Bibliografia

6 downloads 211 Views 360KB Size Report
[34] D. F. Lawden, Introduction to Tensor Calculus, Relativity and Cosmology .... [ 6] H. M. Edwards, Advanced Calculus: A Differential Forms Approach (Boston:.
Bibliografia Apresenta-se, nesta secção, uma lista de bibliografia complementar. Não se trata, obviamente, de literatura necessária para Fotónica. Trata-se, em vez disso, de uma lista de livros com uma intenção essencialmente pedagógica, onde os alunos interessados podem prosseguir a sua formação. Uma educação científica sólida não pode ficar confinada ao ensino formal ministrado nas universidades: é necessária uma auto-formação contínua, que não se pode reduzir à consulta dos últimos artigos dentro de uma determinada área (muito) limitada de investigação. A actualização de conhecimentos em áreas mais vastas da física e da matemática permitirá que cada aluno(a) possa adquirir, particularmente na pós-graduação, um hábito salutar – o de não ficar reduzido(a) a metodologias físico-matemáticas datadas, tais como o cálculo vectorial de Gibbs, e o de não ficar reduzido(a) a uma visão demasiado parcelar da investigação científica. Só a falta de actualização físico-matemática é que permite explicar que uma quantidade significativa da literatura electromagnética continue a usar ainda hoje – mesmo ao nível mais avançado da pós-graduação –, os métodos arcaicos da análise vectorial de Gibbs. De facto, o electromagnetismo é, por excelência, uma disciplina científica que ganha unidade formal, metodológica e uma interpretação física mais profunda com uma formulação geométrica (i.e., independente de qualquer carta de coordenadas), onde ganhe relevo o que é invariante em detrimento daquilo que depende da circunstância específica de um sistema de coordenadas particular. De resto, a formulação geométrica corresponde a uma tendência generalizada da física actual. “The emphasis on the structures themselves rather than on their representations leads us naturally to use the coordinate-free language of modern mathematics.” (William L. Burke, Applied Differential Geometry, Cambridge University Press, Cambridge, 1985) Ninguém se lembra, hoje em dia, de apresentar as equações de Maxwell na forma escalar, tal como Maxwell as apresentou no seu tratado. †



Cf. Ismo V. Lindell, Differential Forms in Electromagnetics (Piscataway, New Jersey: IEEE Press/Wiley, 2004) p. 3.

1

A apresentação, no espaço-tempo quadridimensional, das equações de Maxwell em termos geométricos deveria ser considerada, também, como a mais natural: as formas diferenciais, a álgebra geométrica (ou, no mínimo, o cálculo tensorial clássico), permitem entender a verdadeira essência do electromagnetismo clássico (i.e., não quântico) em termos de duas únicas equações – uma equação homogénea (associada à conservação do fluxo magnético) e uma equação não homogénea (associada à conservação da carga eléctrica). As quatro equações de Maxwell, em termos do cálculo vectorial de Gibbs e Heaviside, representam uma visão teórica historicamente ultrapassada – o que não significa, contudo, que as formulações escalar e vectorial não possam ser, em problemas concretos, as mais indicadas. “Mathematics is taken for granted in the physics curriculum – a body of immutable truths to be assimilated and applied. The profound influence of mathematics on our conceptions of the physical world is never analyzed. The possibility that mathematical tools used today were invented to solve problems in the past and might not be well suited for current problems is never considered.” (David Hestenes, “Oersted Medal Lecture 2002: Reforming the mathematical language of physics,” Am. J. Phys., vol. 71, pp. 104-121, 2003). David Hestenes

2

1 – Bibliografia sobre óptica e fotónica (geral) [1] A. Yariv and P. Yeh, Photonics: Optical Electronics in Modern Communications (New York: Oxford University Press, 6th ed., 2007) [2] B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (New York: Wiley, 2nd ed., 2007) [3] T.-C. Poon and T. Kim, Engineering Optics with Matlab® (Singapore: World Scientific, 2006) [4] S. L. Chuang, Physics of Optoelectronic Devices (New York: Wiley, 1995) [5] A. Yariv and P. Yeh, Optical Waves in Crystals: Propagation and Control of Laser Radiation (New Jersey: Wiley Classics Library, 2003) [6] P. Yeh, Optical Waves in Layered Media (New York: Wiley, 1988) [7] J. E. Carroll, Rate Equations in Semiconductor Electronics (Cambridge: Cambridge University Press, 1985) [8] W. W. Chow and S. W. Koch, Semiconductor-Laser Fundamentals: Physics of the Gain Materials (Berlin: Springer-Verlag, 1999) [9] R. W. Boyd, Nonlinear Optics (San Diego, CA: Academic Press, 2nd ed., 2003) [10] K. Sakoda, Optical Properties of Photonic Crystals (Berlin: Springer, 2nd ed., 2005) [11] M. Born and E. Wolf, Principles of Optics (Cambridge: Cambridge University Press, 7th expanded edition, 1999) [12] A. Othonos and K. Kalli, Fiber Bragg Gratings: Fundamentals and Applications in Telecommunications and Sensing (Boston: Artech House, 1999) [13] F. Abdullaev, S. Darmanyan, and P. Khabibullaev, Optical Solitons (Berlin: Springer-Verlag, 1993) [14] N. N. Akhmediev and A. Ankiewicz, Solitons: Nonlinear Pulses and Beams (London: Chapman & Hall, 1997) [15] Yu. S. Kivshar and G. P. Agrawal, Optical Solitons: From Fibers to Photonic Crystals (San Diego, California: Academic Press, 2003) [16] J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton, NJ: Princeton University Press, 1995) [17] A. Bjarklev, J. Broeng, and A. S. Bjarklev, Photonic Crystal Fibers (Boston: Kluwer Academic Publishers, 2003) [18] M. Fox, Optical Properties of Solids (Oxford: Oxford University Press, 2001)

3

[19] M. Fox, Quantum Optics: An Introduction (Oxford: Oxford University Press, 2006) [20] J. A. B. Faria, Óptica: Fundamentos e Aplicações (Lisboa: Editorial Presença, 1994) [21] K. Iizuka, Elements of Photonics – Vol. I: In Free Space and Special Media (New York: Wiley, 2002) [22] K. Iizuka, Elements of Photonics – Vol. II: For Fiber and Integrated Optics (New York: Wiley, 2002) [23] L. Yung-kuo, Problems and Solutions on Optics (Singapore: World Scientific, 1991). [24] P. N. Prasad, Nanophotonics (Hoboken, New Jersey: Wiley, 2004) [25] M. Ferreira, Óptica e Fotónica (Lisboa: Lidel, 2003) [26] F. G. Smith and T. A. King, Optics and Photonics: An Introduction (Chichester: Wiley, 2000) [27] J. F. Nye, Physical Properties of Crystals – Their Representation by Tensors and Matrices (Oxford: Oxford University Press, 1985) [28] A. Yariv, Quantum Electronics (New York: Wiley, 3rd ed., 1989) [29] K. Iizuka, Engineering Optics (Berlin: Springer-Verlag, 2nd ed., 1987) [30] S. D. Smith, Optoelectronic Devices (London: Prentice-Hall, 1995) [31] D. L. Lee, Electromagnetic Principles of Integrated Optics (New York: Wiley, 1986) [32] E. Hecht, Óptica (Lisboa: Fundação Calouste Gulbenkian, 1991) 2 – Bibliografia sobre amplificação óptica e lasers (geral) [1] S. L. Chuang, Physics of Optoelectronic Devices (New York: Wiley, 1995) [2] A. E. Siegman, Lasers (Sausalito, CA: University Science Books, 1986) [3] P. W. Milonni and J. H. Eberly, Lasers (New York: Wiley, 1988) [4] A. Yariv and P. Yeh, Photonics: Optical Electronics in Modern Communications (New York: Oxford University Press, 6th ed., 2007) [5] J. E. Carroll, Rate Equations in Semiconductor Electronics (Cambridge: Cambridge University Press, 1985) [6] W. W. Chow and S. W. Koch, Semiconductor-Laser Fundamentals: Physics of the Gain Materials (Berlin: Springer-Verlag, 1999)

4

[7] E. Desurvire, Erbium-Doped Fiber Amplifiers: Principles and Applications (New York: Wiley, 1994) [8] G. P. Agrawal and N. K. Dutta, Semiconductor Lasers (New York: Van Nostrand Reinhold, 2nd ed., 1993) [9] P. Bhattacharya, Semiconductor Optoelectronic Devices (Upper Saddle River, NJ: Prentice-Hall, 2nd ed., 1997) [10] H. P. Zappe, Introduction to Semiconductor Integrated Optics (Boston: Artech House, 1995) [11] D. Wood, Optoelectronic Semiconductor Devices (New York: Prentice-Hall, 1994) [12] H. Kawaguchi, Bistabilities and Nonlinearities in Laser Diodes (Boston: Artech House, 1994) [13] J. T. Verdeyen, Laser Electronics (Englewood Cliffs, NJ: Prentice-Hall, 2nd ed., 1989) [14] S. M. Sze, Physics of Semiconductor Devices (New York: Wiley, 2nd ed., 1981) 3 – Bibliografia sobre guias ópticos e sistemas de comunicação óptica (geral) [1] K. Okamoto, Fundamentals of Optical Waveguides (San Diego, CA: Academic Press, 2nd ed., 2006) [2] M. J. Adams, An Introduction to Optical Waveguides (Chichester: Wiley, 1981) [3] A. W. Snyder and J. D. Love, Optical Waveguide Theory (London: Chapman and Hall, 1983) [4] G. P. Agrawal, Fiber-Optic Communication Systems (New York: Wiley, 3rd ed., 2002) [33] A. Yariv and P. Yeh, Photonics: Optical Electronics in Modern Communications (New York: Oxford University Press, 6th ed., 2007) [5] G. Einarsson, Principles of Lightwave Communications (Chichester: Wiley, 1996) [6] D. Marcuse, Theory of Dielectric Optical Waveguides (Boston: Academic Press, 2nd ed., 1991) [7] C. Vassalo, Optical Waveguide Concepts (Amsterdam, The Netherlands: Elsevier, 1991) [8] A. B. Buckman, Guided-Wave Photonics (Fort Worth: Saunders College Publishing, 1992) 5

