Catalogue of the benthix marine life from Peregrino ...

8 downloads 85 Views 9MB Size Report
Figueiredo, M.A.O. 2013. Catalogue of the benthic marine life from. Peregrino oil field, Campos Basin, Brazil. Instituto. Biodiversidade Marinha, Rio de Janeiro, ...
Statoil Peregrino A oil plataform

CATALOGUE OF THE BENTHIC MARINE LIFE FROM PEREGRINO OIL FIELD, CAMPOS BASIN, BRAZIL

Instituto Biodiversidade Marinha (Marine Biodiversity Institute)

CATALOGUE OF THE BENTHIC MARINE LIFE FROM PEREGRINO OIL FIELD, CAMPOS BASIN, BRAZIL

Editors Frederico Tapajós de Souza Tâmega Paula Spotorno de Oliveira Marcia Abreu de Oliveira Figueiredo

RIO DE JANEIRO 2013

Editors – Frederico Tapajós de Souza Tâmega, Paula Spotorno de

Universidade Federal do Rio de Janeiro – UFRJ, Universidade Federal

Oliveira

Echinodermata), and Museu Oceanográfico “Prof. E. C. Rios”,

Oliveira & Marcia Abreu de Oliveira Figueiredo

Designers – Paula Spotorno de Oliveira and Gabriel Spotorno de Web developer – Gabriel Spotorno de Oliveira

Photo credits – Frederico Tapajós de Souza Tâmega (Fig. page 1,

Figs. 2A–2B, Figs. 3A–3H and Rhodophyta Figs. 04–05), Carlos Renato

Rural do Rio de Janeiro – UFRRJ (Laboratories of Annelida), Museu

Nacional – UFRJ (Laboratories of Porifera, Cnidaria, Crustacea and Universidade Federal do Rio Grande – FURG (Laboratory of Malacology).

Rezende Ventura (Echinodermata, Figs. 103–123), Cristiana Silveira

How to cite this book: Tâmega, F.T.S.; Spotorno-Oliveira, P. &

Cardoso (Crustacea Figs. 66–81), Luciana Vieira Granthom Costa

Biodiversidade Marinha, Rio de Janeiro, 140 pp.

Serejo (Crustacea Fig. 65), Débora de Oliveira Pires (Cnidaria Figs.

22–27), Fernando Moraes (Porifera Figs. 06–21), Irene Azevedo (Ascidiacea Figs. 124–125), Paula Spotorno de Oliveira (Mollusca

Figs. 28–58, Bryozoa Figs. 82–101 and Brachiopoda Fig. 102) and Raquel Meihoub Berlandi (Polychaeta Figs. 59–64). Cover – Paula Spotorno de Oliveira

Map artwork – Paula Spotorno de Oliveira, Fernanda Siviero and

Frederico Tapajós de Souza Tâmega

Editing images – Paula Spotorno de Oliveira

Referees – Andrea de Oliveira Ribeiro Junqueira and Júlio César Monteiro

Name of project – Peregrino Environmental Peregrino Calcareous

Algae Project, PEMCA

Coordination – Marcia Abreu de Oliveira Figueiredo

Participating institutions – Instituto Biodiversidade Marinha, Instituto de Pesquisas Jardim Botânico do Rio de Janeiro,

Figueiredo, M.A.O. 2013. Catalogue of the benthic marine life from Peregrino

C357

oil

field,

Campos

Basin,

Brazil.

Instituto

Catalogue of the benthic marine life from Peregrino oil field, Campos Basin, Brazil [electronic resource] / Frederico Tapajós de Souza Tâmega, Paula Spotorno de Oliveira, Marcia Abreu de Oliveira Figueiredo, editors. – Rio de Janeiro: Instituto Biodiversidade Marinha, 2013. – 140 p. : 125 il.; color. ; 21 cm. Includes bibliography ISBN 978-85-67038-00-1 (PDF format). ISBN 978-85-67038-01-8 (HTML format).

1. Benthic fauna. 2. Campos Basin. 3. Marine biodiversity. 4. Rhodolith. I. Figueiredo, Marcia Abreu de Oliveira. II. Oliveira, Paula Spotorno de. III. Tâmega, Frederico Tapajós de Souza de.

CDD 574.92

Cataloging in Publication record prepared by Andréa Oliveira S. de Avila – CRB10 0003/2013.

CATALOGUE OF THE BENTHIC MARINE LIFE FROM PEREGRINO OIL FIELD, CAMPOS BASIN, BRAZIL

Organizer

Instituto Biodiversidade Marinha (Marine Biodiversity Institute)

Financial support

STATOIL Brasil Óleo e Gás Ltda (Statoil Brazil Oil and Gas LLC) Agência Nacional de Petróleo, Gás Natural e Biocombustíveis – ANP (National Oil, Gas and Biofuels Agency)

Contents Acknowledgments……………....………………………………………………………………………..................................................................................................................................................... 09

Introduction ...............................………………………………………………………….......................................................................................................................................................................... 10 Introduction to the catalogue…………………………………………………………...................................................................................................................................................................... 11 General features of rhodolith beds.................................…………………………………………............................................................................................................................... 11

Sampling methods and identified taxa……………………………………………….......………………..….............................................................................................................. 12 Frederico Tapajós de Souza Tâmega & Marcia Abreu de Oliveira Figueiredo

Characterization of the Peregrino Oil Field………………………………………………………………………………………………………….......……....................................... 16 Ricardo Coutinho & Fernanda Siviero

Results – Biodiversity Survey……………………………………………………………………....................................................................................................................................................... 18

Phylum Rhodophyta Wettstein, 1922………………………………………………………………………………......................................................................................................... 20 Frederico Tapajós de Souza Tâmega; Alexandre Bigio Villas-Boas & Marcia Abreu de Oliveira Figueiredo

Phylum Porifera Grant, 1836……………………………………………………………………………………................................................................................................................... 24 Fernando Moraes

Phylum Cnidaria Hatschek, 1888……………………………………………………………………………...................................................................................................................... 36 Débora de Oliveira Pires

Phylum Mollusca Cuvier, 1797……………………………………………………………………………………................................................................................................................ 42 Paula Spotorno de Oliveira

Phylum Annelida Lamarck, 1809

Class Polychaeta Grube, 1850……………………………………………………………………………………............................................................................................... 60 Paulo Cesar Paiva, Raquel Meihoub Berlandi & Ana Claudia dos Santos Brasil

Phylum Arthropoda Latreille, 1829

Subphylum Crustacea Brünnich, 1772……………………………………………………………………………….................................................................................... 66 Cristiana Silveira Serejo & Irene Azevedo Cardoso

7

Phylum Bryozoa Ehrenberg, 1813……………………………………………………………………………………......................................................................................................... 78 Paula Spotorno de Oliveira

Phylum Brachiopoda Duméril, 1806………………………………………………………………………….................................................................................................................. 90 Paula Spotorno de Oliveira

Phylum Echinodermata Klein, 1734………………………………………………………………………………............................................................................................................ 94 Carlos Renato Rezende Ventura

Phylum Chordata Bateson, 1885

Subphylum Tunicata (Urochordata) Lamarck, 1816

Class Ascidiacea Nielsen, 1995………………………………………………..................………………................................................................................. 108 Luciana Vieira Granthom Costa & Frederico Tapajós de Souza Tâmega

Conclusion…………………………………………………………………………………….......................................................................................................................................................................... 112 References……………………………………………………………………………………......................................................................................................................................................................... 116 Index of taxa by scientific name....…………………………………………………………............................................................................................................................................................. 126

Author list…………........................………………………………………………………………………….................................................................................................................................................. 130 Tables……………………...........................................................................................…………………………………………….................................................................................................................. 134 Table 1. Sampling data from study sites of PEMCA Project…………………………………………………………………………………………………......................................

135

Table 3. List of Cnidaria taxa recorded at the Peregrino oil field. …………………………………………………………………………………….........................................

136

Table 2. List of Porifera taxa recorded at the Peregrino oil field………………………………………………………………………….....................................…………......... Table 4. List of Molluscan taxa recorded at the Peregrino oil field.……………………………………………………………………………………......................................

136 137

Table 5. List of Polychaeta taxa recorded at the Peregrino oil field…………………………………………………………………………......................................................... 138 Table 6. List of Crustacea taxa recorded at the Peregrino oil field…………………………………………………………………………........................................................... 138 Table 7. List of Bryozoan taxa recorded at the Peregrino oil field…………………………………………………………………………............................................................ 139

Table 8. Brachiopoda taxon recorded at the Peregrino oil field……………………………………………………………………………............................................................. 139 Table 9. List of Echinodermata taxa recorded at the Peregrino oil field…………………………………………………………………………...........................................

Table 10. List of Ascidiacea taxa recorded at the Peregrino oil field………………………………………………………………………….....................................................

140 140 8

Acknowledgments We are grateful to the crew and captains of the Brazilian Navy vessels: Diadorin and Aspirante Moura for their assistance and also to Ricardo Coutinho, Alézio da Silva Dias, Fernanda Neves Sivieiro, José Eduardo de Arruda Gonçalves, Júlio César Monteiro and Rodrigo Araújo Gonçalves for field work support. Alanna Dahan Martins (Echinodermata), Celso de Souza (Porifera), Clovis Barreira e Castro (Cnidaria), Elinia Medeiros Lopes (Echinodermata), Guilherme Muricy (Porifera), Jaime Jardim (Mollusca-Polyplacophora), Leandro Manzoni Vieira (Bryozoa), Marcela Rosa Tavares (Echinodermata) and Marcello Guimarães Simões (Brachiopoda) kindly helped with the identification of some taxa. Financial support was given by STATOIL Brasil Óleo e Gás Ltda (Statoil Brazil Oil and Gas LLC) and the Agência Nacional de Petróleo, Gás Natural e Biocombustíveis (National Oil, Natural Gas and Biofuels Agency) - ANP. SISBIO license no 20820-2 and 20826-1.

9

Introduction 10

Introduction to the catalogue Frederico Tapajós de Souza Tâmega & Marcia Abreu de Oliveira Figueiredo

The Peregrino oil field is located at Campos Basin (Rio de Janeiro State), which, despite being a major oil production area, remains

undiscovered with regard to its marine life. The surveyed sea bottom is at a depth of approximately 100 m, within an area of approximately 15,750

km2, and is characterized by calcareous nodules known as “rhodoliths”. Produced by free-living calcareous algae and incrusting fauna, these biogenic structures transform the poor sedimentary soft bottom into a complex habitat that aggregates several marine life forms. The highly diverse benthic

community presents probably new species for science, relatively unknown invertebrates and calcareous algae of the Brazilian continental shelf.

General features of rhodolith beds

Living rhodolith beds are distributed in tropical and cold-

temperate oceans, from shallow to deep waters exceeding 200 m (Littler

et al., 1991). In Brazil, rhodolith beds are widespread from the northeast to the south and are considered to be the largest calcareous algae

carbonate deposits in the world (Foster, 2001). Although their potential

for sustainable fisheries and the increasing demand for marine

carbonate extraction has caused scientists to seek conservation

management (e.g., Birkett et al., 1998; Fazakerley & Guiry, 1998), the

community structure studies of soft bottoms conducted on the Brazilian

continental shelf do not often include or refer to rhodoliths as one of their major components.

Rhodoliths are considered habitat modifiers or bioengineers that,

by virtue of their branching and interlocking nature, provide relatively

11

stable and three-dimensional habitats (Bruno & Bertness, 2001). The

size, shape and branched-pattern growth have an important role in the

species richness and abundance of the associated invertebrates (Steller et al., 2003; Figueiredo et al., 2007; Sciberras et al., 2009). The beds also

provide a surface to wich macroalgae attach (e.g., Hily et al., 1992; Amado-Filho et al., 2010) in this environment.

Although dead rhodoliths within natural stands can hold dense

faunal assemblages, live rhodoliths play an important ecological role as a nursery habitas, supporting richer communities than non-carbonate sediments (Figueiredo et al., 2007; Harvey & Bird, 2008). Indeed, some

juvenile invertebrates prefer to settle, seek refuge from predators and optimize their food supply on live rhodolith beds rather than on

impacted grounds (Kamenos et al., 2004; Steller & Cárceres-Martinez, 2009).

Rhodolith beds usually concentrate a great species richness and

abundance of Annelida, Mollusca and Crustacea in their infauna, whereas Cnidaria, Bryozoa and Porifera characterize the epifauna that incrust

rhodoliths (Bordehore et al., 2003; Steller et al., 2003; Hinojosa-Arango & Riosmena-Rodriguez, 2004; Figueiredo et al., 2007; Harvey & Bird, 2008; Sciberras et al., 2009; Amado-Filho et al., 2010). Rhodolith beds

have been shown to provide a highly heterogeneous substratum that enriches soft bottom communities in shallow waters, though little is known about deep-water communities.

This catalogue presents a taxonomic list of the flora and faunal

groups in the Peregrino rhodolith bed, which is likely the most extensive offshore living rhodolith bed in the world. Two calcareous red algae

(Rhodophyta) are the major components of these rhodolith structures,

and the following faunal groups were recorded: Porifera, Cnidaria, Mollusca, Polychaeta, Crustacea, Bryozoa, Brachiopoda, Echinodermata and Ascidiacea. The taxa described in this catalogue were the most

frequent observed in a total of 210 taxa; however, 31 taxa remain

without specific identification. A precise identification at the species level is under investigation and may result in some previously unknown species.

Sampling methods and identified taxa Twenty-two sampling stations were located at the Peregrino oil

field, Campos Basin (23°17'776"S - 41°14'218"W; 23°21.2´S -

041°17.05´W), 46 nautical miles from the Cabo Frio region in the north

of Rio de Janeiro State (Fig. 1). Three field surveys were conducted, in

June and November 2010 and April 2011, aboard the Brazilian Navy

vessels Diadorin and Aspirante Moura (Figs. 2A, 2B). The sampling of fauna species was performed using the following two sampling methods: a van Veen grab of 20 L (Fig. 3A) and a dredge of 160 L (Fig. 3B); the

latter is more widely used for sampling large amount of rhodoliths (Figs. 3C, 3D).

The data from the study sites (sampling dates and depth, time,

position and duration of trawling and sampler used) are described in Table 1. After collection, the sampler was placed on the vessel, and the

organisms were sorted into major taxonomic groups. The algae samples were preserved in 4% formalin solution, and the fauna samples

anesthetized with magnesium chloride (8%) for 30 minutes and then fixed in 70% to 90% alcohol. Specimens of each taxonomic group (Phylum) were labeled and storage according to the study site (Fig. 3E). After arrival at the harbor of Arraial do Cabo, the samples were placed in

plastic boxes and sent to the experts on each group (Fig. 3F).

The biological collections are held at the following: Instituto de

Pesquisa Jardim Botânico do Rio de Janeiro – JBRJ (Botanical Garden of Rio de Janeiro Research Institute); Universidade Federal do Rio de

12

Janeiro – UFRJ (Federal University of Rio de Janeiro); Universidade

Echinodermata; and Museu Oceanográfico “Prof. E. C. Rios”, Universidade

de Janeiro), Laboratories of Annelida; Museu Nacional – UFRJ (National

University

Federal Rural do Rio de Janeiro - UFRRJ (Rural Federal University of Rio Museum),

Laboratories

of

Porifera,

Cnidaria,

Crustacea

and

Federal do Rio Grande – FURG (Oceaonographic Museum, Federal of

Figure 1. Peregrino oil field located in Rio de Janeiro State and position of each sampling sites.

13

Rio

Grande),

Laboratory

of

Malacology.

Rouse & Pleijel, 2001; Nogueira & San Martín, 2002; San Martín, 2003; Nogueira, 2005; Amaral et al., 2006; Nogueira & Abbud, 2009), Crustacea

(e.g., Williams, 1984; Barnard & Karaman, 1991; Melo, 1996; 1999;

Poore, 2001), Bryozoa (e.g., Marcus, 1937; 1938; 1939; 1941; 1955;

Braga, 1967; 1968; Ramalho, 2006; Vieira et al., 2007; 2008; 2010a;b;c; Vieira, 2008; Santana et al., 2009; Ramalho et al., 2009), Brachiopoda Figure 2. Brazilian Navy vessels Diadorin (A) and Aspirante Moura (B).

The specimens were physically sorted into taxonomic groups

using forceps and fine paintbrushes, placed into Petri dishes and

observed using stereoscopic and optical microscopes (Figs. 3G, 3H); images were recorded with a digital camera after fixation. Identification

at the lowest possible taxonomic level was performed by consulting specific literature for each Phylum, including Rhodophyta (e.g.,

Woelkerling, 1988; Womersley, 1996; Harvey et al., 2005; Farias et al.,

2010), Porifera (e.g., Boury-Esnault, 1973; Hooper & van Soest, 2002;

Lerner et al., 2006; Muricy et al., 2007; 2008; van Soest et al., 2011), Cnidaria (e.g., Cairns, 1979; 2000; Verseveldt & Bayer, 1988), Mollusca

(e.g., Abbott, 1974; Kaas & Van Belle, 1987; Sweeney et al., 1992; Díaz &

Puyana &, 1994; Rios, 1994; 2009), Polychaeta (e.g., Zibrowius, 1970;

(e.g., Simões et al., 2004; Simões & Mello, 2006), Echinodermata (e.g.,

Mortensen, 1928; Phelan, 1970; Tommasi, 1966; 1970a; Lawrence, 1987;

Hendler et al., 1995; Rowe & Gates, 1995; Brusca & Brusca, 2003; Amaral et al., 2006) and Ascidiacea (e.g., Van Name, 1945; Kott, 1952; Rodrigues,

1966; Monniot & Monniot, 1968; Millar, 1969; Monniot, 1970; Cascon & Lotufo, 2005; Rocha et al., 2011; 2012; Dias et al., 2012).

In this catalogue we take the opportunity to present an updated

checklist of the currently known flora and fauna in the Peregrino oil field.

A taxonomic illustrated checklist in the catalogue of the benthic marine life from Peregrino oil field is provided, comprising a total of 122 taxa, 2

taxa of Rhodophyta, 16 of Porifera, 6 of Cnidaria, 31 of Mollusca, 6 of

Polychaeta, 17 of Crustacea, 20 of Bryozoa, 1 of Brachiopoda, 21 of

Echinodermata and 2 of Ascidiacea. Additional information on the taxa recorded is also presented.

14

Figure 3. Samplers used: van Veen grab (A) and dredge (B). Rhodolith samples and associated fauna after dredging (C, D). Sorted fauna samples and transport to the laboratory (E, F). Stereomicroscope (G) and optical microscope (H) used in the identification of the algae and fauna specimens.

15

Characterization of the Peregrino Oil Field Ricardo Coutinho & Fernanda Siviero

The Peregrino oil field is part of the Campos Basin (Block BM-C-7).

The field location is approximately 85 km from Cabo Frio and 118 km from

Water (AC) to the open ocean as the vortex grows and the Brazil Current

(BC) is destabilized. This withdrawal of water may cause the rise of colder

Cabo de São Tomé where it reaches a maximum depth of 200 m before the

waters.

Coastal Water (low S), Tropical Water (high S, 36°C) and Água Central do

of ACAS. The second phase occurs when the warm water at the surface is

bottom; in the winter, the temperature ranges from 20 to 22°C at the

returns to a oligotrophic environment due to a decrease in phytoplankton

break of the continental shelf; its orientation is SW-NE. The oil field is

characterized as an area influenced by the following three water masses:

Atlântico Sul (ACAS) (low T, 18°C). In the summertime, the water

temperature ranges from 18 to 24°C at the surface and 16 and 18°C at the

surface and 16 and 22°C at the bottom. The mean temperature at the

bottom is higher in winter than in summer and may be related to the

The cycles of upwelling off the coast of Cabo Frio can be summarized

in three phases. The first phase is the upwelling of the nutrient-rich waters

followed by an increase in primary production and a parallel decrease in nutrient concentrations. The third phase is subsidence in which the water because of the depletion of nutrients (Gonzalez-Rodriguez et al., 1992).

In the Peregrino region, the waters of the BC (AC-AT) are

persistence of the wind during the summer and the subsequent

characterized by having fewer nutrients and low nitrate levels (4 mM) and

and 0.4 m/s toward the SW. The bottom currents show a correlation

mM, respectively.

maintenance of the upwelling phenomenon near the coast.

The average speed of the current background area is between 0.2

between the low temperature at the bottom and the current along the coast.

This area is dominated by the dynamic current from Brazil that is shallow

(0-75 m), warm (6-24°C) and of high salinity (34.5 to 37/00) and by the

synoptic wind during the passage of cold fronts and the tidal regime. This area is also characterized by the large-scale South Atlantic Subtropical High, with synoptic winds due to very frequent cold fronts. The intensity of these northwest winds is higher during the summer and spring, promoting

upwelling events during this period. Calado et al. (2010) showed that an

unstable cyclonic meander can displace a significant volume of Coastal

orthophosphate (0.4 μM) levels. In contrast, ACAS has the highest

concentrations of nitrate and orthophosphate, reaching values of 18 and 1.3

Therefore, a high rate of productivity and accumulation of

phytoplankton biomass is related to the external nutrient input of the

continent or from ACAS. Furthermore, a zooplankton density of > 10 org. L-1

(66 mg m-3 dry weight), reaching values of 100 org. L-1 (220 mg m-3 dry

weight), has been observed after the end of the summer upwelling

(Valentin, 2001). During this period there is an increase in the depth of the thermocline and photic layer, which produces an increased flow of particulate organic carbon that is exported to the bottom.

16

Results – Biodiversity Survey 18

Phylum Rhodophyta Wettstein, 1922 20

Phylum Rhodophyta Frederico Tapajós de Souza Tâmega; Alexandre Bigio Villas-Boas & Marcia Abreu de Oliveira Figueiredo

Introduction

Rhodolith beds are marine communities dominated by free-living

calcareous algae both now (Foster, 2001) and in the past (Bassi et al.,

2009; 2012) and are widely distributed from depths of 20 to 100 m in

the southwestern Atlantic (Kempf, 1970; Amado-Filho et al., 2012;

Henriques, et al., 2012). These assemblages are composed of four or

more species of rhodolith-forming red calcareous algae (Villas-Boas et al., 2009; Amado-Filho et al., 2010).

Other macroalgae comprise at least one quarter of the known

species of the Brazilian central shelf (Yoneshigue-Valentin et al., 2006),

though the species richness and abundance varies seasonally, similar to

beds elsewhere in the world (e.g., Steller et al., 2003; Sciberras et al., 2009).

Sedimentary soft bottoms covered by rhodoliths are found

surrounding coral reefs in northeastern Brazil (Leão et al., 2003) where an expansive and contiguous rhodolith beds was recently mapped on the

Abrolhos shelf (Amado-Filho et al., 2012), contrasting with an isolated small rhodolith bed reported at a lower latitude (Gherardi, 2004).

21

The morphological features of rhodolith-forming species are

remarkably variable; nonetheless, they indicate adaptations to many

environmental and biological factors, such as wave exposure, light intensity, sediment deposition, competition and herbivory (Steneck

1986; Steneck & Dethier, 1994). Because rhodolith beds remain poorly understood, new species are likely to be found (e.g., Villas-Boas et al.,

2009). This report is the first attempt at an overall survey to describe the

species composition at Campos Basin, the largest oil production area in the country and a priority area for marine life conservation.

Results

Two rhodolith-forming species from the Peregrino oil field were

recorded.

Systematics Class Florideophyceae Cronquist, 1960

Order Corallinales P. C. Silva & H. W. Johansen,1986 Family Hapalidiaceae J. E. Gray, 1864

Subfamily Melobesioideae A. S. Harvey & Woelkerling,1995 Genus Mesophyllum Marie Lemoine, 1928

Species Mesophyllum engelhartii (Foslie) W. H. Adey (Fig. 4) Geographic and bathymetric distributions: Australia and New Zealand

(Chapman & Parkinson, 1974; Woelkerling & Harvey, 1993), Mexico (Riosmena-Rodriguez & Vásquez-Elizondo, 2012), Brazil (Amado-Filho et al., 2010; Riosmena-Rodriguez & Vásquez-Elizondo, 2012; Figueiredo et al.,

2012), Namibia (John et al., 2004) and South Africa (Chamberlain & Keats,

1995). Found intertidally in pools and on reef edges and subtidally to 15 m.

