d i t i o n s :

and i s r e l a t e d t o t h e t o t a l energy p e r u n i t mass, (Appendlx5C) :

o-r P

, through

t-

Each t r a j e c t o r y i n t h e phase plane i s c h a r a c t e r i z e d by a v a l u e o f the energy parameter IPi") =. cot ^ Wst

E^ . The energy e q u a t i o n (5.6) i s now r e w r i t t e n •^(W-Wt)(W-(>0x)(\A/-U)3) >

Wst é

UOi

where t h e values o f ^t,z,\ Ch)

^

Wsa.

»



are g i v e n i n Appendix 5C. For

g e n e r a l v a l u e s o f £ ^ o , t h e r e g i o n s o f r e a l m o t i o n are : sup(o,U3t) é \J ^ toa , ancf to, ^ WI n view o f t h e assumption

of small E

, the p h y s i c a l l y

realizable

t r a j e c t o r y goes t h r o u g h t h e p o i n t s (10^,0) and ( U 3 t , 0 ) , where o n l y t h e p a r t W > o should be c o n s i d e r e d . Thus, F i g . 5 . 1 i n d i c a t e s t h a t ; u;t= LOi- Ws< leads t o c i r c u l a r m o t i o n , 0 < UJt < Ws( leads t o q u a s i - e l l i p t i c uji — o cot < 0

motion,

leads t o q u a s i - p a r a b o l i c m o t i o n , leads t o q u a s i - h y p e r b o l i c m o t i o n .

The branch g o i n g t h r o u g h (u;j ,0) corresponds

t o an ever t i g h t e n i n g

s p i r a l t r a j e c t o r y around t h e c e n t e r o f mass r = 0; i n t h e problem o f e q u a t o r i a l m o t i o n , t h i s branch does n o t correspond t o any p h y s i c a l l y r e a l i z a b l e motion.

5.3

A necessary c o n d i t i o n f o r t h e e x i s t e n c e o f f i n i t e elliptic by

) t r a j e c t o r i e s I s g i v e n by

0 é £-Ch)
o; o r . I n view o f

uj< > o

s u f f i c i e n t c o n d i t i o n i s g i v e n by

which y i e l d s an i n e q u a l i t y c o n d i t i o n f o r

(5.5), ,

. Pig.5.2 shows a

g e n e r a l , f i n i t e t r a j e c t o r y i n p o l a r c o o r d i n a t e s ( see a l s o Appendix

5D). I n p a r t i c u l a r , c i r c u l a r o r b i t s are r e a l i z e d i f (Pig.5.1) ;

Ws, =

L

> thus. I f

I -

f. 4-

e 4-

0(6') ;

a p p r o x i m a t i n g t h i s e q u a t i o n f o r s m a l l e c c e n t r i c i t y e^^ , one

obtains

I n terms o f p h y s i c a l parameters :

This r e s u l t was approximate

a l s o o b t a i n e d by Anthony and P o s d l c k * ,

from

s o l u t i o n t o the d i f f e r e n t i a l e q u a t i o n f o r W.

an

The

e x i s t e n c e of c i r c u l a r o r b i t s can be e x p l a i n e d by assuming t h a t t h e a n g u l a r r a t e o f t h e apses o f t h e o s c u l a t i n g e l l i p s e * * t h e a n g u l a r r a t e o f the space v e h i c l e . The at t h e apo-

equals

v e h i c l e t h e n remains

or p e r l c e n t e r o f t h e o s c u l a t l h g e l l i p s e . Pig.5.1

shows t h a t apo- and p e r l c e n t e r r a d i i are c o n s t a n t . The

resulting

o r b i t o f t h e space v e h i c l e i s t h e r e f o r e a c i r c l e . F i n a l l y , i t may equator

be noted t h a t t h e t r a j e c t o r y i n t e r s e c t s t h e

( c o l l i s i o n ) when r = R; t h i s y i e l d s t h e c o n d i t i o n f o r

n o n i n t e r s e c t l o n or f r e e m o t i o n

:

O ^ V

. R

S e c t i o n 5.2 o u t l i n e s t h e d e r i v a t i o n o f a second o r d e r a p p r o x i mate s o l u t i o n f o r W t h r o u g h a p p l i c a t i o n o f t h e M u l t l V a r i a b l e Approach, I n S e c t i o n 5.3,an e x t e n s i v e comparison w i t h p e r t i n e n t r e s u l t s l i t e r a t u r e i s presented

. Numerical

S e c t i o n 5.4, * Ref.5.10,equation (62)

comparison i s presented i n

' ; ** Appendix 5D, e q u a t i o n

5.4

.

(5D-3).

from

5.2 M u l t l V a r i a b l e Approach

5.2.1 System o f d i f f e r e n t i a l

equations

F o l l o w i n g t h e procedure o u t l i n e d I n S e c t i o n 2.6, assume an approximate s o l u t i o n o f t h e form : W ( r > »

I

^\^"fM....,...;o =

Where t h e c l o c k s tj)„ -

£ƒ»

^"-^""f-

>

^

cr.io)

Oer')

^o,i,3,i,:- a r e g i v e n by : ,

=

( ) . ( c f ) cl(f

( i = 1 . 2 , S , . . . , N ) iS-.li)

S u b s t i t u t i n g t h e above e x p r e s s i o n s i n system b i n i n g terms c o n t a i n i n g l i k e powers o f £

(5.2,3), com-

, and s e t t i n g them e q u a l

t o z e r o , y i e l d s t h e f o l l o w i n g system o f coupled d i f f e r e n t i a l

equa-

t i o n s , t o be s o l v e d r e c u r s i v e l y : e" terms

:

4- U, =

terms

:

4-

e^terms :

hl±

\^

and so on; and where

1

Wt =:

^^-^2)

-

^

|

^

-

( )* zz

5.5



-

#

2^ " ^ f

"

L^-t^)

+

S i m i l a r l y , the i n i t i a l c o n d i t i o n s are transformed t o :

£" terms : V/^ (o) =

1 +•

e* terms

O

:

E^erms :

Wi (0) =

WiCO) = O

^

7 ^ CO) = : O

Co)

1 ( o ) - ^ ( o } -o

It

» | ^

(o) +- i ( o ) . ^ c o ) 4 -

isr.ié)

öcft

J(o)-^(o)-0

and so on.

