International Journal of Financial Engineering (IJFE)
Combining robust Dynamic Neural Networks with traditional technical indicators for generating mechanic trading signals Pier Giuseppe Giribone (1), Simone Ligato (2), Francesco Penone (3) (1) University of Genoa – Department of Economics CARIGE Bank – Financial Engineering (2) Azzoaglio Bank – Risk Management (3) Auditor
[email protected],
[email protected],
[email protected] Abstract:
Forecasting assets’ prices is the aim of each trader, although the trading approaches employed may vary a lot. The development of machine learning techniques has brought the opportunity to design mechanic trading systems based on Dynamic Artificial Neural Networks. The aim of this paper is to combine traditional technical indicators (such as Exponential Weighted Moving Average – EWMA, Percentage Volume Oscillator – PVO and Stochastic indicator - %K and %D) with the Non Linear Autoregressive Networks (NAR and NARX). The first part of the paper describes how neural networks designed for forecasting time series work, the second one performs a deeper validation of the code and the third one combines the dynamic networks with traditional technical indicators in order to generate reliable mechanic signals. The article ends with a back testing of the trading system performed on Dow Jones Industrial Average and on Nasdaq Composite Indexes.
Keywords:
Machine Learning, Artificial Intelligence, Feedforward Neural Network, Dynamic Artificial Neural Network, NAR, NARX, Time series forecasting, FinTech, Automatic Trading System, Mechanic Trading Signals, Technical Analysis 1
International Journal of Financial Engineering (IJFE) References
[1] Arbib M. A. (2003), “The handbook of brain theory and neural networks”, The MIT Press [2] Beale M. H., Hagan M. T., Demuth H. B. (2014) – “Neural Network Toolbox, User’s Guide” – The MathWorks, Inc. [3] Burro G., Giribone P. G., Ligato S., Mulas M., Querci F. (2017) – “Negative interest rates effects on option pricing: back to basics?”, International Journal of Financial Engineering, Vol. 4 , N. 2 [4] Cafferata A., Giribone P. G. (2017), “I paradigmi di apprendimento non supervisionato per reti neurali in campo finanziario: progettazione di self-organizing maps per il rintracciamento di anomalie di mercato”, AIFIRM (Italian Association of Financial Industry Risk Management) Magazine, Vol. 12, N.2 [5] Cafferata A., Giribone P. G., Neffelli M., Resta M. (2017), “Yield curve estimation under extreme conditions: do RBF networks perform better?”, WIRN 2017, Springer International Publishing. [6] Cafferata A., Giribone P. G., Resta M. (2018), “Interest rates term structure models and their impact on actuarial forecasting”, Proceedings of the Quantitative Finance Workshop - QFW18, Rome [7] Caligaris O., Giribone P. G. (2015), “Modellizzare la curva dei rendimenti mediante metodologie di apprendimento artificiale: analisi e confronto prestazionale tra le tecniche regressive tradizionali e le reti neurali”, AIFIRM (Italian Association of Financial Industry Risk Management) Magazine, Vol. 10, N.3 [8] Caligaris O., Giribone P. G., Ligato S. (2015), “Applicazioni delle reti neurali feed-forward per la ricostruzione di superfici di volatilità”, AIFIRM (Italian Association of Financial Industry Risk Management) Magazine, Vol. 10, N.1 [9] Caligaris O., Giribone P. G., Neffelli M. (2017), “Ricostruzione di superfici di volatilità mediante l’utilizzo di reti neurali auto-associative: un caso studio basato sull’analisi non lineare delle componenti principali”, AIFIRM (Italian Association of Financial Industry Risk Management) Magazine, Vol. 12, N.3 [10] De Jesús, O., Horn J. M., and Hagan M. T. (2001), “Analysis of Recurrent Network Training and Suggestions for Improvements,” Proceedings of the International Joint Conference on Neural Networks, Washington, DC, July 15–19, pp. 2632–2637. [11] Freeman J. A., Skapura D. M. (1991), “Neural networks – Algorithms, applications and programming techniques”, Addison-Wesley Publishing Company [12] Giribone P. G., Ligato S. (2016), “Considerazioni sullo stato attuale della valorizzazione delle opzioni cap e floor aventi come parametro di riferimento il tasso EURIBOR”, AIAF (Italian Association of Financial Analysts) Magazine, Vol. 99
International Journal of Financial Engineering (IJFE)
[13] Hagan, M.T.,Demuth, H.B., Beale M. H. (1996), “Neural Network Design”, Boston, MA: PWS Publishing,Chapters 11 and 12 [14] Horn, J.M., De Jesús O., Hagan M.T. (2009), “Spurious Valleys in the Error Surface of Recurrent Networks - Analysis and Avoidance,” IEEE Transactions on Neural Networks, Vol. 20, No. 4, pp. 686-700. [15] Kim P. (2017), “MATLAB Deep Learning with Machine Learning, Neural Networks and Artificial Intelligence”, 1st ed. Apress. [16] McCulloch, W.S., W.H. Pitts (1943), “A logical calculus of ideas immanent in nervous activity,” Bulletin of Mathematical Biophysics, Vol. 5, pp. 115–133. [17] Murphy J. J. (1999), “Technical Analysis of the financial markets: a comprehensive guide to trading methods and applications”, New York Institute of Finance [18] Riedmiller, M., and Braun H. (1993), “A direct adaptive method for faster backpropagation learning: The RPROP algorithm,” Proceedings of the IEEE International Conference on Neural Networks. [19] Rojas R. (1996), “Neural Networks – A systematic introduction”, Springer [20] Roman, J., and Jameel A. (1996), “Backpropagation and recurrent neural networks in financial analysis of multiple stock market returns,” Proceedings of the Twenty-Ninth Hawaii International Conference on System Sciences, Vol. 2, pp. 454–460. [21] Rosenblatt, F. (1961), Principles of Neurodynamics, Washington, D.C.: Spartan Press. [22] Rumelhart, D.E., Hinton G.E., Williams R.J. (1986), “Learning representations by backpropagating errors,” Nature, Vol. 323, pp. 533–536. [23] Rumelhart, D.E., McClelland J.L., and the PDP Research Group, Eds., (1986) Parallel Distributed Processing, Vols. 1 and 2, Cambridge, MA: The M.I.T. Press [24] Vogl, T.P., Mangis J. K., Rigler A.K., Zink W.T., Alkon D.L. (1988), “Accelerating the convergence of the backpropagation method,” Biological Cybernetics, Vol. 59,pp. 256–264. [25] Widrow, B., and M.E. Hoff (1960), “Adaptive switching circuits,” IRE WESCON Convention Record, New York IRE, pp. 96–104.
3