Data available in Guiry & Guiry (2013).

Remarks: Substrata include rock, mollusks, sponges and various green, brown and red algae (Womersley, 1996). Species present at all sampling stations.

Figure 4. Mesophyllum engelhartii

22

Genus Lithothamnion Heydrich, 1897 Species Lithothamnion sp. (Fig. 5)

Geographic distribution: Biogeographically, Lithothamnion appears to be

widespread, considering the high number of known species, but many records require confirmation. Data available in Guiry & Guiry (2013).

Remarks: A revision of the Lithothamnion species from Rio Grande do Norte, Bahia and Santa Catarina States was previously conducted (Farias et al.,

2010). Lithothamnion sp. differs from others species of Lithothamnion

found elsewhere in Brazil. Unidentified species present at all sampling stations.

Figure 5. Lithothamnion sp.

23

Phylum Porifera Grant, 1836 24

Phylum Porifera Introduction

Fernando Moraes

Sponges (Porifera) comprise one of the major invertebrate

groups on consolidated sea beds worldwide and high-latitude lakes.

They are abundant in all oceans, from the tidal line to deep sea where

the species colonize rocks, shells, coral skeletons, sand, mud and several

other hard and soft substrates. Sponges are also very abundant in

shelf areas to a depth of 90 m depth particularly in Brazil (e.g. Ridley

& Dendy, 1887; Sollas, 1888; Boury-Esnault, 1973; Muricy et al., 2008).

Approximately 8,350 species are known in the worldwide of

which more than 443 are registered in Brazil (Muricy et al., 2011; van

Soest et al., 2013). The most diverse class, Demospongiae, is represented

in Brazilian waters by 380 species in 63 families, comprising 70% of the 90 currently accepted families of this class (reviewed in Muricy et al., 2011). In Brazil, knowledge of sponge fauna from the continental shelf

began with the historic expedition of H.M.S. Challenger (Ridley & Dendy, 1887; Sollas, 1888) and has currently been driven by environmental and governmental policies (The Assessment of the Sustainable Yield of the

Living Resources in the Exclusive Economic Zone Project - REVIZEE) and 25

the demands of oil and gas companies (Muricy et al., 2006; 2007; 2008; Hajdu & Lopes, 2007; Vieira et al., 2010d; Lopes et al., 2011). Muricy et al

(2011) reviewed the taxonomy of Porifera in Brazil, presenting 443

registered sponge species and 340 others characterized at the genus and higher systematic levels, information that indicates the high potential for the description of new species and demonstrates the need for the refinement of the taxonomy of several groups.

The taxonomy of Porifera is difficult, relying on morphological and

anatomical features for the identification of species – some of which are

altered after collection, such as color. In the last decade, illustrated identification

guides

published

in

Brazil

including

anatomical

descriptions of species, have supported the development of taxonomic studies and faunistic surveys along the coast and oceanic islands of the

Brazilian Economic Exclusive Zone (Muricy & Hajdu, 2006; Muricy et al., 2008; Moraes, 2011; Hajdu et al., 2011).

Results

A total of 16 Porifera taxa from the Peregrino oil field were

recorded (Table 2).

Systematics Class Demospongiae Sollas, 1885 Order Astrophorida Sollas, 1888 Family Geodiidae Gray, 1867 Genus Erylus Gray, 1867

Species Erylus sp. (Fig. 6) Geographic distribution: The genus Erylus is cosmopolitan (Adams & Hooper, 2001) and occurs in Brazil from north to south along the coast and

at all oceanic islands (Mothes & Lerner, 2001; Moraes et al., 2006; Moraes

& Muricy, 2007; Vieira et al., 2010d).

Remarks: The genus Erylus is quite diverse, with 69 species worldwide (van

Soest et al., 2011) and six species in Brazil (Moraes & Muricy, 2007; Vieira et al., 2010d). Erylus is characterized by the presence of aspidasteres. Species-level identification requires a detailed analysis of the morphology

of different asterose microscleres using scanning electron microscopy and

comparison with the literature.

Figure 6. Erylus sp.

26

Family Ancorinidae Schmidt, 1870

Genus Tribrachium Weltner, 1882

Species Tribrachium schmidtii Weltner, 1882 (Fig. 7) Geographic and bathymetric distributions: Tropical western AtlanticCaribbean and Brazil. This species was collected by the REVIZEE Program

between 50-140 m in the States of Bahia and Rio de Janeiro in Brazil (Muricy et al., 2007); it occurs between depth of 12 and 700 m.

Remarks: The external form and set of spicules of T. schmidtii are very characteristic. Its habitat is unconsolidated sediment in which its base remains buried, whereas the papillae are exposed above the sea floor.

Figure 7. Tribrachium schmidtii

Order Hadromerida Topsent, 1894 Family Suberitidae Schmidt, 1870

Genus Protosuberites Swartschewsky, 1905 Species Protosuberites sp. (Fig. 8)

Geographic and bathymetric distributions: There is only one record of this

genus in Brazil, identified in the Cagarras Archipelago, Rio de Janeiro State, in shallow waters (Monteiro & Muricy, 2004, as Protosuberites sp.).

Figure 8. Protosuberites sp. 27

Family Timeidae Topsent, 1928 Genus Timea Gray, 1867

Species Timea sp. (Fig. 9) Geographic and bathymetric distributions: The genus Timea occurs in

tropical and warm temperate waters from shallow depths to 165 m depth

(Lehnert & Heimler, 2001).

Order Lithistida incertae sedis

Family Desmanthidae Topsent, 1893 Genus Petromica Topsent, 1898 Species Petromica sp. (Fig. 10)

Figure 9. Timea sp.

Geographic distribution: The genus Petromica occurs in the Azores Archipelago, Caribbean, Brazil, South Africa and Ceylon (Muricy et al.,

2001). In Brazil, it occurs in the northeast, southeast and south (Muricy et al., 2001; 2008; Muricy & Hajdu, 2006).

Remarks: The genus Petromica has 10 species considered valid in the world (van Soest et al., 2011); there are two recorded species in Brazil (Muricy et

al., 2001; 2008). These species occur in shallow waters and differ markedly from the Petromica sp. from the Peregrino oil field by external morphology

(color and shape); specimens of the first group of species are white and have smooth papilae with oscules; the second is yellow with conulose

Figure 10. Petromica sp. 28

papillae. Petromica sp. have a massive irregular shape and cream-white color. The material collected in the Peregrino field is likely a new species.

Order Poecilosclerida Topsent, 1928

Suborder Microcionina Hajdu, van Soest & Hooper, 1994 Family Microcionidae Carter, 1875 Genus Clathria Schmidt, 1862 Species Clathria sp. (Fig. 11)

Geographic and bathymetric distributions: The genus Clathria is cosmopolitan, occurring predominantly in shallow water (Hooper, 2002a).

Remarks: The genus Clathria consists of more than 400 valid species worldwide (van Soest et al., 2011). A species-level identification of the

material collected requires information on the external morphology (e.g., color in vivo), a detailed analysis of the spicules using scanning electron

microscopy and revision of the genus Clathria in the Atlantic.

29

Figure 11. Clathria sp.

Family Raspailiidae Hentschel, 1923

Subfamily Raspailiiniae Nardo, 1833 Genus Raspailia Nardo, 1833

Subgenus Raspaxilla Topsent, 1913

Species Raspailia (Raspaxilla) bouryesnaultae Lerner, Carraro & van Soest, 2006 (Fig. 12)

Geographic and bathymetric distributions: In Brazil, at Campos dos

Goytacazes, Rio de Janeiro State at 39 m depth (Boury-Esnault, 1973) and Ilha dos Corais, Santa Catarina State at 12 m depth (Lerner et al., 2006).

Remarks: The material studied is similar to that described for the type locality, which is from the same region as the Peregrino oil field. The in vivo

yellow color described for the Santa Catarina material cannot be compared

Figure 12. Raspailia (Raspaxilla) bouryesnaultae

with the studied material, due to the lack of this information. Genus Eurypon Gray, 1867

Species Eurypon sp. (Fig. 13) Geographic distribution: The genus Eurypon is cosmopolitan (Hooper, 2002b); there is only one record in Brazil in Tamandaré, Pernambuco State

(Muricy & Moraes, 1998, as Eurypon sp.).

Remarks: The genus Eurypon has 41 valid species in the world (van Soest et al., 2011).

Figure 13. Eurypon sp. 30

Suborder Myxillina Hajdu, van Soest & Hooper, 1994 Species Myxillina sp. (Fig. 14)

Geographic distribution: Distributed worldwide (van Soest et al., 2013).

Remarks: The suborder Myxillina contains species of a wide variety of morphological and anatomical features, with 11 families considered valid, but still requires a systematic review (van Soest, 2002). The features of the

collected material from the Peregrino oil field are the same as the suborder Myxillina, but the morphological (shape) and anatomical features (spicules

and skeleton) differ from those of any of the known genera or families in this group (van Soest, 2002). Therefore, the genera and species remain unidentified and are dependent on future taxonomic work.

Figure 14. Myxillina sp.

Family Desmacellidae Ridley & Dendy, 1886 Genus Desmacella Schmidt, 1870 Species Desmacella sp. (Fig. 15)

Geographic and bathymetric distributions: The genus Desmacella occurs in all oceans in the world, predominantly in deep waters (Hajdu & van Soest, 2002). In Brazil there are records of three species of this genus in the States of São Paulo, Rio de Janeiro, Santa Catarina and Rio Grande do Sul, between 114-380 m depth (Hajdu & Lopes, 2007).

Remarks: The genus Desmacella includes 30 species considered valid 31

Figure 15. Desmacella sp.

worldwide (van Soest et al., 2011). The minimum depths of the three species of Desmacella recorded in Brazil ̶ D. annexa (Schmidt, 1870), D. aff.

pumilio Schmidt, 1870 and Desmacella sp. (Lopes et al., 2011) ̶ match with the maximum record depth of dredging made in the Peregrino oil field.

Order Halichondrida Gray, 1867

Family Axinellidae Carter, 1875 Species Axinellidae sp. (Fig. 16)

Geographic and bathymetric distributions: This family is cosmopolitan, occurring from shallow water to the deep sea at 1800 m depth (Alvarez & Hooper, 2002).

Remarks: The family Axinellidae has 10 genera and 300 species described,

with a wide range of morphological features, such as variety of shapes and red, orange and yellow colors (Alvarez & Hooper, 2002).

Figure 16. Axinellidae sp.

32

Family Halichondriidae Gray, 1867 Genus Topsentia Berg, 1899

Species Topsentia sp. (Fig. 17) Geographic distribution: The genus Topsentia occurs in three oceans, predominantly at low latitudes (Erpenbeck & van Soest, 2002).

Remarks: The genus Topsentia has 35 species valid worldwide (van Soest et al., 2011); there is only one known species of this genus in Brazil, T. ophiraphidites (de Laubenfels, 1934) (e.g., Muricy et al., 2008). Family Bubaridae Topsent, 1894 Genus Bubaris Gray, 1867

Species Bubaris sp. (Fig. 18)

Figure 17. Topsentia sp.

Geographic and bathymetric distributions: The genus Bubaris has a wide

distribution, including records in the Arctic, Atlantic, Mediterranean and Pacific Oceans and in the Antarctica, mostly deep sea (Alvarez & Hooper, 2002).

Remarks: The genus Bubaris has nine species valid worldwide (van Soest et al., 2011). The species of this genus are incrusting and have no spicules as diagnosable features at the species level. There is a need for accurate

information regarding color and surface features for a more detailed

identification. In Brazil, there is only one record of a species of this genus, 33

Figure 18. Bubaris sp.

for the States of São Paulo and Rio Grande do Sul, between 153-360 m depth (Hajdu & Lopes, 2007, as Bubaris sp.).

Order Haplosclerida Topsent, 1928

Suborder Haplosclerina Topsent, 1928 Family Chalinidae Gray, 1867 Genus Haliclona Grant, 1836

Species Haliclona sp. (Fig. 19) Geographic and bathymetric distributions: The genus Haliclona is common

in shallow tropical waters, but the family Chalinidae is distributed worldwide (Weerdt, 2002).

Remarks: The genus Haliclona has six subgenera and approximately 430

species considered valid worldwide (Weerdt, 2002; van Soest et al., 2011).

Species level identification is dependent on suitable information regarding the external morphology, particularly color, due to the simplicity of the

Figure 19. Haliclona sp.

spicules.

Order Dictyoceratida Minchin, 1900 Family Irciniidae Gray, 1867 Genus Ircinia Nardo, 1833

Species Ircinia strobilina (Lamarck, 1816) (Fig. 20) 34

Geographic distribution: Tropical Western Atlantic: Caribbean and Brazil in

the States of Ceará, Rio Grande do Norte, Pernambuco, Alagoas, Bahia and Espírito Santo (Muricy et al., 2007; 2008). This is a new record in Rio de Janeiro State.

Remarks: The genus Ircinia has 75 species valid worldwide (van Soest et al.,

2011). The material studied matches the description of Ircinia strobilina by

Muricy et al. (2007), including the brown color with shades of black and the

lack of black edges in the osculum. However, the shape of the studied sample is not that most commonly expected for this species in other

regions (Caribbean and northeastern Brazil). Bryozoans and cnidarians (hydroids and hermatypic corals) were found associated with this species. Family Dysideidae Gray, 1867

Figure 20. Ircinia strobilina

Genus Dysidea Johnston, 1842 Species Dysidea sp. (Fig. 21)

Geographic and bathymetric distributions: The genus Dysidea occurs in a

wide distribution in environments of hard substrate and shallow and deep

waters around the world, including the Caribbean, Mediterranean,

Australia, New Caledonia and Brazil (Vilanova & Muricy, 2001).

Remarks: The genus Dysidea has 64 species valid worldwide (van Soest et al.,

2011). The external morphological features (color and shape of osculum)

are important for identification at the species level, but this genus, but this

information was not available for the material analyzed from the Peregrino oil field.

35

Figure 21. Dysidea sp.

Phylum Cnidaria Hatschek, 1888 36

Phylum Cnidaria Introduction

Débora de Oliveira Pires

There are approximately 11,000 extant Cnidaria species in the world,

and almost all are exclusively marine (Brusca & Brusca, 2003). Among the corals, the most diverse group is the octocorals (Octocorallia), with

approximately 2,000 species (Bayer, 1981). The next greatest diversity is found among the hard corals (Scleractinia), with approximately 1,400

species (Cairns et al., 1999).

The central coast of Brazil harbors the areas of the greatest diversity

of cnidarian in the South-Western Atlantic. There are records in this region, including the coasts of Bahia and Espírito Santo States, the Abrolhos Bank

and the Vitória-Trindade Chain, of 57 species of octocorals and 33 species of

Scleractinia between depths of 50 and 1819 m (Castro et al., 2006).

One of the pioneering studies on the cnidarian fauna on the Brazilian

platform was conducted by a foreign expedition, the voyage of the Hassler.

The material collected was studied by Pourtalès (1874), who recorded seven species of corals.

Voyages of the oceanographic vessel Prof. W. Besnard occurred in the

late sixties, and some samples of azooxanthellate coral were collected off

the coast of Rio de Janeiro. According to Tommasi (1970b), the most

common species found within the calcareous algae beds south of Cabo Frio were Cladocora arbuscula (=C. debilis Milne Edwards & Haime, 1849),

Dasmosmilia lymani (Pourtalès, 1871), Madracis mirabilis sensu Wells, 1973

and Trochocyathus sp. Later, Leite & Tommasi (1976) provided data on the

distribution of C. debilis south of Cabo Frio.

37

In the 1970s, a summary of the coral fauna of the tropical coast of

Brazil (Laborel, 1969; 1970) recorded nearly twenty species of

azooxanthellate coral known elsewhere (Ceará to Cabo Frio). The material

studied by Laborel was obtained from samplings by various expeditions, such as the Calypso, between November 1961 and February 1962.

Cairns (1979) published the first comprehensive work on the fauna

of azooxanthellate coral in the Caribbean and adjacent waters. The author

recorded several species in Brazilian waters, including samples off the coast

of Rio de Janeiro, between depths of 500 and 800 m depth, collected by the ship Walther Herwig. Among these species, the author recorded deep reefforming species such as Desmophyllum dianthus (Esper, 1794), Lophelia

pertusa (Linnaeus, 1758), M. oculata and Solenosmilia variabilis Duncan, 1873.

In their work on corals collected during "Operation Geomar X",

Fernandes

&

Young

(1986)

recorded

the

azooxanthellate

corals

Caryophyllia parvula Cairns, 1979, C. debilis, Madracis asperula Milne

Edwards & Haime, 1849 and Sphenotrochus auritus Pourtalès, 1874 between depths of 12 and 100 m.

A compilation of deep-sea coral fauna (hydrocorals, hard corals,

black corals and octocorals) from Campos Basin, of Rio de Janeiro State, was more recently published by Pires & Castro (2010).

Results

A total of six Cnidaria taxa from the Peregrino oil field were recorded

(Table 3).

Systematics Class Anthozoa Ehrenberg, 1834

SubClass Hexacorallia Haeckel, 1866 Order Scleractinia Bourne, 1900

SubOrder Caryophylliina Vaughan & Wells, 1943 Family Caryophylliidae Dana, 1846

Genus Coenocyathus Milne-Edwards & Haime, 1848

Species Coenocyathus parvulus (Cairns, 1979) (Fig. 22) Geographic and bathymetric distributions: Bahamas, Gulf of Mexico, Caribbean and Brazil, from 97 to 399 m in depth (Cairns, 2000). In Brazil,

this species was recorded at Cumuruxatiba, Bahia State, at 130 m depth (Pires, 2007).

Remarks: Small colonies and isolated specimens of this species were collected. Some polyps had tissues indicating that the specimens were alive.

Some colonies showed small polyps indicating that they were growing. In other cases, only the skeleton was collected; some were damaged and eroded.

Figure 22. Coenocyathus parvulus

38

Genus Cladocora Ehrenberg, 1834

Species Cladocora debilis Milne Edwards & Haime, 1849 (Fig. 23) Geographic and bathymetric distributions: Western Atlantic - Cape Hatteras to the Mississippi Delta, southern Caribbean coast (from Honduras to Venezuela), Brazil (Rio de Janeiro to Rio Grande do Sul, Saint

Peter and Saint Paul Rocks from 32 to 480 m depth. Eastern Atlantic Mediterranean, Morocco, Gulf of Guinea, Madeira Island, Canary Islands,

Cape Green, Ascension, St. Helena from 28 to 100 m depth (Cairns, 2000). Brazil - 19°43'S to 34°25'S, 46 to 438 m depth (Pires, 2007).

Remarks: These are a colonial species very common in the collected samples. There are plenty of records of this species in calcareous algae beds

(Tommasi, 1970b). Although this species forms small colonies, the majority of the material collected consisted of small tubular isolated fragments. C.

debilis can form clusters representing a structured organism and is commonly found as dead fragments incrusted by sponges and polychaete

tubes. The conglomerate of tubes bears numerous types of small invertebrates.

39

Figure 23. Cladocora debilis

Family Turbinoliidae Milne Edwards & Haime, 1848

Genus Sphenotrochus Milne Edwards & Haime, 1848

Species Sphenotrochus auritus Pourtalès, 1874 (Fig. 24) Geographic and bathymetric distributions: Known only in the Atlantic coast of South America (Suriname to Uruguay) at 15 to 64 m depth (Cairns, 2000). Brazil - 01°12'S and 34°35'S, 15 to 82m depth (Pires, 2007).

Remarks: Solitary species, quite common in Cabo Frio (RJ). This area represents the type locality of this species (64 m) (Cairns, 2000).

Figure 24. Sphenotrochus auritus

Family Flabellidae Bourne, 1905 Genus Javania Duncan, 1876

Species Javania cailleti (Duchassaing & Michelotti, 1864) (Fig. 25) Geographic and bathymetric distributions: Western Atlantic - Banquereau Bank, New Scotland to Suriname, including the Caribbean, Gulf of Mexico to Louisiana, USA. Wide distribution in the eastern Atlantic, Burdwood Bank,

Chile, Galapagos, British Columbia, Japan and the Arabian Sea, from 30 to 2165 m (Cairns, 2000). Brazil - 17°04’S to 33°42'S, 107 to 250 m depth (Pires, 2007).

Figure 25. Javania cailleti 40

SubClass Octocorallia Haeckel, 1866 Order Alcyonacea Lamouroux, 1812 Family Nidaliidae Gray, 1869 Genus Nidalia Gray, 1834

Species Nidalia sp.1 (Fig. 26) Remarks: Nidaliids have monomorphic polyps and clavate colonies with a stiff or firm texture and prominent calyces at a terminal cluster. Refer to Verseveldt & Bayer (1988) for some revisions within this family. Two colonies were collected from two sampling stations (Table 3).

Figure 26. Nidalia sp.1

Species: Nidalia sp.2 (Fig. 27) Remarks: One colony was collected from the sampling stations (Table 3).

Figure 27. Nidalia sp.2 41

Phylum Mollusca Cuvier, 1797 42

MOLLUSCA

Phylum Mollusca Paula Spotorno de Oliveira

Introduction

The Mollusca Phylum is the second largest zoological group

currently known second only to arthropods (Amaral et al., 2003). Approximately 100,000 described species have been estimated in the

world (Brusca & Brusca, 2003). Among the benthic macrofauna they are numerically less abundant than polychaetes and peracarid crustaceans (Miyaji, 2001).

The Class Gastropoda is usually the most diverse (80% of species),

presenting a wide range of shapes, sizes and habits as a result of the

intense adaptive radiation of the group, followed by the Class Bivalvia

(27% of species). Other classes (Cephalopoda, Polyplacophora, Scaphopoda,

Solenogastres,

Caudofoveata

and

Monoplacophora)

comprise the remaining species (approximately 3%) (Amaral et al., 2003).

Mollusks have a high degree of morphological diversity with

specimens in almost all environments (Amaral et al., 2003). The classes Gastropoda and Bivalvia are the best represented in benthic ecosystems,

and their species have been used to characterize benthic associations (Diaz & Puyana, 1994). 43

As mollusks are primary consumers in aquatic ecosystems, they

have been used as environmental indicators. Indeed, mollusks are an important different

organism

ecosystems

for

due

to

monitoring their

contaminants

economic

importance and sedentary life (Feldstein, 2003).

and

in

ecological

There are 1,600 species reported on the Brazilian coast (Rios,

1994). Approximately 35% of these taxa occur in the State of Rio de

Janeiro, representing a significant portion of all the Brazilian molluscan fauna (Santos et al., 2007). Since Rios (1994), 115 species have been

added, mainly descriptions of new species and new records of occurrence (e.g., Leal, 1991; Simone, 1999; Absalão & Pimenta, 2003; Absalão et al., 2003a;b; Pimenta & Absalão, 2004).

Results A total of 31 Molluscan taxa were recorded from the Peregrino oil

field (Table 4).

MOLLUSCA Systematics Class Polyplacophora Gray, 1821

Family Ischnochitonidae Dall, 1889 Genus Ischnochiton Gray, 1847

Species Ischnochiton marcusi (Righi, 1971) (Fig. 28) Geographic and bathymetric distributions: In Pernambuco and Piauí States (Brazil), from 11 to 30 m depth (Rios, 2009).

Remarks: A complete specimen with soft parts. Habitat, on rocks; frequency, common in the Brazilian coast; trophic level, herbivore (Rios, 2009; Conquiliologistas do Brasil, 2013).

Figure 28. Ischnochiton marcusi.

Species Ischnochiton sp. (Fig. 29) Geographic and bathymetric distributions: Known only from the study locality (present study) at a depth of 101 m.

Remarks: A complete specimen with soft parts. There is strong evidence that suggests the existence of an undescribed species of genus Ischnochiton.

Figure 29. Ischnochiton sp. 44

MOLLUSCA Family Chaetopleuridae Plate, 1899

Genus Chaetopleura Shuttleworth, 1853

Species Chaetopleura asperrima (Gould, 1852) (Fig. 30) Geographic distribution: Espírito Santo State (Brazil) to Maldonado (Uruguay) (Rios, 2009).