[9] A. H. Cherin, An Introduction to Optical Waveguides (Tokyo: McGraw-Hill, 1983) [10] J. M. Senior, Optical Fiber Communications: Principles and Practice (New York: Prentice-Hall, 2nd ed., 1992) [11] L. Kazovsky, S. Benedetto, and A. Willner, Optical Fiber Communication Systems (Boston: Artech House, 1996) [12] I. P. Kaminov and T. L. Koch, Eds., Optical Fiber Telecommunications – IIIA (San Diego: Academic Press, 1997) [13] I. P. Kaminov and T. L. Koch, Eds., Optical Fiber Telecommunications – IIIB (San Diego: Academic Press, 1997) [14] G. Keiser, Optical Fiber Communications (Boston: McGraw-Hill, 3rd ed., 2000) [15] G. P. Agrawal, Nonlinear Fiber Optics (San Diego: Academic Press, 4th ed., 2007) [16] G. P. Agrawal, Applications of Nonlinear Fiber Optics (San Diego: Academic Press, 2001) [17] E. Iannone, F. Matera, A. Mecozzi, and M. Settembre, Nonlinear Optical Communication Networks (New York: Wiley, 1998) [18] A. Hasegawa and Y. Kodama, Solitons in Optical Communications (Oxford: Oxford University Press, 1995) [19] Yu. S. Kivshar and G. P. Agrawal, Optical Solitons: From Fibers to Photonic Crystals (San Diego, California: Academic Press, 2003). [20] A. Hasegawa, Ed., Massive WDM and TDM Soliton Transmission Systems (Dordrecht: Kluwer Academic Publishers, 2000) [21] M. J. Ablowitz and H. Segur, Solitons and the Inverse Scattering Transform (Philadelphia: SIAM, 1985) [22] L. D. Faddeev and L. A. Takhtajan, Hamiltonian Methods in the Theory of Solitons (Berlin: Springer-Verlag, 1987) 4 – Bibliografia sobre meios complexos e estruturas complexas (níveis intermédio e avançado) [1] N. Engheta and R. W. Ziolkowski, eds., Metamaterials: Physics and Engineering Explorations (Piscataway, New Jersey: IEEE Press/Wiley, 2006)

6

[2] R. Marqués, F. Martín, and M. Sorolla, Metamaterials with Negative Parameters: Theory, Design, and Microwave Applications (Hoboken, New Jersey: Wiley, 2008) [3] C. Caloz and T. Itoh, Electromagnetic Metamaterials: Transmission Line Theory and Microwave Applications (Hoboken, NJ: Wiley, 2006) [4] G.

V.

Eleftheriades

and

K.

G.

Balmain,

eds.,

Negative-Refraction

Metamaterials: Fundamental Principles and Applications (Hoboken, NJ: Wiley, 2005) [5] A. Serdyukov, I. Semchenko, S. Tretyakov, and A. Sihvola, Electromagnetics of Bi-Anisotropic Materials: Theory and Applications (Amsterdam: Gordon and Breach Science Publishers, 2001) [6] I. V. Lindell, A. H. Sihvola, S. A. Tretyakov, and A. J. Viitanen, Electromagnetic Waves in Chiral and Bi-Isotropic Media (Boston: Artech House, 1994) [7] W. S. Weiglhofer and A. Lakhtakia, Eds., Introduction to Complex Mediums for Optics and Electromagnetics (Bellingham, Washington: SPIE Press, 2003) [8] S. Tretyakov, Analytical Modeling in Applied Electromagnetics (Boston: Artech House, 2003) [9] D. H. Werner and R. Mittra, Eds., Frontiers in Electromagnetics (New York: IEEE Press, 2000) [10] S. Zouhdi, A. Sihvola, and M. Arsalane, Eds., Advances in Electromagnetics of Complex Media and Metamaterials (Dordrecht: Kluwer Academic Publishers, 2002) [11] A. Sihvola, Electromagnetic Mixing Formulas and Applications (London: The Institution of Electrical Engineers, 1999) [12] O. N. Singh and A. Lakhtakia, Eds., Electromagnetic Fields in Unconventional Materials and Structures (New York: Wiley, 2000) [13] L. D. Landau, E. M. Lifshitz, and L. P. Pitaevskii, Electrodynamics of Continuous Media (Oxford: Butterworth-Heinmann, 2nd ed., 2002) [14] A. Lakhtakia, Beltrami Fields in Chiral Media (Singapore: World Scientific, 1994) [15] J. T. Mendonça, Theory of Photon Acceleration (Bristol: Institute of Physics Publishing, 2001)

7

[16] D. K. Kalluri, Electromagnetics of Complex Media: Frequency Shifting by a Transient Magnetoplasma Medium (Boca Raton, Florida: CRC Press, 1999) 5 – Bibliografia sobre mecânica quântica (níveis elementar e intermédio) [1] S. Gasiorowicz, Quantum Physics (New York: Wiley, 3rd. ed., 2003) [2] R. L. Liboff, Introductory Quantum Mechanics (San Francisco: AddisonWesley, 4th ed., 2003) [3] L. D. Landau and E. M. Lifsshitz, Quantum Mechanics (Non-relativistic Theory) (Oxford: Butterworth-Heinemann, 3rd ed., 1977) [4] J. S. Townsend, A Modern Approach to Quantum Mechanics (Sausalito, California: University Science Books, 2000) [5] C. Cohen-Tannoudji, B. Diu, et F. Laloë, Mécanique Quantique – I (Paris: Hermann, seconde edition, 1998) [6] C. Cohen-Tannoudji, B. Diu, et F. Laloë, Mécanique Quantique – II (Paris: Hermann, seconde edition, 2000) [7] N. D. Mermin, Quantum Computer Science: An Introduction (Cambridge: Cambridge University Press, 2007) [8] D. Bohm, Quantum Theory (New York: Dover, 1989) [9] T. F. Jordan, Quantum Mechanics in Simple Matrix Form (Mineola, New York: Dover, 2005) [10] M. Lambert, Introduction à la Mécanique Quantique (Paris: Ellipses, 1998) [11] J. Hladik et M. Chrysos, Introduction à la Mécanique Quantique (Paris: Dunod, 2000) [12] M. Born, Atomic Physics (New York: Dover, 1989) [13] D. McMahon, Quantum Mechanics Demystified (New York: McGraw-Hill, 2006) 6 – Bibliografia sobre mecânica quântica (níveis intermédio e avançado) [1] R. Shankar, Principles of Quantum Mechanics (New York: Kluwer Academic/Plenum Publishers, 2nd ed., 1994) [2] E. Merzbacher, Quantum Mechanics (New York: Wiley, 3rd ed., 1998) [3] J. J. Sakurai, Modern Quantum Mechanics – Revised Edition (Reading, Massachusetts: Addison-Wesley, 1994)

8

[4] R. B. Griffiths, Consistent Quantum Theory (Cambridge, UK: Cambridge University Press, 2002) [5] R. Omnès, The Interpretation of Quantum Mechanics (Princeton, New Jersey: Princeton University Press, 1994) [6] C. J. Isham, Lectures on Quantum Theory: Mathematical and Structural Foundations (London: Imperial College Press & World Scientific, 1995) [7] G. Esposito, G. Marmo and G. Sudarshan, From Classical to Quantum Mechanics – An Introduction to the Formalism, Foundations and Applications (Cambridge: Cambridge University Press, 2004). [8] S. Haroche and J.-M. Raimond, Exploring the Quantum: Atoms, Cavities, and Photons (Oxford: Oxford University Press, 2006) [9] A. Messiah, Quantum Mechanics (Mineola, New York: Dover, 1999) [10] J. S. Bell, Speakable and Unspeakable in Quantum Mechanics (Cambridge: Cambridge University Press, 2nd ed., 2004) [11] Y.-K. Lim, Problems and Solutions on Quantum Mechanics (Singapore: World Scientific, 2002) [12] L. E. Ballentine, Quantum Mechanics: A Modern Development (Singapore: World Scientific, 1998) [13] W.-K. Tung, Group Theory in Physics (Singapore: World Scientific, 1985) [14] M. Aivazis, Problems and Solutions to W. K. Tung’ s Group Theory in Physics (Singapore: World Scientific, 1991) [15] L. S. Schulman, Techniques and Applications of Path Integration (Mineola, NY: Dover, 2005) [16] M. Schechter, Operator Methods in Quantum Mechanics (Mineola, New York: Dover, 2002) [17] R. Loudon, The Quantum Theory of Light (Oxford: Oxford University Press, 3rd ed., 2000) [18] M. Fox, Quantum Optics: An Introduction (Oxford: Oxford University Press, 2006) [19] C. Cohen-Tannoudji, J. Dupont-Roc, et G. Grynberg, Processus d’Interaction entre Photons et Atomes (Paris: EDP Sciences/CNRS Éditions, 2001) [20] M. O. Scully and M. S. Zubairy, Quantum Optics (Cambridge: Cambridge University Press, 1997)

