Jul 9, 2015 - (http://www.jim.or.jp/journal/e/pdf3/44/05/973.pdf). 46. 46. .... Hasani A, Lapovok R, Tóth LS, Molinari A (2008) Deformation field variations in.
07.09.2015
CFD 2D simulation of viscous flow during ECAE through a rectangular die with parallel slants - Springer
ORIGINAL ART ICLE The International Journal of Advanced Manufacturing Technology September 2014, Volume 7 4, Issue 5, pp 943-962
CFD 2D simulation of viscous flow during ECAE through a rectangular die with parallel slants Alexander V. Perig , Nikolai N. Golodenko
Abstract The objectiv e of this article is the description of adv antages of a slanted die geometry , used for equal channel angular extrusion (ECAE) of materials. The prime nov elty statement of the present research is an experimental flow pattern, obtained with circular gridlines and a numerical solution of a v iscous flow 2D problem for the slanted die, deriv ed with Nav ier–Stokes equations in curl transfer form. The geometry of the slanted die was chosen for the case of a rectangular die with channel intersection angle 2θ = 90° and with parallel slants in the channel intersection zone, where the slant width is equal to the inlet and outlet channel widths. Computational material flow kinematics, macroscopic rotation patterns, material flow v elocity fields, tangential stresses, and punching pressure fields during v iscous materials ECAE hav e been deriv ed with a numerical finite-difference solution of the curl transfer equation for 2D v iscous flow of incompressible continuum during ECAE. Theoretical results hav e been v erified with phy sical simulation experiments by the introduction of initial circular gridlines. Both theoretical and computational results confirm the suitability and technological adv antages of dies with parallel slants ov er the known Segal and Iwahashi dies for ECAE, as slanted conv ergent dies enable the reduction of the dead zone size and prov ide the minimization of dangerous macroscopic rotation during ECAE processing of both metal and poly mer materials.
Keywords
http://link.springer.com/article/10.1007/s00170-014-5827-2
1/22
07.09.2015
CFD 2D simulation of viscous flow during ECAE through a rectangular die with parallel slants - Springer
ECAE Die Parallel slants Curl transfer equation Finite difference CFD 2D Phy sical simulation Circular gridlines Loading related content...
References 1. 1. Abrinia K, Mirnia MJ (2010) A new generalized upper-bound solution for the ECAE process. Int J Adv Manuf Technol 46(1–4):411–421. doi:10. 1007/ s 00170-009-2103-y (http://dx.doi.org/10.1007/s00170-009-2103-y) 2. 2. Ajiboye JS (2009) Upper bound analysis of extrusion from square billets through circular and square/rectangular dies. J Mech Sci Technol 23(2):461–474. doi:10. 1007/ s 12206-008-1127-9 (http://dx.doi.org/10.1007/s12206-008-1127-9) 3. 3. Alkorta J, Sevillano JG (2003) A comparison of FEM and upper-bound type analysis of equal-channel angular pressing (ECAP). J Mater Process Tech 141(3):313–318. doi:10. 1016/ S 0924-0136(03)00282-6 (http://dx.doi.org/10.1016/S0924-0136(03)00282-6) 4. 4. Altan BS, Purcek G, Miskioglu I (2005) An upper-bound analysis for equal-channel angular extrusion. J Mater Process Tech 168(1):137–146. doi:10. 1016/ j. jmatprotec. 2004. 11. 010 (http://dx.doi.org/10.1016/j.jmatprotec.2004.11.010) 5. 5. Aour B, Zaïri F, Gloaguen JM, Naït-Abdelaziz M, Lefebvre JM (2006) Numerical investigation on equal channel angular extrusion process of polymers. Comp Mater Sci 37(4):491–506. doi:10. 1016/ j. c ommatsci. 2005. 11. 008 (http://dx.doi.org/10.1016/j.commatsci.2005.11.008) 6. 6. Aour B, Zaïri F, Naït-Abdelaziz M, Gloaguen JM, Rahmani O, Lefebvre JM (2008) A computational study of die geometry and processing conditions effects on equal channel angular extrusion of a polymer. Int J Mech Sci 50(3):589–602. doi:10. 1016/ j. ijmecsci. 2007. 07. 012 (http://dx.doi.org/10.1016/j.ijmecsci.2007.07.012) 7. 7. Aour B, Zaïri F, Gloaguen JM, Lefebvre JM, Naït-Abdelaziz M (2009) Finite element analysis of plastic strain distribution in multipass ECAE process of high density polyethylene. J Manuf Sci Eng 131(3):031016–1–031016–11. doi:10. 1115/ 1. 3139217 (http://dx.doi.org/10.1115/1.3139217) 8. 8. Aour B, Zaïri F, Boulahia R, Naït-Abdelaziz M, Gloaguen JM, Lefebvre JM (2009) Experimental and numerical study of ECAE deformation of polyolefins. Comp Mater Sci 45:646–652 9. 9. Arruffat-Massion R, Tóth LS, Mathieu J-P (2006) Modeling of deformation and texture development of copper in a 120° ECAE die. Scripta Mater 54(9):1667–1672. doi:10. 1016/ j. s criptamat. 2006. 01. 004 (http://dx.doi.org/10.1016/j.scriptamat.2006.01.004) 1 0. 1 0. Audoly B, Pomeau Y (2010) Elasticity and geometry: from hair curls to the nonlinear response of shells. Oxford University Press Inc., New York 11. 11. Azushima A, Kopp R, Korhonen A, Yang DY, Micari F, Lahoti GD, Groche P,
http://link.springer.com/article/10.1007/s00170-014-5827-2
2/22
07.09.2015
CFD 2D simulation of viscous flow during ECAE through a rectangular die with parallel slants - Springer
Yanagimoto J, Tsuji N, Rosochow ski A, Yanagida A (2008) Severe plastic deformation (SPD) processes for metals. CIRP Ann-Manuf Techn 57(2):716–735. doi:10. 1016/ j. c irp. 2008. 09. 005 (http://dx.doi.org/10.1016/j.cirp.2008.09.005) 12. 12. Babu BV (2004) Process plant simulation. Oxford University Press Inc., New Delhi 13. 13. Babuška IM, Whiteman JR, Strouboulis T (2011) Finite elements. An introduction to the method and error estimation. Oxford University Press Inc., New York 1 4. 1 4. Baglyuk GA, Maidanyuk AP, Shtern MB (2013) Simulation of the equal-channel angular extrusion of porous blanks using different deformation patterns. Pow der Metall Met C 51(9–10):503–508. doi:10. 1007/ s 11106-013-9461-6 (http://dx.doi.org/10.1007/s11106-013-9461-6) 15. 15. Balasundar I, Sudhakara Rao M, Raghu T (2009) Equal channel angular pressing die to extrude a variety of materials. Mater Design 30(4):1050–1059. doi:10. 1016/ j. matdes. 2008. 06. 057 (http://dx.doi.org/10.1016/j.matdes.2008.06.057) 1 6. 1 6. Balluffi RW, Allen SM, Carter WC (2005) Kinetics of materials. John Wiley & Sons, Inc., Hoboken, New Jersey 17. 17. Beausir B, Suw as S, Tóth LS, Neale KW, Fundenberger J-J (2008) Analysis of texture evolution in magnesium during equal channel angular extrusion. Acta Mater 56(2):200–214. doi:10. 1016/ j. a ctamat. 2007. 09. 032 (http://dx.doi.org/10.1016/j.actamat.2007.09.032) 1 8. 1 8. Beloshenko VA, Voznyak AV, Voznyak YV (2009) Solid-phase extrusion of polyamide under simple shear. Polym Sci Ser A 51(8):916–922. doi:10. 1134/ S0965545X0908011 2 (http://dx.doi.org/10.1134/S0965545X09080112) 1 9. 1 9. Beloshenko VA, Varyukhin VN, Voznyak AV, Yu V (2010) Equal-channel multiangular extrusion of semicrystalline polymers. Polym Eng Sci 50(5):1000– 1006. doi:10. 1002/ p en. 21613 (http://dx.doi.org/10.1002/pen.21613) 2 0. 2 0. Beloshenko VA, Voznyak AV, Voznyak YV (2011) Modification of polyamide-6 structure by combined method of solid-phase extrusion. High Pressure Res 31:153– 157. doi:10. 1080/ 08957959. 2010. 534989 (http://dx.doi.org/10.1080/08957959.2010.534989) 21. 21. Beloshenko, V.A., Voznyak, Yu.V. (2011) Peculiarities of Shape Recovery in Polymer Composites w ith Compacting Filler. Smart Mater. Res. 2011, Article ID 912436, 11 pp. Doi:10. 1155/ 2011/ 912436 (http://dx.doi.org/10.1155/2011/912436) . 22. 22. Beloshenko V, Spuskanyuk V (2012) ECAE methods of structure modification of materials. Int J Mater & Chem 2(4):145–150. doi:10. 5923/ j. ijmc. 20120204. 06 (http://dx.doi.org/10.5923/j.ijmc.20120204.06) 23. 23. Beloshenko VA, Voznyak AV, Voznyak YV, Dudarenko GV (2013) Equal-channel multiple angular extrusion of polyethylene. J Appl Polym Sci 127(2):1377–1386. doi:10. 1002/ a pp. 37993 (http://dx.doi.org/10.1002/app.37993) 24. 24. Beloshenko VA, Voznyak, Yu V (2013) Microhardness of oriented amorphouscrystalline polymers. Mater Sci 49(1):110–116. doi:10. 1007/ s 11003-013-9589-z (http://dx.doi.org/10.1007/s11003-013-9589-z)
http://link.springer.com/article/10.1007/s00170-014-5827-2
3/22
07.09.2015
CFD 2D simulation of viscous flow during ECAE through a rectangular die with parallel slants - Springer