Remarks: Trophic level, herbivore (Conquiliologistas do Brasil, 2013).

Class Gastropoda Cuvier, 1797

Family Fissurellidae Fleming, 1822

Genus Chaetopleura Sowerby, 1835

Figure 30. Chaetopleura asperrima

Species Lucapina sowerbii (Sowerby I., 1835) (Fig. 31) Geographic and bathymetric distributions: From Pará to São Paulo;

Fernando de Noronha, Abrolhos and Trindade Islands (Brazil); under rocks, from the intertidal zone to a depth of 45 m (Rios, 2009).

Remarks: Habitat, gravel and rocks; frequency, uncommon on the Brazilian coast; trophic level, herbivore (Conquiliologistas do Brasil, 2013).

Figure 31. Lucapina sowerbii 45

MOLLUSCA Family Calliostomatidae Thiele, 1924 Genus Swainson, 1840

Species Calliostoma carcellesi Clench & Aguayo, 1940 (Fig. 32) Geographic and bathymetric distributions: Occurs from the Rio de Janeiro State (Brazil) to Rio Negro (Argentina), from 30 to 55 m depth (Rios, 2009).

Remarks: Habitat, in muddy and sandy bottoms (Conquiliologistas do Brasil, 2013).

Figure 32. Calliostoma carcellesi

Species Calliostoma pulchrum (C.B. Adams, 1850) (Fig. 33) Geographic and bathymetric distributions: States of Rio de Janeiro, Bahia and Piauí (Brazil), at 70 m depth (Rios, 2009).

Remarks: Habitat, under rocks; frequency, rare on the Brazilian coast (Conquiliologistas do Brasil, 2013).

Figure 33. Calliostoma pulchrum 46

MOLLUSCA Family Turbinidae Rafinesque, 1815

Genus Arene H. Adams & A. Adams, 1854

Species Arene bairdii (Dall, 1889) (Fig. 34) Geographic and bathymetric distributions: Amapá to Espírito Santo States and the Fernando de Noronha, Trindade and Martin Vaz Islands and Montague Seamounts (Brazil), from 35 to 270 m depth (Rios, 2009).

Remarks: Habitat, gravel and sand bottoms; frequency, rare on the Brazilian coast (Conquiliologistas do Brasil, 2013).

Figure 34. Arene bairdii

Family Turritellidae Loven, 1847 Genus Turritella Lamarck, 1799

Species Turritella hookeri Reeve, 1849 (Fig. 35) Geographic and bathymetric distributions: Eastern Brazil (Rio de Janeiro,

São Paulo, Santa Catarina and Rio Grande do Sul States), from 10 to 660 m

depth (Rios, 2009).

Remarks: Habitat, sand, silt and gravel bottoms; frequency, uncommon on the Brazilian coast (Conquiliologistas do Brasil, 2013).

47

Figure 35. Turritella hookeri

MOLLUSCA Family Vermetidae Rafinesque, 1815 Genus Thylacodes Guettard, 1770

Species Thylacodes aff. decussatus (Gmelin, 1791) (Figs. 36) Geographic and bathymetric distributions: From Florida, Gulf of Mexico to the Caribbean, and in Brazil from Bahia to Rio de Janeiro States, from mid-

littoral to 140 m depth (Spotorno-Oliveira, 2009; Spotorno et al., 2012).

Remarks: This taxon is currently being studied. The vermetids are a distinct

group of sessile gastropods that are rarely considered in marine community studies, presumably because of their complex taxonomy, and

distinct shell morphology, impeding the recognition of species diversity in

the field (Keen, 1960; Bieler, 1996). There are vermetid bioconstructions with other organisms, such as corals and coralline algae, in the northeast and southeast, between 3°S (northern coast of Ceará) and 22°S (northern coast of Rio de Janeiro), including the oceanic islands (Laborel & Kempf

1965; Soares-Gomes et al. 2001). The vermetid Thylacodes aff. decussatus and the coral Cladocora debilis were the most representative and

frequently found specimens at the sampling stations (Tables 3 and 4). Trophic level, filter feeder (Conquiliologistas do Brasil, 2013).

Figure 36. Thylacodes aff. decussatus

48

MOLLUSCA Family Ovulidae Fleming, 1822 Genus Cyphoma Röding, 1798

Species Cyphoma intermedium (G.B. Sowerby I., 1828) (Fig. 37) Geographic and bathymetric distributions: In Brazil in Santa Catarina State, at 70 m depth (Rios, 2009).

Remarks: Habitat, found with Octocorallia; frequency, uncommon on the

Brazilian coast; trophic level, carnivorous (Rios, 2009; Conquiliologistas do Brasil, 2013).

Figure 37. Cyphoma intermedium

Family Muricidae Rafinesque, 1815 Genus Siratus Jousseaume, 1880

Species Siratus formosus (Sowerby II, 1841) (Fig. 38) Geographic and bathymetric distributions: From Maranhão to Bahia States (Brazil), from 35 to 350 m depth (Rios, 2009).

Remarks: Habitat, sandy bottom and corals; frequency, uncommon on the

Brazilian coast; trophic level, carnivorous, feeding on small gastropods

(Rios, 2009; Conquiliologistas do Brasil, 2013). This taxon was one of the most frequently found at almost all the sampling stations (Table 4).

49

Figure 38. Siratus formosus

MOLLUSCA Family Buccinidae Rafinesque, 1815

Genus Metula H. Adams & A. Adams, 1853

Species Metula agassizi Clench & Aguayo, 1941 (Fig. 39) Geographic and bathymetric distributions: From Rio Grande do Sul to Rio de Janeiro States (Brazil), to a depth of 150 m (Rios, 2009).

Remarks: Habitat, sandy and muddy bottoms; frequency, uncommon on the

Brazilian coast; trophic level, carnivorous (Rios, 2009; Conquiliologistas do Brasil, 2013).

Figure 39. Metula agassizi

Family Volutidae Rafinesque, 1815

Genus Odontocymbiola Clench & Turner, 1964

Species Odontocymbiola macaensis Calvo & Coltro, 1997 (Fig. 40) Geographic and bathymetric distributions: From Santa Catarina to Rio de Janeiro States (Brazil), to a depth of 150 m (Rios, 2009).

Remarks: Habitat, gravels and sandy bottoms; frequency, uncommon on the

Brazilian coast; trophic level, carnivorous (Rios, 2009; Conquiliologistas do Brasil, 2013).

Figure 40. Odontocymbiola macaensis 50

MOLLUSCA Family Fasciolariidae Gray, 1853 Genus Fusinus Rafinesque, 1815

Species Fusinus frenguellii (Carcelles, 1953) (Fig. 41) Geographic and bathymetric distributions: From Brazil (Rio de Janeiro State) to Argentina, from 30 to 160 m depth (Rios, 2009).

Remarks: Habitat, sandy and muddy bottoms and mussels beds; frequency, common on the Brazilian coast (Rios, 2009; Conquiliologistas do Brasil, 2013).

Family Marginellidae Fleming, 1828 Genus Prunum Herrmannsen, 1852

Species Prunum fulminatum (Kiener, 1841) (Fig. 42)

Figure 41. Fusinus frenguellii

Geographic and bathymetric distributions: Endemic to the Brazilian coast,

from Amapá to Rio de Janeiro States (Cabo Frio) (Brazil), to a depth of 30 m (Rios, 2009).

Remarks: Habitat, sandy and rocky bottoms, and corals (Conquiliologistas do Brasil, 2013).

Figure 42. Prunum fulminatum 51

MOLLUSCA Species Prunum martini (Petit de la Saussaye, 1853) (Fig. 43) Geographic and bathymetric distributions: From Espírito Santo State (Brazil) to San Matias Gulf (Argentina), from 10 to 55 m depth (Rios, 2009).

Remarks: Habitat, sandy bottoms; frequency, usually found in the digestive

tract of Astropecten brasiliensis (Echinodermata, Asteroidea) and on the Bivalvia community of Glycymeris longior (Rios, 2009; Conquiliologistas do

Brasil, 2013).

Family Olividae Bruguière, 1789

Genus Amalda H. Adams & A. Adams, 1853

Figure 43. Prunum martini

Species Amalda josecarlosi Pastorino, 2003 (Fig. 44) Geographic and bathymetric distributions: From Espírito Santo State (Brazil) to San Matias Gulf (Argentina), from 18 to 70 m depth (Rios, 2009).

Remarks: Habitat, sandy and muddy bottoms; frequency, common on the Brazilian coast; trophic level, carnivorous (Conquiliologistas do Brasil,

2013).

Figure 44. Amalda josecarlosi 52

MOLLUSCA Family Conidae Rafinesque, 1815 Genus Conus Linnaeus, 1758

Species Conus clerii Reeve, 1844 (Fig. 45) Geographic and bathymetric distributions: Endemic to the Brazilian coast,

from Bahia to Rio Grande do Sul States, including Martim Vaz island, Montague and Colombia Seamounts, from 16 to 166 m depth (Rios, 2009).

Remarks: Habitat, gravels and sandy and muddy bottoms; frequency, rare on

the Brazilian coast; trophic level, carnivorous (Conquiliologistas do Brasil,

2013).

Figure 45. Conus clerii

Family Pseudomelatomidae Morrison, 1965 Genus Brachytoma Swainson, 1840

Species Brachytoma rioensis (E. A. Smith, 1915) (Fig. 46) Geographic and bathymetric distributions: From Rio de Janeiro to Rio Grande do Sul States (Brazil), from 75 to 125 m depth (Rios, 2009).

Remarks: Habitat, sandy and muddy bottoms and rocks; frequency, uncommon

on

the

Brazilian

(Conquiliologistas do Brasil, 2013).

53

coast;

trophic

level,

carnivorous

Figure 46. Brachytoma rioensis

MOLLUSCA Family Driliidae Olsson, 1964

Genus Fenimorea Bartsch, 1934 Species Fenimorea sp. (Fig. 47)

Geographic and bathymetric distributions: Only known from the study locality (present study), from 95 to 106 m depth.

Remarks: Eleven specimens were collected at the sampling stations (Table 4).

Family Pseudomelatomidae Morrison, 1966 Genus Compsodrillia Woodring, 1928

Species Compsodrillia cf. haliostrephis (Dall, 1889) (Fig. 48)

Figure 47. Fenimorea sp.

Geographic and bathymetric distributions: From Rio Grande do Sul to São Paulo States (Brazil), at 80 m depth (Rios, 2009).

Remarks: Habitat, sandy and muddy bottoms; frequency, uncommon on the Brazilian coast; trophic level, carnivorous (Conquiliologistas do Brasil, 2013).

Figure 48. Compsodrillia cf. haliostrephis 54

MOLLUSCA Family Raphitomidae Bellardi, 1875 Genus Pleurotomella Verril, 1872

Species Pleurotomella aguayoi (Carcelles, 1953) (Fig. 49) Geographic and bathymetric distributions: From Rio de Janeiro State (Brazil) to Bahia Engano (Argentina), from 35 to 70 m depth (Rios, 2009).

Remarks: Habitat, sandy and muddy bottoms; frequency, common on the Brazilian coast; trophic level, carnivorous (Conquiliologistas do Brasil,

2013).

Class Bivalvia Linnaeus, 1758

Family Limopsidae Dall, 1895

Figure 49. Pleurotomella aguayoi

Genus Limopsis Sassi, 1827

Species Limopsis janeiroensis E. A. Smith, 1915 (Fig. 50) Geographic and bathymetric distributions: Endemic to the Brazilian coast, from Rio de Janeiro to Rio Grande do Sul States (Brazil), from 70 to 190 m depth (Rios, 2009).

Remarks: Habitat, gravels and sandy and muddy bottoms; frequency,

uncommon on the Brazilian coast (Conquiliologistas do Brasil, 2013).

Complete specimens with intact ligament (containing the soft parts) were

collected in addition to disarticulated (and disassociated) single valves. 55

Figure 50. Limopsis janeiroensis

MOLLUSCA Family Glycymerididae Newton, 1922 Genus Glycymeris Da Costa, 1778

Species Glycymeris pectinata (Gmelin, 1791) (Fig. 51) Geographic and bathymetric distributions: From Amapá to Espírito Santo States, from 25 to 75 m depth (Rios, 2009).

Remarks: Habitat, gravels and sandy bottoms; frequency, uncommon on the Brazilian coast (Conquiliologistas do Brasil, 2013). The observation from

this study is a new record for the Rio de Janeiro State, widening the geographical distribution of this species (present study).

Figure 51. Glycymeris pectinata

Family Pteriidae Gray, 1847 Genus Pteria Scopoli, 1777

Species Pteria hirundo (Linnaeus, 1758) (Fig. 52) Geographic and bathymetric distributions: The entire Brazilian coast, from 20 to 150 m depth (Rios, 2009).

Remarks: Habitat, in gorgonians (Anthozoa) and dead shells; frequency, common on the Brazilian coast (Rios, 2009; Conquiliologistas do Brasil, 2013).

Figure 52. Pteria hirundo

56

MOLLUSCA Family Limidae Rafinesque, 1815 Genus Lima Bruguière, 1797

Species Lima lima (Linnaeus, 1758) (Fig. 53) Geographic and bathymetric distributions: From Amapá to Rio de Janeiro States (Brazil), in shallow waters to a depth of 140 m (Rios, 2009).

Remarks: Habitat, on rocks and in corals and sponges (Conquiliologistas do Brasil, 2013). This taxon was one of the most abundant among the mollusks (Table 4).

Figure 53. Lima lima

Family Plicatulidae Watson, 1930 Genus Plicatula Lamarck, 1801

Species Plicatula gibbosa Lamarck, 1801 (Fig. 54) Geographic and bathymetric distributions: The entire Brazilian coast to Uruguay, at 30 m depth (Rios, 2009).

Remarks: Habitat, on rocks and dead shells and conglomerate calcareous, settling by the umbo of the right valve, usually forming clusters; frequency,

common on the Brazilian coast (Rios, 2009; Conquiliologistas do Brasil, 2013). 57

Figure 54. Plicatula gibbosa

MOLLUSCA Family Pectinidae Rafinesque, 1815 Genus Chlamys Röding, 1798

Species Chlamys tehuelchus (Orbigny, 1846) (Fig. 55) Geographic and bathymetric distributions: From Espírito Santo State (Brazil) to Nuevo Gulf (Argentina), from 10 to 120 m depth (Rios, 2009).

Remarks: Habitat, sandy bottoms (Conquiliologistas do Brasil, 2013).

Figure 55. Chlamys tehuelchus

Family Verticordiidae Stoliczka, 1871 Genus Spinosipella Iredale, 1930

Species Spinosipella agnes Simone & Cunha, 2008 (Fig. 56) Geographic and bathymetric distributions: From Rio Grande do Norte, Pernambuco, São Paulo, Santa Catarina to Rio Grande do Sul States (Brazil), from 270 to 900 m depth (Rios, 2009).

Remarks: Habitat, gravel and sandy bottoms; frequency, rare on the Brazilian

Figure 56. Spinosipella agnes

coast (Conquiliologistas do Brasil, 2013).

58

MOLLUSCA Class Scaphopoda Bronn, 1862

Family Dentaliidae Gray, 1847

Genus Paradentalium Cotton & Godfrey, 1933

Species Paradentalium disparile (d´Orbigny, 1853) (Fig. 57)

Geographic and bathymetric distributions: From Amapá to Santa Catarina States (Brazil) (Rios, 2009). Specimens with soft parts were collected between 5 to 50 m depth (Penna, 1972) and empty shells from intertidal zones to 103 m depth (Caetano, 2007).

Class Cephalopoda Cuvier, 1797

Family Octopodidae d’Orbigny, 1840 Genus Octopus Cuvier, 1797

Figure 57. Paradentalium disparile

Species Octopus sp. (Fig. 58)

Remarks: The octopus specimens analyzed were juveniles, rendering species confirmation difficult. It was not possible to determine whether this taxon is Octopus insularis Leite, Haimovici, Molina & Warnke, 2008 or Octopus vulgaris

(Yarnall, 1969). DNA studies will be performed to determine the species

identification. O. vulgaris is found worldwide in tropical and semitropical

waters, from shallow waters to 200 m (Silva et al., 2002), whereas O. insularis

occurs in shallow equatorial waters around the oceanic islands of Fernando

de Noronha Archipelagos, Rocas Atoll, São Pedro and São Paulo Archipelago, and the mainland of northeastern Brazil (Leite et al., 2008).

59

Figure 58. Octopus sp.

Phylum Annelida Lamarck, 1809 Class Polychaeta Grube, 1850 60

Phylum Annelida - Class Polychaeta Introduction

Paulo Cesar Paiva, Raquel Meihoub Berlandi & Ana Claudia dos Santos Brasil

Annelida is a group known as segmented worms, Polychaeta

(Bristleworms) is the most diverse, with 9,000 extant species grouped into 70 families, which are almost all exclusively marine (Rouse & Pleijel,

2001). To date, 62 families and approximately 700 species of annelid Polychaeta have been found on the Brazilian Coast (Amaral et al., 2010). Despite great sampling efforts studies on polychaetes are normally

concentrated in the southeastern-southern coast region, with the central coast of Brazil still poorly studied (Lana et al., 1996). However, a survey

conducted through REVIZEE on the Central Coast of Brazil, including the

coasts of Bahia and Espírito Santo States, the Abrolhos Bank and the VitóriaTrindade Chain, identified 88 species, with 64 occurring mainly on

biogenic bottoms and 28 limited to depths to 100 m in with Aciculata

being relatively more abundant on biogenic bottoms in comparison to Canalipalpata (Paiva, 2006a;b).

Furthermore, the families Eunicidae and Syllidae were the most

frequent and abundant in coral reefs and calcareous algae bottoms,

showing a wide bathymetric range to 500 m (Nogueira et al., 2001; Nogueira & San Martín, 2002; Paiva, 2006a;b; Figueiredo et al., 2007). 61

According to this study, Eunicidae genera, such as Eunice and Lysidice,

were more frequent on biogenic bottoms, whereas the family Oenonidae

occurred exclusively on this type of bottom (Zanol et al., 2000; Paiva, 2006a).

Espírito Santo State to the extreme north of Rio de Janeiro State is

considered one of the most diverse Brazilian regions and shows specific regional differentiation from the fauna of northeastern and southeastern

Brazil due to differences in oceanographic features; the region of Cabo

Frio (RJ) is considered a transitional area between the tropical north to

the subtropical and temperate south (Lana et al., 1996). Considering the limited number of studies on the fauna of Polychaeta associated with these environments, it is expected that future studies will increase the

knowledge of the polychaete distribution pattern along the Brazilian

coast.

Results

A total of six Polychaeta taxa from the Peregrino oil field were

recorded (Table 5).

Systematics SubClass Palpata

Order Aciculata Rouse & Fauchald, 1997 SubOrder Phyllodocida Dales, 1962

Family Aphroditidae Malmgren, 1867 Genus Aphrogenia Kinberg, 1856

Species Aphrogenia alba Kinberg, 1856 (Fig. 59) Geographic and bathymetric distributions: North Atlantic (Gulf of Mexico)

and Indian Ocean, Brazil (São Paulo, Rio Janeiro, Paraná, Santa Catarina and Rio Grande do Sul States). Sublittoral at 0–180 m depth (Amaral et al.,

2010).

Figure 59. Aphrogenia alba

Family Acoetidae Kinberg, 1856 Genus Euarche Ehlers,1887

Species Euarche tubifex Ehlers, 1887 (Fig. 60) Geographic and bathymetric distributions: Brazil (Rio Grande do Sul and Rio de Janeiro States) at 195 m depth (Amaral & Nonato, 1984).

Remarks: Habitat, sandy bottoms (Amaral & Nonato, 1984).

Figure 60. Euarche tubifex 62

Family Sigalionidae Kinberg, 1856 Genus Pelogenia Schmarda, 1861

Species Pelogenia kinbergi (Hansen, 1882) (Fig. 61) Geographic and bathymetric distributions: Brazil (Alagoas, Bahia and Rio

de Janeiro States), Florida and Bermuda (Nonato & Luna, 1970a;b; Amaral

& Nonato, 1984), at of 37 m depth (Amaral et al., 2010; Berlandi et al, 2010a;b).

Remarks: Habitat, muddy bottoms, corals, shells, sponges and crustose coralline algae (Amaral et al., 2010; Berlandi et al, 2010a;b). The sigalionids

are mostly common in soft–sediments and abyssal depths, the species of this family are mainly carnivores (Fauchald & Jumars, 1979).

Figure 61. Pelogenia kinbergi

SubOrder Nereidiformia

Family Nereididae Johnston, 1865

Species Ceratonereis hircinicola (Eisig, 1870) (Fig. 62) Geographic distribution: Indian Ocean, Madagascar, Atlantic Ocean,

Mediterranean, Brazil (Paraíba, Bahia, Espírito Santo and Rio de Janeiro States, Santos & Lana, 2003; Paiva & Costa-Paiva, 2007).

Remarks: The specimens were removed from rhodolith (infauna). This species can be found associated with biogenic bottoms, such as coral reefs. They have carnivorous habits and sexual reproduction with lecithotrophy

63

Figure 62. Ceratonereis hircinicola

demersal or planktotrophic larvae (Santos & Lana, 2003; Paiva & CostaPaiva, 2007).

Order Eunicida

Family Eunicidae Savigny, 1818 Genus Eunice Cuvier, 1817

Species Eunice stigmatura (Verrill, 1900) (Fig. 63) Geographic and bathymetric distributions: Mexico and Brazil (Espírito

Santo and Rio de Janeiro States) (Zanol et al., 2000), from 58 to 100 m depth (Zanol et al., 2000).

Remarks: Habitat, sand and biogenic bottoms; trophic level, carnivorous (Zanol et al., 2000). The specimens were removed from rhodoliths (infauna).

Figure 63. Eunice stigmatura

Family Glyceridae Grube, 1850 Genus Glycera Savigny, 1818

Species Glycera brevicirris Grube, 1870 (Fig. 64) Geographic and bathymetric distributions: Red Sea, Madagascar, India,

Indonesia, China, Salomon Island, California Gulf, Panama, North Carolina, Caribbean and Brazil (Rio de Janeiro and São Paulo States). Intertidal to

110 m depth (Amaral et al., 2006).

Figure 64. Glycera brevicerris 64

Phylum Arthropoda Latreille, 1829 Subphylum Crustacea Brünnich, 1772 66

Phylum Arthropoda - Subphylum Crustacea Introduction

Cristiana Silveira Serejo & Irene Azevedo Cardoso

Crustacea is a widespread group, with more than 67,000 species

occurring in all marine environments. In addition to this high diversity and wide distribution in marine habitats, some crustaceans also live in freshwaters and terrestrial habitats. The Class Malacostraca is the most

diverse among crustaceans, with more than 40,000 described species. Among malacostracans members of Order Decapoda and Superorder Peracarida, such as Amphipoda, Cumacea, Isopoda and Tanaidacea, are

commonly sampled in shallow and deep-sea marine Brazilian waters (Serejo et al., 2006; 2007).

Many species are specific to biological substrates, such as algae,

sponges, corals and mussel beds. However, there is a characteristic fauna that inhabits unconsolidated substrate, with granulometry playing an

important role in the distribution and quality of the species. Such

features as latitude and depth, together with different water masses and

the temporal scale, are also very important factors to be considered in the distribution and zonation of the species. As an example, Pires-Vanin

(2001) studied isopod assemblages from the continental shelf and slope

of the Ubatuba region (23º30S) and found distinct groups divided among various depths. A zonation into the following three areas was observed:

67

the inner shelf at shallow waters to 50 m, an outer shelf from 50 m to 130 m and the shelf break from 130-240 m.

Later, Pires-Vanin (2008) studied the São Sebastião shelf based on

benthic mega and macrofauna. Crustaceans were abundant, representing

74% of the megafauna and 64% of the macrofauna. The presence of two

water masses in the region - Coastal Water (CW) and South Atlantic

Central Water (SACW) - was the main factor structuring the megafaunal communities, whereas the depth and bottom type were determinant for the macrofauna. The

rhodolith-forming

calcareous

algae

generated

a

heterogeneous hard substrate with different microhabitats, enabling an increase in the diversity of these regions, depending on the water

turbulence and time of year (Figueiredo et al., 2007; Amado-Filho et al.,

2007). Silva-Karam et al. (2009) examined with the spatial distribution

of decapod crustaceans in the calcareous algae rhodolith bed at

Arvoredo Island in Santa Catarina and found 194 specimens in 27 samples, with 18 species and 11 morphotypes.