5 . 2 . 2 S o l u t i o n o f t h e z e r o e t h o r d e r system ( £° t e r m s ) I n t e g r a t i o n o f (5.12) w i t h respect t o t h e f a s t clock i m m e d i a t e l y y i e l d s t h e e x p l i c i t dependence o f Wo

where C,^o(>o((pdi

-2c,(i-P

^ )

Sin c o ( „ - o ( o 4-

i)jf^^-cosc ( l i n e a r c l o c k )

where Ci.oTf Ccfi.ï^... )

and Co^oTo Ccfj^...) a r e unknown f u n c t i o n s o f t h e i r

arguments, and w h e r e y U

i s a "compatibility constant".

I n t e g r a t i n g the d i f f e r e n t i a l equation f o r i n t o account r e q u i r e m e n t WaCtf< =

arrives

on

be

involving

( S e c t i o n 2.3).

d e p e n d e n c e o f W^^^ on (^g^ , a n d algebraic

and second

dependence o f

( 5 . 3 9 ) may

E x p a n s i o n Method,

clock

considerable

order,

of s o l u t i o n

Variable

of the e x p l i c i t

i^g , i n v o l v e s

i s resolved

solution

t h e Two

c l o c k ^. = y a n d t h e s l o w

explicit

nacy

Method

domain o f u n i f o r m v a l i d i t y

Increased

of

Expansion

order

labor.

As o n l y

equations

are used,

i s n o t known. T h i s

the concept

of " r e s t r i c t i o n

a t the second

order

the

indetermio f number

approximate

:

where

WiCc^;e)-

( 1 4 - ^ e : ) - ( t - f 4eo)

'1 +

te.

tH-il&o^(|)L.cos](t-£)y +

I •je.1

4 - { e , ( l - e , - l - {el)-

cos

5.17

zif

c-os. 2

H- l ^ e f . c o s i f

(S-.40)

The f i r s t o r d e r term c o n t a i n s a s e c u l a r t e r m , which t h e domain o f u n i f o r m v a l i d i t y t o :

Comparing ( 5 . ^ 0 ) w i t h the slow c l o c k

(5.39),

literature

o ^ C|? « ~£_i\e.„\

i t i s seen t h a t t h e i n t r o d u c t i o n

r e p l a c e s t h e f a s t s e c u l a r term i n

s e c u l a r term. The expressions

limits

of

by a slow

f o r Wj are i d e n t i c a l . A search o f

d i d n o t d i s c l o s e t h e e x i s t e n c e o f any s i m i l a r a n a l y s i s

and/or r e s u l t s .

5.18

5.3.^ G e n e r a l i z e d Two V a r i a b l e Expansion Method .Dallas^'lö, I n h i s comprehensive s t u d y o f t h e e q u a t o r i a l problem, a p p l i e d t h e G e n e r a l i z e d Two V a r i a b l e Expansion Method, with Jlo

= 1,

= 0 ( S e c t i o n 2 . 4 . 2 ) . The a v a i l a b i l i t y o f t h e

a r b i t r a r y s t r e t c h i n g c o n s t a n t s co^ a l l o w s g r e a t e r freedom i n suppressing s e c u l a r t e r m s , such as t h e one t h a t a r i s e s i n Wi t h r o u g h a p p l i c a t i o n o f t h e Two V a r i a b l e Expansion Method ( see equation

(5.40))*.

By a n a l y z i n g t h e z e r o e t h o r d e r t h r o u g h t h i r d o r d e r e q u a t i o n s , D a l l a s o b t a i n s second o r d e r approximate

solutions f o r the radius

f u n c t i o n W, t h e " r a d i a l v e l o c i t y f u n c t i o n " dW/dy> , and t h e t i m e T, as f u n c t i o n s o f t h e independent

variable

. The i n i t i a l c o n d i t i o n s

are a r b i t r a r y **. Using t h e i n i t i a l c o n d i t i o n s ( 5 - 3 ) and c a r e f u l l y the

retracing

a n a l y s i s t o e l i m i n a t e t h e a m b i g u i t y i n COo.i.a , o^^e f i n d s t h e

f o l l o w i n g expression f o r the radius f u n c t i o n : Wccfie) =

UctfiÊ)^

V/o-l- e U t

e'XJt-^- ÖC£^)

where :

t +• e. • COS

* See comment i n Ref.5•18,p.84, l a s t

paragraph.