25. 25. Beloshenko VA, Voznyak, Yu V, Prokhorenko SV (2013) “Invar effect” in extruded crystallizable polymers. Dokl Phys Chem 449(2):88–90. doi:10. 1134/ S001250161304009 X (http://dx.doi.org/10.1134/S001250161304009X) 26. 26. Beloshenko VA, Voznyak, Yu V, Reshidova, Yu I, Naït-Abdelaziz M, Zairi F (2013) Equal-channel angular extrusion of polymers. J Polym Res 20(12):1–13. doi:10. 1007/ s 10965-013-0322-2 (http://dx.doi.org/10.1007/s10965-013-0322-2) 27 . 27 . Beyerlein IJ, Tomé CN (2004) Analytical modeling of material flow in equal channel angular extrusion (ECAE). Mat Sci Eng A-Struct 380(1–2):171–190. doi:10. 1016/ j. msea. 2004. 03. 063 (http://dx.doi.org/10.1016/j.msea.2004.03.063) 2 8. 2 8. Beygelzimer, Ya E (2005) Grain refinement versus voids accumulation during severe plastic deformations of polycrystals: mathematical simulation. Mech Mater 37(7):753–767. doi:10. 1016/ j. m echmat. 2004. 07. 006 (http://dx.doi.org/10.1016/j.mechmat.2004.07.006) 29. 29. Beygelzimer, Ya E, Prokof’eva OV, Varyukhin VN (2006) Structural changes in metals subjected to direct or tw ist extrusion: mathematical simulation. Russ Metall 1:25–32. doi:10. 1134/ S 003602950601005 8 (http://dx.doi.org/10.1134/S0036029506010058) 3 0. 3 0. Bird RB, Stew art WE, Lightfoot EN (2002) Transport phenomena. John Wiley & Sons, Inc., Hoboken 31. 31. Blau PJ (2009) Friction science and technology: from concepts to applications. CRC Press, Boca Raton 32. 32. Boulahia R, Gloaguen J-M, Zaïri F, Naït-Abdelaziz M, Seguela R, Boukharouba T, Lefebvre JM (2009) Deformation behaviour and mechanical properties of polypropylene processed by equal channel angular extrusion: effects of backpressure and extrusion velocity. Polymer 50(23):5508–5517. doi:10. 1016/ j. p olymer. 2009. 09. 050 (http://dx.doi.org/10.1016/j.polymer.2009.09.050) 33. 33. Boulahia R, Boukharouba T, Gloaguen J-M (2013)The use of the DIC method to involve the strain instability occurred in an undergoing high shear during the ECAE process. In: Proceedings of the Fifth International Conference Design and Modeling of Mechanical Systems, CMSM’2013, Djerba, Tunisia, pp. 567–574. Springer Berlin. Doi:10. 1007/ 978-3-642-37143-1_ 68 (http://dx.doi.org/10.1007/978-3-642-371431_68) 34. 34. Capitelli M, Bruno D, Laricchiuta A (2013) Fundamental aspects of plasma chemical physics. Transport. Springer, Dordrecht, The Netherlands 35. 35. Chen, Yu, Leung AYT (1998) Bifurcation and chaos in engineering. Springer-Verlag, London 36. 36. Clayton JD (2011) Nonlinear mechanics of crystals. Springer, Dordrecht 37 . 37 . Creasy TS, Kang YS (2004) Fiber orientation during equal channel angular extrusion of short fiber reinforced thermoplastics. J Thermoplast Compos 17:205– 227. doi:10. 1177/ 0892705704035403 (http://dx.doi.org/10.1177/0892705704035403) 3 8. 3 8.
http://link.springer.com/article/10.1007/s00170-014-5827-2
4/22
07.09.2015
CFD 2D simulation of viscous flow during ECAE through a rectangular die with parallel slants - Springer
Chambon R, Collin R (2004) Hydro mechanical modelling of geotechnical problems using local second gradient method. In: Vermeer P, Ehlers W, Herrmann HJ, Ramm E (eds) Modelling of cohesive-frictional materials. A.A. Balkema Publishers, Leiden, The Netherlands, pp 209–220 39. 39. Chen W-F, Han D-J (2007) Plasticity for structural engineering. J. Ross Publishing, Inc., Fort Lauderdale 4 0. 4 0. Charit I, Mishra RS (2009) Constitutive models for superplastic flow . In: Furrer, D.U., Semiatin, S.L. (eds) ASM handbook, Volume 22A: Fundamentals of modeling for metals processing. ASM International 41 . 41 . Chau KT (2013) Analytic methods in geomechanics. CRC Press, Boka Raton 42. 42. Chijiw a K, Hatamura Y, Hasegaw a N (1981) Characteristics of plasticine used in the simulation of slab in rolling and continuous casting. T Iron Steel I Jpn 21(3):178–186 43. 43. Chorin, A.J. (1994) Vorticity and Turbulence. Springer-Verlag New York, Inc. 44. 44. Chou T-W (1992) Microstructural design of fiber composites. Cambridge University Press, Cambridge 45. 45. Chung SW, Kim W-J, Kohzu M, Higashi K (2003) The effect of ram speed on mechanical and thermal properties in ECAE process simulation. Mater Trans 44(5):973–980, http:// w w w . jim. o r. jp/ journal/ e / p df3/ 4 4/ 05/ 973. p df (http://w w w .jim.or.jp/journal/e/pdf3/44/05/973.pdf) 46. 46. Comaneci R, Zaharia L, Chelariu R (2012) Damaging prediction of difficult-to-w ork aluminum alloys during equal channel angular pressing. J Mater Eng Perform 21(3):287–297. doi:10. 1007/ s 11665-011-9904-5 (http://dx.doi.org/10.1007/s11665011-9904-5) 47 . 47 . Coolen ACC, Kühn R, Sollich P (2005) Theory of neural information processing systems. Oxford University Press, New YorkMATH (http://w w w .emis.de/MATHitem?$1117.68064) 48. 48. Cristescu ND (2007) Dynamic plasticity. World Scientific Publishing Co. Pte. Ltd., SingaporeMATH (http://w w w .emis.de/MATH-item?$1120.74001) 49. 49. Currey JD (2002) Bones: structure and mechanics. Princeton University Press, Princeton, New Jersey 5 0. 5 0. Cushing JM, Costantino RF, Dennis B, Desharnais RA, Henson SM (2003) Chaos in ecology, Experimental nonlinear dynamics. Academic Press, Elsevier Science (USA), San Diego 51. 51. Daniel IM, Ishai O (2006) Engineering mechanics of composite materials. Oxford University Press Inc., New York 52. 52. Davidson PA (2004) Turbulence. An introduction for scientists and engineers. Oxford University Press Inc., New YorkMATH (http://w w w .emis.de/MATH-item? $1061.76001)
http://link.springer.com/article/10.1007/s00170-014-5827-2
5/22
07.09.2015
CFD 2D simulation of viscous flow during ECAE through a rectangular die with parallel slants - Springer
53. 53. De Cogan D, De Cogan A (1997) Applied numerical modelling for engineers. Oxford University Press Inc., New YorkMATH (http://w w w .emis.de/MATH-item? $0881.65001) 54. 54. Deen WM (2013) Analysis of transport phenomena. Oxford University Press, New York 55. 55. Deng WJ, Xia W, Li C, Tang Y (2010) Ultrafine grained material produced by machining. Mater Manuf Process 25(6):355–359. doi:10. 1080/ 1042691090274802 4 (http://dx.doi.org/10.1080/10426910902748024) 56. 56. Deng, WJ, Lin P, Xie ZC, Li Q (2012) Analysis of large-strain extrusion machining w ith different chip compression ratios. J. Nanomater. 2012. Article ID 851753: 12 pp. Doi:10. 1155/ 2012/ 851753 (http://dx.doi.org/10.1155/2012/851753) 57. 57. Ditlevsen PD (2004) Turbulence and climate dynamics. J & R Frydenberg A/S, Copenhagen 5 8. 5 8. Djavanroodi F, Ebrahimi M (2010) Effect of die channel angle, friction and back pressure in the equal channel angular pressing using 3D finite element simulation. Mat Sci Eng A-Struct 527(4–5):1230–1235. doi:10. 1016/ j. m sea. 2009. 09. 052 (http://dx.doi.org/10.1016/j.msea.2009.09.052) 59. 59. Djavanroodi F, Omranpour B, Sedighi M (2013) Artificial neural netw ork modeling of ECAP process. Mater Manuf Process 28(3):276–281. doi:10. 1080/ 10426914. 2012. 667889 (http://dx.doi.org/10.1080/10426914.2012.667889) 6 0. 6 0. Doering CR, Gibbon JD (1995) Applied analysis of the Navier–Stokes equations. Cambridge University Press, New YorkMATH (http://w w w .emis.de/MATH-item? $0838.76016) 61 . 61 . Dow ling NE (2007) Mechanical behavior of materials. Engineering methods for deformation, fracture, and fatigue. Pearson Prentice Hall, Upper Saddle River 62. 62. Dvorkin EN, Goldschmit MB (2006) Nonlinear continua. Springer-Verlag, Berlin 63. 63. Eck C, Garcke H, Knabner P (2011) Mathematische Modellierung. Springer-Verlag, Berlin 64. 64. Eivani AR, Karimi Taheri A (2007) An upper bound solution of ECAE process w ith outer curved corner. J Mater Process Tech 182(1–3):555–563. doi:10. 1016/ j. jmatprotec. 2006. 09. 021 (http://dx.doi.org/10.1016/j.jmatprotec.2006.09.021) 65. 65. Eivani AR, Karimi Taheri A (2008) The effect of dead metal zone formation on strain and extrusion force during equal channel angular extrusion. Comp Mater Sci 42(1):14–20. doi:10. 1016/ j. c ommatsci. 2007. 06. 001 (http://dx.doi.org/10.1016/j.commatsci.2007.06.001) 66. 66. Elman H, Silvester D, Wathen A (2005) Finite elements and fast iterative solvers: w ith applications in incompressible fluid dynamics. Oxford University Press, New York 67 . 67 . Eriksson K, Estep D, Hansbo P, Johnson C (2008) Computational differential
http://link.springer.com/article/10.1007/s00170-014-5827-2
6/22
07.09.2015
CFD 2D simulation of viscous flow during ECAE through a rectangular die with parallel slants - Springer