9

[21] G. W. Mackey, Mathematical Foundations of Quantum Mechanics (Mineola, NY: Dover, 2004) [22] F. W. Byron, Jr. and R. W. Fuller, Mathematics of Classical and Quantum Physics (New York: Dover, 1992) [23] R. P. Feynman, Quantum Electrodynamics (New York: Perseus Books, 1998) [24] C. Itzykson and J.-B. Zuber, Quantum Field Theory (New York: McGraw-Hill, 1980) [25] A. Zee, Quantum Field Theory in a Nutshell (Princeton, New Jersey: Princeton University Press, 2003) [26] R. M. Wald, Quantum Field Theory in Curved Spacetime and Black Hole Thermodynamics (Chicago: The University of Chicago Press, 1994) [27] E. Elbaz, De L’Électromagnétisme à L’Électrofaible: Monopôles Magnétiques (Paris: Ellipses, 1989) 7 – Bibliografia sobre óptica quântica [1] R. Loudon, The Quantum Theory of Light (Oxford: Oxford University Press, 3rd ed., 2000) [2] C. C. Gerry and P. L. Knight, Introductory Quantum Optics (Cambridge: Cambridge University Press, 2005) [3] V. Vedral, Modern Foundations of Quantum Optics (London: Imperial College Press, 2005) [4] M. Fox, Quantum Optics: An Introduction (Oxford: Oxford University Press, 2006) [5] L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge, UK: Cambridge University Press, 1995) [6] C. Cohen-Tannoudji, J. Dupont-Roc, et G. Grynberg, Processus d’Interaction entre Photons et Atomes (Paris: EDP Sciences/CNRS Éditions, 2001) [7] M. O. Scully and M. S. Zubairy, Quantum Optics (Cambridge: Cambridge University Press, 1997) [8] S. M. Barnett and P. M. Radmore, Methods in Theoretical Quantum Optics (Oxford: Oxford University Press, 1997)

10

8 – Bibliografia sobre teoria da relatividade (níveis elementar e intermédio) [1] C. Semay et B. Silvestre-Brac, Relativité Restreintre: Bases et Applications (Paris: Dunod, 2005) [2] J. Hladik et M. Chrysos, Introduction à la Relativité Restreinte (Paris: Dunod, 2001) [3] W. Rindler, Introduction to Special Relativity (Oxford: Oxford University Press, 2nd ed., 2001) [4] N. M. J. Woodhouse, Special Relativity (London: Springer-Verlag, 2003) [5] J. W. Schutz, Independent Axioms for Minkowski Space-Time (Essex, England: Addison Wesley Longman Limited, 1997) [6] J. B. Hartle, Gravity: An Introduction to Einstein’s General Relativity (San Francisco: Addison Wesley, 2003) [7] M. P. Hobson, G. Efstathiou, and A. N. Lasenby, General Relativity: An Introduction for Physicists (Cambridge: Cambridge University Press, 2006) [8] R. d’Inverno, Introducing Einstein’s Relativity (Oxford: Clarendon Press, 1999) [9] W. Rindler, Relativity: Special, General and Cosmological (Oxford: Oxford University Press, 2001) [10] B. F. Schutz, A First Course in General Relativity (Cambridge: Cambridge University Press, 1985) [11] J. A. Wheeler, A Journey into Gravity and Spacetime (New York: Scientific American Library, 1999) [12] N. M. J. Woodhouse, General Relativity (London: Springer-Verlag, 2007) [13] E. F. Taylor and J. A. Wheeler, Exploring Black Holes: Introduction to General Relativity (San Francisco: Addison Wesley Longman, 2000) [14] M. Born, Einstein’s Theory of Relativity (New York: Dover, 1965) [15] D. Bohm, The Special Theory of Relativity (London: Routlege, 1996) [16] H. Bondi, Relativity and Common Sense: A New Approach to Einstein (New York: Dover, 1980) [17] G. F. R. Ellis and R. M. Williams, Flat and Curved Space-Times (Oxford: Oxford University Press, 2nd ed., 2000) [18] G. L. Naber, The Geometry of Minkowski Spacetime (Mineola, NY: Dover, 2003) [19] D. McMahon, Relativity Demystified (New York: McGraw-Hill, 2006) [20] M. Lambert, Relativité Restreinte et Électromagnétisme (Paris: Ellipses, 2000) 11

[21] P. M. Schwarz and J. H. Schwarz, Special Relativity: From Einstein to Strings (Cambridge: Cambridge University Press, 2004) [22] E. G. P. Rowe, Geometrical Physics in Minkowski Spacetime (London: Springer, 2001) [23] A. Ashtekar, ed., 100 Years of Relativity – Space-Time Structure: Einstein and Beyond, World Scientific, Singapore, 2005. [24] W. Pauli, Theory of Relativity (New York: Dover, 1981) [25] B. Laurent, Introduction to Spacetime: A First Course on Relativity (Singapore: World Scientific, 1994) [26] V. Ougarov, Théorie da la Relativité Restreinte (Moscou: Mir, 2me ed., 1979) [27] A. P. French, Relatividad Especial (Barcelona: Editorial Reverté, 1974) [28] R. Resnick, Introducción a la Teoría Especial de la Relatividad (Mexico: Editorial Limusa, 1977) [29] W. Scheider, Maxwell’s Conundrum: A Serious But Not Ponderous Book About Relativity (Ann Arbor, MI: Cavendish Press, 2000) [30] J. M. R. Rodrigues, Introdução à Teoria da Relatividade Restrita (Lisboa: IST Press, 1998) [31] M. Ludvigsen, General Relativity: A Geometrical Approach (Cambridge, UK: Cambridge University Press, 2000) [32] I. R. Kenyon, General Relativity (Oxford: Oxford University Press, 1995) [33] J. Foster and J. D. Nightingale, A Short Course in General Relativity (New York: Springer, 2nd ed., 1995) [34] D. F. Lawden, Introduction to Tensor Calculus, Relativity and Cosmology (Mineola, NY: Dover, 2002) [35] R. Adler, M. Bazin, and M. Schiffer, Introduction to General Relativity (Tokyo: McGraw-Hill, 1975) [36] J.-P. Hsu, Einstein’s Relativity and Beyond: New Symmetry Approaches (Singapore: World Scientific, 2000) 9 – Bibliografia sobre teoria da relatividade (níveis intermédio e avançado) [1] C. W. Misner, K. S. Thorne, and J. A. Wheeler, Gravitation (San Francisco: Freeman, 1973) [2] S. M. Carroll, Spacetime and Geometry: An Introduction to General Relativity (San Francisco: Addison Wesley, 2004) 12

[3] R. M. Wald, General Relativity (Chicago: The University of Chicago Press, 1984) [4] S. W. Hawking and G. F. R. Ellis, The Large Scale Structure of Space-Time (Cambridge, UK: Cambridge University Press, 1999) [5] S. Weinberg, Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity (New York: Wiley, 1972) [6] J. Plebański and A. Krasiński, An Introduction to General Relativity and Cosmology (Cambridge: Cambridge University Press, 2006) [7] J. Ehlers and C. Lämmerzahl, Eds., Special Relativity: Will it Survive the Next 101 Years? (Berlin: Springer-Verlag, 2006) [8] H. Stephani, Relativity: An Introduction to Special and General Relativity (Cambridge: Cambridge University Press, 3rd ed., 2004) [9] A. P. Lightman, W. H. Press, R. H. Price, and S. A. Teukolsky, Problem Book in Relativity and Gravitation (Princeton, New Jersey: Princeton University Press, 1979) [10] H. A. Lorentz, A. Einstein, H. Minkowski, and H. Weyl, The Principle of Relativity (New York: Dover, 1952) [11] A. Einstein, The Meaning of Relativity (London: Chapman and Hall, 1980) [12] J. C. Boudenot, Électromagnétisme et Gravitation Relativistes (Paris: Ellipses, 1989) [13] A. D. Yaghjian, Relativistic Dynamics of a Charged Sphere: Updating the Lorentz-Abraham Model (Berlin: Springer-Verlag, 1992) [14] R. M. Wald, Quantum Field Theory in Curved Spacetime and Black Hole Thermodynamics (Chicago: The University of Chicago Press, 1994) [15] H. Weyl, Space, Time, Matter (New York: Dover, 1952) [16] E. Schrödinger, Space-Time Structure (Cambridge, UK: Cambridge University Press, 1997) [17] P. A. M. Dirac, General Theory of Relativity (Princeton, New Jersey: Princeton University Press, 1996) [18] R. C. Tolman, Relativity, Thermodynamics and Cosmology (New York: Dover, 1987) [19] H. C. Ohanian and R. Ruffini, Gravitation and Spacetime (New York: W. W. Norton & Company, 2nd ed., 1994)

13

[20] J. J. Callahan, The Geometry of Spacetime: An Introduction to Special and General Relativity (New York: Springer, 2000) [21] G. ’t Hooft, Introduction to General Relativity (Princeton, New Jersey: Rinton Press, 2001) [22] F. E. Low, Classical Field Theory: Electromagnetism and Gravitation (New York: Wiley, 1997) [23] F. de Felice and C. J. S. Clarke, Relativity on Curved Manifolds (Cambridge: Cambridge University Press, 1995) [24] J. Stewart, Advanced General Relativity (Cambridge, UK: Cambridge University Press, 2003) [25] S. Chandrasekhar, The Mathematical Theory of Black Holes (Oxford: Oxford University Press, 2000) [26] M. Kriele, Spacetime: Foundations of General Relativity and Differential Geometry (Berlin: Springer, 2001) [27] M. Carmeli, Classical Fields: General Relativity and Gauge Theory (New Jersey: World Scientific, 2001) [28] M. Carmeli, Group Theory and General Relativity (Singapore: World Scientific, 2000) [29] P. O’Donnell, Introduction to 2-Spinors in General Relativity (New Jersey: World Scientific, 2003) [30] V. Perlick, Ray Optics, Fermat’s Principle, and Applications to General Relativity (Berlin: Springer, 2000) [31] R. P. Feynman, F. B. Morinigo, and W. G. Wagner, Feynman Lectures on Gravitation (London: Penguin Books, 1999) [32] Ya. B. Zel’dovich and I. D. Novikov, Stars and Relativity (New York: Dover, 1996) [33] J. Van Bladel, Relativity and Engineering (Berlin: Springer-Verlag, 1984) 10 – Bibliografia sobre álgebras (geométricas) de Clifford e spinores (níveis intermédio e avançado) [1] P. Lounesto, Clifford Algebras and Spinors (Cambridge, UK: Cambridge University Press, 2nd ed., 2002) [2] C. Doran and A. Lasenby, Geometric Algebra for Physicists (Cambridge, UK: Cambridge University Press, 2003) 14

[3] D. Hestenes, New Foundations for Classical Mechanics (Dordrecht, The Netherlands: Kluwer Academic Publishers, 2nd ed., 1999) [4] P. R. Girard, Quaternions, Clifford Algebras and Relativistic Physics (Basel, Switzerland: Birkhäuser, 2007) [5] D. Hestenes and G. Sobczyk, Clifford Algebra to Geometric Calculus:

A

Unified Language for Mathematics and Physics (Dordrecht: Kluwer Academic Publishers, 1984) [6] W. E. Baylis, Ed., Clifford (Geometric) Algebras With Applications in Physics, Mathematics, and Engineering (Boston: Birkhäuser, 1996) [7] R. Abłamowicz and G. Sobczyk, Eds., Lectures on Clifford (Geometric) Algebras and Applications (Boston: Birkhäuser, 2004) [8] L. Dorst, D. Fontijne, and S. Mann, Geometric Algebra for Computer Science (Amsterdam: Morgan Kaufmann Publishers, Elsevier, 2007) [9] V. de Sabbata and B. K. Datta, Geometric Algebra and Applications to Physics (Boca Raton, FL: CRC Press, Taylor & Francis, 2007) [10] I. R. Porteous, Clifford Algebras and the Classical Groups (Cambridge: Cambridge University Press, 1995) [11] J. Snygg, Clifford Algebra: A Computational Tool for Physicists (New York: Oxford University Press, 1997) [12] W. E. Baylis, Electrodynamics: A Modern Geometric Approach (Boston: Birkhäuser, 2002) [13] M. Carmeli and S. Malin, Theory of Spinors: An Introduction (Singapore: World Scientific, 2000) [14] J. Hladik, Spinors in Physics (New York: Springer, 1999) [15] B. Jancewicz, Multivectors and Clifford Algebra in Electrodynamics (Singapore: World Scientific, 1988) [16] C. Chevalley, The Algebraic Theory of Spinors and Clifford Algebras (Berlin: Springer-Verlag, 1997) [17] P. O’Donnell, Introduction to 2-Spinors in General Relativity (New Jersey: World Scientific, 2003) [18] E. Cartan, The Theory of Spinors (New York: Dover, 1981) [19] R. Penrose and W. Rindler, Spinors and Space-Time – Vol. 1: Two-Spinor Calculus and Relativistic Fields (Cambridge: Cambridge University Press, 1984)

15

[20] R. Penrose and W. Rindler, Spinors and Space-Time – Vol. 2: Spinor and Twistor Methods in Space-Time Geometry (Cambridge: Cambridge University Press, 1984) 11 – Bibliografia sobre formas diferenciais (níveis intermédio e avançado) [1] D. Bachman, A Geometric Approach to Differential Forms (Boston: Birkhäuser, 2006) [2] S. H. Weintraub, Differential Forms: A Complement to Vector Calculus (San Diego, CA: Academic Press, 1997) [3] S. Morita, Geometry of Differential Forms (Providence, Rhode Island: American Mathematical Society, 2001) [4] I. Agricola and T. Friedrich, Global Analysis: Differential Forms in Analysis, Geometry and Physics (Providence, Rhode Island: American Mathematical Society, 2002) [5] H. Cartan, Differential Forms (Mineola, New York: Dover, 2006) [6] H. M. Edwards, Advanced Calculus: A Differential Forms Approach (Boston: Birkhäuser, 1994) [7] J. H. Hubbard and B. B. Hubbard, Vector Calculus, Linear Algebra, and Differential Forms: A Unified Approach (Upper Saddle River, NJ: Prentice-Hall, 2nd ed., 2002) [8] D. Baldomir and P. Hammond, Geometry of Electromagnetic Systems (Oxford: Oxford University Press, 2002) [9] W. L. Burke, Applied Differential Geometry (Cambridge: Cambridge University Press, 1985) [10] D. G. B. Edelen, Applied Exterior Calculus (New York: Dover, 2005) [11] S. Lang, Introduction to Differentiable Manifolds (New York: Springer, 2nd ed., 2002) [12] F. W. Hehl and Yu. N. Obukhov, Foundations of Classical Electrodynamics: Charge, Flux, and Metric (Boston: Birkhäuser, 2003) [13] I. V. Lindell, Differential Forms in Electromagnetics (Piscataway, NJ: IEEE Press, 2004) [14] H. Flanders, Differential Forms with Applications to the Physical Sciences (New York: Dover, 1989) [15] M. P. do Carmo, Differential Forms and Applications (Berlin: Springer, 1994) 16

[16] R. W. R. Darling, Differential Forms and Connections (Cambridge: Cambridge University Press, 1999) [17] D. Lovelock and H. Rund, Tensors, Differential Forms, and Variational Principles (New York: Dover, 1989) [18] H. Cartan, Cours de Calcul Différentiel (Paris: Hermann, 1997) [19] R. Bott and L. W. Tu, Differential Forms in Algebraic Topology (New York: Springer, 1982) [20] G. De Rham, Variétés Différentiables: Formes, Courants, Formes Harmoniques (Paris: Hermann, 1973) [21] T. A. Ivey and J. M. Landsberg, Cartan for Beginners: Differential Geometry via Moving Frames and Exterior Differential Systems (Providence, Rhode Island: American Mathematical Society, 2003) 12 – Bibliografia sobre geometria e física (níveis intermédio e avançado) [1] R. P. Feynman, R. B. Leighton, and M. Sands, The Feynman Lectures on Physics: Commemorative Issue (Redwood City, CA: Addison-Wesley, 1989) [2] M. Longair, Theoretical Concepts in Physics: An Alternative View of Theoretical Reasoning in Physics (Cambridge: Cambridge University Press, 2nd ed., 2003) [3] N. W. Ashcroft and N. D. Mermin, Solid State Physics (Toronto: Nelson Thomson Learning, 1976). [4] M. Audin, Geometry (Berlin: Springer-Verlag, 2003) [5] R. Hartshorne, Geometry: Euclid and Beyond (New York, NY: Springer, 2000) [6] J. Stillwell, The Four Pillars of Geometry (New York, NY: Springer, 2005) [7] P. Bamberg and S. Sternberg, A Course in Mathematics for Students of Physics – Vol. 1 (Cambridge: Cambridge University Press, 1988) [8] P. Bamberg and S. Sternberg, A Course in Mathematics for Students of Physics – Vol. 2 (Cambridge: Cambridge University Press, 1990) [9] W. L. Burke, Applied Differential Geometry (Cambridge: Cambridge University Press, 1985) [10] T. Frankel, The Geometry of Physics: An Introduction (Cambridge: Cambridge University Press, 2nd ed., 2004) [11] M. Nakahara, Geometry, Topology and Physics (Bristol: Institute of Physics Publishing, 2nd ed., 2003)

17

[12] P. Szekeres, A Course in Modern Mathematical Physics: Groups, Hilbert Space and Differential Geometry (Cambridge: Cambridge University Press, 2004) [13] C. J. Isham, Lectures on Groups and Vector Spaces for Physicists (Singapore: World Scientific, 1989) [14] J. W. Anderson, Hyperbolic Geometry (London: Springer-Verlag, 2nd ed., 2005) [15] I. D. Lawrie, A Unified Grand Tour of Theoretical Physics (Bristol: Institute of Physics Publishing, 2nd ed., 2002) [16] R. L. Liboff, Primer for Point and Space Groups (New York: Springer-Verlag, 2004) [17] C. Isham, Modern Differential Geometry for Physicists (Singapore: World Scientific, 2nd ed., 2003) [18] B. C. Hall, Lie Groups, Lie Algebras, and Representations: An Elementary Introduction (New York: Springer-Verlag, 2003) [19] R. Gilmore, Lie Groups, Lie Algebras, and Some of Their Applications (Mineola, New York: Dover, 2005) [20] V. Rubakov, Classical Theory of Gauge Fields (Princeton, NJ: Princeton University Press, 2002) [21] B. Zwiebach, A First Course in String Theory (Cambridge: Cambridge University Press, 2004) [22] S. Sternberg, Group Theory and Physics (Cambridge: Cambridge University Press, 1994) [23] I. R. Porteous, Clifford Algebras and the Classical Groups (Cambridge: Cambridge University Press, 1995) [24] A. W. Knapp, Lie Groups Beyond an Introduction (Boston: Birkhäuser, 2nd ed., 2002) [25] N. M. J. Woodhouse, Geometric Quantization (Oxford: Oxford University Press, 2nd ed., 1991) [26] W. Thirring, Classical Mathematical Physics: Dynamical Systems and Field Theories (New York: Springer, 3rd ed., 1997) [27] V. I. Arnold, Mathematical Methods of Classical Mechanics (New York: Springer, 2nd ed., 1989) [28] B. Schutz, Geometrical Methods of Mathematical Physics (Cambridge, UK: Cambridge University Press, 1999)

18

[29] M. Göckeler and T. Schücker, Differential Geometry, Gauge Theories, and Gravity (Cambridge: Cambridge University Press, 1989) [30] C. T. J. Dodson and T. Poston, Tensor Geometry: The Geometric Viewpoint and its Uses (Berlin: Springer, 2nd ed., 1997) [31] B. Felsager, Geometry, Particles, and Fields (New York: Springer, 1998) [32] C. Kittel, Introduction to Solid State Physics (New York: Wiley, 8th ed., 2005) [33] J. Singleton, Band Theory and Electronic Properties of Solids (Oxford: Oxford University Press, 2001) [34] M. Fox, Optical Properties of Solids (Oxford: Oxford University Press, 2001) [35] G. Joos, Theoretical Physics (New York: Dover, 3rd ed., 1986) [36] R. C. Tolman, The Principles of Statistical Mechanics (New York: Dover, 1980) [37] H. Goldstein, C. Poole, and J. Safko, Classical Mechanics (San Francisco: Addison Wesley, 3rd ed., 2002) [38] P. M. Morse and H. Fleshbach, Methods of Theoretical Physics – Parts I, II (New York: McGraw-Hill, 1953) [39] B. R. Frieden, Science from Fisher Information – A Unification (Cambridge: Cambridge University Press, 2004) [40] B. Spain, Analytical Conics (Mineola, NY: Dover, 2007) 13 – Bibliografia sobre topologia, variedades e geometria diferencial (níveis intermédio e avançado) [1] M. P. do Carmo, Differential Geometry of Curves and Surfaces (Upper Saddle River, NJ: Prentice-Hall, 1976. [2] C. Isham, Modern Differential Geometry for Physicists (Singapore: World Scientific, 2nd ed., 2003) [3] M. Fecko, Differential Geometry and Lie Groups for Physicists (Cambridge: Cambridge University Press, 2006) [4] N. Steenrod, The Topology of Fibre Bundles (Princeton, New Jersey: Princeton University Press, 1999) [5] W. L. Burke, Applied Differential Geometry (Cambridge: Cambridge University Press, 1985) [6] I. Madsen and J. Tornehave, From Calculus to Cohomology: De Rham Cohomology and Charateristic Classes (Cambridge, UK: Cambridge University Press, 1997) 19