** The values f o r t h e c o n s t a n t s coo.i.t i n Ref.5.18 a r e ambiguous; t h i s may l e a d t o erroneous

r e s u l t s , as t h e c o n s t a n t s e^^^^j a r e

r e s t r i c t e d t o be p o s i t i v e s e m i - d e f i n l t e ; see Ref.5•18,p.102. 5.19

and where*:

(f =

[i - E - ^(i

As no s e c u l a r terms o c c u r , t h e s o l u t i o n I s u n i f o r m l y v a l l d f o r

I t t u r n s o u t t o be c o n v e n i e n t ( S e c t i o n 5.4) t o w r i t e down the s o l u t i o n t h a t one would have o b t a i n e d I f t h e a n a l y s i s o f Ref. 5.18 would have been r e s t r i c t e d t o z e r o e t h o r d e r t h r o u g h second order equations only. This s o l u t i o n i s c a l l e d t h e " f a i r

comparison

s o l u t i o n " , as i t a l l o w s f a i r comparison w i t h t h e M u l t i V a r i a b l e s o l u t i o n , w h i c h was o b t a i n e d by a n a l y z i n g t h e same system o f z e r o e t h o r d e r t h r o u g h second o r d e r e q u a t i o n s ; t h u s : V^(fi£) =

Wo -H ^ W i

4-

where

Oce')

(^.42) Wo^j a r e g i v e n by ( 5 . 4 l ) , and where :

» Ref.5.18 g i v e s a p l u s - s i g n i n f r o n t o f t h e

t e r m . Comparison

w i t h e q u a t i o n ( 5 . 3 3 ) as w e l l as c h e c k i n g t h e a l g e b r a o f Ref.5.18 confirms t h a t t h i s i s a p r i n t i n g

5.20

error.

5.3.5

L l n d s t e d t Method The phase p l a n e diagram

(Pig.5.1) I n d i c a t e s t h a t the exact

s o l u t i o n i s p e r i o d i c . The L l n d s t e d t method i s t h e r e f o r e

well-

s u i t e d t o g e n e r a t e approximate s o l u t i o n s t o t h e e q u a t o r i a l Pirst

problem.

o r d e r approximate s o l u t i o n s are g i v e n by Anthony

and

Posdlck^'-'-^, and by Kyner^'-^^. They can be t r a n s f o r m e d t o y i e l d W ^ ^ ^ as f o r m u l a t e d i n ( 5 . 4 l ) , w i t h

=

Cf [ t - £ -h Ü^e')

A second o r d e r approximate s o l u t i o n i s g i v e n by Anthony Perko5.20j i t

can be t r a n s f o r m e d t o y i e l d

( 5 . 4 l ) , b u t where ^

^o.i^i

as f o r m u l a t e d i n

as g i v e n by (5.42) must be

An a t t e m p t by Anthony

and P o s d i c k ^ *

and

substituted.

t o apply the L l n d s t e d t

method t o t h e g e n e r a l problem o f t h r e e d i m e n s i o n a l m o t i o n , met w i t h . f a i l u r e , as e x p e c t e d , as such m o t i o n i s i n g e n e r a l n o n p e r i o d i c (see

a l s o R e f . 5 . 2 2 ) . The s e c u l a r t e r m i n

o n l y i n t h e s p e c i a l cases o f i n i t i a l l y initially

o f Ref.5-21 d i s a p p e a r s

e q u a t o r i a l m o t i o n and o f

p o l a r m o t i o n . I n t h e case o f i n i t i a l l y

e q u a t o r i a l motion

( e q u a t o r i a l p r o b l e m ) , t h e i r r e s u l t s reduce t o t h e e a r l i e r o b t a i n e d first

o r d e r approximate s o l u t i o n s mentioned

above.

The a t t e m p t o f G h a f f a r l 5 « 2 3 t o o b t a i n a f i r s t

order approxi-

mate s o l u t i o n a l s o deserves a t t e n t i o n . His o b j e c t i v e i s t o o b t a i n a first

o r d e r approximate s o l u t i o n f o r W((|';£) - W(y);0), which i s

a measure o f t h e r e l a t l v l s t l c c o r r e c t i o n o f t h e Newtonian

motion

of a space v e h i c l e around a s p h e r i c a l l y symmetric p r i m a r y body (Appendix 5A), I n s p i t e o f t h e s i m p l i c i t y

of the problem, the

a n a l y s i s c o n t a i n s t h r e e fundamental a l g e b r a i c e r r o r s

5.21

(Ref.5.24).

Thus, t h e a n a l y t i c a l r e s u l t s and t h e i r subsequent n u m e r i c a l e v a l u a t i o n are erroneous. P a r e n t h e t i c a l l y , i t may be p o i n t e d o u t t h a t c o r r e c t e x e c u t i o n o f t h e a n a l y s i s would g i v e t h e f i r s t

order

result*: l/cf-.e) — Wccf ;o)

where :

(Jj =

=

^ [i-t

e.'Ccosc^-

^

c o s y?) -f-£| (

Ö(e')'

Compare w i t h Ref.5.23,equation ( 2 0 ) , and a l s o p.8.