equations. Studentlitteratur, Holmbergs i Malmö AB, Sw eden 68. 68. Estrin Y, Vinogradov A (2013) Extreme grain refinement by severe plastic deformation: a w ealth of challenging science. Acta Mater 61(3):782–817. doi:10. 1016/ j. a ctamat. 2012. 10. 038 (http://dx.doi.org/10.1016/j.actamat.2012.10.038) 69. 69. Estrin Y, Kim H-E, Lapovok R, Ng HP, Jo J-H (2013) Mechanical strength and biocompatibility of ultrafine-grained commercial purity titanium. Biomed. Res. Int. 2013. Article ID 914764, 6 pp. Doi:10. 1155/ 2013/ 914764 (http://dx.doi.org/10.1155/2013/914764) . 7 0. 7 0. Falconer K (2003) Fractal geometry: mathematical foundations and applications. John Wiley & Sons Ltd, The Atrium 71. 71. Faraji G, Mashhadi MM, Joo S-H, Kim HS (2012) The role of friction in tubular channel angular pressing. Rev Adv Mater Sci 31(1):12–18, http:// w w w . ipme. ru/ ejournals/ RAMS/ no_ 13112/ 03_ 13112_ faraji. p df (http://w w w .ipme.ru/ejournals/RAMS/no_13112/03_13112_faraji.pdf) 7 2. 7 2. Faraji G, Abrinia K, Mashhadi M, Hamdi M (2013) An upper-bound analysis for frictionless TCAP process. Arch Appl Mech 83(4):483–493. doi:10. 1007/ s 00419-0120697-2 (http://dx.doi.org/10.1007/s00419-012-0697-2) MATH (http://w w w .emis.de/MATH-item?$1293.74033) 7 3. 7 3. Farè S, Lecis N, Vedani M (2011) Aging behaviour of Al–Mg–Si alloys subjected to severe plastic deformation by ECAP and cold asymmetric rolling. J. Metall. 2011. Article ID 959643: 8 pp. Doi:10. 1155/ 2011/ 959643 (http://dx.doi.org/10.1155/2011/959643) 7 4. 7 4. Ferreira AJM (2009) Matlab codes for finite element analysis. Solids and Structures. Springer, New York 75. 75. Fransson J (2010) Non-equilibrium nano-physics: a many-body approach. Springer, Dordrecht 7 6. 7 6. Fujimoto M (2013) Thermodynamics of crystalline states. Springer, New York 77. 77. Garstecki A, Glema A, Łodygow ski T Sensitivity of plastic strain localization zones to boundary and initial conditions. Comput. Mech. 30 (2): 164–169. Doi:10. 1007/ s00466-002-0376-1 (http://dx.doi.org/10.1007/s00466-002-0376-1) 7 8. 7 8. Gershenfeld N (1999) The nature of mathematical modeling. Cambridge University Press, CambridgeMATH (http://w w w .emis.de/MATH-item?$0905.00015) 7 9. 7 9. Ghorbel E (2008) A viscoplastic constitutive model for polymeric materials. Int J Plasticity 24(11):2032–2058. doi:10. 1016/ j. ijplas. 2008. 01. 003 (http://dx.doi.org/10.1016/j.ijplas.2008.01.003) MATH (http://w w w .emis.de/MATH-item?$1148.74010) 8 0. 8 0. Gidaspow D (1994) Multiphase flow and fluidization: continuum and kinetic theory descriptions w ith applications. Academic Press Inc., San Diego, CAMATH (http://w w w .emis.de/MATH-item?$0789.76001) 81 . 81 . Goodw in JW, Hughes RW (2008) Rheology for chemists. An introduction. RSC
http://link.springer.com/article/10.1007/s00170-014-5827-2
7/22
07.09.2015
CFD 2D simulation of viscous flow during ECAE through a rectangular die with parallel slants - Springer
Publishing, Cambridge 82 . 82 . Gross D, Seelig Th (2007) Bruchmechanik. Mit einer Einführung in die Mikromechanik. Springer, Berlin 83 . 83 . Haberman R (2004) Applied partial differential equations: w ith Fourier series and boundary value problems. Pearson Education, Inc., Upper Saddle River 84. 84. Haghighi RD, Jahromi AJ, Jahromi BE (2012) Simulation of aluminum pow der in tube compaction using equal channel angular extrusion. J Mater Eng Perform 21(2):143–152. doi:10. 1007/ s 11665-011-9896-1 (http://dx.doi.org/10.1007/s11665-0119896-1) 85 . 85 . Hallberg H, Wallin M, Ristinmaa M (2010) Modeling of continuous dynamic recrystallization in commercial-purity aluminum. Mat Sci Eng A-Struct 527(4– 5):1126–1134. doi:10. 1016/ j. m sea. 2009. 09. 043 (http://dx.doi.org/10.1016/j.msea.2009.09.043) 86. 86. Han WZ, Zhang ZF, Wu SD, Li SX (2008) Investigation on the geometrical aspect of deformation during equal-channel angular pressing by in-situ physical modeling experiments. Mat Sci Eng A-Struct 476(1–2):224–229. doi:10. 1016/ j. m sea. 2007. 04. 114 (http://dx.doi.org/10.1016/j.msea.2007.04.114) 87 . 87 . Hasani A, Lapovok R, Tóth LS, Molinari A (2008) Deformation field variations in equal channel angular extrusion due to back pressure. Scripta Mater 58(9):771– 774. doi:10. 1016/ j. s criptamat. 2007. 12. 018 (http://dx.doi.org/10.1016/j.scriptamat.2007.12.018) 88. 88. Hasani A, Tóth LS (2009) A fan-type flow -line model in equal channel angular extrusion. Scripta Mater 61(1):24–27. doi:10. 1016/ j. s criptamat. 2009. 02. 045 (http://dx.doi.org/10.1016/j.scriptamat.2009.02.045) 89. 89. Havner KS (2008) Finite plastic deformation of crystalline solids. Cambridge University Press, New York 9 0. 9 0. Hervouet J-M (2007) Hydrodynamics of free surface flow s. Modelling w ith the finite element method. John Wiley & Sons Ltd, The AtriumMATH (http://w w w .emis.de/MATH-item?$1131.76002) 91 . 91 . Hiermaier SJ (2010) Structures under crash and impact: continuum mechanics, Discretization and experimental characterization. Springer, New -York 92. 92. Hill R (1950) The mathematical theory of plasticity. Clarendon Press, OxfordMATH (http://w w w .emis.de/MATH-item?$0041.10802) 93. 93. Hiscock K (2005) Hydrogeology: principles and practice. Blackw ell Publishing, Oxford 94. 94. Hołyst R, Poniew ierski A (2012) Thermodynamics for chemists, physicists and engineers. Springer, Dordrecht 95. 95. Hu H-J (2013) The effects of process parameters on evolutions of thermodynamics and microstructures for composite extrusion of magnesium alloy. Adv. Mater. Sci. Eng. 2013. Article ID 259594: 9 pp. Doi:10. 1155/ 2013/ 259594
http://link.springer.com/article/10.1007/s00170-014-5827-2
8/22
07.09.2015
CFD 2D simulation of viscous flow during ECAE through a rectangular die with parallel slants - Springer
(http://dx.doi.org/10.1155/2013/259594) . 96. 96. Hutter K, Jöhnk K (2004) Continuum methods of physical modeling. SpringerVerlag, Berlin 97 . 97 . Ikeda K, Murota K (2010) Imperfect bifurcation in structures and materials. Engineering use of group-theoretic bifurcation theory. Springer-Verlag, New YorkMATH (http://w w w .emis.de/MATH-item?$1204.74003) 98. 98. Iw ahashi Y, Wang J, Horita Z, Nemoto M, Langton TG (1996) Principle of equalchannel angular pressing for the processing of ultra-fine grained materials. Scripta Mater 35(2):143–146. doi:10. 1016/ 1359-6462(96)00107-8 (http://dx.doi.org/10.1016/1359-6462(96)00107-8) 99. 99. Jaeger JC, Cook NGW, Zimmerman RW (2007) Fundamentals of rock mechanics. Blackw ell Publishing, Malden, USA 1 00. 1 00. Jog CS (2007) Foundations and applications of mechanics. Volume I: continuum mechanics. Alpha Science International Ltd, Oxford 1 01 . 1 01 . Jog CS (2007) Foundations and applications of mechanics. Volume II: fluid mechanics. Alpha Science International Ltd., Oxford 1 02 . 1 02 . Johnson W, Kudo H (1962) The mechanics of metal extrusion. Manchester University Press 1 03 . 1 03 . Joo S-H, Kim HS (2010) Comparison of deformation and microstructural evolution betw een equal channel angular pressing and forw ard extrusion using the dislocation cell mechanism-based finite element method. J Mater Sci 45(17):4705– 4710. doi:10. 1007/ s 10853-010-4465-9 (http://dx.doi.org/10.1007/s10853-010-44659) 1 04 . 1 04 . Kachanov LM (2004) Fundamentals of the theory of plasticity. Dover Publications, Inc, Mineola 1 05 . 1 05 . Kanno Y (2011) Nonsmooth mechanics and convex optimization. CRC Press, Boca RatonMATH (http://w w w .emis.de/MATH-item?$1226.90005) 1 06 . 1 06 . Karami P, Abrinia K, Saghafi B (2014) A new analytical definition of the dead material zone for forw ard extrusion of shaped sections. Meccanica 49(2):295–304. doi:10. 1007/ s 11012-013-9794-8 (http://dx.doi.org/10.1007/s11012-013-9794-8) MATH (http://w w w .emis.de/MATH-item?$06323918) 1 07 . 1 07 . Kattan PI, Voyiadjis GZ (2002) Damage mechanics w ith finite elements: practical applications w ith computer tools. Springer-Verlag, Berlin 1 08 . 1 08 . Kaushik A, Karaman I, Srinivasa AR (2009) Simulation of pow der compaction using equal channel angular extrusion at room temperature: comparison of tw o constitutive theories. Int J Struct Change Solid-Mech Appl 1(1):211–226, http:// journals. tdl. o rg/ ijscs/ index. p hp/ ijscs/ a rticle/ v iew / 2322/ 2007 (http://journals.tdl.org/ijscs/index.php/ijscs/article/view /2322/2007) 1 09 . 1 09 . Khoddam S, Farhoumand A, Hodgson PD (2011) Upper-bound analysis of axisymmetric forw ard spiral extrusion. Mech Mater 43(11):684–692. doi:10. 1016/ j.