[7] J. R. Munkres, Topology (Upper Saddle River, NJ: Prentice Hall, 2nd ed., 2000) [8] J. M. Lee, Introduction to Topological Manifolds (New York: Springer, 2000) [9] J. M. Lee, Introduction to Smooth Manifolds (New York: Springer, 2003) [10] J. M. Lee, Riemannian Manifolds: An Introduction to Curvature (New York: Springer, 1997) [11] W. M. Boothby, An Introduction to Differentiable Manifolds and Riemannian Geometry (San Diego, CA: Revised Second Edition, 2003) [12] S. Lang, Introduction to Differentiable Manifolds (New York: Springer, 2nd ed., 2002) [13] D. Barden and C.Thomas, An Introduction to Differential Manifolds (London: Imperial College Press, 2003) [14] T. A. Ivey and J. M. Landsberg, Cartan for Beginners: Differential Geometry via Moving Frames and Exterior Differential Systems (Providence, Rhode Island: American Mathematical Society, 2003) [15] A. Pressley, Elementary Differential Geomery (London: Springer-Verlag, 2001) [16] Y. Choquet-Bruhat and C. DeWitt-Morette, Analysis, Manifolds and Physics – Part I: Basics (Amsterdam: North-Holland, Revised Edition, 1982) [17] Y. Choquet-Bruhat and C. DeWitt-Morette, Analysis, Manifolds and Physics – Part II (Amsterdam: Elsevier, Revised and Enlarged Edition, 2000) [18] R. Bott and L. W. Tu, Differential Forms in Algebraic Topology (New York: Springer, 1982) [19] R. L. Faber, Differential Geometry and Relativity Theory: An Introduction (New York: Marcel Dekker, 1983) [20] M. P. do Carmo, Geometria Riemanniana (Rio de Janeiro: IMPA, 2.ª edição, 1988) [21] S. S. Chern, W. H. Chen, and K. S. Lam, Lectures on Differential Geometry (Singapore: World Scientific, 1999) [22] R. L. Bishop and S. I. Goldberg, Tensor Analysis on Manifolds (New York: Dover, 1980) [23] É. Cartan, Riemannian Geometry in an Orthogonal Frame (New Jersey: World Scientific, 2001) [24] G. De Rham, Variétés Différentiables: Formes, Courants, Formes Harmoniques (Paris: Hermann, 1973)

20

[25] M. M. Postnikov, The Variational Theory of Geodesics (Mineola, NY: Dover, 2003) [26] R. W. Sharpe, Differential Geometry: Cartan’s Generalization of Klein’s Erlangen Problem (New York: Springer, 2000) [27] D. G. B. Edelen, Applied Exterior Calculus (New York: Dover, 2005) [28] P. Szekeres, A Course in Modern Mathematical Physics: Groups, Hilbert Space and Differential Geometry (Cambridge: Cambridge University Press, 2004) [29] P. W. Gross and P. R. Kotiuga, Electromagnetic Theory and Computation: A Topological Approach (Cambridge: Cambridge University Press, 2004) [30] E. Kreyszig, Differential Geometry (New York: Dover, 1991) [31] L. A. Steen and J. A. Seebach, Jr., Counterexamples in Topology (New York: Dover, 1995) [32] J. McCleary, Geometry From a Differential Viewpoint (Cambridge: Cambridge University Press, 1994) 14 – Bibliografia sobre electromagnetismo (níveis elementar e intermédio) [1] A. B. Henriques e J. C. Romão, Electromagnetismo (Lisboa: IST Press, 2006) [2] R. P. Feynman, R. B. Leighton, and M. Sands, The Feynman Lectures on Physics



Vol.

II:

Mainly

Electromagnetism

and

Matter

(Reading,

Massachusetts: Addison-Wesley, 1966) [3] D. K. Cheng, Field and Wave Electromagnetics (Reading, Massachusetts: Addison-Wesley, 2nd ed., 1989) [4] P. Lorrain, D. Corson, e F. Lorrain, Campos e Ondas Electromagnéticas (Lisboa: Fundação Calouste Gulbenkian, 2000) [5] E. J. Rothwell and M. J. Cloud, Electromagnetics (Boca Raton, Florida: CRC Press, 2001) [6] J. A. Kong, Electromagnetic Wave Theory (Cambridge, Massachusetts: EMW Publishing, 2005) [7] H. J. W. Müller-Kirsten, Electrodynamics: An Introducion Including Quantum Effects (New Jersey: World Scientific, 2004) [8] P. Russer, Electromagnetics, Microwave Circuit and Antenna Design for Communications Engineering (Norwood, MA: Artech House, 2nd ed., 2006)

21

[9] K. F. Warnick and P. Russer, Problem Solving in Electromagnetics, Microwave Circuit, and Antenna Design for Communications Engineering (Norwood, MA: Artech House, 2006) [10] A. Kovetz, Electromagnetic Theory (Oxford: Oxford University Press, 2000) [11] D. J. Griffiths, Introduction to Electrodynamics (Upper Saddle River, NJ: Prentice-Hall, 3rd ed., 1999) [12] L. Yung-ko, Ed., Problems and Solutions on Electromagnetism – Major American Universities Ph.D. Qualifying Questions and Solutions (Singapore: World Scientific, 2002) [13] R. S. Elliot, Electromagnetics (Piscataway, NJ: IEEE Press, 1993) [14] M. A. Faro, Propagação e Radiação de Ondas Electromagnéticas – Vol. 1: Ondas e Meios Materiais (Lisboa: Técnica – A.E.I.S.T., 1979) [15] M. A. Faro, Propagação e Radiação de Ondas Electromagnéticas – Vol. 2: Radiação (Lisboa: Técnica – A.E.I.S.T., 1980) [16] M. A. Faro, Propagação e Radiação de Ondas Electromagnéticas – Vol. 3: Propagação Guiada (Lisboa: Técnica – A.E.I.S.T., 1984) [17] L. Brito, M. Fiolhais, e C. Providência, Campo Electromagnético (Lisboa: McGraw-Hill, 1999) [18] J. D. Kraus and D. A. Fleisch, Electromagnetics with Applications (New York: McGraw-Hill, 5th ed., 1999) [19] M. A. Plonus, Applied Electromagnetics (Tokyo: McGraw-Hill, 1978) [20] J. B. Westgard, Electrodynamics: A Concise Introduction (New York: Springer, 1997) [21] S. Ramo, J. R. Whinnery, and T. V. Duzer, Fields and Waves in Communication Electronics (New York: Wiley, 3rd ed., 1994) [22] M. Schwartz, Principles of Electrodynamics (New York: Dover, 1987) [23] F. Melia, Electrodynamics (Chicago: The University of Chicago Press, 2001) [24] S. C. Chapman, Core Electrodynamics (London: Taylor & Francis, 2000) [25] A. Ishimaru, Electromagnetic Wave Propagation, Radiation, and Scattering (Englewood Cliffs, NJ: Prentice-Hall, 1991) [26] A. A. Barybin and V. A. Dmitriev, Modern Electrodynamics and Coupled-Mode Theory: Applications to Guided-Wave Optics (Princeton, NJ: Rinton Press, 2002)

22

[27] A. Sihvola, Electromagnetic Mixing Formulas and Applications (London: The Institution of Electrical Engineers, 1999) [28] S. Tretyakov, Analytical Modeling in Applied Electromagnetics (Boston: Artech House, 2003) [29] M. Schwartz, Principles of Electrodynamics (New York: Dover, 1987) [30] A. O. Barut, Electrodynamics and Classical Theory of Fields and Particles (New York: Dover, 1980) [31] C. H. Papas, Theory of Electromagnetic Wave Propagation (New York: Dover, 1988) [32] H. C. Chen, Theory of Electromagnetic Waves: A Coordinate-Free Approach (New York: McGraw-Hill, 1985) [33] I. V. Lindell, Methods for Electromagnetic Field Analysis (New York: IEEE Press, 1992) [34] J. A. Kong, Maxwell Equations (Cambridge, Massachusetts: EMW Publishing, 2002) [35] K. Simonyi, Foundations of Electrical Engineering (New York: The Macmillan Company, 1963) [36] L. Solymar and D. Walsh, Electrical Properties of Materials (Oxford: Oxford University Press, 6th ed., 1998) [37] L. O. Chua, C. A. Desoer, and E. S. Kuh, Linear and Nonlinear Circuits (New York: McGraw-Hill, 1987) [38] C.

A.