5.22

1

)

+

5.3.6

Averaging Methods Carr e t a l . ^ * ^ ^ a p p l i e d t h e K r y l o v - B o g o l l u b o v Method Of Aver-

aging, t o y i e l d a f i r s t

o r d e r approximate

s o l u t i o n , which i s

i d e n t i c a l t o t h e z e r o e t h o r d e r p a r t o f t h e Two

V a r i a b l e approximat

s o l u t i o n ( 5 . 4 0 ) , and t o t h e z e r o e t h o r d e r p a r t o f t h e L l n d s t e d t f i r s t o r d e r approximate

s o l u t i o n o b t a i n e d by Anthony and

Posdick^'

and by Kyner^*-"-^ ( S e c t i o n 5.3.5). Kyner^*'^^ and Lass and Solloway^*^^ a p p l i e d t h e

Bogoliubov-

M i t r o p o l s k y M o d i f i e d Method o f A v e r a g i n g , t o y i e l d an Improved f i r s t o r d e r approximate

s o l u t i o n * , which i s I d e n t i c a l t o t h e L l n d -

s t e d t f i r s t o r d e r approximate

s o l u t i o n o b t a i n e d by Anthony and

Posdlck5-10 and by Kyner^'-^^ ( S e c t i o n 5.3.5). Brenner**

o b t a i n e d a second o r d e r approximate

s o l u t i o n by

means o f t h e K r y l o v - B o g o l l u b o v Method o f A v e r a g i n g . Por g i v e n the

,

c o r r e s p o n d i n g v a l u e f o r W must be determined t h r o u g h n u m e r i c a l

i t e r a t i o n , which makes t h e form o f h i s s o l u t i o n l e s s d e s i r a b l e , and a n a l y t i c a l comparison d i f f i c u l t . The a n o t h e r , second o r d e r approximate

same paper c o n t a i n s

s o l u t i o n * * * , obtained through

a n a l y t i c a l i t e r a t i o n . Upon r e w r i t i n g * * * * t h i s s o l u t i o n , i t i s found t h a t t h e z e r o e t h o r d e r and f i r s t o r d e r p a r t s agree w i t h .

* T r a n s f o r m a t i o n o f n o t a t i o n and i n i t i a l c o n d i t i o n s r e q u i r e s some c a r e . **Ref.5.12,pp.279-28l.

***

Ref.5.12,pp.274-278.

*»** The use o f m^ and m^ i n t h e i n i t i a l c o n d i t i o n s o f Ref.5.12 i s somewhat c o n f u s i n g . D i r e c t a n a l y t i c a l comparison can be made by s e t t i n g m^ = mg = approximate

0 . A n a l y t i c a l comparison w i t h t h e second o r d e r

s o l u t i o n o f Ref.5.13 i s more d i f f i c u l t , as t h e r e m^

and mj are not a r b i t r a r y anymore.

5.23

e.g., t h e r e s u l t s o f Anthony and Perko^'^O ( S e c t i o n 5.3.5)» and t h a t a l l c o e f f i c i e n t s i n t h e second o r d e r p a r t o f t h e s o l u t i o n are erroneous - by consequence, so are t h e c o e f f i c i e n t s i n t h e second o r d e r p a r t o f t h e s o l u t i o n p r e s e n t e d on t o p o f p.274 o f the same paper.

5.24

5•4 Numerical Comparison Reviewing t h e r e s u l t s o b t a i n e d i n t h e p r e c e d i n g S e c t i o n s , one observes t h a t an exact s o l u t i o n has been f o u n d , i n a d d i t i o n t o v a r i o u s approximate s o l u t i o n s . I n o r d e r t o study t h e accuracy of c e r t a i n of these approximate s o l u t i o n s

i n some d e t a i l , a com-

p u t e r program has been w r i t t e n t o y i e l d n u m e r i c a l v a l u e s f o r t h e following solutions

:

1. t h e exact s o l u t i o n

:



, see

(5.35);

2. t h e second o r d e r , One V a r i a b l e approximate s o l u t i o n : , see

(5.39);

3. t h e second o r d e r . Two V a r i a b l e approximate s o l u t i o n : W ^ . ^ , , see

(5.40);

4. t h e second o r d e r . G e n e r a l i z e d Two V a r i a b l e approximate s o l u t i o n :

5. t h e " f a i r comparison s o l u t i o n " :

\rv'

(5.41);

W , see

(5.42);

6. t h e second o r d e r , M u l t i V a r i a b l e approximate s o l u t i o n : W^^ , see

(5.33).

Some r e p r e s e n t a t i v e r e s u l t s have been p l o t t e d i n Pigs.5.3-5. Pig.5.3 shows t h e b e h a v i o r o f t h e exact s o l u t i o n over s e v e r a l i n t e r v a l s of (jP , f o r £

= 10 , and e^ = 0.9. Pigs . 5. 4 ,5 show t h e

envelope o f t h e " d e v i a t i o n " between t h e n u m e r i c a l v a l u e o f t h e exact s o l u t i o n and t h e n u m e r i c a l v a l u e o f t h e f i v e solutions

l i s t e d above; i . e . , o f

A Wj,^ = W^^ -

approximate , and so on

(compare ( 3 . 9 1 ) ) ? f o r t h e combinations o f v a l u e s :£ = 10 ,6^ = 0.1, and £ = 10 , Oo = 0 . 9 . ( I t may c o u p l e d , as £

=

be noted t h a t a c t u a l l y £ and e^ are

/(l+Co)").

The IBM

c a l c u l a t i o n s were executed I n double p r e c i s i o n on an

360/91 computer, u s i n g t h e POLRT s u b r o u t i n e f o r t h e

of the r o o t s u)t,2,3

i n Wg , t h e GEL 1 s u b r o u t i n e f o r t h e

of the complete e l l i p t i c

calculation calculation

i n t e g r a l o f t h e f i r s t k i n d K(o(), and t h e

JELP 1 s u b r o u t i n e f o r t h e c a l c u l a t i o n o f t h e J a c o b i a n

elliptic

f u n c t i o n sn. I n b o t h cases ( P i g s . 5 . 4 , 5 ) i t i s found

t h a t t h e One V a r i a b l e

approximate s o l u t i o n ( A W ^ , , ) generates the l a r g e s t d e v i a t i o n , and t h e G e n e r a l i z e d

Two V a r i a b l e approximate s o l u t i o n ( A Wg^-y )

generates t h e s m a l l e s t one.