http://link.springer.com/article/10.1007/s00170-014-5827-2
9/22
07.09.2015
CFD 2D simulation of viscous flow during ECAE through a rectangular die with parallel slants - Springer
mechmat. 2011. 07. 009 (http://dx.doi.org/10.1016/j.mechmat.2011.07.009) 1 1 0. 1 1 0. Kienzler R, Herrmann G (2000) Mechanics in material space w ith applications to defect and fracture mechanics. Springer-Verlag, BerlinMATH (http://w w w .emis.de/MATH-item?$0954.74001) 111. 111. Kjelstrup S, Bedeaux D (2008) Non-equilibrium thermodynamics of heterogeneous systems. World Scientific Publishing Co. Pte. Ltd., SingaporeMATH (http://w w w .emis.de/MATH-item?$1142.82002) 112. 112. Kobayashi S, Oh S-I, Altan T (1989) Metal forming and the finite-element method. Oxford University Press Inc., New York 113. 113. Kollo L, Kallip K, Gomon J-K, Kommel L (2012) Hot consolidation of aluminum and aluminum nano-MMC pow ders by equal channel angular pressing. Mater SciMedzg 18(3):234–237. doi:10. 5755/ j01. m s. 18. 3. 2431 (http://dx.doi.org/10.5755/j01.ms.18.3.2431) 1 1 4. 1 1 4. Korchef, A., Kahoul, A. (2013) Corrosion behavior of commercial aluminum alloy processed by equal channel angular pressing. Int. J. Corros. Article ID 983261: 11 pp. Doi:10. 1155/ 2013/ 983261 (http://dx.doi.org/10.1155/2013/983261) 115. 115. Kudo H (1960) Some analytical and experimental studies of axi-symmetric cold forging and extrusion-I. Int J Mech Sci 2(1–2):102–127. doi:10. 1016/ 00207403(60)90016-3 (http://dx.doi.org/10.1016/0020-7403(60)90016-3) 1 1 6. 1 1 6. Lapovok R, Tomus D, Muddle BC (2008) Low -temperature compaction of Ti–6Al– 4V pow der using equal channel angular extrusion w ith back pressure. Mat Sci Eng A-Struct 490(1–2):171–180. doi:10. 1016/ j. m sea. 2008. 01. 075 (http://dx.doi.org/10.1016/j.msea.2008.01.075) 117. 117. Laptev AM, Perig AV, Kakavas PA, Anyfantis KN, Erfort, Yu A. (2008) Upper bound analysis of equal channel angular extrusion. In: Research and Development in Mechanical Industry–2008 (8th International Conference RaDMI 2008, 14–17 Sept. 2008; Proceedings on CD-ROM; High Technical Mechanical School of Trstenik and High Technological School of Kruševac). Užice, Serbia, pp. 236–240. ISBN 97886-83803-24-8. http:// o rbit. d tu. d k/ fedora/ o bjects/ o rbit: 112332/ d atastreams/ file_ 9586477/ c ontent (http://orbit.dtu.dk/fedora/objects/orbit:112332/datastreams/file_9586477/content) 1 1 8. 1 1 8. Laptev AM, Perig AV, Vyal O, Yu (2014) Analysis of equal channel angular extrusion by upper bound method and rigid blocks model. Mater Res-Ibero-Am J, São Carlos. doi:10. 1590/ S 1516-1439201300500018 7 (http://dx.doi.org/10.1590/S1516-14392013005000187) 1 1 9. 1 1 9. Le KC, Kochmann DM (2009) A simple model for dynamic recrystallization during severe plastic deformation. Arch Appl Mech 79(6–7):579–586. doi:10. 1007/ s 00419008-0280-z (http://dx.doi.org/10.1007/s00419-008-0280-z) MATH (http://w w w .emis.de/MATH-item?$1264.74029) 1 2 0. 1 2 0. Lesieur M (2008) Turbulence in fluids. Springer-Verlag, Dordrecht, The NetherlandsMATH (http://w w w .emis.de/MATH-item?$1138.76004) 121. 121. Lew is TG (2009) Netw ork science. Theory and applications. John Wiley & Sons,
http://link.springer.com/article/10.1007/s00170-014-5827-2
10/22
07.09.2015
CFD 2D simulation of viscous flow during ECAE through a rectangular die with parallel slants - Springer
Inc, Hoboken 122. 122. Li J, Chen J (2009) Stochastic dynamics of structures. John Wiley & Sons (Asia) Pte Ltd, SingaporeMATH (http://w w w .emis.de/MATH-item?$1170.74003) 123. 123. Li H, Huang X, Huang C, Zhao Y (2012) An investigation about solid equal channel angular extrusion on polypropylene/organic montmorillonite composite. J Appl Polym Sci 123(4):2222–2227. doi:10. 1002/ a pp. 34739 (http://dx.doi.org/10.1002/app.34739) 1 24. 1 24. Lubarda VA (2002) Elastoplasticity theory. CRC Press, Boca Raton, FloridaMATH (http://w w w .emis.de/MATH-item?$1014.74001) 125. 125. Lubliner J (2008) Plasticity theory. Dover Publications, Inc, MineolaMATH (http://w w w .emis.de/MATH-item?$1201.74002) 1 26. 1 26. Luis CJ, Salcedo D, León J, Puertas I, Fuertes JP, Luri R (2013) Manufacturing of nanostructured rings from previously ECAE-processed AA5083 alloy by isothermal forging. J. Nanomater. 2013. Article ID 613102: 14 pp. Doi:10. 1155/ 2013/ 613102 (http://dx.doi.org/10.1155/2013/613102) 127 . 127 . Luis Pérez CJ, Luri R (2008) Study of the ECAE process by the upper bound method considering the correct die design. Mech Mater 40(8):617–628. doi:10. 1016/ j. mechmat. 2008. 02. 003 (http://dx.doi.org/10.1016/j.mechmat.2008.02.003) 1 2 8. 1 2 8. Luis Pérez CJ, Luri R (2011) Comparative analysis of actual processing conditions in ECAE betw een FEM and both analytical and experimental results. Mater Manuf Process 26(9):1147–1156. doi:10. 1080/ 10426914. 2010. 536929 (http://dx.doi.org/10.1080/10426914.2010.536929) 1 29. 1 29. Luri R, Luis CJ, León J, Sebastián MA (2006) A new configuration for equal channel angular extrusion dies. J Manuf Sci E-T ASME 128(4):860–865. doi:10. 1115/ 1. 2194555 (http://dx.doi.org/10.1115/1.2194555) 1 3 0. 1 3 0. Luri R, Luis Pérez CJ (2012) Modeling of the processing force for performing ECAP of circular cross-section materials by the UBM. Int J Adv Manuf Technol 58(9– 12):969–983. doi:10. 1007/ s 00170-011-3460-x (http://dx.doi.org/10.1007/s00170-0113460-x) 131. 131. Mohyeddin A, Fereidoon A (2012) Modeling of polymer/clay nanocomposites by an iterative micromechanical approach. Arch Mech (Warszaw a) 64(6):541–554, http:// a m. ippt. p an. p l/ a m/ a rticle/ v iew File/ v 64p541/ p df (http://am.ippt.pan.pl/am/article/view File/v64p541/pdf) MATH (http://w w w .emis.de/MATH-item?$1291.74157) 132. 132. Mase GT, Mase GE (1999) Continuum mechanics for engineers. CRC Press LLC, Boca Raton, FloridaMATH (http://w w w .emis.de/MATH-item?$0991.74500) 133. 133. Mathaudhu SN (2006) Fabrication of amorphous metal matrix composites by severe plastic deformation. Doctoral dissertation, Texas A&M University. http:// hdl. h andle. net/ 1969. 1/ 4 389 (http://hdl.handle.net/1969.1/4389) 1 34. 1 34. Maugin GA (1992) The thermomechanics of plasticity and fracture. Cambridge University Press, Cambridge, Great BritainMATH (http://w w w .emis.de/MATH-
http://link.springer.com/article/10.1007/s00170-014-5827-2
11/22
07.09.2015
CFD 2D simulation of viscous flow during ECAE through a rectangular die with parallel slants - Springer