Results

A total of 17 Crustacea taxa were recorded from the Peregrino oil

field (Table 6).

Systematics Superorder Peracarida Calman, 1904 Order Isopoda Latreille, 1817

Family Leptanthuridae Poore, 2001 Genus Accalathura Barnard, 1925

Species Accalathura crenulata (Richardson, 1901) (Fig. 65) Geographic and bathymetric distributions: Western Atlantic - Bahamas

(type locality), Caribbean Sea, USA (North Carolina to Florida), Bay of Caledonia, Panama and Brazil (from Pará to Espírito Santo; Rio de Janeiro,

new record) (Pires-Vanin, 1998; King, 2008). This species was found between 1-131 m depth (Pires-Vanin, 1998).

Remarks: Habitat, calcareous bottoms, less frequently on sand and seldom on muddy sediments (Pires-Vanin, 1998). Recently, King (2008) redescribed

this species (only females) based on type material from the Bahamas and observed other specimens from Martinica and Caledonia Bay, Panama.

Figure 65. Accalathura crenulata

68

Order Decapoda Latreille, 1902

SubOrder Dendrobranchiata Bate, 1888

Family Solenoceridae Wood Mason, 1891 Genus Mesopenaeus Pérez Farfante, 1977

Species Mesopenaeus tropicalis (Bouvier, 1905) (Fig. 66) Geographic and bathymetric distributions: Western Atlantic - Florida, Gulf

of Mexico, Bahamas, Caribbean Sea, South American coast and Brazil (Rio Grande do Sul State) from 30 to 915 m depth (Farfante, 1977).

Figure 66. Mesopenaeus tropicalis

Suborder Plocyemata Burkenroad, 1963 Infraorder Caridea Dana, 1852

Family Alpheidae Rafinesque, 1815 Genus Alpheus Fabricius, 1798

Species Alpheus pouang Christoffersen, 1979 (Figs. 67) Geographic and bathymetric distributions: Western Atlantic - from Brazil

(São Paulo State) to Uruguay from 100 to 268 m depth (Christoffersen, 1979).

Remarks: This species has been sampled in fine sand, mud, gravels, shell and rhodoliths (Christoffersen, 1979).

69

Figure 67. Alpheus pouang

Genus Synalpheus Spence Bate, 1888

Species Synalpheus brooksi Coutiére, 1909 (Fig. 68) Geographic and bathymetric distributions: Western Atlantic - Florida, Gulf

of Mexico, Bahamas, Yucatan Peninsula, Porto Rico, Suriname and Brazil

(Amapá, Rio Grande do Norte, south of Bahia and Rio de Janeiro States new record) from 2 to 82 m depth (Christoffersen, 1979).

Remarks: This species has been sampled in sand, mud, gravels, eroded corals and rhodoliths (Christoffersen, 1979).

Figure 68. Synalpheus brooksi

Family Processidae Ortmann, 1890 Genus Processa Leach, 1815

Species Processa guyanae Holthuis, 1959 (Fig. 69) Geographic and bathymetric distributions: Western Atlantic - North

Carolina, Florida, North of Cuba, Suriname and Brazil (Ceará, Rio de Janeiro

to Rio Grande do Sul States) and Uruguay from 30 to 331 m depth (Christoffersen, 1979).

Remarks: This species has been sampled in sand, calcareous algae, corals and rocky bottoms (Christoffersen, 1979).

Figure 69. Processa guyanae 70

Infraorder Anomura MacLeay, 1838

Superfamily Paguroidea Latreille, 1802 Family Diogenidae Ortmann, 1892 Genus Dardanus Paul´son, 1875

Species Dardanus insignis (de Saussure, 1858) (Fig. 70) Geographic and bathymetric distributions: Western Atlantic - USA Coast, Gulf of Mexico, Antilles and Brazil (Rio de Janeiro to Rio Grande do Sul

States), Uruguay and Argentina from shallow to deep waters, at 500 m depth (Melo, 1999).

Remarks: This species has been sampled in sand, mud, shells and rocky bottoms (Melo, 1999).

Figure 70. Dardanus insignis (A), cephalothorax (B), right and left chelipod (C)

Genus Pseudopaguristes McLaughlin, 2002

Species Pseudopaguristes calliopsis (Forest & Saint Laurent, 1968) (Fig. 71)

Geographic and bathymetric distributions: Western Atlantic – Guianas and Brazil (from Ceará to São Paulo States) at 60 m depth (Melo, 1999).

Remarks: This species has been sampled in sand, mud and rocky bottoms with macroalgae (Melo, 1999).

71

Figure 71. Pseudopaguristes calliopsis

Family Paguridae Latreille, 1802

Genus Pylopagurus A. Milne-Edwards & Bouvier, 1893

Species Pylopagurus discoidalis (A. Milne Edwards, 1880) (Fig. 72) Geographic and bathymetric distributions: Western Atlantic - North

Carolina, Florida, Gulf of Mexico, Antilles and Brazil (Amapá, Ceará and Rio de Janeiro States - new record) from 60 to 930 m depth (Melo, 1999).

Remarks: This species lives in Dentalium shells or annelid tubes (Melo, 1999). New record for Rio de Janeiro State.

Superfamily Galatheoidea Samouelle, 1819 Family Munididae Ahyong et al. 2010 Genus Munida Leach, 1820

Species Munida irrasa A. Milne Edwards, 1880 (Figs. 73)

Figure 72. Pylopagurus discoidalis (A), chelipod operculiforme in lateral view (B)

Geographic and bathymetric distributions: Western Atlantic - North Carolina to Florida, Bermuda, Gulf of Mexico, Antilles, Colombia, Venezuela,

Brazil (Amapá, Pará, Maranhão, Espírito Santo, Rio de Janeiro, São Paulo and Rio Grande do Sul States) and Uruguay from 15 to 475 m depth (Melo, 1999).

Remarks Munida species usually occupy shelf waters and live aggregated in high-density populations. The latest Galatheoidea review added a new

family to Munida (Munididae), which also includes other genera previously

Figure 73. Munida irrasa 72

classified as Galatheidae (Ahyong et al. 2010).

Infraorder Brachyura Latreille, 1802 Family Dromiidae De Haan, 1833

Genus Moreiradromia Guinot & Tavares, 2003

Species Moreiradromia antillensis (Stimpson, 1858) (Figs. 74)

Geographic and bathymetric distributions: Western Atlantic - North Carolina, Florida, Bermuda, Gulf of Mexico, West Indies, Guianas and Brazil (from Amapá to Rio Grande do Sul States) from 1 to 330 m depth (Melo, 1996).

Remarks: Species of this family usually bear sponges, ascidians or bivalve shells to protect the carapace. Guinot & Tavares (2003) described the

Figure 74. Moreiradromia antillensis, dorsal view (A), ventral view (B)

genus Moreiradromia, including two species, M. sarraburei and M.

antillensis. Occurs on hard bottoms on rocks, shells or coral (Melo, 1996). Family Majidae Samouelle, 1819

Genus Stenocionops Desmarest, 1823

Species Stenocionops spinosissimus (de Sassure, 1857) (Figs. 75)

Geographic and bathymetric distributions: Western Atlantic - North Carolina to Florida, Gulf of Mexico, West Indies and Brazil (from Rio Grande do Norte to Rio Grande do Sul States) from 50 to 480 m depth (Melo, 1996).

Remarks: This species occurs on organogenic bottoms (Melo, 1996). 73

Figure 75. Stenocionops spinosissimus, dorsal view (A), ventral view (B)

Family Inachoididae Dana, 1851

Genus Euprognatha Stimpson, 1871

Species Euprognatha rastellifera Stimpson, 1871 (Figs. 76) Geographic

and

bathymetric

distributions:

Western

Atlantic

-

Massachusetts to Florida, Gulf of Mexico, West Indies, Guiana, Brazil (from Amapá to Rio Grande do Sul States) and Uruguay (Santana & Tavares, 2008) from 15 to 710 m depth (Melo, 1996).

Remarks: This species occurs on sand, coral and shell bottoms (Melo, 1996). Figure 76. Euprognatha rastellifera, dorsal view (A), ventral view (B)

Family Palicidae Bouvier 1897 Genus Palicus Philippi, 1838

Species Palicus faxoni Rathbun, 1897 (Fig. 77) Geographic and bathymetric distributions: Western Atlantic - North Carolina to Florida, Gulf of Mexico, Yucatan Peninsula and Brazil (from Rio Grande do Norte to Rio de Janeiro States) from 35 to 95 m depth (Melo, 1996).

Figure 77. Palicus faxoni 74

Species Palicus sicus (A. Milne Edwards, 1880) (Fig. 78) Geographic and bathymetric distributions: Western Atlantic - North

Carolina to Florida, Gulf of Mexico, Yucatan Peninsula and Brazil (from Amapá to Rio Grande do Sul States) from shallow waters to 190 m depth (Melo, 1996).

Remarks: This species occurs on sand, mud, broken shell and corals bottoms (Melo, 1996).

Figure 78. Palicus sicus

Family Parthenopidae MacLeay, 1838

Genus Spinolambrus S.H. Tan & Ng, 2007

Species Spinolambrus pourtalesii (Stimpson, 1871) (Figs. 79) Geographic and bathymetric distributions: Western Atlantic - New Jersey to Florida, Gulf of Mexico, West Indies and Brazil (from Amapá to Rio Grande do Sul States) from 20 to 350 m depth (Melo, 1996).

Remarks: This species occurs on sand, mud, shell and gravel bottoms (Melo, 1996).

Figure 79. Spinolambrus pourtalesii 75

Family Xanthidae Mac Leay, 1838 Genus Allactaea Williams, 1974

Species Allactaea lithostrota Williams, 1974 (Fig. 80) Geographic and bathymetric distributions: Western Atlantic - North Carolina to Florida, Gulf of Mexico, West Indies and Brazil (from Rio de Janeiro to Rio Grande do Sul States) from 50 to 640 m depth (Melo, 1996).

Remarks: This species presents orange tubercles covering the entire carapace and lives on sand and coral bottoms (Melo, 1996).

Genus Garthiope Guinot, 1990

Species Garthiope spinipes (A. Milne Edwards, 1880) (Fig. 81)

Figure 80. Allactaea lithostrota

Geographic and bathymetric distributions: Western Atlantic - Bermuda, Florida, Gulf of Mexico, Venezuela and Brazil (from Amapá to São Paulo States) from intertidal to 60 m depth (Melo, 1996).

Remarks: This species presents a carapace with small tubercles, 3-4

anterolateral spines and well-developed orbital spine. The cheliped palm is smooth. Lives on sandy bottoms on coral reefs and sponges (Melo, 1996).

Figure 81. Garthiope spinipes 76

Phylum Bryozoa Ehrenberg, 1813 78

Phylum Bryozoa Introduction

Paula Spotorno de Oliveira

Phylum Bryozoa is a significant aquatic invertebrate group due to

its diversity, abundance and wide distribution; most are marine sessile

species, comprising approximately 5,500 recent and 15,000 fossil species worldwide (Rocha & d’Hondt, 1999). Over 300 species of

bryozoans have been recorded to date on the Brazilian coast (Amaral & Jablonski, 2005; Vieira et al., 2008).

Bryozoans are present in all oceans, occupying a wide

bathymetric range, and colonize almost any type of substratum. This

animal group is one of the most important fouling components in coastal waters, and is considered opportunistic and pioneering in the

colonization of newly available substrates, including fixed, mobile and ephemeral. Marine bryozoans became successful in the exploration of hard substrates, such as shells, rocks, wood and coral, and also in the use

of very restricted spaces (Eggleston, 1972). The majority of bryozoans

inhabit rocky substrata, but some species are more tolerant of sedimentation and may live on soft bottoms (Kvitek, 1989).

Bryozoans often constitute a major proportion of marine bottom

biocenoses. Because of the high species diversity and wide habitat 79

distribution, bryozoans are potential indicators of environmental factors

and changes. According to Rao (1998), bryozoans may also be used in the exploration of oil and gas.

Most of the bryozoan studies in Brazil are restricted to the

southeastern coast (Vieira, 2008). Recently, Vieira et al. (2008) published a complete list of 346 species of Brazilian marine bryozoans, the taxonomic studies of the South Atlantic revealed several new species

in shallow waters (Vieira et al., 2007; 2010a;b) and on the continental shelf of Brazil (Ramalho et al., 2009; Santana et al., 2009; Vieira et al.,

2010c). However, many species still need to be reviewed and redescribed (Vieira, 2008).

Results

A total of 20 Bryozoan taxa from the Peregrino oil field were

recorded (Table 7).

Systematics Class Gymnolaemata Allman, 1856 Order Cheilostomata Busk, 1852A

SubOrder Neocheilostomina D’Hondt, 1985 Family Calloporoidae Norman, 1903 Species Calloporidae sp. (Fig. 82)

Remarks: Two fragments of colonies were collected from two sampling stations (Table 7).

Family Beaniidae Canu & Bassler, 1927

Figure 82. Calloporidae sp.

Genus Beania Johnston, 1840 Species Beania sp. (Fig. 83)

Remarks: One fragment of a colony was collected from the sampling stations (Table 7). Ten shallow-waters species have been reported on the Brazilian coast (Vieira et al., 2010b).

Figure 83. Beania sp. 80

Family Candidae d´Orbigny, 1851 Genus Amastigia Busk, 1852

Species Amastigia aviculifera Vieira, Gordon, Souza & Haddad 2010 (Fig. 84) Geographic and bathymetric distributions: In São Paulo State (Brazil), at a depth of 500 m (Vieira et al., 2010b).

Remarks: The first record of this genus in Brazilian waters occurred in 2010, with specimens collected during the REVIZEE program in 1998, using three

sampler types (van Veen, box-corer and rectangular dredge) (Vieira et al., 2010c)

Figure 84. Amastigia aviculifera

Genus Scrupocellaria nan Beneden, 1845 Species Scrupocellaria sp. (Fig. 85)

Remarks: Ten species are registered in Brazil (Vieira, 2008). Scrupocellaria colonies are common in artificial (e.g., pillars of submarine outfalls) and

natural substrates, such as rocks, algae, hydrozoans and other bryozoans.

Many forms are morphologically similar, raising doubts as to whether such

forms correspond to varieties, subspecies or distinct species (Fransen, 1986). 81

Figure 85. Scrupocellaria sp.

Family Microporidae Gray, 1848 Genus Mollia Lamouroux, 1821

Species Mollia elongata Canu & Bassler, 1928 (Fig. 86) Geographic and bathymetric distributions: In Bahia, Espírito Santo and Rio de Janeiro States (Brazil), at 89 m depth (Braga, 1968; Vieira et. al., 2008).

Remarks: Braga (1968) registered M. elongata colonies on the surface, inside and between the calcareous algae layers of the rhodolith nodules collected by dredging from Cabo Frio (RJ).

Family Steginoporellidae Hincks, 1884 Genus Steginoporella Smitt, 1873

Figure 86. Mollia elongata

Species Steginoporella connexa Harmer, 1900 (Fig. 87) Geographic and bathymetric distributions: In Espírito Santo and Rio de Janeiro States (Brazil), at 89 m depth (Braga, 1968; Vieira et al., 2008).

Remarks: Habitat epibenthic encrusting (Winston & Maturo, 2009). Braga (1968) recorded small colonies of S. connexa on the surface of rhodoliths

nodules, collected by dredging at Cabo Frio (RJ). The species is considered a paleoecological indicator. Species of Steginoporella are found in tropical marine environments, often associated with coral reefs (Pouyet & David,

1979; Winston & Woollacott, 2009).

Figure 87. Steginoporella connexa 82

Family Cellariidae Fleming, 1828

Genus Cellaria Ellis & Solander, 1786

Species Cellaria subtropicalis Vieira, Gordon, Souza & Haddad 2010 (Fig. 88) Geographic and bathymetric distributions: In Rio de Janeiro, São Paulo and Santa Catarina States (Brazil) from 43 to 151 m depth (Vieira et al., 2010c).

Remarks: The first record of this genus in Brazilian waters occurred in 2010 with specimens collected during the REVIZEE program in 1998 in silt

sediment bottoms, using two samplers types (van Veen and box-corer)

(Vieira et al., 2010c).

Figure 88. Cellaria subtropicalis

InfraOrder Ascophora Levinsen, 1909 Family Typhloplanidae, Graff, 1905 Genus Ascophora Levinsen, 1909 Species Ascophora sp. (Fig. 89)

Remarks: One fragment of a colony was collected from one sampling station

(Table 7). Ascophorans are exclusively marine, but very widespread geographically and ecologically; they grow on various substrates and in a variety of colony shapes (Gordon, 2000).

83

Figure 89. Ascophora sp.

“Grade” Acanthostega Levinsen, 1909 Family Cribrilinidae Hincks, 1879 Genus Puellina Jullien, 1886

Species Puellina sp. (Fig. 90) Remarks: This taxon is similar to P. radiata (Moll, 1803) and is registered in Rocas Atoll, Pernambuco, Bahia, Espírito Santo, Rio de Janeiro and São

Paulo States (Brazil) (Vieira et al., 2008). According to Vieira et al. (2008), P. (Cribrilaria) radiata is a complex of species, and it is likely that more

than one species is involved in these records. Studies emphasize that genus needs to be reviewed (Vieira, 2008; Vieira et. al., 2008), particularly those species

from

the

Western

Atlantic,

P.

radiata

has

been

indiscriminately for all occurrences in this area (Winston, 2005).

used

Figure 90. Puellina sp.

Grade Umbolunomorpha Gordon, 1989 Family Arachnopusiidae Jullien, 1888 Genus Arachnopusia Jullien, 1888

Species Arachnopusia haywardi Vieira, Gordon, Souza & Haddad 2010 (Fig. 91) Geographic distribution and bathymetric: Off São Paulo State (Brazil), from 99 to 157m depth (Vieira et al., 2010c).

Remarks: The description of this species occurred in 2010, with specimens collected during the REVIZEE program in 1998, in sand bottoms, using

Figure 91. Arachnopusia haywardi 84

three types of samplers (van Veen, box-corer and rectangular dredge) (Vieira et al., 2010c).

Family Adeonidae Busk, 1884

Genus Reptadeonella Busk, 1884

Species Reptadeonella sp. (Fig. 92)

Remarks: This taxon is similar to R. violacea (Johnston, 1847) and is

registered in Fernando de Noronha Archipelago, Rocas Atoll, Bahia, Rio de

Janeiro, São Paulo and other localities off Brazil (Vieira et al., 2008). According to Vieira et al. (2008), several species of Reptadeonella occur in

the Western Atlantic, and the Brazilian records likely represent a species complex.

Figure 92. Reptadeonella sp.

Family Lepraliellidae Vigneaux, 1949 Genus Celleporaria Lamouroux, 1821

Species Celleporaria albirostris (Smitt, 1873) (Fig. 93)

Geographic and bathymetric distributions: In the Brazilian State of Rio de Janeiro (Ramalho, 2006) from 0 to 238 m depth (Winston & Maturo, 2009).

Remarks: Habitat, incrusting epibenthic. Considered a benthic bioconstructor

species in the Bahamas (Lat. 23°N), associated with the following diversity: other bryozoans, corals, serpulids, calcareous algae, sponges, bivalves and

85

foraminiferans (Cocito, 2004).

Figure 93. Celleporaria albirostris

Grade Lepraliomorpha Gordon, 1989 Family Smittinidae Levinsen, 1909 Species Smittinidae sp.1 (Fig. 94)

Remarks: Two fragments of colonies were collected from one sampling station (Table 7).

Species Smittinidae sp.2 (Fig. 95)

Figure 94. Smittinidae sp.1

Remarks: One single fragment of a colony was collected from one sampling station (Table 7).

Figure 95. Smittinidae sp.2 86

Family Schizoporellidae Jullien, 1883 Genus Stylopoma Levinsen, 1909 Species Stylopoma sp. (Figs. 96)

Remarks: This taxon is similar to S. spongites (Pallas, 1766) and is registered in Bahia, Espírito Santo, Rio de Janeiro and São Paulo States (Brazil) (Vieira et al., 2008). According to Vieira et al. (2008), this is a tropical-warm

temperate species complex, with at least 8 species known from the

Caribbean alone. Some Brazilian records may represents S. aurantiacum which occurs in Pernambuco State (Brazil).

Figure 96. Stylopoma sp.

Family insertae sedis Genus Marcusadorea Vieira, Migotto & Winston, 2010

Species Marcusadorea corderoi (Marcus, 1949) (Fig. 97) Geographic and bathymetric distributions: Western Atlantic – Brazil: Rio de

Janeiro (Vieira et al., 2010a) and Espírito Santo States (Vieira et al., 2008). Jamaica and Venezuela at 20 m depth (Winston, 1986).

Remarks: Habitat, coral undersurfaces (Winston, 1986).

87

Figure 97. Marcusadorea corderoi

Family Lacernidae Jullien, 1888

Genus Rogicka Uttley & Bullivant, 1972

Species Rogicka joannae Vieira, Gordon, Souza & Haddad, 2010 (Fig. 98)

Geographic and bathymetric distributions: In São Paulo State (Brazil), from 99 to 168 m depth (Vieira et al., 2010c).

Remarks: The description of this species occurred in 2010, with specimens collected during the REVIZEE program in 1998, using two types of samplers (box-corer and rectangular dredge) (Vieira et al., 2010c).

Family Calwelliidae MacGillivray, 1887

Figure 98. Rogicka joannae

Genus Malakosaria Goldstein, 1882

Species Malakosaria atlantica Vieira, Gordon, Souza & Haddad, 2010 (Fig. 99)

Geographic and bathymetric distributions: Off São Paulo and Paraná States (Brazil), from 147 to 380 m depth (Vieira et al., 2010c).

Remarks: The first record of this genus in the Atlantic Ocean occurred in 2010, with specimens collected during the REVIZEE program in 1998, using three samplers types (van Veen, box-corer and rectangular dredge) (Vieira

et al., 2010c).

Figure 99. Malakosaria atlantica 88

Family Phidoloporidae Gabb & Horn, 1862 Genus Rhynchozoon Hincks, 1895

Species Rhynchozoon sp. (Fig. 100) Remarks: This taxon was moderately frequent at almost all the sampling stations (Table 7).

Class Stenolaemata Borg, 1926

Order Cyclostomata Busk, 1852

SubOrder Articulina Busk, 1852

Figure 100. Rhynchozoon sp.

Family Crisiidae Johnston, 1838 Genus Crisia Lamouroux, 1812 Species Crisia sp. (Fig. 101)

Remarks: Two fragments of colonies were collected from one sampling station (Table 7).

Figure 101. Crisia sp.

89

Phylum Brachiopoda Duméril, 1806 90

Phylum Brachiopoda Paula Spotorno de Oliveira

Introduction Brachiopods

or

'lamp

shells'

are

sessile

filter-feeding

invertebrates that superficially resemble bivalve mollusks (Rudwick, 1970). The Phylum Brachiopoda is divided into three Subphyla: Linguliformea, Craniformea and Rhynchonelliformea (Amaral et al.,

2006). Although they were abundant in earlier geological times, the

fauna are currently represented by relatively few species. Approximately

30,000 fossil species and 120 genera of brachiopods have been

described worldwide (Rudwick, 1970). Presently, approximately 325

species are recognized (Barnes et al., 1995). Brachiopod diversity is generally low, with most locales having only one or two taxa.

Extant representatives are found from littoral waters (generally

submersed) through the abyssal zone, and are usually epifaunal on hard

substrata (Emig et al., 2011). Although they appear to be rare, these invertebrates are distributed in all oceans, from polar to equatorial

regions, and are quite common. In general, these invertebrates preferentially colonize regions of deep and cold waters (Amaral et al, 2006).