The o t h e r s o l u t i o n s d i s p l a y d e v i a t i o n s

of about t h e same magnitude f o r s m a l l Oo ; f o r i n c r e a s i n g e^ , these d e v i a t i o n s I n c r e a s e

: t h e l e a s t f o r the M u l t i V a r i a b l e

approximate s o l u t i o n ( A W^y )» and t h e most f o r the Two V a r i a b l e approximate s o l u t i o n ( t W^-y ) . I t must now be r e c a l l e d ( S e c t i o n 5.3.4) t h a t t h e G e n e r a l i z e d

Two V a r i a b l e approximate s o l u t i o n was

o b t a i n e d by c o n s i d e r i n g t h e t h i r d o r d e r e q u a t i o n

{

terms) i n

a d d i t i o n t o t h e lower o r d e r e q u a t i o n s , w h i l e t h e o t h e r s o l u t i o n s were o b t a i n e d by c o n s i d e r i n g t h e z e r o e t h o r d e r t h r o u g h second equations

only. This explains t h e comparatively

A WgTv . A " f a i r " Two

Generalized

V a r i a b l e a n a l y s i s would t a k e i n t o account t h e z e r o e t h

A. Wp^j^ than

small d e v i a t i o n

comparison would be o b t a i n e d i f t h e

t h r o u g h second o r d e r e q u a t i o n s

order

order

o n l y ; t h e r e s u l t i s r e p r e s e n t e d by

. I t i s seen t h a t t h e d e v i a t i o n a W^^ i s s l i g h t l y

larger

A Wp^^^ f o r s m a l l e^ (e^, = 0 . 1 ) , b u t i s t h e s m a l l e s t o f a l l

d e v i a t i o n s f o r l a r g e e^ (e^, = 0 . 9 ) . A l l d e v i a t i o n s i n c r e a s e as e^, Increases; the e f f e c t i s t h e smallest f o r

5.26

A W^.,

3'5 Summary A second o r d e r M u l t i V a r i a b l e approximate s o l u t i o n I s d e r i v e d f o r t h e e q u a t o r i a l problem. A l l c l o c k s t u r n o u t t o be l i n e a r .

This

was expected, as t h e phase plane diagram i n d i c a t e s t h a t t h e m o t i o n under . c o n s i d e r a t i o n ( 0 4 £ = 0

Quasi-elliptic

AjAy= pericenter

Flg.5.2

=|a|9

5D)

5.35

Appendix 5A : R e l a t l v l s t l c M o t i o n o f a Small Mass In h i s theory of general r e l a t i v i t y ,

E i n s t e i n proposed

e q u a t i o n s d e s c r i b i n g t h e space-time g r a v i t a t i o n a l f i e l d

(e.g.,

R e f s . 5 . 1 , 2 ) . S c h w a r z s c h i l d ^ ' ^ o b t a i n e d an exact s o l u t i o n t o t h e E i n s t e i n f i e l d e q u a t i o n s f o r t h e case o f a s p h e r i c a l l y g r a v i t a t i o n a l f i e l d , generated

symmetric

by a s i n g l e , s p h e r i c a l mass M,

whose c e n t e r c o i n c i d e s w i t h t h e c e n t e r o f t h e s p a t i a l c o o r d i n a t e s . T h i s s o l u t i o n , known as t h e " S c h w a r z s c h i l d

exterior

solution"*.

I s t h e most g e n e r a l s p h e r i c a l l y symmetric s o l u t i o n t o t h e f i e l d equations I n empty space. In the following I t

I s assumed t h a t t h e g r a v i t a t i o n a l

field

I s weak, and/or t h a t t h e f i e l d p r o p e r t i e s a t l a r g e d i s t a n c e s o n l y are c o n s i d e r e d . The s p a t i a l c o o r d i n a t e s if* , ö , and ^, can t h e n be I n t e r p r e t e d as t h e E u c l i d i a n s p h e r i c a l c o o r d i n a t e s

: radius,lati-

t u d e , and l o n g i t u d e . Consider t h e m o t i o n o f a s l o w l y moving body o f I n f i n i t e l y s m a l l mass. I n t h e f i e l d mentioned above. One can t h e n show** t h a t the s p a t i a l t r a j e c t o r y t r a v e r s e d occurs I n a f i x e d plane c o n t a i n ing

t h e c e n t e r of mass M, w h i l e t h e r e l a t i o n between r a d i u s r and

the I n - p l a n e c e n t r a l angle

(P

I s d e s c r i b e d by equation' ( 5 . 2 ) , where

(dimensionless)

where H denotes t h e a n g u l a r momentum, f t h e u n i v e r s a l g r a v i t a t i o n a l c o n s t a n t , and c t h e v e l o c i t y o f l i g h t .

* Ref.5.1,pp.177-183. *»Ref.5.1,p.

173.