item?$0753.73001) 135. 135. Medeiros N, Moreira LP, Bressan JD, Lins JFC, Gouvêa JP (2010) Sensitivity analysis of the ECAE process via 2 k experiments design. Matéria (Rio de Janeiro) 15(2):208–217. doi:10. 1590/ S 1517-7076201000020001 8 (http://dx.doi.org/10.1590/S1517-70762010000200018) 1 36. 1 36. Medeiros N, Moreira LP, Bressan JD, Lins JFC, Gouvêa JP (2010) Upper-bound sensitivity analysis of the ECAE process. Mat Sci Eng A-Struct 527(12):2831–2844. doi:10. 1016/ j. m sea. 2009. 12. 049 (http://dx.doi.org/10.1016/j.msea.2009.12.049) 137 . 137 . Michaeli W (2003) Extrusion dies for plastics and rubber. Carl Hanser Verlag, Munich 1 3 8. 1 3 8. Milind TR, Date PP (2012) Analytical and finite element modeling of strain generated in equal channel angular extrusion. Int J Mech Sci 56(1):26–34. doi:10. 1016/ j. ijmecsci. 2011. 12. 002 (http://dx.doi.org/10.1016/j.ijmecsci.2011.12.002) 1 39. 1 39. Minakow ski P (2013) Fluid model of crystal plasticity: numerical simulations of 2turn. Equal channel angular extrusion. Preprint no. 2013-041. Ph.D. Programme: Mathematical Methods in Natural Sciences (MMNS). Warsaw . http:// m mns. mimuw . e du. p l/ p reprints/ 2013-041. p df (http://mmns.mimuw .edu.pl/preprints/2013-041.pdf) 1 4 0. 1 4 0. Minakow ski P, Hron J (2013) Fluid model of crystal plasticity: numerical simulations of 2-turn equal channel angular extrusion. In: Proceedings of the 26th Nordic Seminar on Computational Mechanics. Logg, A., Mardal, K.A., Massing, A. (Eds.). Oslo, 23–25 October 2013. pp. 79–81. http:// c bc. s imula. no/ p ub/ d ata/ nscm26-proceedings. p df (http://cbc.simula.no/pub/data/nscm26proceedings.pdf) 1 41 . 1 41 . Muralidhar K, Bisw as G (2005) Advanced engineering fluid mechanics. Narosa Publishing House, New Delhi 1 42. 1 42. Musa MP, Schauperl Z (2013) ECAP—new consolidation method for production of aluminium matrix composites w ith ceramic reinforcement. Process Appl Ceram 7(2):63–68. doi:10. 2298/ PAC1302063S (http://dx.doi.org/10.2298/PAC1302063S) 1 43. 1 43. Nagasekhar AV, Tick-Hon Y, Ramakanth KS (2006) Mechanics of single pass equal channel angular extrusion of pow der in tubes. Appl Phys A-Mater 85(2):185– 194. doi:10. 1007/ s 00339-006-3677-y (http://dx.doi.org/10.1007/s00339-006-3677-y) 1 44. 1 44. Nakano H, Oue S, Taguchi S, Kobayashi Sh, Horita Z (2012) Stress-corrosion cracking property of aluminum–magnesium alloy processed by equal-channel angular pressing. Int. J. Corros. 2012. Article ID 543212: 8 pp. Doi:10. 1155/ 2012/ 543212 (http://dx.doi.org/10.1155/2012/543212) . 1 45. 1 45. Nalluri C, Featherstone RE (2001) Civil engineering hydraulics. Essential theory w ith w orked examples. Blackw ell Science, Oxford 1 46. 1 46. Narooei K, Karimi Taheri A (2010) A new model for prediction the strain field and extrusion pressure in ECAE process of circular cross section. Appl Math Model 34(7):1901–1917. doi:10. 1016/ j. a pm. 2009. 10. 008 (http://dx.doi.org/10.1016/j.apm.2009.10.008) MATH
http://link.springer.com/article/10.1007/s00170-014-5827-2
12/22
07.09.2015
CFD 2D simulation of viscous flow during ECAE through a rectangular die with parallel slants - Springer
(http://w w w .emis.de/MATH-item?$1193.74169) 1 47 . 1 47 . Narooei K, Karimi Taheri A (2012) Strain field and extrusion load in ECAE process of bi-metal circular cross section. Appl Math Model 36(5):2128–2141. doi:10. 1016/ j. apm. 2011. 08. 008 (http://dx.doi.org/10.1016/j.apm.2011.08.008) 1 48. 1 48. Narooei K, Karimi Taheri A (2013) Using of Bezier formulation for calculation of streamline, strain distribution and extrusion load in rectangular cross section of ECAE process. Int. J. Comput. Methods 10 (03), [26 pp.] doi: 10. 1142/ S021987621350005 9 (http://dx.doi.org/10.1142/S0219876213500059) 1 49. 1 49. New man MEJ (2011) Netw orks, An introduction. Oxford University Press Inc., New York 1 5 0. 1 5 0. Nieh TG, Wadsw orth J, Sherby OD (1997) Superplasticity in metals and ceramics. Cambridge University Press, Cambridge 151. 151. Ockendon J, How ison S, Lacey A, Movchan A (2006) Applied partial differential equations. Oxford University Press Inc., New York 152. 152. Ogunnaike BA, Ray WH (1994) Process dynamics, modeling, and control. Oxford University Press Inc., New York 153. 153. Ohsaki M, Ikeda K (2007) Stability and optimization of structures, Generalized sensitivity analysis. Springer-Verlag, New YorkMATH (http://w w w .emis.de/MATH-item?$1127.74002) 1 54. 1 54. Øksendal B (2005) Stochastic differential equations, An introduction w ith applications. Springer-Verlag, Dordrecht, The Netherlands 155. 155. Olejnik L, Rosochow ski A (2005) Methods of fabricating metals for nanotechnology. Bull Pol Acad Sci-Te 53(4):413–423 1 56. 1 56. Ortega JM, Grimshaw AS (1999) An introduction to C++ and numerical methods. Oxford University Press, New YorkMATH (http://w w w .emis.de/MATH-item? $0956.68018) 157. 157. Osw ald P (2009) Rheophysics. The deformation and flow of matter. Cambridge University Press, New York 1 5 8. 1 5 8. Ottosen NS, Ristinmaa M (2005) The mechanics of constitutive modeling. Elsevier, Oxford 1 59. 1 59. Ou-Yang Z-C, Liu J-X, Xie Y-Z (1999) Geometric Methods in the elastic theory of membranes in liquid crystal phases. World Scientific Publishing Co. Pte. Ltd. 1 6 0. 1 6 0. Paik JK, Thayamballi AK (2003) Ultimate limit state design of steel-plated structures. John Wiley & Sons Ltd, The Atrium 1 61 . 1 61 . Panton RL (2005) Incompressible flow . John Wiley & Sons, Inc., Hoboken 1 62. 1 62. Park J-W, Suh J-Y (2001) Effect of die shape on the deformation behavior in equalchannel angular pressing. Metall Mater Trans A 32(12):3007–3014. doi:10. 1007/
http://link.springer.com/article/10.1007/s00170-014-5827-2
13/22
07.09.2015
CFD 2D simulation of viscous flow during ECAE through a rectangular die with parallel slants - Springer
s11661-001-0175-x (http://dx.doi.org/10.1007/s11661-001-0175-x) 1 63. 1 63. Parshikov RA, Rudskoy AI, Zolotov AM, Tolochko OV (2013) Technological problems of equal channel angular pressing. Rev Adv Mater Sci 34(1):26–36, http:// w w w . ipme. ru/ e -journals/ RAMS/ no_ 13413/ 04_ 13413_ tolochko. p df (http://w w w .ipme.ru/e-journals/RAMS/no_13413/04_13413_tolochko.pdf) 1 64. 1 64. Paydar MH, Reihanian M, Ebrahimi R, Dean TA, Moshksar MM (2008) An upperbound approach for equal channel angular extrusion w ith circular cross-section. J Mater Process Tech 198(1–3):48–53. doi:10. 1016/ j. jmatprotec. 2007. 06. 051 (http://dx.doi.org/10.1016/j.jmatprotec.2007.06.051) 1 65. 1 65. Pedlosky J (1998) Ocean circulation theory. Springer-Verlag, Berlin 1 66. 1 66. Perig AV, Kakavas PA, Anyfantis KN, Laptev AM (2008) Mechanics of the equal channel angular extrusion. In: Advanced Problems in Mechanics–2008 (International Summer School–Conference, 06–10 July 2008 Proceedings of XXXVI International Summer School-Conference "Advanced Problems in Mechanics2008"; Institute for Problems in Mechanical Engineering of Russian Academy of Sciences). St. Petersburg, pp. 513–520. ISBN 978-5-91339-029-5. http:// a pm-conf. spb. ru/ 2008/ a pm2008_ p roceedings. p df (http://apmconf.spb.ru/2008/apm2008_proceedings.pdf) 1 67 . 1 67 . Perig AV, Laptev AM, Kakavas PA (2009) Upper bound analysis of equal channel angular extrusion: tw o-parameter rigid blocks approach and numerical verification. In: Oñate, E., Ow en, D. R. J. & Suárez, B. (eds.) Computational Plasticity X.—fundamentals and Applications (X International Conference on Computational Plasticity COMPLAS X, 02–04 September 2009, Proceedings on CDROM; International Center for Numerical Methods in Engineering, CIMNE). Artes Gráficas Torres S.A., Barcelona, Spain. CD-ROM. Depósito legal: B-35149-2009. ISBN 978-84-96736-69-6. http:// c ongress. c imne. c om/ c omplas09/ p roceedings/ pdfs/ p 379. p df (http://congress.cimne.com/complas09/proceedings/pdfs/p379.pdf) 1 68. 