The brachiopods of the Class Rhynchonellata exhibit several forms

of life, including epifaunal forms fixed to the bottom (e.g., the roof of

91

underwater caves, shells of other invertebrates) through pedicles, cemented forms on rocky substrates, encrusting forms and free-living forms (Amaral et al., 2006).

The articulated brachiopods (Rhynchonellata) from Brazilian

waters include endemic (Bouchardia rosea) and cosmopolitan forms

(Argyrotheca cf. cuneata, Platidia anomioides and Terebratulina sp.),

which are common in the Cenozoic fossil record and occur today in Mediterranean, Caribbean, southern African and circum-Antarctic

waters (Simões et al., 2004).

Results

Only one Brachiopoda taxon was recorded from the Peregrino oil

field (Table 8).

Systematics SubPhylum Rhynchonelliformea Williams et al., 1997 Class Rhynchonellata Williams et al., 1997 Order Terebratulida Waagen, 1883 Family Megathyrididae Dall, 1870 Genus Argyrotheca Dall, 1900

Species Argyrotheca cf. cuneata (Risso, 1826) (Fig. 102)

Geographic and bathymetric distributions: Cosmopolitan species (Simões

et al., 2004). Continental shelf of São Paulo State (Brazil) (Simões & Mello, 2006), from 100 to 200 m depth, with a few occurrences deeper than 250

m (Kowalewski et al., 2002; Simões et al., 2004). The most widespread species in the Brazilian continental margin (latitudinal range of 32°14'S to 00°30'S) (Simões & Leme, 2010).

Remarks: This taxon is similar to A. cf. cuneata (Risso, 1826) described and illustrated by Simões et al. (2004). A. cf. cuneata (Risso, 1826) is restricted to carbonate substrates and is often attached to sedimentary grains or the

shells of other invertebrates (e.g., bivalve mollusks) when recovered alive

(Simões et al., 2004). The specimens examined may differ in shape from

flattened to globose forms. As observed by Simões et al. (2004), these

variations appear to be independent of the size of specimen. In fact, according to Thayer (1977), globose individuals grow faster in length than in width, whereas flattened individuals grow faster in width than in length.

In the material analyzed, different morphotypes were observed in the

specimens collected from the same sampling sites, as also noted by Simões et al. (2004).

Figure 102. Argyrotheca cf. cunetata, external surface of dorsal and

ventral valve (A), inner of dorsal and ventral valve (B), specimen attached in crustose coralline (C), specimen attached in bryozoa (D)

92

Phylum Echinodermata Klein, 1734 94

Phylum Echinodermata Carlos Renato Rezende Ventura

Introduction

Species of Phylum Echinodermata are popularly recognized by the

peculiar form of the adult body, arranged in five axes of symmetry; in pentaradial symmetry. The Phylum consists of approximately 7,000 current species. The most diverse class is Ophiuroidea (sea-snakes or

ofiuroids), with approximately 2,000 extant species; of these, 153 have

been recorded on the Brazilian coast. The next most diverse classes are Asteroidea (starfish or sea star, with approximately 1,800 total species

and 77 species reported in Brazilian waters), Holothuroidea (sea

cucumbers or holoturoids, with approximately 1,400 total species and 49 species in Brazil), Echinoidea (sea urchins and sand-dollars or

echinoids, with approximately 900 total species and 52 reported on the

Brazilian coast). Less diverse taxa include Class Crinoidea (sea-lilies or

crinoids, with approximately 700 total species and 16 species recorded in Brazilian waters) (Hendler et al., 1995; Rowe & Gates, 1995; Brusca &

Brusca, 2003). All species live in marine environments and are widely

and omnivores. In addition, several species of commercial and ecological importance (such as fish and benthic crabs) feed on echinoderms or are

preyed upon by them as juveniles (Lawrence, 1987). Echinoderms are environmental biomarkers and show a high sensitivity to physical and chemical changes occurring in the environment. Because they are sedentary and bio-accumulators, the echinoderms are subject to local

contamination, rendering them suitable for environmental monitoring with regard to contamination by heavy metals, phosphate or petroleum

hydrocarbons (Auemheimer & Chinchon, 1997; Temara et al., 1999; Guillou et al., 2000; Böttger & McClintock, 2002).

Several species are among the most frequent and abundant in the

marine oil regions of Brazil, including the Campos Basin (RJ), Potiguar

Basin (RN) and Ceará Basin (CE). Therefore, to perform environmental monitoring and characterization in these regions, it is essential to

increase the knowledge of such species, both in terms of correct identification and the analysis of population descriptors (such as size structure, density and reproductive features).

distributed in all oceans at all latitudes and depths, from the intertidal

Results

communities, particularly in relation to food chains: they occupy

recorded (Table 9).

zone to deeper regions. Echinoderms

play

important

ecological

roles

in

marine

different trophic levels and may be herbivores, carnivores, detritivores

95

A total of 21 Echinodermata taxa from the Peregrino oil field were

Systematics Class Crinoidea Miller, 1821 Order Comatulida

Family Comasteridae A. H. Clark, 1908 Species Comasteridae sp. (Fig. 103)

Geographic and bathymetric distributions: The Comasteridae is a family of unstalked crinoids that typically account for at least half the crinoid species found in shallow water (< 50 m) and are found in the tropical western

Pacific Ocean (Messing, 2003) and the Atlantic Ocean (Caribbean and

Brazil) (Hendler et al., 1995).

Remarks: The richness of comasterids is reduced with increasing depth compared to other families (Messing, 2003). The following seven species occur in Brazilian waters: Comactinia echinoptera, Comactinia meridionales,

Comatonia cristata, Nemaster grandis, Nemaster rubiginosa, Nemaster discoideus and Neocomatella alata.

Figure 103. Comasteridae sp.

96

Class Asteroidea de Blainville, 1830 Order Forcipulatida Perrier, 1884 Family Asteriidae Gray, 1840

Genus Allostichaster Verrill, 1914

Species Allostichaster capensis (Perrier, 1875) (Fig. 104) Geographic distribution: Falkland Islands, False Bay, Magellan Strait, South

Africa, southern Angola, southern Chile, sub-Antarctic Islands, Tierra Del Fuego, Tristan da Cunha and Uruguay (Mah, 2013).

Genus Marthasterias Jullien, 1878

Figure 104. Allostichaster capensis aboral view (A), oral view (B)

Species Marthasterias glacialis (Linnaeus, 1758) (Figs. 105) Geographic and bathymetric distributions: Mediterranean Sea, eastern and western Atlantic Ocean and northern Pacific, at 180 m depth (Mah, 2013).

Figure 105. Marthasterias glacialis aboral view (A), oral view (B) 97

Order Paxillosida Perrier, 1884 Family Luidiidae Sladen, 1889 Genus Luidia Fisher, 1906

Species Luidia ludwigi scotti Bell, 1917 (Figs. 106) Geographic and bathymetric distributions: Florida (USA) to southern Brazil, in shallow waters (33 m) to deep waters (126 m) (Mah, 2013).

Order Spinulosida Perrier, 1884

Family Echinasteridae Verril, 1870

Figure 106. Luidia ludwigi scotti aboral view (A), oral view (B)

Genus/Subgenus Echinaster (Othilia), Gray 1840

Species Echinaster (Othilia) brasiliensis Müller & Troschel, 1842 (Fig. 107)

Geographic distribution: Southeastern Brazil to Argentina (Mah, 2013).

Figure 107. Echinaster (Othilia) brasiliensis aboral view 98

Order Valvatida Perrier, 1884

Family Goniasteridae Forbes, 1841 Genus Pawsonaster Mah, 2007

Species Pawsonaster parvus (Perrier, 1881) (Figs. 108) Geographic and bathymetric distributions: Florida (USA) to southern Brazil, in shallow waters (30 m) to deep waters (600 m) (Mah, 2013).

Class Ophiuroidea Gray, 1840

Figure 108. Pawsonaster parvus aboral view (A), oral view (B)

Order Ophiurida Müller & Troschel, 1840 Family Amphiuridae Ljungman, 1867 Genus Amphioplus Verrill, 1899

Species Amphioplus albidus (Ljungman, 1867) (Figs. 109) Geographic distribution: Atlantic Ocean, Brazil (from Rio de Janeiro to Rio Grande do Sul States), Uruguay and Argentina (Mah, 2013).

Figure 109. Amphioplus albidus aboral view (A), oral view (B) 99

Genus Amphipholis Ljungman, 1866

Species Amphipholis squamata (Delle Chiaje, 1828) (Figs. 110) Geographic and bathymetric distributions: Cosmopolitan species. A.

squamata can be found intertidally and in shallow water (Stohr & O’Hara, 2013).

Remarks:, Habitat, under stones, amongst rockpool weeds and occasionally on

sandy bottoms; it is also found among algal and bryozoan turfs (Stohr &

O’Hara, 2013).

Figure 110. Amphipholis squamata aboral view (A), oral view (B)

Genus Amphiura Forbes, 1843

Species Amphiura flexuosa Ljungman, 1867 (Figs. 111) Geographic distribution: Atlantic Ocean from Florida to northern Argentina (Mah, 2013).

Figure 111. Amphiura flexuosa aboral view (A), oral view (B) 100

Species Amphiura kinbergi Ljungman, 1872 (Figs. 112) Geographic distribution: Atlantic Ocean from Florida to Brazil (Pará,

Maranhão, Ceará, São Paulo and Santa Catarina States) (Stohr & O’Hara, 2013).

Species Amphiura muelleri Marktanner-Turneretscher, 1887

Figure 112. Amphiura kinbergi aboral view (A), oral view (B)

(Figs. 113)

Geographic distribution: Atlantic Ocean, Brazil (São Pedro and São Paulo Archipelago and Santa Catarina State) (Stohr & O’Hara, 2013).

Figure 113. Amphiura muelleri aboral view (A), oral view (B) 101

Family Ophiochitonidae Matsumoto, 1915 Genus Ophioplax Lyman, 1875

Species Ophioplax clarimundae Tommasi, 1970 (Figs. 114) Geographic distribution: Atlantic Ocean, Brazil (from Rio de Janeiro to Santa Catarina States) (Stohr & O’Hara, 2013).

Family Ophiodermatidae Ljungman, 1867

Figure 114. Ophioplax clarimundae aboral view (A), oral view (B)

Genus Ophioderma Müller & Troschel, 1840

Species Ophioderma divae Tommasi, 1971 (Figs. 115) Geographic distribution: Southeast Brazil (Stohr & O’Hara, 2013).

Figure 115. Ophioderma divae aboral view (A), oral view (B) 102

Family Ophiomyxidae Ljungman, 1867

Genus Ophiomyxa Müller & Troschel, 1840

Species Ophiomyxa flaccida (Say, 1825) (Figs. 116) Geographic distribution: Gulf of Mexico, Caribbean Sea to southeastern Brazil (Stohr & O’Hara, 2013).

Family Ophiotrichidae Ljungman, 1867

Genus/Subgenus Ophiothrix (Ophiothrix) Müller & Troschel, 1840

Figure 116. Ophiomyxa flaccida aboral view (A), oral view (B)

Species Ophiothrix angulata (Say, 1825) (Figs. 117)

Geographic distribution: North Carolina (USA) to Uruguay (Stohr & O’Hara, 2013).

Figure 117. Ophiothrix angulata aboral view (A), oral view (B) 103

Class Echinoidea Leske, 1778 Order Cidaroida Claus, 1880

Family Cidaridae Gray, 1825 Genus Cidaris Leske, 1778

Species Cidaris abyssicola (A. Agassiz, 1869) (Figs. 118) Geographic distribution: East coast of the USA, West Indies and Brazil (Kroh & Mooi, 2013).

Figure 118. Cidaris abyssicola aboral view (A), oral view (B)

Genus Eucidaris Pomel, 1883

Species Eucidaris tribuloides (Lamarck, 1816) (Figs. 119) Geographic and bathymetric distributions: Tropical western Atlantic, North Carolina to Brazil, including the Caribbean Sea. Inhabits somewhat shallow

coastal environments, usually no deeper than approximately 50 m (Mah, 2013).

Remarks: Habitat, seagrass beds, under rocks, coral crevices and where algaeencrusted rubble exists (Kroh & Mooi, 2013).

Figure 119. Eucidaris tribuloides aboral view (A), oral view (B)

104

Genus Stylocidaris Mortensen, 1909

Species Stylocidaris lineata Mortensen, 1910 (Fig. 120) Geographic distribution: Gulf of Mexico, Caribbean Sea to southeastern Brazil (Kroh & Mooi, 2013).

Genus Tretocidaris Mortensen, 1903

Species Tretocidaris bartletti (A, Agassiz, 1880) (Fig. 121)

Figure 120. Stylocidaris lineata aboral view (A), oral view (B)

Geographic distribution: Bahamas, Caribbean Sea to Gulf of Mexico and Brazil (Kroh & Mooi, 2013).

Figure 121. Tretocidaris bartletti aboral view (A), oral view (B) 105

Order Clypeasteroida A. Agassiz, 1872

Family Clypeasteridae L. Agassiz, 1835 Genus Clypeaster Lamarck, 1801

Species Clypeaster subdepressus (Gray, 1825) (Fig. 122) Geographic distribution: Gulf of Mexico, Caribbean Sea, Venezuela, Colombia and Brazil (Kroh & Mooi, 2013).

Class Holothuroidea de Blainville, 1834 Order Aspidochirotida Grube, 1840

Family Holothuriidae Ludwig, 1894 Genus Holothuria Linnaeus, 1767

Figure 122. Clypeaster subdepressus aboral view (A), oral view (B)

SubGenus Holothuria (Vaneyothuria)

Species Holothuria (Vaneyothuria) lentiginosa Marenzeller Von, 1892 (Fig. 123)

Geographic distribution: Azores, Europe, Gulf of Mexico and Brazil (Paulay & Hansson, 2013).

Figure 123. Holothuria (Vaneyothuria) lentiginosa

106

Phylum Chordata Bateson, 1885 Subphylum Tunicata (Urochordata) Lamarck, 1816 Class Ascidiacea Nielsen, 1995 108

Phylum Chordata - Subphylum Tunicata (Urochordata) - Class Ascidiacea Introduction

Luciana Vieira Granthom Costa & Frederico Tapajós de Souza Tâmega

Ascidians (or sea squirts) comprise approximately 3,000

described species. This group is organized into three orders, of which

Aplousobranchia is the most important with regards to number of species (1,480 valid species). Currently, there are 26 families, of which 13 belong to Aplosoubranchia, though the Didemnidae family is more

representative (578 species) (Skenkar & Swalla, 2011). In the Atlantic Ocean, 17 families have been described, of which 15 were recorded in Brazilian waters, for a total of approximately 115 species (Rocha et al., 2011).

The solitary and colonial ascidian species are frequently

observed covering large portions of rocky shores but can also be found in coral reef (Monniot & Monniot, 2001), soft-bottom (Monniot et al.,

1991) and artificial substrates (Jackson, 1977), with a wide bathymetric distribution (Lambert, 2005). Their recruitment may be limited

primarily by temperature and salinity (Goodbody, 2004; Auker & Oviatt, 2008), which are important environmental variables controlling their reproduction (Shenkar & Loya, 2008). However, the spatial distribution in the water column can be influenced by light intensity (Svane &

Dolmer, 1995), sedimentation (Goodbody, 2004) and type of substrate 109

(Lambert, 2005) in addition to competition and predation (Millar, 1971).

Studies with this group are scarce on the Brazilian coast. The first

records were made by Gould (1852) and Herdman (1880), when these organisms were still classified as Mollusca. Many studies have been published there after and the number of species has increased

significantly (Bjornberg, 1956; Millar, 1958; 1971; Rodrigues, 1962;

1964; 1966; Monniot, 1970). Recently, studies have described new species and extended the distribution of others, mainly in the states of São Paulo, Paraná and Santa Catarina (Rocha & Nasser, 1998; Rocha et

al., 2005; Dias et al., 2012). However, there are still many lack of

knowledge in the Brazilian coast, mainly in the northeast (Cascon &

Lotufo, 2005).

Information regarding deep-water species is almost nonexistent.

Indeed, there is only one published paper that describes four species,

two of which are new (Rodrigues, 1966). Despite of many efforts, there are only a small number of specialists, and consequently the knowledge of ascidian species from both shallow and deep waters is lacking.

Results

A total of two taxa from the Peregrino oil field were recorded

(Table 10).

Systematics Family Styelidae Sluiter, 1895 Genus Polycarpa Heller, 1877

Species Polycarpa sp. (Fig. 124) Geographic and bathymetric distributions: Western Pacific (Monniot &

Monniot, 2001) and Indian Ocean from 2 to 65 m depth. Bermuda and the North American coast from 1,330 to 2,496 m depth (Monniot & Monniot, 1968).

Remarks: Thirty species of the Polycarpa genus were described for Atlantic

waters but only six on the Brazilian coast (Rocha et al. 2011). Thirteen

individuals were collected in the Peregrino oil field. The body size ranged

between 1.6 and 2.2 cm. The tunic is leathery, brownish and covered

mainly by hydrozoans and bryozoans. Short stalks were found attached on small shells or rhodoliths.

Figure 124. Polycarpa sp.

110

Family Pyuridae Hartmeyer, 1908 Genus Pyura Molina, 1782

Species Pyura sp. (Fig.125) Geographic and bathymetric distributions: Japan, tropical Atlantic and New Caledonia from 2 to 35 m depth. Pyura is widely distributed around the world. In Brazilian waters, only Rodrigues (1966) and Monniot (1970) described occurrences at 140 m and 34 m depth, respectively.

Remarks: Only three species were described on the Brazilian coast (Rocha et

al., 2011). Two individuals were found in the samples. The tunic is leathery with hard protuberances and a yellowish color without epibionts.

Figure 125. Pyura sp.

111

Conclusion 112

Conclusion Rhodolith beds from the Peregrino oil field support a particularly high diversity of fauna, combining species of hard and soft bottoms. Our

results show that the rhodolith beds from the Peregrino oil field could also be considered highly diverse in terms of the epifaunal species. The present

study contributes to the knowledge of the structural, taxonomical and functional characteristics of deep-water rhodolith beds present within the Campos Basin on the Brazilian continental shelf, which is necessary for setting a realistic baseline for the effective management and monitoring of oil

production, considering the potential impacts of the discharge of drill cuttings.

114

References 116

References

Abbott, R.T., 1974. American Seashells. 2nd edition. Van Nostrand Reinhold Company, New York, 663 pp. Absalão, R.S. & Pimenta, A.D., 2003. A new subgenus and three new species of Brazilian deep waters Olivella (Mollusca, Gastropoda, Olivellidae) collected by the RV Marion Dufresne in 1987. Zoosystema, 25: 177-185. Absalão, R.S., Cetano, C.H.S. & Pimenta, A.D., 2003a. Novas ocorrências de gastrópodes e bivalves marinhos no Brasil (Mollusca). Revista Brasileira de Zoologia, 20: 323-328. Absalão, R.S., Santos, F.N., Tenório, D.O., 2003b. Five new species of Turbonilla Risso, 1826 (Gastropoda, Heterobranchia, Pyramidellidae) found off the northeast coast of Brazil (02°-13°S). Zootaxa, 235: 1-11. Adams, C.L. & Hooper, J.N.A., 2001. A revision of Australian Erylus (Porifera: Demospongiae: Astrophorida: Geodiidae) with a tabular review of worldwide species. Invertebrate Taxonomy, 15: 319-340. Ahyong, S.T., Baba, K., Macpherson, E. & Poore, G.C.B., 2010. A new classification of the Galatheoidea (Crustacea: Decapoda: Anomura). Zootaxa, 2676: 57-68. Alvarez, B. & Hooper, J.N.A., 2002. Family Axinellidae Carter, 1875. In: Hooper, J.N.A. & Soest, R.W.M.V. (Eds.), Systema porifera, a guide to the classification of sponges. Kluwer Academic/Plenum Publishers, New York, pp. 724-747. Amado Filho, G.M., Maneveldt, G., Manso, R.C.C., Marins-Rosa, B.V., Pacheco, M.R. & Guimarães, S.M.P.B., 2007. Estrutura de los mantos de rodolitos de 4 a 55 metros de profundidad em la costa sur del estado de Espírito Santo, Brasil. Ciências Marinas, 33(4): 399-410. Amado-Filho, G.M., Maneveldt, G.W., Pereira-Filho, G.H., Manso, R.C.C., Bahia, R.G., Barros-Barreto, M.B. & Guimarães, S.M.P.B., 2010. Seaweed diversity associated with a brazilian tropical rhodolith bed. Ciências Marinas, 36(4): 371-391. Amado-Filho, G.M., Moura, R.L., Bastos, A.C., Salgado, L.T., Sumida, P.Y., Guth, A.Z., Francini-Filho, R.B., Pereira-Filho, G.H., Abrantes, D.P., Brasileiro, P.S., Bahia, R.G., Leal, R.N., Kaufman, L., Kleypas, J.A., Farina, M. & Thompson, F.L., 2012. Rhodolith beds are major CaCO3 bio-factories in the tropical south west Atlantic. PLoS ONE, 7(4):e35171. doi:10.1371/journal.pone.0035171. Amaral, A.C.Z. & Nonato, E.F., 1984. Anelideos poliquetos da costa brasileira. 4. Polydontidae, Pholoidae, Sigalionidae e Eulepethidae. CNPq. Coordenação Editorial, Brasília, 54 pp. Amaral, A.C. & Jablonski, S., 2005. Conservation of marine and coastal biodiversity in Brazil. Conservation Biology,19(3): 625-631. Amaral, A.C.Z., Lana, P.C., Fernades, F.C. & Coimbra, J.C., 2003. Biodiversidade bêntica da região sul-sudeste da costa brasileira. REVIZEE Score Sul - Bentos. Editora São Paulo, São Paulo, 156 pp. Amaral, A.C.Z., Rizzo, A.E. & Arruda, E.P., 2006. Manual de identificação dos invertebrados marinhos da região sudeste-sul do Brasil. Editora da Universidade de São Paulo, São Paulo, 288 pp. Amaral, A.C.Z., Nallin, S.A.H. & Steiner, T., 2010. Catálogo das espécies de Anellida Polychaeta do Brasil. Available online at . Consulted in 2012-02-20. Auemheimer, C. & Chinchon, S., 1997. Calcareous skeletons of sea urchins as indicators of heavy metals pollution. Portman Bay, Spain. Environmental Geology, New York, 29(1-2): 78-83. Auker, L.A. & Oviatt, C.A., 2008. Factors influencing the recruitment and abundance of Didemnum in Narragansett Bay, RhodeIsland. ICES Journal of Marine Science, 65: 765-769. Barnard, J.L. & Karaman G.S., 1991. The families and genera of marine gammaridean Amphipoda (except marine gammaroids). Records of the Australian Museum, Supplement, 13(1-2): 1-866. Barnes, R.S.K., Calow, P. & Olive, P.J.W., 1995. Os invertebrados. Uma nova síntese. Atheneu Editora, São Paulo, 526 pp. Bassi, D., Nebelsick, J.H., Checconi, A., Hohenegger, J. & Iryu, Y., 2009. Present-day and fossil rhodolith pavements compared: their potential for analysing shallow-water carbonate deposits. Sedimentary Geology, 214: 74-84. Bassi, D., Iryu, Y. & Nebelsick, J.H., 2012. To be or not be a fossil rhodolith? Analytical methods for studying fossil rhodolith deposits. Journal of Coastal Research, 28: 288-295. Bayer, F.M., 1981. Status of knowledge of Octocorals of world seas. Seminários de Biologia Marinha, Academia Brasileira de Ciências, Rio de Janeiro, pp. 3-102. Berlandi, R.M., Carrera-Parra, L. & Paiva, P.C., 2010a. Lumbrineridae (Annelida: Polychaeta) associated to three banks of calcareous algae (rhodoliths) in Eastern Brazilian coast with description of a new species In: 10th International Polychaete Conference, Lecce, Italy. Berlandi, R.M., Figueiredo, M.A.O. & Paiva, P.C., 2010b. Biodiversity of Polychaetes in two banks of calcareous algae (rhodoliths) in Eastern Brazilian coast. In: 10th International Polychaete Conference, Lecce, Italy. Bieler, R., 1996. Mörch’s worm-snail taxa (Caenogastropoda: Vermetidae, Siliquariidae, Turritellidae). American Malacological Bulletin, 13(1-2): 23-25.