5.36

Por t h e case o f t h e r e l a t i v i s t i c m o t i o n o f t h e p l a n e t Mercury around t h e Sun, one f i n d s f o r t h e s m a l l parameter

£, , a f t e r

s u b s t i t u t i o n o f t h e p r o p e r n u m e r i c a l values ( R e f . 5 . 4 ) : -8

5.37

Appendix 5B : S a t e l l i t e Equation and t h e T r a j e c t o r y o f a L i g h t Ray Struble^'Ö d e f i n e s t h e " s a t e l l i t e

e q u a t i o n " as :

T h i s e q u a t i o n can be shown t o be r e l a t e d t o e q u a t i o n ( 5 . 2 ) t h r o u g h l i n e a r t r a n s f o r m a t i o n o f t h e dependent and t h e independent variable :

C o n s i d e r i n g t h e motion o f a l i g h t r a y i n t h e r e l a t l v l s t l c g r a v i t a t i o n a l f i e l d mentioned i n Appendix 5A, one can show* t h a t the

s p a t i a l t r a j e c t o r y t r a v e r s e d occurs i n a f i x e d plane c o n t a i n -

ing

t h e c e n t e r o f mass M, w h i l e t h e r e l a t i o n between t h e r a d i u s r

and t h e i n - p l a n e c e n t r a l angle

i s d e s c r i b e d by e q u a t i o n

(5B-1),

where : \^/ —

J

£ —

3. • t ' ^—

(dimensionless)

For a l i g h t r a y whose apse touches g e n t i a l l y ) , one has ( R e f . 5 . 4 ) : r^ the

the solar surface ( t a n -

= Rg„^ = 7X 10 m. S u b s t i t u t i n g

proper n u m e r i c a l v a l u e s f o r f j M , and c, one t h e n f i n d s f o r t h e - / s m a l l parameter £ : £ = 6.4X10 ^ < 1 .

* Ref.5.1,p.188.

5.38

Appendix 5C : The .Energy E q u a t i o n M u l t i p l y i n g e q u a t i o n (5.2) by ' ^ " ^

and I n t e g r a t i n g ,

yields

the energy e q u a t i o n :

where t h e constant^''is r e l a t e d t o t h e i n i t i a l c o n d i t i o n s t h r o u g h :

The

Using

k i n e t i c energy p e r u n i t mass can be w r i t t e n as :

t h e p o t e n t i a l energy p e r u n i t mass can be w r i t t e n as :

(4.8),

r

'o(=o

Adding ( 5 0 - 2 , 3 ) , one f i n d s t h a t t h e t o t a l energy E^- = E^^^^ + E is proportional —

I

t o t h e c o n s t a n t E^ a c c o r d i n g t o : r

^

and i s t h e r e f o r e a l s o c o n s t a n t . The

energy e q u a t i o n i s now r e w r i t t e n as :

where cüt^i.^Üe)

(

C0


C o n s i d e r i n g s m a l l values f o r t h e parameter the r e g i o n The

coi ^ W

a)^ £ only,one f i n d s

must be excluded as p h y s i c a l l y

exact v a l u e s o f u^t^a.s

f o l l o w from

5.39

(5C-2,5) :

that

realizable.

v/hlch can be approximated as :

2e

^

5.40

Appendix 5D : Angular S h i f t o f t h e Apses The phase plane diagram

indicates that the solution f o r W i s

p e r i o d i c , l e a d i n g t o c o n s t a n t p e r l - and apocenter a l values o f 1^ and STT

r a d i i . Por gener-

, t h e a n g u l a r p e r i o d d i f f e r s from t h e v a l u e

( p e r i o d o f t h e u n p e r t u r b e d m o t i o n ) . One can e a s i l y d e r i v e

an exact e x p r e s s i o n f o r t h e d i f f e r e n c e i n a n g u l a r perlo.d, by c o n s i d e r i n g t h e s t r u c t u r e o f t h e exact s o l u t i o n ( 5 . 3 5 ) ; t h e angle t r a v e r s e d between any one p e r l - o r apocenter and t h e n e x t , i s g i v e n

where K(oi)' •

Por s m a l l values o f t h e parameter £

, one may expand* K(o()

i n a power s e r i e s i n £ , y i e l d i n g t h e a n g u l a r apse s h i f t p e r revolution : A

iet =

ACf-STT

-

2ÏÏ€

[i

OCe)}



CS-D-2)

Por t h e e q u a t o r i a l problem one t h e n h a s , i n terms o f t h e Kepler o r b i t elements a and e^ , t o t h e lowest o r d e r :

i n d i c a t i n g an advancement o f t h e apses ( P i g . 5 . 2 ) , v a r y i n g i n t h e same sense as t h e e c c e n t r i c i t y e^ , and v a r y i n g i n I n v e r s e sense of t h e semi-major a x i s ( o r mean d i s t a n c e ) a. T h i s e x p r e s s i o n agrees w i t h a r e s u l t o b t a i n e d by King-Hele**;however, h i s c o n c l u s i o n must be amended : t h e apse s h i f t c e r t a i n l y depends on t h e i n i t i a l e c c e n t r i c i t y , as i s borne o u t c l e a r l y by t h e l a s t e x p r e s s i o n i n (5D-3).

* Ref .5. 9,p. 297.

Ref. 5. H , e q u a t i o n ( 8 7 ) 5.41

Por

the

relativistic

which I n d i c a t e s

the

was

found f o r the

the

gravity

fM

fM

= ^TTa^TK

u n p e r t u r b e d motion. T h i s

the

advancement of the

The

revolution,

=

the

through the

familiar

period

of

first

a r r i v e d at

for by

^ ( 5 D - 3 ) ) l s v a l i d to the desired,

one

one

out

the

expansion

must d e t e r m i n e

p e r t u r b e d m o t i o n , which c o n s t i t u e s

of the

lowest order only;

must c a r r y

a first

the

order

u n p e r t u r b e d p e r i o d Tj^ .

apse r o t a t i o n g i v e n by

( 5 D - 4 , 5 ) i s r e l a t i v e to a

of axes which undergo p a r a l l e l t r a n s p o r t on

literature,

y i e l d s the w e l l - k n o w n e x p r e s s i o n

(5D-1) to h i g h e r o r d e r ; i n a d d i t i o n ,

correction

e^^ as

^

r e s u l t ( as w e l l as

p e r i o d of the

a and

5 where T^^ d e n o t e s t h e

apses per

i f h i g h e r o r d e r terms a r e of

eliminated

:

A This

s i m i l a r l y (App.5A) :

problem. I n p h y s i c s

is usually

the

Einstein^'^

has,

same q u a l i t a t i v e dependence on

equatorial

factor

t h i r d K e p l e r law

problem, one

c e n t r a l mass M.