Mead,

Collective

Electrodynamics:

Quantum

Foundations

of

Electromagnetism (Cambridge, Massachusetts: The MIT Press, 2000) 15 – Bibliografia sobre electromagnetismo (níveis intermédio e avançado) [1] F. W. Hehl and Yu. N. Obukhov, Foundations of Classical Electrodynamics: Charge, Flux, and Metric (Boston: Birkhäuser, 2003) [2] C. A. Brau, Modern Problems in Classical Electrodynamics (Oxford: Oxford University Press, 2004) [3] J. D. Jackson, Classical Electrodynamics (New York: Wiley, 3rd ed., 1999) [4] J. V. Bladel, Electromagnetic Fields (Piscataway, NJ: IEEE Press / Wiley, 2nd ed., 2007) [5] W. K. H. Panofsky and M. Phillips, Classical Electricity and Magnetism (Mineola, New York: Dover, 2nd ed., 2005) 23

[6] L. D. Landau and E. M. Lifshitz, The Classical Theory of Fields (Oxford: Butterworth-Heinmann, 4th Revised English Ed., 2002) [7] J. Schwinger, L. L. Deraad, Jr., K. A. Milton, and W. Tsai, Classical Electrodynamics (Reading, Massachusetts: Perseus Books, 1998) [8] E. G. Post, Formal Structrure of Electromagnetics (Mineola, NY: Dover, 1997) [9] J. C. Maxwell, A Treatise on Electricity and Magnetism – Vols. 1 and 2 (New York: Dover, 1954) [10] L. Brillouin, Wave Propagation in Periodic Structures (Mineola, NY: Dover, 2003) [11] I. V. Lindell, Differential Forms in Electromagnetics (Piscataway, NJ: IEEE Press and Wiley, 2004) [12] P. W. Gross and P. R. Kotiuga, Electromagnetic Theory and Computation: A Topological Approach (Cambridge: Cambridge University Press, 2004) [13] B. Di Bartolo, Classical Theory of Electromagnetism (New Jersey: World Scientific, 2nd ed., 2004) [14] D. H. Werner and R. Mittra, Eds., Frontiers in Electromagnetics (Piscataway, NJ: IEEE Press, 2000) [15] L. B. Felsen and N. Marcuvitz, Radiation and Scattering of Waves (New York: IEEE Press, 1994) [16] G. W. Hanson and A. B. Yakovlev, Operator Theory for Electromagnetics: An Introduction (New York: Springer, 2002) [17] R. E. Collin, Field Theory of Guided Waves (New York: IEEE Press, 2nd ed., 1991) [18] R. F. Harrington, Time-Harmonic Electromagnetic Fields (New York: McGrawHill, 1961) [19] M. Mrozowski, Guided Electromagnetic Waves: Properties and Analysis (Taunton, Somerset, England: Research Studies Press, 1997) [20] D. G. Dudley, Mathematical Foundations for Electromagnetic Theory (New York: IEEE Press, 1994) [21] R. Becker, Electromagnetic Fields and Interactions (New York: Dover, 1982) [22] A. Sommerfeld, Electrodynamics (New York: Academic Press, 1952) [23] J. A. Stratton, Electromagnetic Theory (New York: McGraw-Hill Book Company, 1941)

24

[24] F. E. Low, Classical Field Theory: Electromagnetism and Gravitation (New York: Wiley, 1997) [25] J. C. Boudenot, Électromagnétisme et Gravitation Relativistes (Paris: Ellipses, 1989) [26] H. C. van de Hulst, Light Scattering by Small Particles (New York: Dover, 1981) [27] L. D. Landau, E. M. Lifshitz, and L. P. Pitaevskii, Electrodynamics of Continuous Media (Oxford: Butterworth-Heinmann, 2nd ed., 2002) [28] D. Teplitz, Electromagnetism: Paths to Research (New York: Plenum Press, 1982) [29] H. F. Harmuth, T. W. Barrett, and B. Meffert, Modified Maxwell Equations in Quantum Electrodynamics (New Jersey: World Scientific, 2001) [30] E. Elbaz, De L’Électromagnétisme à L’Électrofaible: Monopôles Magnétiques (Paris: Ellipses, 1989) [31] R. P. Feynman, Quantum Electrodynamics (New York: Perseus Books, 1998) 16 – Bibliografia sobre microondas (geral) [1] R. E. Collin, Foundations for Microwave Engineering (New York: McGrawHill, 2ns ed., 1992) [2] D. M. Pozar, Microwave Engineering (New York: Wiley, 2nd ed., 1998) [3] P. Russer, Electromagnetics, Microwave Circuit and Antenna Design for Communications Engineering (Norwood, Massachusetts: Artech House, 2nd ed., 2006) [4] K. F. Warnick and P. Russer, Problem Solving in Electromagnetics, Microwave Circuit, and Antenna Design for Communications Engineering (Norwood, MA: Artech House, 2006) 17 – Bibliografia sobre métodos matemáticos (geral) [1] F. Klein, Elementary Mathematics from an Advanced Standpoint: Geometry (Mineola, New York: Dover, 2004) [2] F. Klein, Elementary Mathematics from an Advanced Standpoint: Arithmetic, Algebra, Analysis (Mineola, New York: Dover, 2004)

25

[3] D. Carlson, C. R. Johnson, D. C. Lay, and A. D. Porter, Eds., Linear Algebra Gems: Assets for Undergraduate Mathematics (Washington, DC: Mathematical Association of America, 2002) [4] M. J. Ablowitz and A. S. Kokas, Complex Variables: Introduction and Applications (New York: Cambridge University Press, 2nd ed., 2003) [5] M. Spivak, Calculus (Cambridge: Cambridge University Press, 3rd ed., 2006) [6] M. Spivak, Answer Book for Calculus (Third Edition) (Houston, Texas: Publish or Perish, 1994) [7] S. Axler, Linear Algebra Done Right (New York: Springer, 2nd ed., 1997) [8] R. L. Fernandes e M. Ricou, Introdução à Álgebra (Lisboa: IST Press, 2004) [9] C. Zwikker, The Advanced Geometry of Plane Curves and Their Applications (Mineola, NY: Dover, 1963/2005) [10] A. F. Beardon, Algebra and Geometry (Cambridge: Cambridge University Press, 2005) [11] P. Bamberg and S. Sternberg, A Course in Mathematics for Students of Physics – Vol. 1 (Cambridge: Cambridge University Press, 1988) [12] P. Bamberg and S. Sternberg, A Course in Mathematics for Students of Physics – Vol. 2 (Cambridge: Cambridge University Press, 1990) [13] J. Stillwell, Elements of Algebra: Geometry, Numbers, Equations (New York: Springer, 1994) [14] C. J. Isham, Lectures on Groups and Vector Spaces for Physicists (Singapore: World Scientific, 1989) [15] S. Lang, Complex Analysis (New York: Springer, 4th ed., 1999) [16] S. MacLane and G. Birkhoff, Algebra (Providence, Rhode Island: AMS Chelsea Publishing, 3rd ed., 1999) [17] S. Lang, Algebra (New York: Springer, Revised Third Edition, 2002) [18] L. Schwartz, Théorie des Distributions (Paris: Hermann, 1996) [19] G. B. Whitham, Linear and Nonlinear Waves (New York: Wiley, 1974 / 1999) [20] J. C. Ferreira, Introdução à Teoria das Distribuições (Lisboa: Fundação Calouste Gulbenkian, 1993) [21] P. Szekeres, A Course in Modern Mathematical Physics – Groups, Hilbert Space and Differential Geometry (Cambridge: Cambridge University Press, 2004) [22] A. M. Robert, Nonstandard Analysis (Mineola, NY: Dover, 2003)

26

[23] R. Goldblatt, Lectures on the Hyperreals: An Introduction to Nonstandard Analysis (New York: Springer-Verlag, 1998) [24] R. Geroch, Mathematical Physics (Chicago: The University of Chicago Press, 1985) [25] J. Bewersdorff, Galois Theory for Beginners: A Historical Perspective (Providence, RI: American Mathematical Society, 2006) [26] J-P. Escofier, Théorie de Galois (Paris: Dunod, 2e ed., 2000) [27] J. M. Steele, The Cauchy-Schwarz Master Class – An Introduction to the Art of Mathematical Inequalities (New York: Cambridge University Press, 2004) [28] H. M. Edwards, Riemann’s Zeta Function (Mineola, NY: Dover, 2001) [29] F. W. Lawvere and R. Rosebrugh, Sets for Mathematics (Cambridge, UK: Cambridge University Press, 2003) [30] J. H. Conway and D. A. Smith, On Quaternions and Octonions – Their Geometry, Arithmetic, and Symmetry (Wellesley, MA: A. K. Peters, Ltd., 2003) [31] S. L. Altmann, Rotations, Quaternions, and Double Groups (New York: Dover, 2005) [32] J. B. Kuipers, Quaternions and Rotation Sequences: A Primer with Applications to Orbits, Aerospace, and Virtual Reality (Princeton: Princeton University Press, 1999) [33] A. J. Hanson, Visualizing Quaternions (San Francisco, CA: Morgan Kaufmann – Elsevier, 2006) [34] M. Aigner and G. M. Ziegler, Proofs from THE BOOK (Berlin: Springer, 3rd ed., 2004) [35] W. E. Deskins, Abstract Algebra (New York: Dover, 1995) [36] R. Godement, Álgebra (Madrid: Editorial Tecnos, 1967) [37] A. A. Costa, Cours d’Algèbre Générale – Volumes I, II, III (Lisboa: Fundação Calouste Gulbenkian, 1969, 1974, 1968) [38] S. L. Sobolev, Partial Differential Equations of Mathematical Physics (New York: Dover, 1989) [39] N. N. Lebedev, Special Functions and their Applications (New York: Dover, 1972) [40] J. H. Conway, The Sensual Quadratic Form (Washington, D. C.: The Mathematical Association of America, 1997)