117

Birkett, D.A., Maggs, C. & Dring, M.J., 1998. Maerl: an overview of dynamic and sensitivity characteristics for conservation management of marine SACs. Scottish Association Marine Science (SAMS), 5: 1-90. Bjornberg, T.K.S., 1956. Ascídias da costa sul do Brasil (nota prévia). Ciência e Cultura, 8: 164-165. Bordehore, C., Ramos-Esplá, A.A., Riosmena-Rodríguez, R., 2003. Comparative study of two maerl beds with different otter trawling history, southeast Iberian Peninsula. Aquatic Conservation: Marine and Freshwater Ecosystems, 13: S43-S54. Böttger, S.A. & Mcclintock, J.B., 2002. Effects of inorganic and organic phosphate exposure on aspects of reproduction in the common sea urchin Lytechinus variegatus (Echinodermata: Echinoidea). Journal of Experimental Zoology, New Haven, 292: 660-671. Boury-Esnault, N., 1973. Résultats scientifiques des campagnes de la "Calypso". Campagne de la Calypso au large des côtes atlantiques de l'Amérique du Sud (1961-1962). I.29. Spongiaires. Annales de l’Institut Océanographique, 49(Supplement 10): 263-295. Braga, L.M., 1967. Notas sobre alguns briozoários marinhos brasileiros coletados pelo Navio Oceanográfico Almirante Saldanha. Instituto de Pesquisa da Marinha, Notas Técnicas, 2: 1-12. Braga, L.M., 1968. Notas sobre alguns briozoários incrustantes da região de Cabo Frio. Publicação do Instituto de Pesquisa da Marinha, 25: 1-28. Bruno, J.F. & Bertness, M.D., 2001. Habitat modifications and facilitation in benthic marine communities. In: Bertness, M.D., Gaines, S.D. & Hay, M.E. (Eds.), Marine Community Ecology. Sinauer Sunderland, Massachusetts, pp. 201-218. Brusca, R.C. & Brusca, G.J., 2003. Invertebrates. Sinauer Associates Inc., Sunderland, 936 pp. Caetano, C.H.S., 2007. Sistemática da Classe Scaphopoda (Mollusca) no Brasil. Tese (Doutorado), Universidade do Estado do Rio de Janeiro, Programa de Pós-Graduação em Biologia, Biociências Nucleares. 199 pp. Cairns, S.D., 1979. The deep-water Scleractinia of the caribbean sea and adjacent waters. Studies on the Fauna of Curacao, 57: 1-341. Cairns, S.D., 2000. A revision of the shallow-water azooxanthellate Scleractinia of the Western Atlantic. Studies on the Fauna of Curacao, 75: 1-240. Cairns, S.D., Hoeksema, B.W. & Van der Land, J., 1999. List of extant stony corals. Atoll Research Bulletin, Washington, 459: 13-46. Calado, L., da Silveira, I.C.A., Gangopadhyay, A. & Castro, B.M., 2010. Eddy-induced upwelling off Cape São Tomé (22o S, Brazil). Continental Shelf Research, 30: 1181-1188. Cascon, H.M. & Lotufo, T.M.C., 2005. Ascidiacea do litoral Cearense. In: Lotufo, T.M.C. & Bezerra-Silva, A.M. (Orgs.), Biota marinha da costa oeste do Ceará. Relatório TécnicoCientífico, 268 pp. Castro, C.B., Pires, D.O., Medeiros, M.S., Loiola, L.L., Arantes, R.C.M., Thiago, C.M. & Berman, E., 2006. Cnidaria: Corais. In: Lavrado, H.P. & Ignácio, B.L. (Eds.) Biodiversidade Bêntica da Costa Central Brasileira. Museu Nacional, Série Livros 18, Rio de Janeiro, pp. 147-192. Chamberlain, Y.M. & Keats, D.W., 1995. The melobesioid alga Mesophylum engelhartii (Rhodophyta, Corallinaceae) in South Africa. South African Journal of Botany, 61: 134-146. Chapman, V.J. & Parkinson, P.G., 1974. Issue 3: Cryptonemiales. In: Chapman, V.J. (Ed.), The marine algae of New Zealand. Part III. Rhodophyceae. Lehre J. Cramer, New York, pp. 155-278. Christoffersen, M.L., 1979. Decapod Crustacea: Alpheoidea. Resultats scientifiques des campagnes de la Calypso, Fascicule 11. Campagne de la Calypso au large des Côtes Atlantiques de l’Ámerique du Sud (1961-1962). I. Number 36. Annales de l´Institut Oceanográfique, New Series 55, Fascicule Supplement: 297-377. Cocito, S., 2004. Bioconstruction and biodiversity: their mutual influence Scientia Marina (Barc.), 68(Suppl. 1): 137-144. Conquiliologistas do Brasil, 2013. Espécies brasileiras. Available online at . Consulted in 2012-06-02. Dias, G.M., Rocha, R.M., Lotufo, T.M.C., Kremer, L. 2012. Fifty years of ascidian biodiversity research in São Sebastião, Brazil. Journal of the Marine Biological Association of the United Kingdom, 1-10. Díaz, J.M. & Puyana, M., 1994. Moluscos del Caribe Colombiano. 1º ed. Colciencia y Fundación Natura Colombia, Colombia, 291 pp. Eggleston, D., 1972. Factors influencing the distribution of sub-littoral ectoprocts off the south of the Isle Man (Irish Sea). Journal of Natural History, 6: 247-260. Emig, C.C., Alvarez, F. & Bitner, M.A. 2011. Brachiopoda World Database. Available online at . Consulted in 2012-08-10. Erpenbeck, D. & Soest, R.W.M.V., 2002. Family Halichondriidae Gray, 1867. In: Hooper, J.N.A. & Soest, R.W.M.V. (Eds.), Systema Porifera, a guide to the classification of sponges. Kluwer Academic/ Plenum Publishers, New York: 787-816. Farfante, I.P., 1977. American Solenocerid shrimps of the genera Hymenopenaeus, Haliporoides, Pleoticus, Hadropenaeus new genus, and Mesopenaeus new genus. Fishery Bulletin, 75(2): 261-346. Farias, J.N., Riosmena-Rodriguez. R., Bouzon, Z., Oliveira, E.C. & Horta, P.A., 2010. Lithothamnion superpositum (Corallinales; Rhodophyta): First description for the Western Atlantic or rediscovery of a species? Phycological Research, 58: 210-216.

118

Fauchauld, K. & Jumars, P.A., 1979. The diet of worms: A study of polychaete feeding guilds. Oceanography and Marine Biology Annual Review, 17: 193-284. Fazakerley, H. & Guiry, M.D., 1998. The distributions of maerl beds around Ireland and their potential for sustainable extraction: Phycology section. Report to the Marine Institute, NUI, Galway, Dublin, 34 pp. Feldstein T., 2003. Marine mollusc in environmental monitoring. III. Trace metals and organic pollutants in animal tissue and sediments. Helgoland Marine Research, 57: 212-219. Fernandes, A.C.S. & Young, P.S. 1986. Corais coletados durante a “Operação Geomar X” em junho de 1978 (Coelenterata, Anthozoa, Scleractinia). Publicações Avulsas do Museu Nacional, 66: 23-31. Figueiredo, M.A.O., Menezes, K.S., Costa-Paiva, E.M., Paiva, P.C. & Ventura, C.R.R., 2007. Experimental evaluation of rhodoliths as living substrata for infauna at the Abrolhos Bank, Brazil. Ciencias Marinas, 33(4): 427-440. Figueiredo, M.A.O., Coutinho, R., Villas-Boas, A.B., Tâmega, F.T.S. & Mariath, R., 2012. Deep-water rhodolith productivity and growth in the southwestern Atlantic. Journal of Applied Phycology. 24: 487-493. Foster, M.S., 2001. Rhodoliths: between rocks and soft places. Journal of Phycology, 37: 659-667. Fransen, C.H.J.M., 1986. Caribbean Bryozoa: Anasca and Ascophora imperfecta of the inner bays of Curacao and Bonaire. Studies on the Fauna of Curacao and other Caribbean Islands, 68: 1-19. Gherardi, D.F.M., 2004. Community structure and carbonate production of a temperate rhodolith bank from Arvoredo Island, southern Brazil. Brazilian Journal of Oceanography, 52(3/4): 207-224. Gonzalez-Rodriguez, E., Valentin, J.L., André, D.L. & Jacob, A.S., 1992. Upwelling and downwelling at Cabo Frio (Brazil): comparison of biomass and primary production responses. Journal of Plankton Research, 14(2): 289-306. Goodbody, I., 2004. Diversity and distribution of ascidians (Tunicata) at Twin Cays, Belize. Atoll Research Bulletin, 524: 1-20. Gordon, D.P., 2000. Towards a phylogeny of cheilostomes-morphological models of frontal wall/shield evolution. In: Herrera-Cubilla, A. & Jackson J.B.C. (Eds.), Proccedings of the 11th International Bryozoology Association Conference. Smithsonian Tropical Research Institute, Balboa, Panama, pp. 17-37. Gould, A.A. 1852. Mollusca and Shells. In: United States exploration expedition during the years 1838-1942 under the command of Charles Wilkes. Boston, 12, 510 pp. Guillou, M., Quiniou, F., Huart, B. & Pagano, G., 2000. Comparison of embryonic development and metal contamination in several populations of the sea urchin Sphaerechinus granularis (Lamarck) exposed to anthrpogenic pollution. Archives of Contamination and Toxicology, New York, 39: 337-344. Guinot, D. & Tavares, M., 2003. A new subfamilial arrangement for the Dromiidae de Haan, 1833, with diagnoses and descriptions of new genera and species (Crustacea, Decapoda, Brachyura). Zoosystema, 25: 43-129. Guiry, M.D. & Guiry, G.M., 2013. Algae Base. World-wide electronic publication, National University of Ireland, Galway. Available online at . Consulted in 2012-04-09. Hajdu, E. & Soest, R.W.M.V., 2002. Family Desmacellidae Ridley & Dendy, 1886. In: Hooper, J.N.A. & Soest, R.W.M.V. (Eds.), Systema Porifera, a guide to the classification of sponges. Kluwer Academic/ Plenum Publishers, New York: 642-650. Hajdu, E. & Lopes, D., 2007. A checklist of Brazilian deep-sea sponges. In: Custódio, M.R., Lobo-Hajdu, G., Hajdu, E. & Muricy, G. (Eds.), Porifera Research-Biodiversity, Innovation and Sustainability. Museu Nacional, Série Livros 28, Rio de Janeiro, pp. 353-359. Hajdu, E, Peixinho, S. & Fernandez, J.C.C., 2011. Esponjas marinhas da Bahia: guia de campo e laboratório. Museu Nacional, Série Livros 45, Rio de Janeiro, 276 pp. Harvey, A.S. & Bird, F.L., 2008. Community structure of a rhodolith bed from cold-temperate waters (southern Australia). Australian Journal of Botany, 56: 437-450. Harvey, A.S., Woelkerling, W.J., Farr, T., Neill, K. & Nelson, W., 2005. Coralline algae of central New Zealand an identification guide to common crustose species. NIWA Press, Wellington, New Zealand, 145 pp. Hendler, G., Miller, J.E., Pawson, D.L. & Kier, P.M., 1995. Sea stars, sea urchins and allies: Echinoderms of Florida and the Caribbean. Smithsonian Institution Press, Washington, 390 pp. Henriques, M.C.M.O., Villas-Boas, A., Riosmena-Rodriguez. R. & Figueiredo, M.A.O., 2012. New records of rhodolith-forming species (Corallinales, Rhodophyta) from deep water in Espírito Santo state, Brazil. Helgoland Marine Research, 66(2): 219-231. Herdman,W.A., 1880. Preliminary report on the Tunicata of challenger expedition. Part 2. Proceedings of Royal Society of Edinburgh, 10: 714-726. Hily, C., Potin, P. & Floc’h, J.Y., 1992. Structure of subtidal algal assemblages on soft bottom sediments: fauna/flora interactions and role of disturbances in the bay of Brest, France. Marine Ecology Progress Series, 85: 115-130. 119

Hinojosa-Arango, G. & Riosmena-Rodrıguez, R., 2004. Influence of rhodolith-forming species and growth-form on associated fauna of rhodolith beds in the central-west Gulf of California, Mexico. Marine Ecology, 25(2): 109-127. Hooper, J.N.A., 2002a. Family Microcionidae Carter, 1875. In: Hooper, J.N.A. & Soest, R.W.M.V. (Eds.), Systema Porifera, a guide to the classification of sponges. Kluwer Academic/ Plenum Publishers, New York, 432-468. Hooper, J.N.A., 2002b. Family Raspailiidae Hentschel, 1923. In: Hooper, J.N.A. & Soest, R.W.M.V. (Eds.), Systema Porifera, a guide to the classification of sponges. Kluwer Academic/ Plenum Publishers, New York, 469-510. Hooper, J.N.A. & Van Soest, R.W.M., 2002. Systema Porifera, a guide to the classification of sponges. Kluwer Academic/ Plenum Publishers, New York, 1101 pp. Jackson, J.B.C., 1977. Habitat area, colonization, and development of epibenthic community structure. In: Keegan. B.F., Ceidigh, P.O. & Boaden, P.J.S. (Eds.), Biology of benthic organisms. Pergamon Press, London, 349-358. John, D.M., Prud'homme van Reine, W.F., Lawson, G.W., Kostermans, T.B. & Price, J.H., 2004. A taxonomic and geographical catalogue of the seaweeds of the western coast of Africa and adjacent islands. Beihefte Zur Nova Hedwigia, 127: 1-339. Kaas, P. & Van Belle, R.A., 1987. Monography of living chitons: Suborder Ischnochitonina, Ischnochitonidae: Chaetopleurinal, Ischnochitoninae (pars) Additions to vols. 1-2. Vol. 3. Brill, Leiden, 302 pp. Kamenos, N.A., Moore, P.G. & Hall-Spencer, J.M., 2004. Maerl grounds provide both refuge and high growth potential for juvenile queen scallops (Aequipecten opercularis L.). Journal of Experimental Marine Biology and Ecology, 313(2): 241-254. Keen, A.M., 1960. Vermetid Gastropods and Marine Intertidal Zonation. The Veliger, 3: 1-2. Kempf, M., 1970. Notes on the benthic bionomy of the N-NE Brazilian shelf. Marine Biology, 5: 213-224. King, R.A., 2008. A re-description of Accalathura crenulata (Richardson, 1901) from type material and the description of two new Accalathura species (Crustacea: Isopoda: Cymothoida). Zootaxa, 1761: 17-29. Kott, P., 1952. Ascidians of Australia, Stolidobranchia and Phelobranchiata. Australian Journal of Marine and Freshwater Research, 3: 206-333. Kowalewski, M., Simões, M.G., Carroll, M. & Rodland, D.L., 2002. Abundant brachiopods on a tropical, upwelling influences shelf (Southeast Brazilian Bight, South Atlantic). Palaios, 17: 277-286. Kroh, A. & Mooi, R., 2013. World Echinoidea Database. Accessed through: World Register of Marine Species. Available online at . Consulted in 2013-05-28. Kvitek, R.G., 1989. Hydrodynamic morphology and behavior of free-living sediment dwelling bryozoan, Alcyonidum disciforme (Smitt). Journal of Experimental Marine Biology and Ecology, 125: 13-32 Laborel, J. & Kempf, M., 1965. Formações de vermetos e algas calcárias nas costas do Brasil. Trabalhos do Instituto de Oceanografia da Universidade Federal de Pernambuco, 7/8: 33-50. Laborel, J., 1969. Madreporaires et hydrocoralliaires récifaux des côtes Brasiliennes. Systématic, écologie, répartition verticale et geographique. Annales de l’Institute Océanographique, Paris, 47: 171-229. Laborel, J., 1970. Les peuplements de madréporaires des cotes tropicales du Brésil. Annales de l’Université d’Abidjan (E) 2(3): 1-260. Lambert, G., 2005. Ecology and natural history of the protochordates. Canadian Journal of Zoology, 83: 34-50. Lana, P.C., Camargo, M.G., Brogim, R. & Isaac, V., 1996. O bentos da costa brasileira: avaliação crítica e levantamento bibliográfico (1858-1996). Avaliação do Potencial Sustentável de Recursos Vivos na Zona Econômica Exclusiva-REVIZEE. Femar, 432 pp. Lawrence, J.M., 1987. Functional biology of echinoderms. Croom Helm, London, 340 pp. Leal, J.H., 1991. Marine prosobranch gastropods from oceanic Islands off Brazil. Oegstgeest: Universal Book Services, Mahal, Nagpur, 418 pp. Leão, Z.M.A.N., Kikuchi, R.K.P. & Testa V., 2003. Corals and coral reefs of Brazil. In: Cortés, J. (Ed.), Latin America Coral Reefs. The Netherlands: Elsevier Publisher, Amsterdam, pp. 952. Lehnert, H. & Heimler, W., 2001. Description of the North Jamaican Timea micraster n. sp. (Porifera: Demospongiae: Hadromerida: Timeidae). Beaufortia, 51(12): 213-220. Leite, C.F. & Tommasi, L.R., 1976. Distribuição de Cladocora debilis Meth, 1849 (Faviidae, Anthozoa, Cnidaria), ao sul de Cabo Frio (23°S). Boletim do Instituto Oceanográfico, 25: 101-112. Leite, T.S., Haimovici, M., Molina, W. & Warnke, K., 2008. Morphological and genetic description of Octopus insularis new species (Cephalopoda: Octopodidae), a cryptic species in the Octopus vulgaris complex from the tropical Southwestern Atlantic. Journal of Molluscan Studies, 74: 63-74.

120

Lerner, C., Carraro, J.L. & Soest, R.W.M.V., 2006. Raspailia (Raspaxilla) bouryesnaultae, a new name for brazilian Raspaxilla elegans Boury-Esnault, 1973 (Demospongiae, Poecilosclerida, Raspailiidae) with a redescription and a new record. Zootaxa, 1129: 37-45. Littler, M.M., Littler, D.S. & Hanisak, M.D., 1991. Deep-water rhodolith distribution, productivity, and growth history at sites of formation and subsequent degradation. Journal of Experimental Marine Biology and Ecology, 150: 163-182. Lopes, D.A., Hajdu, E. & Reiswig, H.M., 2011. Taxonomy of Farrea (Porifera, Hexactinellida, Hexactinosida) from the southwestern Atlantic, with description of a new species and a discussion on the recognition of subspecies in Porifera. Canadian Journal of Zoology, 89: 169-189. Mah, C.L., 2013. World Asteroidea database. Accessed through: World Register of Marine Species. Available online at . Consulted in 2013-05-28. Marcus, E., 1937. Bryozoários marinhos Brasileiros, 1. Boletim da Faculdade de Phylosofia, Ciências e Letras da Universidade de São Paulo, Zoologia, 1: 5-224. Marcus, E., 1938. Bryozoários marinhos Brasileiros, 2. Boletim da Faculdade de Phylosofia, Ciências e Letras da Universidade de São Paulo, Zoologia, 2: 1-196. Marcus, E., 1939. Bryozoários marinhos Brasileiros, 3. Boletim da Faculdade de Phylosofia, Ciências e Letras da Universidade de São Paulo, Zoologia, 3: 111-353. Marcus, E. ,1941. Sobre os bryozoa do Brasil, 1. Boletim da Faculdade de Phylosofia, Ciências e Letras da Universidade de São Paulo, Zoologia, 5: 2-208. Marcus, E., 1955. Notas sobre briozoos marinhos Brasileiros. Arquivos do Museu Nacional do Rio de Janeiro, 42(1): 273-341. Melo, G.A.S., 1996. Manual de identificação dos brachyura (caranguejos e siris) do litoral Brasileiro. Plêiade editora, São Paulo, 603 pp. Melo, G.A.S., 1999. Manual de identificação dos crustáceos decapoda do litoral brasileiro: Amomura, Thalassinidea, Palinuridea, Astacidea. Plêiade editora, São Paulo, 429 pp. Messing, C.G., 2003. Three new species of Comasteridae (Echinodermata, Crinoidea) from the Tropical Western Pacific. Zoosystema, 25(1): 49-162. Millar, R.H., 1958. Some ascidians from Brazil. Annals and Magazine of Natural History, 13: 497-514. Millar, R.H., 1969. British ascidians. Tunicata: Ascidiacea: keys and notes for the identification of the species. Linnean Society of London by Academic Press, London, 92 pp. Millar, R.H., 1971. The biology of ascidians. Advances in Marine Biology, 9: 1-100. Miyaji, C., 2001. Gastrópodes prosobrânquios da plataforma continental externa e talude superior da costa Sudeste Brasileira. Tese de doutorado. Departamento de Oceanografia Biológica, Instituto Oceanográfico da USP, São Paulo, 128 pp. Monniot, C., 1970. Ascidies phlebobranches et stolidobranches. In: Campagne de la Calypso au large des cotes de l’Amerique du Sud. Annales de L’Institut Océanographique, 47:3359. Monniot, C. & Monniot, F., 1968. Les ascidies grandes profondeurs récoltées par le navire océanographique américain Atlantis II. Bulletin de L’Institut Océanographique, 67: 1-48. Monniot, F. & Monniot, C., 2001. Ascidians from the Tropical Western Pacific. Zoosystema, 23: 201-383. Monniot, C., Monniot, F. & Laboute, P., 1991. Coral reef Ascidians of New Caledonia. Collection Fauna Tropicale 30. ORSTOM, Paris. Monteiro, L.C. & Muricy, G., 2004. Patterns of sponge distribution in Cagarras Archipelago, Rio de Janeiro, Brazil. Journal of the Marine Biological Association of the United Kingdom, 84: 681-687. Moraes, F., 2011. Esponjas das Ilhas Oceânicas Brasileiras. Museu Nacional, Série Livros 44, Rio de Janeiro, 252 pp. Moraes, F. & Muricy, G., 2007. A new species of Erylus (Geodiidae, Demospongiae) from Brazilian oceanic Islands. In: Custódio, M.R., Lobo-Hajdu, G., Hajdu, E. & Muricy, G., (Eds.), Porifera Research - Biodiversity, Innovation and Sustainability. Museu Nacional, Série Livros 28, Rio de Janeiro, pp. 467-475. Moraes, F.C., Ventura, M., Klautau, M., Hajdu, E. & Muricy, G., 2006. Biodiversidade de esponjas das ilhas oceânicas brasileiras. In: Alves, R.J.V. & Castro, J.W.A. (Orgs.), Ilhas Oceânicas Brasileiras - da pesquisa ao manejo. Ministério do Meio Ambiente, Secretaria de Biodiversidade e Floresta, Brasília, 147-178. Mortensen, T., 1928. A monograph of the Echinoidea. 1 Cidaroidea. Reitzel, C.A., Copenhagen, 1-155. Mothes, B. & Lerner, C., 2001. A new species of Erylus Gray, 1867 (Porifera, Geodiidae) from the Southeastern coast of Brazil. Beaufortia, 51(4): 83-89. Muricy, G. & Moraes, F.C., 1998. Marine sponges of Pernambuco State, NE Brazil. Revista Brasileira de Oceanografia, 46(2): 213-217. Muricy, G. & Hajdu, E., 2006. Porifera Brasilis: guia de identificação das esponjas marinhas mais comuns do sudeste do Brasil. Museu Nacional, Série Livros 17, Rio de Janeiro, 104 pp. Muricy, G., Hajdu, E., Minervino, J.V., Madeira, A.V. & Peixinho, S., 2001. Systematic revision of the genus Petromica Topsent (Demospongiae: Halichondrida), with a new species from southwestern Atlantic. Hydrobiologia, 443: 103-128. Muricy, G., Santos, C.P., Batista, D. , Lopes, D.A., Pagnoncelli, D., Monteiro, L.C., Oliveira, M.V., Moreira, M.C.F., Carvalho, M.S., Melão, M., Klautau, M., Rodriguez, P.R.D., Costa, R.N., Silvano, R.G., Schwientek, S., Ribeiro, S.M., Pinheiro, U. & Hajdu, E., 2006. Capítulo 3. Porifera. In: Lavrado, H.P. & Ignácio, B.L. (Eds.), Biodiversidade bentônica da região central da zona econômica exclusiva brasileira. Museu Nacional, Série Livros 18, Rio de Janeiro, pp. 109-145. 121