See

also

Ref.5.6.

5.42

along the

triad

world-line

6.1 CHAPTER V I AERODYNAraCALLY PERTURBED FLIGHT THROUGH A CONSTANT-DENSITY ATMOSPHERE 6.1 I n t r o d u c t i o n In equations

S e c t i o n 4.^.2, a system

of coupled,nonlinear

was d e r i v e d which d e s c r i b e s t h e t w o - d i m e n s i o n a l motion o f

a l i f t i n g aerospace

v e h i c l e around a s p h e r i c a l l y

body, through an atmosphere s u r r o u n d i n g

symmetric

the present Chapter,

primary

t h a t body. The v e h i c l e i s

assumed t o f l y a t z e r o bank-angle and a t c o n s t a n t In

differential

angle-of-attack.

t h e s p e c i a l c a s e of motion t h r o u g h

a c o n s t a n t - d e n s i t y atmosphere i s c o n s i d e r e d . T h i s c a s e c o n s t i t u t e s a reasonable

a p p r o x i m a t i o n t o t h e a c t u a l c a s e o f motion t h r o u g h a

v a r i a b l e - d e n s i t y atmosphere i f one c o n s i d e r s t r a j e c t o r i e s a t h i g h a l t i t u d e s , where t h e d e n s i t y g r a d i e n t i s s m a l l , o r n e a r - c i r c u l a r t r a j e c t o r i e s , where t h e v a r i a t i o n s i n t h e n o n d i m e n s i o n a l r a d i u s are s m a l l . Using

t h e M u l t i V a r i a b l e Approach, a f i r s t

order

approx-

imate s o l u t i o n i s d e r i v e d I n S e c t i o n 6.2 and i s i n t e r p r e t e d i n S e c t i o n 6.3. I t i s compared a n a l y t i c a l l y w i t h some r e s u l t s l i t e r a t u r e i n S e c t i o n 6.k.

from

F i n a l l y , t h e approximate s o l u t i o n i s

compared n u m e r i c a l l y w i t h t h e s o l u t i o n o b t a i n e d i n t e g r a t i o n of the equations

through

numerical

o f motion i n S e c t i o n 6.5-

F o r t h e s p e c i a l c a s e o f a c o n s t a n t - d e n s i t y atmosphere ( = 1 ) , t h e e q u a t i o n s n o n l i n e a r system

dK

o f motion (k.^Z)

reduce t o the coupled,

:

_ 2£ K

,2

1-h

V2

.0 d j (.6.1)

.4 + U =

K- e ^ | n . f i - f t r

where K d e n o t e s t h e n o n d i m e n s i o n a l a n g u l a r

momentum f u n c t i o n , U t h e

n o n d i m e n s i o n a l r a d i u s f u n c t i o n , y? t h e i n - p l a n e the

c e n t r a l a n g l e , ^u/cp

l i f t - t o - d r a g r a t i o , and £ t h e drag p e r t u r b a t i o n p a r a m e t e r . F o r

s i m p l i c i t y i n n o t a t i o n , t h e s u b s c r i p t i n £ h a s been d e l e t e d . Let

the I n i t i a l

p o s i t i o n of the v e h i c l e coincide with a

perlcenter-^- o f t h e t r a j e c t o r y , and l e t t h e i n i t i a l v e l o c i t y be ¥,^^;

K^,U^

on

Lf, ;

(f^ on (j) .

In view of the presence of an e r r o r of the order one i n the second order system ( £ terms ) , only the zeroeth order and f i r s t order systems are a v a i l a b l e f o r a n a l y s i s . I n other words, no improvement can be obtained over the r e s u l t s obtained t h u s f a r ; one must set N = 1 i n equations

(6.5-6).

Invoking the concept of " r e s t r i c t i o n of number of c l o c k s " , one then has :

leading to the constancy of the f o l l o w i n g f u n c t i o n s :

0 ' o

(^.28)

in

,U
and ^ V c o ( t h e p a r a m e t e r ^

these equations,

a s no s m a l l a n g l e a p p r o x i m a t i o n has been.made;

the e q u a t i o n s numerical

does not o c c u r

a r e e x a c t ) . I n t e g r a t i o n o f (6C-3) y i e l d s t h e

values f o r the slowly varying

F i n a l l y , K(y>) and Hip

are obtained

6.33

functions

through

k,a,b(^).

(6C-1).

In

CHAPTER V I I AERODYNAMICALLY PERTURBED'PLIGHT THROUGH A VARIABLE-DENSITY ATMOSPHERE 7.1 I n t r o d u c t i o n The the one

a n a l y s i s presented presented

I n t h i s C h a p t e r I s an e x t e n s i o n

I n Chapter S i x , i n that a

quasi-exponential

d e n s i t y model i s u s e d i n s t e a d of a c o n s t a n t s p e c i f i c a l l y . I n s t e a d of using

^

= 1, one

d e n s i t y model. More uses

d e n s i t y model

( 4 . l 4 ) , which can be w r i t t e n i n terms of U as f o l l o w s

^(U) The

=

:

u- e

9

a n a l y s i s r u n s e s s e n t i a l l y a l o n g the same l i n e s as t h e

f o r the c o n s t a n t

one

d e n s i t y model.