27

[41] C. M. Bender and S. A. Orszag, Advanced Mathematical Methods for Scientists and Engineers (Tokyo: McGraw-Hill, 1978) [42] A. N. Kolmogorov and S. V. Fomin, Elementos da Teoria das Funções e de Análise Funcional (Moscovo: MIR, 1982) [43] W. Rudin, Functional Analysis (New York: McGraw-Hill, 2nd ed., 1991) [44] K. Yosida, Functional Analysis (Berlin: Springer-Verlag, 4th ed., 1974) [45] B. R. Gelbaum and J. M. H. Olmsted, Counterexamples in Analysis (Mineola, NY: Dover, 2003) [46] E. Kreyszig, Advanced Engineering Mathematics (New York: Wiley, 7th ed., 1993) [47] M. L. Boas, Mathematical Methods in the Physical Sciences (New York: Wiley, 2nd ed., 1983) [48] C. R. Wylie and L. C. Barrett, Advanced Engineering Mathematics (New York: McGraw-Hill, 6th ed., 1995) [49] M. J. Lighthill, An Introduction to Fourier Analysis and Generalised Functions (Cambridge: Cambridge University Press, 1980) [50] G. F. Roach, Green’s Functions: Introductory Theory with Applications (New York: Van Nostrand Reinhold, 1970) [51] K. E. Atkinson, An Introduction to Numerical Analysis (New York: Wiley, 2nd ed., 1989) [52] S. Ross, A First Course in Probability (Upper Saddle River, NJ: Prentice-Hall, 5th ed., 1998) [53] A. Papoulis, Probability, Random Variables, and Stochastic Processes, McGraw-Hill, New York, 3rd ed., 1991 [54] G. Weinreich, Geometrical Vectors (Chicago: The University of Chicago Press, 1998) [55] H. M. Schey, Div, Grad, Curl, and All That: An Informal Text on Vector Calculus (New York: W. W. Norton, 4th ed., 2005) [56] C. Tai, Generalized Vector and Dyadic Analysis (Piscataway, NJ: IEEE Press, 1992) [57] J. G. Simmonds, A Brief on Tensor Analysis (New York: Springer, 2nd ed., 1994) [58] M. Braun, Differential Equations and Their Applications (New York: SpringerVerlag, 4th ed., 1993) 28

[59] W. E. Boyce and R. C. DiPrima, Elementary Differential Equations and Boundary Value Problems (Hoboken, New Jersey: Wiley, 8th ed., 2005) [60] A. C. Baker and H. L. Porteous, Linear Algebra and Differential Equations (New York: Ellis Horwood, 1990) [61] M. A. Pinsky, Partial Differential Equations and Boundary-Value Problems with Applications (New York: McGraw-Hill, 2nd ed., 1991) [62] F. Brauer and J. A. Nohel, The Qualitative Theory of Ordinary Differential Equations: An Introduction (New York: Dover, 1989) [63] S. Lefschetz, Differential Equations: Geometric Theory (New York: Dover, 1977) [64] P. G. Drazin, Nonlinear Systems (Cambridge: Cambridge University Press, 1997) [65] P. Glendinning, Stability, Instability and Chaos: An Introduction to the Theory of Nonlinear Differential Equations (Cambridge: Cambridge University Press, 1994) [66] E. Ott, Chaos in Dynamical Systems (Cambridge: Cambridge University Press, 1994) [67] P. G. Drazin and R. S. Johnson, Solitons: An Introduction (Cambridge: Cambridge University Press, 1993) [68] S. Haykin, Neural Networks: A Comprehensive Foundation (Upper Saddle River, NJ: Prentice Hall, 2nd ed., 1999) [69] D. S. Lemons, Perfect Form: Variational Principles, Methods, and Applications in Elementary Physics (Princeton, NJ: Princeton University Press, 1997) [70] R. Weinstock, Calculus of Variations with Applications to Physics and Engineering (New York: Dover, 1974) [71] C. Lanczos, The Variational Principles of Mechanics (New York: Dover, 4th ed., 1986) [72] I. M. Gelfand and S. V. Fomin, Calculus of Variations (Mineola, NY: Dover, 2000) [73] B. Dacorogna, Introduction to the Calculus of Variations (London: Imperial College Press, 2004) [74] J. Jost and X. Li-Jost, Calculus of Variations (Cambridge: Cambridge University Press, 1998) [75] J. L. Synge and A. Schild, Tensor Calculus (New York: Dover, 1978) 29

[76] T. Levi-Civita, The Absolute Differential Calculus (New York: Dover, 1977) [77] J. A. Schouten, Tensor Analysis for Physicists (New York: Dover, 2nd ed., 1989) [78] R. A. Silverman, Complex Analysis with Applications (New York: Dover, 1984) [79] R. V. Churchill, J. W. Brown, and R. F. Verhey, Complex Variables and Applications (Tokyo: McGraw-Hill, 3rd ed., 1974) [80] R. V. Churchill and J. W. Brown, Fourier Series and Boundary Value Problems (Tokyo: McGraw-Hill, 3rd ed., 1978) [81] R. V. Churchill, Operational Mathematics (Tokyo: McGraw-Hill, 3rd ed., 1981) [82] N. I. Akhiezer and I. M. Glazman, Theory of Linear Operators in Hilbert Space – Two Volumes Bound As One (New York: Dover, 1993) [83] L. S. Schulman, Techniques and Applications of Path Integration (Mineola, NY: Dover, 2005) [84] R. D. Richtmyer, Principles of Advanced Mathematical Physics (New York: Springer-Verlag, 1978) [85] K. Gödel, O Teorema de Gödel e a Hipótese do Contínuo (Lisboa: Fundação Calouste Gulbenkian, 1979) [86] A. Ya. Khinchin, Continued Fractions (Mineola, New York: Dover, 1997) [87] I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series, and Products (San Diego: Academic Press, 6th ed., 2000) [88] M. Abramowitz and I. Stegun, Eds., Handbook of Mathematical Functions (New York: Dover, 1972) [89] D. Vvedensky, Partial Differential Equations with Mathematica® (Wokingham, England: Addison-Wesley, 1993) [90] B. Spain, Analytical Conics (Mineola, NY: Dover, 2007) 18 – Bibliografia sobre processamento de sinais e sistemas de comunicação (geral) [1] A. V. Oppenheim and R. W. Shafer, Discrete-Time Signal Processing (Englewood Cliffs, NJ: Prentice Hall, 1989) [2] C. E. Shannon and W. Weaver, The Mathematical Theory of Communication (Urbana: University of Illinois Press, 1998) [3] A. I. Khinchin, Mathematical Foundations of Information Theory (New York: Dover, 1957)

30

[4] J. R. Pierce, An Introduction to Information Theory: Symbols, Signals and Noise (New York: Dover, 1980) [5] N. D. Mermin, Quantum Computer Science: An Introduction (Cambridge: Cambridge University Press, 2007) [6] S. Mallat, A Wavelet Tour of Signal Processing (San Diego: Academic Press, 2nd ed., 2001) [7] P. Wojtaszczyk, A Mathematical Introduction to Wavelets (Cambridge: Cambridge University Press, 1999) [8] R. E. Ziemer, W. H. Tranter, and D. R. Fannin, Signals and Systems: Continuous and Discrete (New York: Macmillan, 3rd ed., 1993) [9] A. B. Carlson, P. B. Crilly, and J. C. Rutledge, Communication Systems: An Introduction to Signals and Noise in Electrical Engineering (New York: McGraw-Hill, 4th ed., 2002) [10] D. J. DeFatta, J. G. Lucas, and W. S. Hodgkiss, Digital Signal Processing: A System Design Approach (New York: Wiley, 1988) [11] S. Benedetto, E. Biglieri, and V. Castellani, Digital Transmission Theory (Englewood Cliffs, NJ: Prentice-Hall, 1987) [12] B. P. Lathi, Modern Digital and Analog Communication Systems (New York: Oxford University Press, 2nd ed., 1995) [13] A. Papoulis, Probability, Random Variables, and Stochastic Processes (New York: McGraw-Hill, 3rd ed., 1991) [14] P. Z. Peebles, Jr., Probability, Random Variables, and Random Signal Principles (Tokyo: McGraw-Hill, 1980) [15] P. Z. Peebles, Jr., Communication System Principles (Reading, Massachusetts: Addison-Wesley, 1976) [16] B. R. Frieden, Science from Fisher Information – A Unification (Cambridge: Cambridge University Press, 2004) 19 – Bibliografia sobre linguagens de programação [1] S. Wolfram, Mathematica®: A System for Doing Mathematics by Computer (Champaign, Illinois: Addison-Wesley, 2nd ed., 1993) [2] C. Smith and N. Blachman, The Mathematica® Graphics Guidebook (Reading, Massachusetts: Addison-Wesley, 1995)

31

[3] R. Maeder, Programming in Mathematica® (Redwood City, California: Addison-Wesley, 2nd ed., 1991) [4] D. Vvedensky, Partial Differential Equations with Mathematica® (Wokingham, England: Addison-Wesley, 1993) [5] D. Hanselman and B. Littlefield, Mastering MATLAB® 6: A Comprehensive Tutorial and Reference (Upper Saddle River, NJ: Prentice Hall, 2001) [6] G. Lindfield and J. Penny, Numerical Methods Using MATLAB (New York: Ellis Horwood, 1995) [7] W. J. Palm III, Introduction to MATLAB 6 for Engineers (New York: McGrawHill, 2001) [8] D. J. Buerger, LaTeX for Engineers & Scientists (New York: McGraw-Hill, 1990) 20 – Bibliografia sobre história e filosofia das ciências (geral) [1] R. Penrose, The Road to Reality: A Complete Guide to the Laws of the Universe (New York: Alfred A. Knopf, 2005) [2] M. Aigner and G. M. Ziegler, Proofs from THE BOOK (Berlin: Springer, 3rd ed., 2004) [3] J. Dieudonné, Mathematics – The Music of Reason (Berlin: Springer-Verlag, 1992) [4] R. Courant and H. Robbins (rev. by I. Stewart), What is Mathematics? – An Elementary Approach to Ideas and Methods (Oxford: Oxford University Press, 2nd ed., 1996) [5] R. Torretti, Relativity and Geometry (New York: Dover, 1996) [6] R. Torretti, The Philosophy of Physics (Cambridge: Cambridge University Press, 1999) [7] H. Eves, Foundations and Fundamental Concepts of Mathematics (Mineola, New York: Dover, 3rd ed., 1997) [8] J. Stillwell, Mathematics and its History (New York: Springer, 2nd ed., 2002) [9] W. Dunham, The Calculus Gallery: Masterpieces from Newton to Lebesgue (Princeton: Princeton University Press, 2005) [10] I. Newton, The Principia – Mathematical Principles of Natural Philosophy (Berkeley: University of California Press, 1999)