Muricy, G., Hajdu, E., Oliveira, M.V., Heim, A.S., Costa, R.N., Lopes, D.A., Melão, M., Rodriguez, P.R.D., Silvano, R., Monteiro, L.C. & Santos, C., 2007. Phylum Porifera. In: Lavrado, H.P. & Viana, M.S. (Eds.), Atlas de invertebrados marinhos da região central da zona econômica exclusiva brasileira, parte 1. Museu Nacional, Série Livros 25, Rio de Janeiro, pp. 25-57. Muricy, G., Esteves, E.L., Moraes, F., Santos, J.P., Silva, S.M., Klautau, M. & Lanna, E., 2008. Biodiversidade marinha da bacia Potiguar: Porifera. Museu Nacional, Série Livros 29, Rio de Janeiro, 156 pp. Muricy, G., Lopes, D.A., Hajdu, E., Carvalho, M.S., Moraes, F., Klautau, M., Menegola, C. & Pinheiro, U., 2011. Catalogue of Brazilian Porifera. Museu Nacional, Série Livros 46, Rio de Janeiro, 300 pp. Nogueira, J.M.M., 2005. Family Syllidae. In: Amaral, A.C.Z., Rizzo, A.E. & Arruda, E.P. (Orgs.), Manual de identificação dos invertebrados marinhos da região Sudeste-Sul do Brasil. EDUSP, São Paulo, pp. 134-164. Nogueira, J.M.M. & San Martín, G., 2002. Species of Syllis Savigny in Lamarck, 1818 (Polychaeta: Syllidae) living in corals in the state of São Paulo, southeastern Brazil. Bulletin Zoological Museum University of Amsterdam, 52(7): 57-93. Nogueira, J.M.M. & Abbud, A., 2009. Three new serpulids (Polychaeta: Serpulidae) from the Brazilian Exclusive Economic Zone. Zoosymposia, 2: 201-227. Nogueira, J.M.M., San Martín, G. & Amaral, A.C.Z., 2001. Description of five new species of Exogoninae Rioja, 1925 (Polychaeta: Syllidae) associated with the stony coral Mussismilia hispida (Verril, 1868) in São Paulo State, Brazil. Journal of Natural History, 35(12): 1773-1794. Nonato, E.F. & Luna, J.A.C., 1970a. Anelídeos poliquetas do nordeste do Brasil. 1: poliquetas bentônicos da costa de Alagoas e Sergipe. Boletim do Instituto Oceanográfico, Universidade de São Paulo, 19: 57-130. Nonato, E.F. & Luna, J.A.C., 1970b. Sobre alguns poliquetas de escama do nordeste do Brasil. 1: poliquetas bentônicos da costa de Alagoas e Sergipe. Boletim do Instituto Oceanográfico, Universidade de São Paulo, 18(1): 63-91. Paiva, P.C., 2006a. Phylum Annelida. Classe Polychaeta. In: Lavrado, H.P., Ignacio, B.L. (Eds.), Biodiversidade bentônica da região central da Zona Econômica Exclusiva Brasileira. Museu Nacional, Série Livros, Rio de Janeiro, pp. 261-298. Paiva, P.C., 2006b. Chapter 7 - Soft-bottom polychaetes of the Abrolhos bank. In: Dutra, G.F., Allen, G.R., Werner, T. & McKenna S.A. (Eds.), A Rapid marine biodiversity assessment of the Abrolhos Bank, Bahia, Brazil. R.A.P. Bulletin of Biological Assessment 38. Conservation International, Washington, DC, pp. 87-90. Paiva, P.C. & Costa-Paiva, E.M., 2007. Filo Annelida. Classe Polychaeta. In: Lavrado, H.P. & Viana, M.S. (Eds.), Atlas de invertebrados marinhos da região central da Zona Econômica Exclusiva Brasileira, Parte 1, Museu Nacional, Série Livros, Rio de Janeiro, pp. 135-162. Paulay, G. & Hansson, H., 2013. Holothuria (Vaneyothuria) lentiginosa Marenzeller von, 1892. Accessed through: World Register of Marine Species. Available online at . Consulted in 2013-05-28. Penna, L., 1972. Moluscos da baía da Ilha Grande, Rio de Janeiro, Brasil. I. Scaphopoda (Dentaliidae). Papéis Avulsos de Zoologia, 25(22): 229-236. Phelan, T., 1970. A field guide to the cidaroid echinoids of the northwestern atlantic ocean, gulf of Mexico, and the Caribbean sea. Smithsonian Contribution to Zoology, 40: 1-67. Pimenta, A.D. & Absalão, R.S., 2004. Fifteen new species and ten new records of Turbonilla Risso, 1826 (Gastropoda, Heterobranchia, Pyramidellidae) from Brazil. Bolletino Malacologico, 39: 113-140. Pires, D.O., 2007. The azooxanthellate coral fauna of Brazil. In: George, R.Y. & Cairns, S.D. (Eds.), Conservation and adaptative management of seamount and deep-sea coral ecosystems. Rosentiel School of Marine and Atmospheric Science, University of Miami, Miami, pp. 265-272. Pires, D.O. & Castro, C.B., 2010. Cnidaria. In: Lavrado, H.P. & Brasil, A.C.S. (Orgs.), Biodiversidade da região oceânica profunda da bacia de Campos: megafauna e ictiofauna demersal. SAG Serv., Rio de Janeiro, pp. 81-85. Pires-Vanin, A.M.S., 1998. Malacostraca - Peracarida. Marine Isopoda. Anthuridea, Asellota (pars), Flabellifera (pars), and Valvifera. In: Young, P.S. (Ed.), Catalogue of Crustacea of Brazil. Museu Nacional Série Livros 6, Rio de Janeiro, pp. 605-624. Pires-Vanin, A.M.S., 2001. Isopod assemglages on the continental shelf and upper slope from the southwestern Atlantic. In: Kensley, B. & Brusca, R.C. (Eds.), Isopod systematics and evolution. Crustacean Issues, Balkema, Rotterdam, pp.289-300. Pires-Vanin, A.M.S., 2008. Parte IV - Sistema bêntico 1. Megafauna e macrofauna. In: Pires-Vanin, A.M.S. (Org.), Oceanografia de um ecossistema subtropical - plataforma de São Sebastião, SP. EDUSP, São Paulo, pp. 311-349. Poore, G.C.B., 2001. Families and genera of isopoda anthuridea. Crustacean Issues, 13: 63-173. Pourtalès, L.F., 1874. Deep sea corals. In: Agassiz, A. Zoological results of the “Hassler” expedition. Memoirs of the Museum of Comparative Zoölogy at Harvad College, 4: 27-50. Pouyet, S. & David, L., 1979. Révision systematique du genre Steginoporella Smitt, 1873 (Bryozoa Cheilostomata). Géobios, 12: 763-817. 122

Ramalho, L.V., 2006. Taxonomia, distribuição e introdução de espécies de briozoários marinhos (Ordens Cheilosttomatida e Cyclostomata) do Estado do Rio do Janeiro. Tese de Doutorado, Universidade Federal do Rio de Janeiro, 450 pp. Ramalho, L.V., Muricy, G. & Taylor, P.D., 2009. Cyclostomata (Bryozoa, Stenolaemata) from Rio de Janeiro State, Brazil. Zootaxa, 2057: 32-52. Rao, C.P., 1998. Modern and Tertiary temperate carbonates from Australia and New Zealand. Their significance in the exploration for oil and gas. In: AAPG International Conference & Exhibition, Extended Abstracts Volume, Rio de Janeiro, pp. 58-59. Ridley, S.O. & Dendy, A., 1887. Report on the Monaxonida collected by H.M.S. "Challenger" during the years 1873-1876. Report of the Scientific Results of the Voyage of H.M.S. "Challenger", 1873-1876, 20(59): 1-275. Rios, E.C., 1994. Seashells of Brazil. Fundação Universidade do Rio Grande, Museu Oceanográfico, Rio Grande, 368 pp. Rios, E.C., 2009. Compendium os brazilian sea shells. Universidade Federal do Rio Grande, Museu Oceanográfico "Prof. E. C. Rios", Evangraf, Rio Grande, 668 pp. Riosmena-Rodriguez, R. & Vásquez-Elizondo, R.M., 2012. Range extension of Mesophylum engelhartii (Foslie) W.H. Adey (Corallinales; Rhodophyta) to the Gulf of California: Morphology, anatomy and reproduction. Botanica Marina, 55(2): 143-148. Rocha, R.M. & Nasser, C.M., 1998. Some ascidians (Tunicata, Ascidiacea) from Paraná State, Southern Brazil. Revista Brasileira de Zoologia, 15(3): 633-642. Rocha, R.M. & D’hondt, J.L., 1999. Phylum Ectoprocta ou Bryozoa. In: Migotto, A.E. & Tiago, C.G. (Eds.), Biodiversidade do Estado de São Paulo, Brasil. Síntese do conhecimento ao final do século XX: 3 - Invertebrados marinhos. FAPESP, São Paulo, pp. 241-249. Rocha, R.M., Moreno, T.R. & Metri, R., 2005. Ascídias da reserva biológica marinha do Arvoredo, SC. Revista Brasileira de Zoologia 22: 461-476. Rocha, R.M., Zanata, T.B. & Moreno, T.R., 2011. Keys for the identification of families and genera of Atlantic shallow water ascidians. Biota Neotropica, 12(1): 269-303. Available online at . Consulted in 2012-03-10. Rocha, R.M., Bonnet, N.Y.K., Baptista, M.S. & Beltramin, F.S., 2012. Introduced and native Phlebobranch and Stolidobranch solitary ascidians (Tunicata: Ascidiacea) around Salvador, Bahia, Brazil. Zoologia, 29: 39-53. Rodrigues, S.A., 1962. Algumas ascídias do litoral-Sul do Brasil. Boletim da Faculdade de Ciências e Letras da Universidade de São Paulo, Zoologia, 24: 193-216. Rodrigues, S.A., 1964. Ascidiacea. In: Vanzolini, P. (Ed.), História natural dos organismos aquáticos do Brasil, Tunicata. Revista dos Tribunais, São Paulo, pp. 299-304. Rodrigues, S.A., 1966. Notes on Brazilian ascidians. I. Papéis Avulsos do Departamento de Zoologia, 19(8): 95-115. Rowe, F.W.E. & Gates, J., 1995. Echinodermata. In: Wells, A. (Ed.), Zoological catalogue of Australia. Volume 33. Melbourne: CSIRO, Australia, 510 pp. Rouse, G.W. & Pleijel, F., 2001. Polychaetes. New York: Oxford University Press Inc, Oxford, 354 pp. Rudwick, M.J.S., 1970. Living and fossil Brachiopods. Hutchinson University Library, London, 199 pp. San Martín, G., 2003. Annelida, polychaeta II: Syllidae. In: Ramos, M.A. et al., (Eds), Fauna Iberica. Museo Nacional de Ciencias Naturales, Volume 21, CSIC, Madrid, pp 1-554. Santana, W. & Tavares, M., 2008. A new species of Euprognatha Stimpson, 1871 (Crustacea, Brachyura, Inachoididae) from off coast of Northeastern Brazil. Papéis Avulsos de Zoologia, Museu de Zoologia da Universidade de São Paulo, 48(27): 317-328. Santana, F.T., Ramalho, L.V. & Guimarães, C.P., 2009. A new species of Metrarabdotos (Bryozoa, Ascophora) from Brazil. Zootaxa, 2222: 57-65. Santos, C.S.G. & Lana, P.C., 2003. Nereididae (Polychaeta) from Northeastern coast of the Brazil. III. Ceratonereis and Nereis. Iheringia, Série Zoologica, Porto Alegre, 93(1): 5-22. Santos, F.N., Caetano, C.H.S., Absalão, R.S. & Paula, T.S., 2007. Mollusca de substrato não consolidado, In: Creed, J.C., Pires, D.O. & Figueiredo, M.A.O. (Eds.), Biodiversidade marinha da Baía da Ilha Grande. Ministério do Meio Ambiente, Brasília, pp. 207-236. Sciberras, M., Rizzo, M., Mifsud, J.J. & Camilleri, K., 2009. Habitat structure and biological characteristics of a maerl bed off the Northeastern coast of the Maltese Islands (central Mediterranean). Marine Biodiversity, 39: 251-264. Serejo, C.S., Young, P.S., Cardoso, I.A., Tavares, C.R. & Rodrigues, C.A.Jr., 2006. Capítulo 8. Filo Arthropoda. Subfilo Crustacea. In: Lavrado, H.P. & Ignacio, B.L. (Eds.), Biodiversidade bentônica da região central da Zona Econômica Exclusiva brasileira. Museu Nacional, Série Livros 18, Rio de Janeiro, pp. 299-337. Serejo, C.S, Young, P.S., Cardoso, I.C., Tavares, C., Rodrigues, C. & Almeida, T.C., 2007. Abundância, diversidade e zonação dos crustáceos no talude da costa Central do Brasil (11º – 22º S) coletado pelo Programa REVIZEE/Score Central: prospecção pesqueira In: Costa, P.A.S., Olavo, G. & Martins, A.S. (Eds.), Biodiversidade da fauna marinha profunda na costa central Brasileira. Museu Nacional, Série Livros 24, Rio de Janeiro, pp. 133-162. Shenkar, N. & Loya, Y. ,2008. The solitary ascidian Herdmania momus: native (Red Sea) vs. non-indigenous (Mediterranean) populations. Biological Invasion, 10: 1431-1439. Shenkar, N. & Swalla, B.J., 2011. Global Diversity of Ascidiacea. PLoS ONE 6(6): e20657. doi:10.1371/journal.pone.0020657. Silva, L., Sobrino, I. & Ramos, F., 2002. Reproductive biology of the common octopus, Octopus vulgaris Cuvier, Cuvier 1797(Cephalopoda: Octopodidae) in the Gulf of Cadiz (SW Spain). Bulletin of Marine Science, 71(2): 837-850.

123

Silva-Karam, H., Teschima, M.M. & Freire, A.S., 2009. Distribuição espacial de crustáceos decápodos e estomatópodos durante o verão no banco de algas calcárias na Ilha do Arvoredo, S.C. Anais do IX Congresso de Ecologia do Brasil, São Lourenço (MG), pp. 1-4. Simões, M.G. & Mello, H.C., 2006. Phylum brachiopoda, In: Amaral, A.C.Z., Rizzo, A.E. & Arruda, E.P. (Orgs.), Manual de identificação dos invertebrados marinhos da região SudesteSul do Brasil. Editora da USP, São Paulo, pp. 221-234. Simões, M. & Leme, J.M., 2010. Recent Rhynchonelliform brachiopods from the Brazilian continental margin, Western South Atlantic. In: 6th International Brachiopod Congress Program & Abstracts, Geological Society of Australia, Melbourne, pp. 104. Simões, M.G., Kowalewski, M., Mello, L.H.C., Rodland, D.L. & Carroll, M., 2004. Recent brachiopods from the southern Brazilian shelf: palaeontological and biogeographical implications. Palaeontology, 47: 515-533. Simone, L.R.L., 1999. Comparative morphology and systematics of Brazilian Terebridae (Mollusca, Gastropoda, Conoidea), with descriptions of three new species. Zoosystema, 21: 199-248. Soares-Gomes, A., Villaça, R.C. & Pezzella, C.A.C., 2001. Atol das Rocas ecossistema único no Atlântico Sul. Ciência Hoje, 29(172): 32-39. Soest, R.W.M.V., 2002. Suborder Myxillina Hajdu, Van Soest & Hooper, 1994. In: Hooper, J.N.A. & Soest, R.W.M.V. (Eds.), Systema Porifera, a guide to the classification of sponges. Kluwer Academic/Plenum Publishers, New York, pp. 515-520. Soest, R.W.M.V., Boury-Esnault, N., Hooper, J.N.A., Rützler, K, Voogd, N.J., Alvarez de Glasby, B., Hajdu, E., Pisera, A.B., Manconi, R., Schoenberg, C., Janussen, D., Tabachnick, K.R., Klautau, M., Picton, B. & Kelly, M., 2011. World porifera database. Available online at . Consulted in 2013-05-22. Soest, R.W.M.V., Boury-Esnault, N., Hooper, J.N.A., Rützler, K., de Voogd, N.J., Alvarez de Glasby, B., Hajdu, E., Pisera, A.B., Manconi, R., Schoenberg, C., Janussen, D., Tabachnick, K.R., Klautau, M., Picton, B. & Kelly, M., 2013. World Porifera database. Available online at . Consulted in 2013-05-22. Sollas, W.J., 1888. Report on the Tetractinellida collected by H.M.S. “Challenger”, during the years 1873-1876. Reports of the scientific results of the voyage of H.M.S. “Challenger”, 1873-1876. Zoology, 25(63): 1-458. Spotorno-Oliveira, P., 2009. Family Vermetidae Rafinesque, 1815, In: Rios, E.C. (Ed.), Compendium of Brazilian Seashells. Evangraf, Rio Grande, pp. 115-119. Spotorno, P., Tâmega, F.T.S. & Bemvenuti, C.E., 2012. An overview of the recent vermetids (Gastropoda: Vermetidae) from Brazil. Strombus, 19(1): 1-8. Steller, D.L. & & Cárceres-Martinez, C., 2009. Coralline algal rhodoliths enhance larval settlement and early growth of the Pacific calico scallop Argopecten ventricosus. Marine Ecology Progress Series, 396: 49-60. Steller, D.L., Riosmena-Rodríguez, R., Foster, M.S. & Roberts, C., 2003. Rhodolith bed diversity in the Gulf of California: the importance of rhodolith structure and consequences of anthropogenic disturbances. Aquatic Conservation Marine Freshwater Ecosystem, 13: S5-S20. Steneck, R.S., 1986. The ecology of coralline algal crusts: convergent patterns and adaptive strategies. Annual Review and Ecological Systematics, 17: 273-303. Steneck, R.S. & Dethier, M.N., 1994. A functional group approach to the structure of algal-dominated communities. Oikos, 69: 476-498. Stöhr, S. & O’Hara, T., 2013. World Ophiuroidea database. Accessed through: World Register of Marine Species. Available online at . Consulted in 2013-05-28. Svane, I. & Dolmer, P., 1995. Perception of light at settlement: A comparative study of two invertebrate larvae, a scyphozoan planula and a Simple ascidian tadpole. Journal of Experimental Marine Biology and Ecology, 187: 51-61. Sweeney, M.J., Roper, C.F.E., Mangold, K.M., Clarke, M.R. & Boletzky, S.V., 1992. "Larval" and juvenile Cephalopods: a manual for their identification. Smithsonian Institution Press, Washington D.C., 296 pp. Temara, A., Gulec, I. & Holdway, D.A., 1999. Oil-induced disruption of foraging behaviour of the asteroid keystone predator, Coscinasterias muricata (Echinodermata). Marine Biology, 133: 501-507. Thayer, C.W., 1977. Recruitment, growth and mortality of a living articulate brachiopod, with implications for the interpretation of survivorship curves. Paleobiology, 3: 98-109. Tommasi, L.R., 1966. Lista de equinóides recentes do Brasil. Contribuições do Instituto Oceanográfico da Universidade de São Paulo, Série Oceanografia Biológica, 11: 1-50. Tommasi, L.R., 1970a. Os ofiuróides recentes e fosseis do Brasil e de regiões vizinhas. Contribuições do Instituto Oceanográfico da Universidade de São Paulo, Série Oceanografia Biológica, 20: 1-146. Tommasi, L.R., 1970b. Nota sobre os fundos detríticos do circalitoral inferior da plataforma continental brasileira ao sul do Cabo Frio (RJ). Boletim do Instituto Oceanográfico, São Paulo, 18(1): 55-62. Valentin, J.L., 2001. The Cabo Frio upwelling System, Brazil. Ecological Studies, 144: 97-105. Van Name, W.G. 1945. The north and south american ascidians. Bulletin of American Museum of Natural History, 1: 1-476.

124

Verseveldt, J. & Bayer, F.M., 1988. Revision of the genera Bellonella, Eleutherobia, Nidalia and Nidaliopsis (Octocorallia: Alcyoniidae and Nidaliidae), with descriptions of two new genera. Zoologischeverhandelingen, 245: 1-131. Vieira, L.M., 2008. Sistematic e distribuição dos briozoários marinhos do litoral de Maceió, Alagoas. Dissertação de Mestrado, Universidade de São Paulo, SP, Brasil 195 pp. Available online at . Consulted in 2012-06-02. Vieira, L.M., Gordon, D.P. & Correia, M.D., 2007. First record of a living Ditaxiporine catenicellid in the Atlantic, with a description of Vasignyella ovicellata n. sp. (Bryozoa). Zootaxa, 1582: 49-58. Vieira, L.M., Migotto, A.E. & Winston, J.E., 2008. Synopsis and annotated checklist of recent marine bryozoa from Brazil. Zootaxa, 1810: 1-39. Vieira, L.M., Migotto, A.E. & Winston, J.E., 2010a. Marcusadorea, a new genus of lepralioid bryozoan from warm waters. Zootaxa, 2348: 57-68. Vieira, L.M., Migotto, A.E. & Winston, J.E, 2010b. Shallow-water species of Beania Johnston, 1840 (Bryozoa, Cheilostomata) from the tropical and subtropical western atlantic. Zootaxa, 2550: 1-20. Vieira, L.M., Gordon, D.P., Souza, F.B.C. & Haddad, M.A., 2010c. New and little-known cheilostomatous bryozoa from the south and southeastern Brazilian continental shelf and slope. Zootaxa, 2722: 1-53. Vieira, W.F., Cosme, B. & Hajdu, E., 2010d. Three new Erylus (Demospongiae, Astrophorida, Geodiidae) from the Almirante Saldanha Seamount (off SE Brazil), with further data for a tabular review of worldwide species and comments on Brazilian seamount sponges. Marine Biology Research, 6(5): 437-460. Vilanova, E. & Muricy, G., 2001. Taxonomy and distribution of the sponge genus Dysidea Johnston, 1842 (Demospongiae, Dendroceratida) in the extractive reserve of Arraial do Cabo, SE Brazil (SW Atlantic). Boletim do Museu Nacional, Nova Série, Zoologia, 453: 1-16. Villas-Boas, A.B., Riosmena-Rodriguez, R., Amado-Filho, G.M., Maneveldt, G.W. & Figueiredo, M.A.O., 2009. Rhodolith-forming species of Lithophyllum (Corallinales; Rhodophyta) from Espírito Santo state, Brazil, including the description of L. depressum sp. nov. Phycologia, 48(4): 237-248. Weerdt, W.H.D., 2002. Family Chalinidae Gray, 1867. In: Hooper, J.N.A. & Soest, R.W.M.V. (Eds.), Systema porifera, a guide to the classification of sponges. Kluwer Academic/Plenum Publishers, New York, pp. 852-873. Williams, A.B., 1984. Shrimps, lobsters, and crabs of the Atlantic coast of the eastern United States, Maine to Florida. Smithsonian Institution Press, Washington, DC, 550 pp. Winston, J.E., 1986. An annotated check-list of coral-associated bryozoans. American Museum Novitates, 2859: 1-39. Winston, J.E., 2005. Re-description and revision of Smitt's "Floridan Bryozoa" in the collection of the Museum of Comparative Zoology, Harvard University. (with an annotated catalogue of specimens collected by L.F. de Pourtales in Florida and Carolina, housed at the Museum of Comparative Zoology, Harvard University). Virginia Museum of Natural History Memoir, 7: 1-147. Winston, J.E. & Maturo J.R., 2009. Bryozoans (Ectoprocta) of the Gulf of Mexico. In: Felder, D.L. & Camp, D.K. (Eds.), Gulf of Mexico-origins, waters, and biota. Biodiversity. Texas A & M Press, College Station, Texas, pp. 1147-1164. Winston, J.E. & Woollacott, R.M., 2009. Scientific results of the Hassler Expedition. Bryozoa. n°. 1. Barbados. Bulletin of the Museum of Comparative Zoology, 159(5): 239-300. Woelkerling, W.J., 1988. The coralline red algae: an analysis of the genera and subfamilies of nongeniculate Corallinaceae. Oxford University Press, Oxford, 268 pp. Woelkerling, W.J. & Harvey, A.S., 1993. An account of southern Australian species of Mesophyllum (Corallinaceae, Rhodophyta). Australian Systematic Botany, 6: 571-637. Womersley, H.B.S., 1996. The marine benthic flora of southern Australia - Part IIIB - Gracilariales, Rhodymeniales, Corallinales and Bonnemaisoniales. Canberra & Adelaide: Australian Biological Resources Study & the State Herbarium of South Australia, pp. 1-392. Yoneshigue-Valentin, Y., Gestinari, L.M.S. & Fernandes, D.R.P., 2006. Macroalgas. In: Lavrado, H.P. & Ignacio, B.L. (Orgs.), Biodiversidade bentônica da Região Central da Zona Econômica Exclusiva Brasileira. Museu Nacional, Rio de Janeiro, pp. 67-105. Zanol, J., Paiva, P.C. & Atollini, F.S., 2000. Eunice and Palola (Eunicidae: Polychaeta) from the eastern Brazilian coast (13o00'- 22o30's). Bulletin of Marine Science, 67(1): 449-463. Zibrowius, H., 1970. Contribution à l‘etude des serpulidae (Polychaeta Sedentaria) du Brésil. Boletim do Instituto Oceanográfico, Universidade de São Paulo, 19: 1-32.