1 68. Perig AV, Laptev AM, Golodenko NN, Erfort YA, Bondarenko EA (2010) Equal channel angular extrusion of soft solids. Mat Sci Eng A-Struct 527(16–17):3769– 3776. doi:10. 1016/ j. m sea. 2010. 03. 043 (http://dx.doi.org/10.1016/j.msea.2010.03.043) 1 69. 1 69. Perig AV, Zhbankov IG, Matveyev IA, Palamarchuk VA (2013) Shape effect of angular die external w all on strain unevenness during equal channel angular extrusion. Mater Manuf Process 28(8):916–922. doi:10. 1080/ 10426914. 2013. 7 92417 (http://dx.doi.org/10.1080/10426914.2013.792417) 1 7 0. 1 7 0. Perig AV, Zhbankov IG, Palamarchuk VA (2013) Effect of die radii on material w aste during equal channel angular extrusion. Mater Manuf Process 28(8):910– 915. doi:10. 1080/ 10426914. 2013. 7 92420 (http://dx.doi.org/10.1080/10426914.2013.792420) 171. 171. Perig AV, Tarasov AF, Zhbankov IG, Romanko SN (2014) Effect of 2θ-punch shape on material w aste during ECAE through a 2θ-die. Mater Manuf Process. doi:10. 1080/ 10426914. 2013. 832299 (http://dx.doi.org/10.1080/10426914.2013.832299) 17 2. 17 2. Perig AV, Laptev AM (2014) Study of ECAE mechanics by upper bound rigid block model w ith tw o degrees of freedom. J Braz Soc Mech Sci. doi:10. 1007/ s 40430-013-
http://link.springer.com/article/10.1007/s00170-014-5827-2
14/22
07.09.2015
CFD 2D simulation of viscous flow during ECAE through a rectangular die with parallel slants - Springer
0121-z (http://dx.doi.org/10.1007/s40430-013-0121-z) 17 3. 17 3. Perig AV, Golodenko NN (2014) CFD simulation of ECAE through a multiple-angle die w ith a movable inlet w all. Chem Eng Commun. doi:10. 1080/ 00986445. 2014. 894509 (http://dx.doi.org/10.1080/00986445.2014.894509) 1 7 4. 1 7 4. Pethrick RA (2007) Polymer structure characterization. from nano to macro organization. RSC Publishing, Cambridge, UK 175. 175. Petryk H, Stupkiew icz S (2007) A quantitative model of grain refinement and strain hardening during severe plastic deformation. Mat Sci Eng A-Struct 444(1–2):214– 219. doi:10. 1016/ j. m sea. 2006. 08. 076 (http://dx.doi.org/10.1016/j.msea.2006.08.076) 1 7 6. 1 7 6. Pietruszczak S (2010) Fundamentals of plasticity in geomechanics. CRC Press/Balkema, Leiden, The NetherlandsMATH (http://w w w .emis.de/MATHitem?$1219.74002) 177. 177. Pinder GF, Gray WG (2008) Essentials of multiphase flow and transport in porous media. John Wiley & Sons, Inc., Hoboken 1 7 8. 1 7 8. Pippan R, Scheriau S, Taylor A, Hafok M, Hohenw arter A, Bachmaier A (2010) Saturation of fragmentation during severe plastic deformation. Annu Rev Mater Res 40(1):319–343. doi:10. 1146/ a nnurev-matsci-070909-104445 (http://dx.doi.org/10.1146/annurev-matsci-070909-104445) 1 7 9. 1 7 9. Pitteri M, Zanzotto G (2010) Continuum models for phase transitions and tw inning in crystals. Chapman & Hall/CRC, Boca Raton, Florida 1 8 0. 1 8 0. Popov VL, Slyadnikov EE (1995) Plastic distortion vortices in solids under intense external action. Tech Phys Lett 21(1):81–82 1 81 . 1 81 . Qi H-Y, Chen K-S, Du F-S (2008) Conformal optimal design and processing of extruding die cavity. J Cent South Univ T 15(2):357–361. doi:10. 1007/ s 11771-0080487-8 (http://dx.doi.org/10.1007/s11771-008-0487-8) 1 82 . 1 82 . Qiu J, Murata T, Wu X, Kitagaw a M, Kudo M (2012) Plastic deformation mechanism of crystalline polymer materials in the equal channel angular extrusion process. J Mater Process Tech 212(7):1528–1536. doi:10. 1016/ j. jmatprotec. 2012. 02. 015 (http://dx.doi.org/10.1016/j.jmatprotec.2012.02.015) 1 83 . 1 83 . Reihanian M, Ebrahimi R, Moshksar MM (2009) Upper-bound analysis of equal channel angular extrusion using linear and rotational velocity fields. Mater Design 30(1):28–34. doi:10. 1016/ j. m atdes. 2008. 04. 059 (http://dx.doi.org/10.1016/j.matdes.2008.04.059) 1 84. 1 84. Roache PJ (1976) Computational fluid dynamics. Hermosa Publishers, Albuquerque 1 85 . 1 85 . Romano A, Marasco A (2010) Continuum mechanics. Advanced Topics and Research Trends. Birkhäuser Boston/Springer, New York 1 86. 1 86. Rosochow ski A, Olejnik L (2002) Numerical and physical modelling of plastic deformation in 2-turn equal channel angular extrusion. J Mater Process Tech 125– 126:309–316. doi:10. 1016/ S 0924-0136(02)00339-4 (http://dx.doi.org/10.1016/S0924-
http://link.springer.com/article/10.1007/s00170-014-5827-2
15/22
07.09.2015
CFD 2D simulation of viscous flow during ECAE through a rectangular die with parallel slants - Springer
0136(02)00339-4) 1 87 . 1 87 . Rosochow ski A, Olejnik L (2008) Finite element analysis of tw o-turn incremental ECAP. Int J Mater Form 1(1):483–486. doi:10. 1007/ s 12289-008-0108-y (http://dx.doi.org/10.1007/s12289-008-0108-y) 1 88. 1 88. Row e GW, Sturgess CEN, Hartley P, Pillinger I (1991) Finite-element plasticity and metalforming analysis. Cambridge University Press, New York 1 89. 1 89. Rubinstein M, Colby R (2003) Polymer physics. Oxford University Press, New York 1 9 0. 1 9 0. Rusin NM (2009) The effect of temperature and equal-channel angular-pressing routes on the form of pow ders and structure in pressings. Russ J Non-Ferr Met 50(5):529–533. doi:10. 3103/ S 106782120905018 6 (http://dx.doi.org/10.3103/S1067821209050186) 1 91 . 1 91 . Russel WB (2005) Lecture Notes Debye Professor 2000–2001. Professor William B. Russel. The Phase Behavior and Dynamics of Colloidal Dispersions. Universitet Utrecht. 134 pp 1 92. 1 92. Ryabicheva L, Usatyuk D (2014) Computer modelling of radial-direct extrusion of porous pow der billets. In: Aw rejcew icz, J. (ed.) Computational and Numerical Simulations. InTech. Doi:10. 5772/ 57142 (http://dx.doi.org/10.5772/57142) 1 93. 1 93. Salcedo D, Luis C, Puertas I, León J, Fuertes JP, Luri R (2013) Analysis on the manufacturing of an AA5083 straight blade previously ECAE processed. Adv. Mater. Sci. Eng. Article ID 673247: 7 pp. doi: 10. 1155/ 2013/ 673247 (http://dx.doi.org/10.1155/2013/673247) 1 94. 1 94. Scheck F (2010) Mechanics, From New ton’s law s to deterministic chaos. SpringerVerlag, BerlinMATH (http://w w w .emis.de/MATH-item?$1217.70001) 1 95. 1 95. Sedighi M, Mahmoodi M Residual stresses evaluation in equal channel angular rolled Al 5083 by IHD technique: investigation of tw o calculation methods. Mater. Manuf. Process. 28 (1): 85–90. Doi:10. 1080/ 10426914. 2012. 7 00149 (http://dx.doi.org/10.1080/10426914.2012.700149) 1 96. 1 96. Segal VM (1995) Materials processing by simple shear. Mat Sci Eng A-Struct 197(2):157–164. doi:10. 1016/ 0921-5093(95)09705-8 (http://dx.doi.org/10.1016/09215093(95)09705-8) 1 97 . 1 97 . Segal VM (2003) Slip line solutions, deformation mode and loading history during equal channel angular extrusion. Mat Sci Eng A-Struct 345(1–2):36–46. doi:10. 1016/ S0921-5093(02)00258-7 (http://dx.doi.org/10.1016/S0921-5093(02)00258-7) 1 98. 1 98. Segal VM (2004) Engineering and commercialization of equal channel angular extrusion (ECAE). Mat Sci Eng A-Struct 386(1–2):269–276. doi:10. 1016/ j. m sea. 2004. 07. 023 (http://dx.doi.org/10.1016/j.msea.2004.07.023) 1 99. 1 99. Segal VM (2010) Mechanics of continuous ECAE. J Mater Process Tech 210(3):542– 549. doi:10. 1016/ j. jmatprotec. 2009. 11. 001 (http://dx.doi.org/10.1016/j.jmatprotec.2009.11.001) 2 00. 2 00. Semiatin SL, Salem AA, Saran MJ (2004) Models for severe plastic deformation by