32

[11] I. Stewart, From Here to Infinity: A Guide to Today’s Mathematics (Oxford: Oxford University Press, 3rd ed., 1996) [12] A. C. Grayling, Ed., Philosophy – I, II (Oxford: Oxford University Press, 1998) [13] T. Honderlich, Ed., The Oxford Companion to Philosophy (Oxford: Oxford University Press, 1995) [14] B. Russell, History of Western Philosophy (London: Routledge, 2000) [15] C. Singer, A History of Scientific Ideas: From the Dawn of Man to the Twentieth Century (New York: Barnes & Noble, 1996) [16] S. Hawking, Ed., On the Shoulders of Giants (Philadelphia: Running Press, 2002) [17] S. Hawking, Ed., A Stubbornly Persistent Illusion (Philadelphia: Running Press, 2007) [18] O. Darrigol, Electrodynamics from Ampère to Einstein (Oxford: Oxford University Press, 2003) [19] A. Pais, The Genius of Science: A Portrait Gallery of Twentieth-Century Physicists (Oxord: Oxford University Press, 2000) [20] A. Pais, Subtle is the Lord: The Science and the Life of Albert Einstein (New York: Oxford University Press, 1981, 2005) [21] A. Pais, Inward Bound: Of Matter and Forces in the Physical World (New York: Oxford University Press, 1986) [22] P. Goddard, Ed., Paul Dirac: The Man and His Work (Cambridge: Cambridge University Press, 1998) [23] J. Gleick, Genius: The Life and Science of Richard Feynman (New York: Vintage Books, 1992) [24] J. Gribbin and M. Gribbin, Richard Feynman: A Life in Science (London: Penguin Books, 1998) [25] G. Johnson, Strange Beauty: Murray Gell-Mann and the Revolution in TwentyCentury Physics (New York: Alfred A. Knopf, 1999) [26] C. B. Boyer and U. C. Merzbach, A History of Mathematics (New York: Wiley, 2nd ed., 1989) [27] M. J. Crowe, A History of Vector Analysis: The Evolution of the Idea of a Vectorial System (New York: Dover, 1994) [28] J. Gray, Ideas of Space: Euclidean, Non-Euclidean and Relativistic (Oxford: Oxford University Press, 2nd ed., 1989) 33

[29] A. Hodges, Alan Turing: The Enigma (London: Vintage, 1992) [30] D. M. Davis, The Nature and Power of Mathematics (Mineola, New York: Dover, 2004) [31] R. Thom, Paraboles et Catastrophes (Manchecourt: Flammarion, 2000) [32] R. Descartes, Discours de la Méthode (Paris: Hatier, 1999) [33] T. S. Kuhn, The Structure of Scientific Revolutions (Chicago: The University of Chicago Press, 3rd ed., 1996) [34] T. S. Kuhn, The Copernican Revolution (New York: MJF Books, 1985) [35] I. Lakatos, Proofs and Refutations: The Logic of Mathematical Discovery (Cambridge: Cambridge University Press, 1999) [36] K. Popper, The Logic of Scientific Discovery (London: Routlege, 2002) [37] K. Popper, Conjectures and Refutations (London: Routledge, 2002) [38] S. Fuller, The Struggle for the Soul of Science: Kuhn vs Popper (Cambridge: Icon Books, 2003) [39] The Sokal Hoax: The Sham that Shook Academy (Lincoln: University of Nebraska Press, 2000) – Edited by the editors of Lingua Franca [40] A. Sokal and J. Bricmont, Fashionable Nonsense: Postmodern Intellectuals’ Abuse of Science (New York: Picador USA, 1998) [41] S. Weinberg, Facing Up: Science and Its Cultural Adversaries (Cambridge, Massachusetts: Harvard University Press, 2001) [42] S. Weinberg, The Discovery of Subatomic Particles (Cambridge: Cambridge University Press, revised edition, 2003) [43] S. Weinberg, Dreams of a Final Theory (London: Vintage, 1993) [44] J. Hecht, City of Light – The Story of Fiber Optics (New York: Oxford University Press, 1999). [45] J. Hecht, Beam – The Race to Make the Laser (Oxford: Oxford University Press, 2005) 21 – Bibliografia de divulgação técnico-científica [1] G. H. Hardy, A Mathematician’s Apology (Cambridge: Cambridge University Press, Canto Edition, 1992) [2] R. Penrose, The Road to Reality: A Complete Guide to the Laws of the Universe (New York: Alfred A. Knopf, 2005)

34

[3] A. Einstein and L. Infeld, The Evolution of Physics: From Early Concepts to Relativity and Quanta (New York: Simon & Schuster, 1966) [4] N. D. Mermin, It’s About Time: Understanding Einstein’s Relativity (Princeton: Princeton University Press, 2005) [5] N. D. Mermin, Boojums All The Way Trough: Communicating Science In a Prosaic Age (Cambridge: Cambridge University Press, 1990) [6] F. Close, The New Cosmic Onion: Quarks and the Nature of the Universe (Boca Raton, FL: Taylor & Francis, 2007) [7] W. Dunham, The Calculus Gallery: Masterpieces from Newton to Lebesgue (Princeton: Princeton University Press, 2005) [8] A. Ash and R. Gross, Fearless Symmetry: Exposing the Hidden Patterns of Numbers (Princeton, NJ: Princeton University Press, 2006) [9] L. Susskind and J. Lindesay, An Introduction to Black Holes, Information and the String Theory Revolution – The Holographic Universe (New Jersey: World Scientific, 2005) [10] R. Penrose, The Emperor’s New Mind (London: Vintage / Oxford University Press, 1990) [11] F. Patras, La pensée mathématique contemporaine (Paris: Presses Universitaires de France, 2001) [12] D. Hilbert, Fundamentos da Geometria (Lisboa: Gradiva, 2003) [13] W. Dunham, Journey Through Genius: The Great Theorems of Mathematics (New York: Penguin Books, 1991) [14] W. Dunham, The Mathematical Universe: An Alphabetical Journey Through the Great Proofs, Problems, and Personalities (New York: Wiley, 1994) [15] C. S. Ogilvy, Excursions in Geometry (New York: Dover, 1990) [16] J. L. Casti, Five Golden Rules: Great Theories of 20th-Century Mathematics – and Why They Matter (New York: Wiley, 1996) [17] J. L. Casti, Five More Golden Rules: Knots, Codes, Chaos, and Other Theories of 20th-Century Mathematics (New York: Wiley, 2000) [18] R. Newton, Thinking About Physics (Princeton, NJ: Princeton University Press, 2000) [19] J. Gribbin, Q is for Quantum: An Encyclopedia of Particle Physics (New York: The Free Press, 1998)

35

[20] R. Geroch, General Relativity From A to B (Chicago: The University of Chicago Press, 1981) [21] B. Schutz, Gravity From the Ground Up: An Introduction Guide to Gravity and General Relativity (Cambridge: Cambridge University Press, 2003) [22] J. A. Wheeler and K. Ford, Geons, Black Holes and Quantum Foam (New York: W. W. Norton, 1998) [23] K. S. Thorne, Black Holes and Time Warps: Einstein’s Outrageous Legacy (New York: W. W. Norton, 1994) [24] M. Gell-Mann, The Quark and the Jaguar: Adventures in the Simple and the Complex (London: Abacus, 1995) [25] J. D. Barrow, The Origin of the Universe (New York: Basic Books / Harper Collins, 1994) [26] M. Rees, Before the Beginning: Our Universe and Others (Reading, Massachusetts: Addison-Wesley, 1997) [27] G. Kane, Supersymmetry: Unveiling the Ultimate Laws of Nature (Cambridge, Massachusetts: Perseus Publishing, 2000) [28] L. Smolin, Three Roads to Quantum Gravity (London: Weidenfeld & Nicolson, 2000) [29] A. Guth, The Inflationary Universe: The Quest for a New Theory of Cosmic Origins (Reading, Massachusetts: Perseus Books, 1997) [30] J. Magueijo, Faster Than the Speed of Light: The Story of a Scientific Speculation (London: William Heinemann, 2003) [31] J. Gribbin, The Search for Superstrings, Symmetry, and the Theory of Everything (Boston: Little, Brown and Company, 1998) [32] B. Greene, The Elegant Universe: Superstrings, Hidden Dimensions, and the Quest for the Ultimate Theory (New York: W. W. Norton, 1999) [33] B. Greene, The Fabric of the Cosmos: Space, Time, and the Texture of Reality (London: Penguin Books, 2005) [34] S. Hawking, The Universe in a Nutshell (London: Bantam Press, 2001) [35] F. J. Dyson, The Sun, The Genome, and The Internet: Tools of Scientific Revolutions (New York: Oxford University Press, 1999) [36] B. B. Mandelbrot, The Fractal Geometry of Nature (New York: Freeman, 1983) [37] S. Wolfram, A New Kind of Science (Champaign, Il: Wolfram Media, 2002) [38] M. de Abreu Faro, A Peregrinação de um Sinal (Lisboa: Gradiva, 1995) 36

[39] G. Gilder, Telecosm: How Infinite Bandwidth Will Revolutionalize Our World (New York: The Free Press, 2000) [40] T. Berners-Lee, Weaving the Web: The Past, Present and Future of the World Wide Web by its Inventor (London: Orion Business Books, 1999) [41] D. R. Hofstadter, Gödel, Escher, Bach: an Eternal Golden Braid (London: Penguin Books, 20th –anniversary edition, 1999) [42] J. Dias de Deus, Viagens no Espaço-Tempo (Lisboa: Gradiva, 2a ed., 2003) [43] P. Galison, Os Relógios de Einstein e os Mapas de Poincaré (Lisboa: Gradiva, 2005) [44] M. Kaku, O Cosmos de Einstein: Como a Visão de Albert Einstein Transformou a Nossa Concepção do Espaço e do Tempo (Lisboa, Gradiva, 2005) [45] G. J. Chaitin, Meta Math!: The Quest for Omega (New York, Pantheon Books, 2005) [46] P. Woit, Not Even Wrong: The Failure of String Theory and the Continuing Challenge to Unify the Laws of Physics (London: Jonathan Cape, 2006) [47] M. Gardner, The Colossal Book of Mathematics (New York: W. W. Norton & Company, 2001)

37