125

Index of taxa by scientific name 126

Index of taxa by scientific name Taxon

Page

Taxon

Page

Accalathura crenulata (Richardson, 1901)

68

Calliostoma carcellesi Clench & Aguayo, 1940

46

Allostichaster capensis (Perrier, 1875)

97

Calloporidae sp.

80

Allactaea lithostrota Williams, 1974

Alpheus pouang Christoffersen, 1979 Amalda josecarlosi Pastorino, 2003

Amastigia aviculifera Vieira, Gordon, Souza & Haddad 2010 Amphioplus albidus (Ljungman, 1867)

Amphipholis squamata (Delle Chiaje, 1828) Amphiura flexuosa Ljungman, 1867

Amphiura kinbergi Ljungman, 1872

Amphiura muelleri Marktanner-Turneretscher, 1887 Aphrogenia alba Kinberg, 1856

Arachnopusia haywardi Vieira, Gordon, Souza & Haddad 2010 Arene bairdii (Dall, 1889)

Argyrotheca cf. cuneata (Risso, 1826) Ascophora sp.

Axinellidae sp. Beania sp.

Brachytoma rioensis (E. A. Smith, 1915) Bubaris sp. 127

76 69 52 81 99

100 100 101 101 62 84 47 92 83 32 80 53 33

Calliostoma pulchrum (C.B. Adams, 1850)

Cellaria subtropicalis Vieira, Gordon, Souza & Haddad 2010 Celleporaria albirostris (Smitt, 1873)

Ceratonereis hircinicola (Eisig, 1870)

Chaetopleura asperrima (Gould, 1852) Chlamys tehuelchus (Orbigny, 1846)

Cidaris abyssicola (A. Agassiz, 1869)

Cladocora debilis Milne Edwards & Haime, 1849 Clathria sp.

Clypeaster subdepressus (Gray, 1825)

Coenocyathus parvulus (Cairns, 1979) Comasteridae sp.

Compsodrillia cf. haliostrephis (Dall, 1889) Conus clerii Reeve, 1844 Crisia sp.

Cyphoma intermedium (G.B. Sowerby I., 1828) Dardanus insignis (de Saussure, 1858) Desmacella sp.

46 83 85 63 45 58

104 39 29

106 38

103 54 53 89 49 71 31

Dysidea sp.

35

Lucapina sowerbii (Sowerby I., 1835)

45

Erylus sp.

26

Malakosaria atlantica Vieira, Gordon, Souza & Haddad, 2010

88

104

Marthasterias glacialis (Linnaeus, 1758)

Echinaster (Othilia) brasiliensis Müller & Troschel, 1842 Euarche tubifex Ehlers, 1887

Eucidaris tribuloides (Lamarck, 1816) Eunice stigmatura (Verrill, 1900)

Euprognatha rastellifera Stimpson, 1871 Eurypon sp.

Fenimorea sp.

Fusinus frenguellii (Carcelles, 1953)

Garthiope spinipes (A. Milne Edwards, 1880) Glycera brevicirris Grube, 1870

Glycymeris pectinata (Gmelin, 1791) Haliclona sp.

Holothuria (Vaneyothuria) lentiginosa Marenzeller Von, 1892 Ircinia strobilina (Lamarck, 1816)

Ischnochiton marcusi (Righi, 1971) Ischnochiton sp.

Javania cailleti (Duchassaing & Michelotti, 1864) Lima lima (Linnaeus, 1758)

Limopsis janeiroensis E. A. Smith, 1915 Lithothamnion sp.

98 62 64 74 30 54 51 76 64 56 34

106 34 44 44 40 57 55 23

Luidia ludwigi scotti Bell, 1917

Marcusadorea corderoi (Marcus, 1949)

Mesopenaeus tropicalis (Bouvier, 1905)

Mesophyllum engelhartii (Foslie) W.H. Adey Metula agassizi Clench & Aguayo, 1941 Mollia elongata Canu & Bassler, 1928

Moreiradromia antillensis (Stimpson, 1858) Munida irrasa A. Milne Edwards, 1880 Myxillina sp. Nidalia sp.1 Nidalia sp.2 Octopus sp.

Odontocymbiola macaensis Calvo & Coltro, 1997 Ophioderma divae Tommasi, 1971 Ophiomyxa flaccida (Say, 1825)

Ophioplax clarimundae Tommasi, 1970 Ophiothrix angulata (Say, 1825) Palicus faxoni Rathbun, 1897

Palicus sicus (A. Milne Edwards, 1880)

98 87 97 69 22 50 82 73 72 31 41 41 59 50

102 103 102 103 74 75 128

Paradentalium disparile (d´Orbigny, 1847)

59

Rogicka joannae Vieira, Gordon, Souza & Haddad, 2010

88

Pelogenia kinbergi (Hansen, 1882)

63

Siratus formosus (Sowerby II, 1841)

49

Pawsonaster parvus (Perrier, 1881) Petromica sp.

Pleurotomella aguayoi (Carcelles, 1953) Plicatula gibbosa Lamarck, 1801 Polycarpa sp.

Processa guyanae Holthuis, 1959 Protosuberites sp.

Prunum fulminatum (Kiener, 1841)

Prunum martini (Petit de la Saussaye, 1853)

Pseudopaguristes calliopsis (Forest & Saint Laurent, 1968) Pteria hirundo (Linnaeus, 1758) Puellina sp.

Pylopagurus discoidalis (A. Milne Edwards, 1880) Pyura sp.

Raspailia (Raspaxilla) bouryesnaultae Lerner, Carraro & van Soest, 2006 Reptadeonella sp. Rhynchozoon sp.

129

99 28 55 57

Scrupocellaria sp. Smittinidae sp.1 Smittinidae sp.2

Sphenotrochus auritus Pourtalès, 1874

110

Spinolambrus pourtalesii (Stimpson, 1871)

27

Steginoporella connexa Harmer, 1900

70 51 52 71 56 84 72

111 30 85 89

Spinosipella agnes Simone & Cunha, 2008

Stenocionops spinosissimus (de Sassure, 1857) Stylocidaris lineata Mortensen, 1910 Stylopoma sp.

Synalpheus brooksi Coutiére, 1909

Thylacodes aff. decussatus (Gmelin, 1791) Timea sp.

Topsentia sp.

Tretocidaris bartletti (A, Agassiz, 1880) Tribrachium schmidtii Weltner, 1882 Turritella hookeri Reeve, 1849

81 86 86 40 75 58 82 73

105 87 70 48 28 33

105 27 47

Author list 130

Author list Introduction to the catalogue General features of rhodolith beds Sampling methods and identified taxa Frederico Tapajós de Souza Tâmega. Instituto Biodiversidade Marinha, Avenida Ayrton Senna 250, Sala 203, Barra da Tijuca, CEP 22.793000, Rio de Janeiro, RJ, Brazil. E-mail: [email protected]

Marcia Abreu de Oliveira Figueiredo. Instituto Biodiversidade Marinha, Avenida Ayrton Senna 250, Sala 203, Barra da Tijuca, CEP 22.793-

000, Rio de Janeiro, RJ, Brazil.; Instituto de Pesquisa Jardim Botânico do Rio de Janeiro, Rua Pacheco Leão 915, Jardim Botânico, CEP 22.460-

030, Rio de Janeiro, RJ, Brazil. E-mail: [email protected]

Characterization of the Peregrino Oil Field

Ricardo Coutinho. Instituto de Estudos do Mar Almirante Paulo Moreira, Departamento de Oceanografia, Rua Kioto 253, CEP 28.930-000, Arraial do Cabo, RJ, Brazil. E-mail: [email protected]

Fernanda Siviero. Instituto de Estudos do Mar Almirante Paulo Moreira, Departamento de Oceanografia, Rua Kioto 253, CEP 28.930-000,

Arraial do Cabo, RJ, Brazil. E-mail: [email protected]

Phylum Rhodophyta

Frederico Tapajós de Souza Tâmega. Instituto Biodiversidade Marinha, Avenida Ayrton Senna 250, Sala 203, Barra da Tijuca, CEP 22.793000, Rio de Janeiro, RJ, Brazil. E-mail: [email protected]

Alexandre Bigio Villas-Boas. Instituto de Pesquisa Jardim Botânico do Rio de Janeiro, Rua Pacheco Leão 915, Jardim Botânico, CEP 22.460-

030, Rio de Janeiro, RJ, Brazil. E-mail: [email protected]

Marcia Abreu de Oliveira Figueiredo. Instituto Biodiversidade Marinha, Avenida Ayrton Senna 250, Sala 203, Barra da Tijuca, CEP 22.793-

000, Rio de Janeiro, RJ, Brazil; Instituto de Pesquisa Jardim Botânico do Rio de Janeiro, Rua Pacheco Leão 915, Jardim Botânico, CEP 22.460131

030, Rio de Janeiro, RJ, Brazil. E-mail: [email protected]

Phylum Porifera Fernando Coreixas de Moraes. Universidade Federal do Rio de Janeiro – UFRJ, Museu Nacional, Departamento de Inverterbrados,

Laboratório de Poríferos, Quinta da Boa Vista s/n, São Cristóvão, CEP 20940-040, Rio de Janeiro, RJ, Brazil. E-mail: [email protected] Phylum Annelida, Class Polychaeta

Paulo Cesar Paiva. Universidade Federal do Rio de Janeiro, Instituto de Biologia, Departamento de Zoologia, Laboratório de Polychaeta, CCS - Bloco A, Sala A0-108, Ilha do Fundão, CEP 21941-590, Rio de Janeiro, RJ, Brazil. E-mail: [email protected]

Raquel Meihoub Berlandi. Universidade Federal do Rio de Janeiro, Instituto de Biologia, Departamento de Zoologia, Laboratório de Polychaeta, CCS - Bloco A, Sala A0-108, Ilha do Fundão, CEP 21941-590, Rio de Janeiro, RJ, Brazil. E-mail: [email protected]

Ana Claudia dos Santos Brasil. Universidade Federal Rural do Rio de Janeiro, Instituto de Biologia, Departamento de Biologia Animal, Laboratório de Annelida Polychaeta, BR 465 Km 7, Seropedica, CEP 23.851-970RJ, Brazil. E-mail: [email protected]

Phylum Arthropoda, Subphylum Crustacea

Cristiana Silveira Serejo. Universidade Federal do Rio de Janeiro – UFRJ, Museu Nacional, Departamento de Inverterbrados, Quinta da Boa Vista s/n, São Cristóvão, CEP 20.940-040, Rio de Janeiro, RJ, Brazil. E-mail: [email protected]

Irene Azevedo Cardoso. Universidade Federal do Rio de Janeiro – UFRJ, Museu Nacional, Departamento de Inverterbrados, Quinta da Boa

Vista s/n, São Cristóvão, CEP 20.940-040, Rio de Janeiro, RJ, Brazil. E-mail: [email protected] Phylum Mollusca, Bryozoa and Brachiopoda

Paula Spotorno de Oliveira. Laboratório de Malacologia, Museu Oceanográfico “Prof. Eliézer de Carvalho Rios” (MORG), Universidade

Federal do Rio Grande Rio Grande – FURG, Rua Heitor Perdigão n° 10, Centro, CEP 96.200-580, Rio Grande, RS, Brazil. E-mail:

[email protected]

132

Phylum Echinodermata Carlos Renato Rezende Ventura. Universidade Federal do Rio de Janeiro – UFRJ, Museu Nacional, Departamento de Inverterbrados, Quinta

da Boa Vista s/n, São Cristóvão, CEP 20.940-040, Rio de Janeiro, RJ, Brazil. E-mail: [email protected] Phylum Chordata, Subphylum Tunicata (Urochordata), Class Ascidiacea

Luciana Vieira Granthom Costa. Universidade Federal do Rio de Janeiro – UFRJ, Museu Nacional, Departamento de Inverterbrados,

Laboratório de Poríferos, Quinta da Boa Vista s/n, São Cristóvão, CEP 20940-040, Rio de Janeiro, RJ, Brazil. E-mail: [email protected]

Frederico Tapajós de Souza Tâmega. Instituto Biodiversidade Marinha, Avenida Ayrton Senna 250, Sala 203, Barra da Tijuca, CEP 22.793-

000, Rio de Janeiro, RJ, Brazil. E-mail: [email protected]

133

Tables 134

Sampling stations 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

135

Table 1: Sampling data from study sites of PEMCA Project. Date of sampling

Depth

03/06/2010 03/06/2010 02/06/2010 06/11/2010 07/04/2011 03/06/2010 07/04/2011 03/06/2010 03/06/2010 03/06/2010 02/06/2010 03/06/2010 05/04/2011 05/04/2011

101m 103m 95m 97m 100m 98m 103m 100m 100m 101m 94m 102m 100m 105m

06/04/2011 05/04/2011 05/11/2010 06/04/2011 05/11/2010 06/04/2011 05/11/2010

103m 100m 98m 100m 105m 100m 106m

06/04/2011

05/11/2010 6/04/2011 05/11/2010 04/11/2010 05/04/2011 04/11/2010 07/04/2011 04/11/2010 07/04/2011 04/11/2010 07/04/2011

100m

99m 100m 100m 103m 100m 103m 99m 100m 100m 101m 101m

Initial Time 13:35 14:43 16:30 11:45 15:15 7:16 16:20 9:00 10:50 15:45 13:00 12:30 8:50 12:27 10:00 10:50 13:26 13:53 13:12 8:34 15:25 16:33 17:20 10:55 14:45 15:17 08:30 18:00 15:30 16:15 11:40 10:05 15:00 12:54 16:30 11:03

Latitude

Longitude

Duration of trawling

Sampler

23º19'647"S 23º20'829"S

41º14'370"W 41º16'005"W

20 minutes 18 minutes

Dredge Dredge

23°18,1´S

041°15,9´W

20 minutes

23°18,5´S

041°17,0´W

23º18'039"S 23º17'776"S 23º20'704"S 23º17'767"S

41º15'570"W 41º14'218"W 41º16'556"W 41º17'743"W

23°19,7´S

041°14,4´W

23°19,0´S

041°14,0´W

23°19,45´S

041°15,425´W

23°19,725´S

041°16,125´W

23°19,9´S 23°20,0´S

23°20,175´S

041°15,2´W 041°14,925´W 041°15,9´W

23°20,625´S

041°15,753´W

23°20,425´S

041°16,6´W

23°20´S

041°16,85´W

23°20,9´S

041°16,35´W

23°20,725´S

041°17,3´W

23°20,25´S 23°21,2´S

041°17,55´W 041°17,05´W

20 minutes

Dredge and Van Veen

20 minutes 15 minutes 18 minutes 15 minutes

Dredge and Van Veen Dredge Dredge Dredge and Van Veen

20 minutes

Dredge and Van Veen

Dredge

20 minutes

Dredge and Van Veen

20 minutes 20 minutes

Dredge Dredge

20 minutes 20 minutes 20 minutes 20 minutes 20 minutes 20 minutes 20 minutes 20 minutes 20 minutes 20 minutes

Dredge Dredge Dredge Dredge Dredge Dredge Dredge Dredge Dredge Dredge

Table 2: List of Porifera taxa recorded at the Peregrino oil field. Taxon/study site

#3

Axinellidae sp.

01

Clathria sp.

01

Bubaris sp.

Desmacella sp. Dysidea sp.

#12

01

#14

#15

#16

01

01

Haliclona sp.

Ircinia strobilina

Petromica sp.

Protosuberites sp. 1 Protosuberites sp. 2

Raspailia (Raspaxilla) bouryesnaultae Timea sp. 1 Timea sp. 2

Topsentia sp.

01

01 01

Tribrachium schmidtii

01

01

01

01

01

01

02

01

01 01

01 01

01

01

#20

01

Eurypon sp.

Myxillina sp.

#18

01

Erylus sp.

Mycale sp.

#17

01 01

01 01 01

01 01

01

01

01

01

01

Table 3. List of Cnidaria taxa recorded at the Peregrino oil field.

Taxon/study site

#1

#2

#3

#5

#6

#8

#9

#14

#15

#16

#17

#18

#19

#20

#21

#22

Cladocora debilis

03

06

26

03

01

06

01

30

46

08

07

17

13

32

30

32

Coenocyathus parvulus Javania cailleti Nidalia sp.1 Nidalia sp.2

Sphenotrochus auritus

13 01

16

07 01

19

04

03

13 11

30

01 01

01

04

27

11

02

14 02

05

136

Taxon/study sites

Table 4. List of Molluscan taxa recorded at the Peregrino oil field. #1

#2

Amalda josecarlosi Arene bairdii

Calliostoma pulchrum Chlamys tehuelchus

#5

#6

01

01

#7

02

02

Cyphoma intermedium

02 12

01

02

01

#11

#12

#13

03

Fusinus frenguellii

04

Glycymeris pectinata

02

Ischnochiton marcusi 01

01

01

09

Limopsis janeiroensis

02

Lucapina sowerbii

#14

#15

01

01

01 01 06

06

01

01

03

01 13

02

01

Fenimorea sp.

Lima lima

#9

01

Conus clerii

Ischnochiton sp.

#8

01

Chaetopleura asperrima Compsodrillia cf. halliostrephis

#4

01

Brachytoma rioensis Calliostoma carcellesi

#3

03 01

01

01 02

01

01

01 02 01

01 01

02 02

03

03

02

08

01

03

09 03

Pleurotomella aguayoi Plicatula gibbosa

01

Pteria hirundo Prunum fulminatum

07 05

01 01

02

Spinosipella agnes

03

01

02

Thylacodes aff. decussatus

10

08

16 01

04

06

01

01

06 01

04 01 08

08

03 01

01

06

05

04

14

02 01

01

02

02

01

04

05

02

05

13

01 01

03

02 25 01

01 02 01

02 01 21

#21

#22

01 01

08

01

02

03

#20

01

01

03

#19

01

01

01

01

01

Prunum martini

137

03

07

#18

01

01 03

01 02

02

06

02

Paradentalium disparile

Turritella hookeri

09

01

#17

03

Odontocymbiola macaensis

Siratus formosus

01 01

Metula agassizi Octopus sp.

01

#16

01

04

01

04

04

01

05

04

03

01

03

03

01 01 01 02

02 01

01

01

01

01

08

03

10

04

16

06

12

03

01 19

01

01

Table 5. List of Polychaeta taxa recorded at the Peregrino oil field.

Taxon/study sites

#1

#2

#3

#8

#9

#11

#12

#14

#15

#16

#17

#19

#20

Aphrogenia alba

Ceratonereis hircinicola Euarche tubifex Eunice stigmatura Glycera brevicirris Pelogenia kinbergi

01

02 01

01 03

01 03

01 01

01 01

01 01

01 01

01

01

01

01

01

Table 6. List of Crustacea taxa recorded at the Peregrino oil field.

Taxon/study sites

#1

#2

Accalathura crenulata

01

Allactaea lithostrata Alpheus pouang Dardanus insignis Euprognatha rastellifera Garthiope spinipes

#3

01

01

05

Mesopenaeus tropicalis Moreiradromia antillensis Munida irrasa Palicus faxoni Palicus sicus Processa guyanae

01

01 17

#7 01 01 01

06 01

#8

02

#9 01 03

01

#10 01 01

#14

#15

01

03

01

01 01

11

01 04 01 12

Pseudopaguristes calliopsis Pylopagurus discoidalis Spinolambrus pourtalesii Stenocionops spinosissimus Synalpheus brooksi

04

01

02

01 03 01

#16 01 03

#17 01

01 01

#18

#19

03 01

49 01

#20

#21

01

01

01

01

01

01

#21

01

04

01 01 01

03

01

01

138

Taxon/study sites

#1

Ascophora sp.

Table 7. List of Bryozoan taxa recorded at the Peregrino oil field. #2

Amastigia aviculifera

#4

#5

#6

#7

#8

01

Arachnopusia haywardi

01

Beania sp.

Calloporidae sp.

#3

Crisia sp.

Malakosaria atlantica

01

05 02 01

Marcusadorea corderoi Puellina sp.

Reptadeonella sp. Rhynchozoon sp. Rogicka joannae

01

01

Scrupocellaria sp. Smittinidae sp.1 Smittinidae sp.2

Steginoporella connexa Stylopoma sp.

01

Taxon/study site

02 01

02

02

03 03

01

01 02 13

02

18

01 01 02

02 01

02 02

01

01

01

04 03

01 01

02 02 08

01

06

#14

#15

01

02

03

01

02

01

02

11

06

03

11

07

02 01

#12

01

01

07

05

34

01 01 02

05 18

#16

#17

#18

#19 01 01

02

06

01 02

03 06

#20

#21

01

01

10

01

05

01 01

01 01

05

01

03

04

02

16

Table 8. Brachiopoda taxon recorded at the Peregrino oil field.

Argyrotheca cf. cuneata

139

05

04 02

#11

01

01

Mollia elongata

#10

01

Cellaria subtropicalis Celleporaria albirostris

#9

05

#22

02 02

01 02 02

04 18

01

03 13

#1

#3

#5

#6

#7

#8

#9

#11

#13

#14

#15

#16

#17

#18

#19

#20

#21

#22

14

15

17

19

17

22

05

05

01

81

41

06

08

17

27

07

13

29

01 03

Table 9. List of Echinodermata taxa recorded at the Peregrino oil field.

Taxon/study sites

#1

#2

#3

Allostichaster capensis

01

02

02

Amphioplus albidus Amphipholis squamata

#4

#7

#8

05

Amphiura muelleri Cidaris abyssicola Clypeaster subdepressus Comasteridae

Echinaster (Othilia) brasiliensis Eucidaris tribuloides

01

Holothuria (Vaneyothuria) lentiginosa Luidia ludwigi scotti

Marthasterias glacialis

01

Ophioderma divae Ophiomyxa flaccida

03

02

01 02 01

03 01

01

02

01

Pawsonaster parvus Stylocidaris lineata Tretocidaris bartletti

01

02 2

01

#14

#15

#16

01

01

01

01

01 02 02

02 01

01

02

01

02 02

01

01

02

01

06 08

#11

01

01

Ophioplax clarimundae Ophiothrix angulata

#10

03

Amphiura flexuosa Amphiura kinbergi

#9

1

02

01

03

02

02

03

03

05 5

05 03

05 01

01

01

#20

01

02 02

2

1

07

#21

#22

01

01 01 01

01

01 01 01

01

01

05

02

04

02

05 03

#19 01

01 02

01

#18

01

03

01

01

#17

03 17 02 2

4

06 04

03 05 03 01

01 02

01 01

Table 10. List of Ascidiacea taxa recorded at the Peregrino oil field. Taxon/study site

#3

#4

#14

#15

#19

#20

#21

#22

Polycarpa sp.

03

01

01

01

02

03

03

18

Pyura sp.

01

02

02

140