http://link.springer.com/article/10.1007/s00170-014-5827-2
16/22
07.09.2015
CFD 2D simulation of viscous flow during ECAE through a rectangular die with parallel slants - Springer
equal-channel angular extrusion. JOM 56(10):69–77. doi:10. 1007/ s 11837-004-0296-y (http://dx.doi.org/10.1007/s11837-004-0296-y) 2 01 . 2 01 . Senkov ON, Senkova SV, Scott JM, Miracle DB (2004) Compaction of amorphous aluminum alloy pow der by direct extrusion and equal channel angular extrusion. Mat Sci Eng A-Struct 393(1–2):12–21. doi:10. 1016/ j. m sea. 2004. 09. 061 (http://dx.doi.org/10.1016/j.msea.2004.09.061) 2 02 . 2 02 . Seo YR, Weon J-I (2013) Manipulation of nanofiller and polymer structures by using equal channel angular extrusion. J Korean Phys Soc 63(1):114–119. doi:10. 3938/ jkps. 63. 114 (http://dx.doi.org/10.3938/jkps.63.114) 2 03 . 2 03 . Shahab AR, Akbari Mousavi SAA, Ranjbar Bahadori S, Ebrahimi SM (2012) The comparison betw een continuous confined strip shearing (C2S2) and ECAP conform in regard to equivalent plastic strain distribution for Al 1100. Int J Mod Phys Conf Ser 5:400–409. doi:10. 1142/ S 201019451200228 0 (http://dx.doi.org/10.1142/S2010194512002280) 2 04 . 2 04 . Shaughnessy ET, Katz IM, Schaffer JP (2005) Introduction to fluid mechanics. Oxford University Press, New York 2 05 . 2 05 . Shaw MT (2012) Introduction to polymer rheology. Wiley 2 06 . 2 06 . Shelby JE (2005) Introduction to glass science and technology. The Royal Society of Chemistry, Cambridge 2 07 . 2 07 . Silva FRF, Medeiros N, Moreira LP, Lins JFC, Gouvêa JP (2012) Upper-bound and finite-element analyses of non-isothermal ECAP. Mat Sci Eng A-Struct 546:180–188. doi:10. 1016/ j. m sea. 2012. 03. 049 (http://dx.doi.org/10.1016/j.msea.2012.03.049) 2 08 . 2 08 . Simo JC, Hughes TJR (2000) Computational inelasticity. Springer, New York 2 09 . 2 09 . Sofuoglu H, Rasty J (2000) Flow behavior of Plasticine used in physical modeling of metal forming processes. Tribol Int 33(8):523–529. doi:10. 1016/ S 0301679X(00)00092-X (http://dx.doi.org/10.1016/S0301-679X(00)00092-X) 2 1 0. 2 1 0. Soltantabar M, Krishnaiah A, Tari A (2014) Finite element analysis of copper deformed by conventional forw ard extrusion. IOSR J Mech & Civil Eng (IOSRJMCE) 10(6):1–5. doi:10. 9790/ 1684-1060105 (http://dx.doi.org/10.9790/16841060105) 211. 211. Son I, Nakano H, Oue S, Kobayashi Sh, Fukushima H, Horita Z (2012) Effect of equal-channel angular pressing on pitting corrosion of pure aluminum. Int. J. Corros. 2012. Article ID 450854: 9 pp. doi: 10. 1155/ 2012/ 4 50854 (http://dx.doi.org/10.1155/2012/450854) 212. 212. Sprott JC (2004) Chaos and time-series analysis. Oxford University Press Inc., New York 213. 213. Spuskanyuk VZ, Spuskanyuk AV, Varyukhin VN (2008) Development of the equalchannel angular hydroextrusion. J Mater Process Tech 203(1–3):305–309. doi:10. 1016/ j. jmatprotec. 2007. 10. 018 (http://dx.doi.org/10.1016/j.jmatprotec.2007.10.018) 21 4. 21 4.
http://link.springer.com/article/10.1007/s00170-014-5827-2
17/22
07.09.2015
CFD 2D simulation of viscous flow during ECAE through a rectangular die with parallel slants - Springer
Stoica GM, Liaw PK (2001) Progress in equal-channel angular processing. JOM 53(3):36–40. doi:10. 1007/ s 11837-001-0178-5 (http://dx.doi.org/10.1007/s11837-0010178-5) 215. 215. Strobl G (2007) The physics of polymers. Concepts for understanding their structures and behavior. Springer-Verlag, Berlin 21 6. 21 6. Stupkiew icz S (2007) Micromechanics of contact and interphase layers. SpringerVerlag, BerlinMATH (http://w w w .emis.de/MATH-item?$1140.74002) 217 . 217 . Succi S (2001) The lattice Boltzmann equation for fluid dynamics and beyond. Oxford University Press Inc., New YorkMATH (http://w w w .emis.de/MATH-item? $0990.76001) 2 1 8. 2 1 8. Sue H-J, Dilan H, Li CK-Y (1999) Simple shear plastic deformation behavior of polycarbonate plate due to the equal channel angular extrusion process I: finite element methods modeling. Polym Eng Sci 39(12):2505–2515. doi:10. 1002/ p en. 11638 (http://dx.doi.org/10.1002/pen.11638) 21 9. 21 9. Svyetlichnyy DS (2010) Modelling of the microstructure: from classical cellular automata approach to the frontal one. Comp Mater Sci 50(1):92–97. doi:10. 1016/ j. commatsci. 2010. 07. 011 (http://dx.doi.org/10.1016/j.commatsci.2010.07.011) 2 2 0. 2 2 0. Svyetlichnyy DS (2011) Modeling of macrostructure formation during the solidification by using frontal cellular automata. In: Salcido A. (ed.) Cellular automata-innovative modelling for science and engineering. InTech, pp. 179–196. Doi: 10. 5772/ 15773 (http://dx.doi.org/10.5772/15773) 221. 221. Svyetlichnyy DS (2013) Modeling of grain refinement by cellular automata. Comp Mater Sci 77:408–416. doi:10. 1016/ j. c ommatsci. 2013. 04. 065 (http://dx.doi.org/10.1016/j.commatsci.2013.04.065) 222. 222. Talebanpour B, Ebrahimi R (2009) Upper-bound analysis of dual equal channel lateral extrusion. Mater Design 30(5):1484–1489. doi:10. 1016/ j. m atdes. 2008. 08. 006 (http://dx.doi.org/10.1016/j.matdes.2008.08.006) 223. 223. Tesař V (2007) Pressure-driven microfluidics. Artech House, Inc., Norw ood 224. 224. Tóth LS (2009) Simulation of persistence characteristics of textures during plastic deformation. In: Haldar, A., Suw as, S., and Bhattacharjee, D. (eds.) Microstructure and texture in steels. Springer, London, pp. 225–246. Doi:10. 1007/ 978-1-84882-454-6_ 13 (http://dx.doi.org/10.1007/978-1-84882-454-6_13) 225. 225. Tóth LS, Estrin Y, Lapovok R, Gu C (2010) A model of grain fragmentation based on lattice curvature. Acta Mater 58(5):1782–1794. doi:10. 1016/ j. a ctamat. 2009. 11. 020 (http://dx.doi.org/10.1016/j.actamat.2009.11.020) 226. 226. Tschaetsch H (2006) Metal forming practise. Springer-Verlag, Berlin 227 . 227 . Valiev RZ, Langdon TG (2006) Principles of equal-channel angular pressing as a processing tool for grain refinement. Prog Mater Sci 51(7):881–981. doi:10. 1016/ j. pmatsci. 2006. 02. 003 (http://dx.doi.org/10.1016/j.pmatsci.2006.02.003) 2 2 8. 2 2 8. Valiev RZ, Langdon TG (2006) Developments in the use of ECAP processing for
http://link.springer.com/article/10.1007/s00170-014-5827-2
18/22
07.09.2015
CFD 2D simulation of viscous flow during ECAE through a rectangular die with parallel slants - Springer