The . a l g e b r a I n v o l v e d

i n the determination

approximate s o l u t i o n t o t h e e q u a t i o n s considerably

of

of a f i r s t

order

of motion i s s i m p l i f i e d

by n e g l e c t i n g t h e e f f e c t o f the s l o w c l o c k s on

the

r a d i u s f u n c t i o n o c c u r r i n g i n t h e exponent of t h e d e n s i t y model. I n o t h e r words, one

s u b s t i t u t e s the u n p e r t u r b e d s o l u t i o n (£ =

i n t h e exponent, l e a d i n g t o t h e e x p r e s s i o n = where for slowly

j —

lie

( c o n s t a n t ) . The

:

^

f

a p p r o x i m a t i o n i s q u i t e good

c o n t r a c t i n g n e a r - c i r c u l a r o r b i t s . The

same I s

f o r e c c e n t r i c o r b i t s as long as t h e p e r l c e n t e r d e s c e n t remains s m a l l , f o r i n t h i s c a s e t h e l a r g e density given ( 7 . 2 ) ; and generates

by (7.1)

is essentially

i t i s p r e c i s e l y t h i s region t h e main p e r t u r b a t i o n

the d e n s i t y p r o f i l e

(7.2)

0)

true

rate

pericenter-region

equal

t o t h e one

given

by

of the t r a j e c t o r y t h a t

effects. Physically

speaking,

i s t h a t e n c o u n t e r e d a l o n g an

mediate t r a j e c t o r y l y i n g c l o s e t o both t h e u n p e r t u r b e d

intertrajec-

t o r y and

the a c t u a l t r a j e c t o r y . Model ( 7 . 2 ) l e a d s to an

ment over t h e r e s u l t s of v a r i o u s a u t h o r s model the one

who

t a k e as

Improve-

density

d e s c r i b i n g t h e d e n s i t y v a r i a t i o n a l o n g the

unpertur-

bed t r a j e c t o r y . S u b s t i t u t i o n of

( 7 . 2 ) i n the e q u a t i o n s

y i e l d s the c o u p l e d , n o n l i n e a r

of motion

(4.42)

system :

CP C/.3)

VU clcfJ where the s u b s c r i p t i n £^ has S i x , the s y s t e m I s

Kfo)=

{ y

been d e l e t e d . F o l l o w i n g

s u b j e c t e d to the i n i t i a l

»^

U(o) =U(o)

1I

ft

..

conditions

Chapter :

g ( o ) -= °O 3^^°^

^l-"^^

I

where : The

M u l t i V a r i a b l e Approach i s a p p l i e d t o s y s t e m

S e c t i o n 7,2, y i e l d i n g a f i r s t

order

s o l u t i o n I s d i s c u s s e d i n S e c t i o n 7.3.

(7.3,4) i n

approximate s o l u t i o n . Related

The

r e s u l t s from

a t u r e a r e d i s c u s s e d i n S e c t i o n 7.4. F i n a l l y , the n u m e r i c a l

literaccu-

r a c y of the M u l t i V a r i a b l e approximate s o l u t i o n I s d i s c u s s e d S e c t i o n 7.5,

7.2

in

7.2 M u l t l V a r i a b l e Approach

7.2.1 System o f d i f f e r e n t i a l Following

equations

S e c t i o n 6.2.1, a p p l i c a t i o n of t h e M u l t l

Approach l e a d s t o t h e f o l l o w i n g

system o f d i f f e r e n t i a l

Variable equations,

t o be s o l v e d r e c u r s i v e l y :

terms

O

c)Cfo

s'

terms

Hi,

-

2

c)Cj)
^^'^ s u b s e q u e n t l y the e x p r e s s i o n s

f o r K,, ,\J^

( 7 . 8 ) , y i e l d s , a f t e r some a l g e b r a i c l a b o r , t h e

d i f f e r e n t i a l e q u a t i o n f o r Uj

-h

Ut

=

Fo

4-

essentially

,

,and

following

:

sin tf, 4-

F,-

cos

cp, +

where

Fc^ ((|,,,^...) =

- t •I;• ^

h • I w > ^ ^Cm-2) I ^ , ^

The

i n f i n i t e s e r i e s i n (7.25) c o n v e r g e s u n i f o r m l y

It

i s r e a d i l y s e e n t h a t t h e p a r t i c u l a r i n t e g r a l of itself, will

Equation

(Appendix 7E),. , and

hence

c o n t a i n terms t h a t a r e s e c u l a r w i t h r e s p e c t t o (^^

( 7 . 1 3 ) shows t h a t U,, I s bounded f o r a l l

7.8

.

Therefore,

the

condition

increasing

of uniform v a l i d i t y . The

e v e r , by r e q u i r i n g

(7.14) w i l l

be v i o l a t e d f o r

s e c u l a r t e r m s i n Uj. c a n be that

suppressed,how-

t h e "resonance g e n e r a t i n g p a r t "

f o r c i n g t e r m s i n (7.25) be e q u a l t o z e r o . T h i s r e s u l t s

In view of (7.26), t h i s requirement leads t o t h e system o f d i f f e r e n t i a l dependence o f