grain refinement. Rev Adv Mater Sci 13(1):15–26, http:// w w w . ipme. ru/ e -journals/ RAMS/ no_ 11306/ v aliev. p df (http://w w w .ipme.ru/ejournals/RAMS/no_11306/valiev.pdf) 229. 229. Vaseghi M, Karimi Taheri A, Kim HS (2010) Upper bound analysis of deformation and dynamic ageing behavior in elevated temperature equal channel angular pressing of Al–Mg–Si alloys. Met Mater Int 16(3):363–369. doi:10. 1007/ s 12540-0100604-8 (http://dx.doi.org/10.1007/s12540-010-0604-8) 2 3 0. 2 3 0. Vidal J, Berrocoso M, Jigena B (2011) Hydrodynamic modeling of Port Foster, Deception Island (Antarctica). In: Machado JAT, Baleanu D, Luo ACJ (eds) Nonlinear and complex dynamics: applications in physical, biological, and financial systems. Springer, New York, pp 193–203. doi:10. 1007/ 978-1-4614-02312_ 16 (http://dx.doi.org/10.1007/978-1-4614-0231-2_16) 231. 231. Voyiadjis GZ, Deliktas B (2010) Modeling of strengthening and softening in inelastic nanocrystalline materials w ith reference to the triple junction and grain boundaries using strain gradient plasticity. Acta Mech 213(1–2):3–26. doi:10. 1007/ s 00707-0100338-1 (http://dx.doi.org/10.1007/s00707-010-0338-1) MATH (http://w w w .emis.de/MATH-item?$1272.74073) 232. 232. Wagoner RH, Chenot J-L (1997) Fundamentals of metal forming. John Wiley & Sons, Inc., New York 233. 233. Warner M, Terentjev EM (2009) Liquid crystal elastomers. Oxford University Press, New York 234. 234. Weertman J (1996) Dislocation based fracture mechanics. World Scientific Publishing Co. Pte. Ltd., Singapore 235. 235. Weon J-I, Creasy TS, Sue H-J, Hsieh AJ (2005) Mechanical behavior of polymethylmethacrylate w ith molecules oriented via simple shear. Polym Eng Sci 45(3):314–324. doi:10. 1002/ p en. 20269 (http://dx.doi.org/10.1002/pen.20269) 236. 236. Weon J-I, Sue H-J (2005) Effects of clay orientation and aspect ratio on mechanical behavior of nylon-6 nanocomposite. Polymer 46(17):6325–6334. doi:10. 1016/ j. polymer. 2005. 05. 094 (http://dx.doi.org/10.1016/j.polymer.2005.05.094) 237 . 237 . Weon J-I, Xia Z-Y, Sue H-J (2005) Morphological characterization of nylon-6 nanocomposite follow ing a large-scale simple shear process. J Polym Sci B Polym Phys 43(24):3555–3566. doi:10. 1002/ p olb. 20649 (http://dx.doi.org/10.1002/polb.20649) 2 3 8. 2 3 8. White FM (2006) Viscous fluid flow . McGraw -Hill, New York 239. 239. Woolfson MM, Pert GJ (1999) An introduction to computer simulation. Oxford University Press, New York 2 4 0. 2 4 0. Wu H-C (2005) Continuum mechanics and plasticity. Chapman & Hall/CRC Press, Boca Raton, FloridaMATH (http://w w w .emis.de/MATH-item?$1057.74002) 241 . 241 . Wu Y, Baker I (1997) An experimental study of equal channel angular extrusion. Scripta Mater 37(4):437–442. doi:10. 1016/ S 1359-6462(97)00132-2 (http://dx.doi.org/10.1016/S1359-6462(97)00132-2)
http://link.springer.com/article/10.1007/s00170-014-5827-2
19/22
07.09.2015
CFD 2D simulation of viscous flow during ECAE through a rectangular die with parallel slants - Springer
242. 242. Wunsch C (2006) Discrete inverse and state estimation problems, With geophysical fluid applications. Cambridge University Press, CambridgeMATH (http://w w w .emis.de/MATH-item?$1192.86003) 243. 243. Xia Z-Y, Sue H-J, Rieker TP (2000) Morphological evolution of poly(ethylene terephthalate) during equal channel angular extrusion process. Macromolecules 33(23):8746–8755. doi:10. 1021/ m a001140w (http://dx.doi.org/10.1021/ma001140w ) 244. 244. Xia Z-Y, Sue H-J, Hsieh AJ (2001) Impact fracture behavior of molecularly orientated polycarbonate sheets. J Appl Polym Sci 79(11):2060–2066. doi:10. 1002/ 1097-4628(20010314)79: 113. 0. CO;2-E (http://dx.doi.org/10.1002/1097-4628(20010314)79%3A11%3C2060%3A%3AAIDAPP1015%3E3.0.CO%3B2-E) 245. 245. Xia Z-Y, Hartw ig T, Sue H-J (2005) Mechanical behavior of bulk poly(ethylene terephthalate) subjected to simple shear. J Macromol Sci B 43:385–403. doi:10. 1081/ M B-120029776 (http://dx.doi.org/10.1081/MB-120029776) 246. 246. Yoon SC, Nagasekhar AV, Yoo JH, Aal MI, Vaseghi M, Kim HS (2010) Deformation characteristics evaluation of modified equal channel angular pressing processes. Mater Trans 51(1):46–50 247 . 247 . Zaïri F, Aour B, Gloaguen JM, Naït-Abdelaziz M, Lefebvre JM (2007) Influence of the initial yield strain magnitude on the materials flow in equal-channel angular extrusion process. Scripta Mater 56(2):105–108. doi:10. 1016/ j. s criptamat. 2006. 09. 032 (http://dx.doi.org/10.1016/j.scriptamat.2006.09.032) 2 48. 2 48. Zebardast M, Karimi Taheri A (2011) The cold w elding of copper to aluminum using equal channel angular extrusion (ECAE) process. J Mater Process Tech 211(6):1034–1043. doi:10. 1016/ j. jmatprotec. 2011. 01. 004 (http://dx.doi.org/10.1016/j.jmatprotec.2011.01.004) 249. 249. Zhang LC, Xu J, Ma E (2006) Consolidation and properties of ball-milled Ti50Cu 18Ni22Al4Sn6 glassy alloy by equal channel angular extrusion. Mat Sci Eng AStruct 434(1–2):280–288. doi:10. 1016/ j. m sea. 2006. 06. 085 (http://dx.doi.org/10.1016/j.msea.2006.06.085) 2 5 0. 2 5 0. Zhang X, Gao D, Wu X, Xia K (2008) Bulk plastic materials obtained from processing raw pow ders of renew able natural polymers via back pressure equal channel angular consolidation (BP-ECAC). Eur Polym J 44(3):780–792. doi:10. 1016/ j. e urpolymj. 2007. 12. 011 (http://dx.doi.org/10.1016/j.eurpolymj.2007.12.011) 251. 251. Zhbankov IG, Perig AV (2013) Forging of ingots w ithout hot tops. Mater Manuf Process 28(3):229–235. doi:10. 1080/ 10426914. 2012. 7 18472 (http://dx.doi.org/10.1080/10426914.2012.718472) 252. 252. Zhbankov IG, Perig AV (2013) Intensive shear deformation in billets during forging w ith specially formed anvils. Mater Manuf Process 28(5):577–583. doi:10. 1080/ 10426914. 2013. 7 63974 (http://dx.doi.org/10.1080/10426914.2013.763974) 253. 253. Ziegler F (1995) Mechanics of solids and fluids. Springer-Verlag, New York 254. 254.
http://link.springer.com/article/10.1007/s00170-014-5827-2
20/22
07.09.2015
CFD 2D simulation of viscous flow during ECAE through a rectangular die with parallel slants - Springer
Zienkiew icz OC, Taylor RL, Zhu JZ (2005) The finite element method: its basis and fundamentals, 6th edn. Elsevier Butterw orth-Heinemann, Oxford 255. 255. Zienkiew icz OC, Taylor RL (2005) The finite element method for solid and structural mechanics, 6th edn. Elsevier Butterw orth-Heinemann, OxfordMATH (http://w w w .emis.de/MATH-item?$1084.74001)
About this Article Title CFD 2D simulation of v iscous flow during ECAE through a rectangular die with parallel slants Journal The International Journal of Advanced Manufacturing Technology Volume 7 4, Issue 5-8 , pp 943-962 Cov er Date 2014-09 DOI 10.1007 /s0017 0-014-5827 -2 Print ISSN 0268-37 68 Online ISSN 1433-3015 Publisher Springer London Additional Links Register for Journal Updates Editorial Board About This Journal Manuscript Submission Topics Industrial and Production Engineering Production/Logistics/Supply Chain Mechanical Engineering Computer-Aided Engineering (CAD, CAE) and Design Key words ECAE Die Parallel slants Curl transfer equation Finite difference CFD 2D
http://link.springer.com/article/10.1007/s00170-014-5827-2
21/22
07.09.2015
CFD 2D simulation of viscous flow during ECAE through a rectangular die with parallel slants - Springer
Phy sical simulation Circular gridlines Industry Sectors Pharma Materials & Steel Automotive Chemical Manufacturing Finance, Business & Banking Biotechnology Electronics IT & Software Telecommunications Consumer Packaged Goods Energy, Utilities & Environment Aerospace Oil, Gas & Geosciences Engineering Authors Alexander V. Perig (1 ) Nikolai N. Golodenko (2 ) Author Affiliations 1. Manufacturing Processes and Automation Engineering Department, Donbass State Engineering Academy , Shkadinov a Str., 7 2, Kramatorsk, Ukraine, 84313 2. Department of Water Supply , Water Disposal and Water Resources Protection, Donbass National Academy of Civ il Engineering and Architecture, Derzhav in Str., 2, Makey ev ka, Ukraine, 86123
http://link.springer.com/article/10.1007/s00170-014-5827-2
22/22