Eqla,ng pgol elu1g-,(puels Jo acuepuadeq arnluradurel '1'g. 'peur3lur?Iu sr sJelsnlc VIS Jo lelotueJ luelcgJe ue se 3uo1 se Suqle,t.s plo^ JoJ ecJoJ.
Radiation Effects & Defects in So/iy's, Vol. 144, pp. l19-143 Reprints available diratly from the publisher Phot@opying pemitted
by li@nre only
@ 1998OPA (OverseasPublishemAssrciation) N.V. Publishedby liense under the Gordon and BreachScien@ Publishcrsimprint. Printed in India.
CONSEQUENCES OF INTRA.CASCADE CLUSTERING ON DEFECT ACCUMULATION AND MATERIALS PERFORMANCE B.N. SINGH"'* and C.H. WOOb " Materials Research Department, Riss National Laboratory, D K-4000 Roskilde, Denmark ; oA EC L Research, lVhiteshell Laboratories, Pinawa. Manitoba ROE lLO. Canada (Received28 October1997) Considerationsof intracascadeclusteringof self-interstitialatoms (SIAs) and vacancies during the cooling-downphaseof a cascadeand of the differencebetweenthermal stabilities of SIA and vacancyclustersgive rise to the conceptofproduction bias. In recent years,variousaspectsof this conceptincluding the effectsof clusterannihilation by onedimensionalglide havebeeninvestigated.The salientfeaturesof theseinvestigationsand their resultsare summarized.The most important conclusionemergingfrom theseinvestigationsis that a realisticmodellingof accumulationof survivingdefectsunder cascade damageconditionsmust explicitly considerthe role of formation, thermal stability and mobility (glide and climb) of clustersproduced in the cascades.Examplesare shown whereappropriateconsiderationsofthesefeatureshaveled to predictionsregardingdose, temperatureand recoil energy dependenceof void swellingwhich are consistentwith experimentalresults.The specialfeature such as enhanceddamageaccumulationnear grain boundarieshas beensuccessfullyexplainedin terms of production bias and onedimensionalglide of small loops producedin the cascades.Finally, it is shown that the decorationof grown-in dislocationsby gliding SIA loops producedin the cascades may also explain the irradiation-inducedincreasein the upper yield stress. Keywords:Cascade;Production bias; Intra-cascadeclustering;SIAs; Vacancies; One-dimensionalelide
* Correspondingauthor
u9
'sJelsnlc Jrer{l pu" s}ceJepe3rllel tsurllnsoJ eql Jo eJnleu crtuol€ eql pue slueruscsldsp eql Jo uorlnlo^o IsJod{uel pue I34€ds eIIl Jo uolldlJcsop peI"lep " epl^ord lou pFoc sepecs?c 's0961 ur fpeeJls luelueceldsrpJo froeql ,{relueuele eql Jo slFSoJ arll [g'y] peqsqqelseIIe^\ s?A\s]uele eseqlJo scrsfqd uorsrTlooeql q8noqllv 'sopmsscqns pu? sep3cs33 pezq"col Jo ruJoJ eql ur pelsJeueE eq o1 ,(1ery1ere sluorumeldsrp cnuol" Jo Jeqrunu eEJ"l e 'sotEleueq8q le leql 'pelmrTdruos JeqleJ sr (sercu?ce^ 1c3Jeql ruo4 sesrJ€uorl€crTdruoceql pue SVIS 'a'r) spatap ar!ilDl Jo uoqcnpord egl pu" sruawa,oldsrp crluol? 'pu"q Jeqlo eql uo '(suoJlneu Jo uorl?Jeue8 aql SurpreEer uorlenlrs eql uorsnJ pu? uorssu '3'e) selcrlred ,(EreueJeq8rq qlr^\ suorl€rp?JJr Jod 'ql/l\oJ8 pro^ plerf pFoc 'sBrq uorlecolsrp su u^\ou{ ,{poruuroc erueceq qcrq^\ 's"rq 3 qcns 1"q1 lseSSns01 lsJg eJe^\ [€] 'lo p veuJ€rod 'spro^ Jo rll^\oJ8 eql JoJ sercusc?AJo ssecxe,(resseceueql el€eJc ueql plno^\ SFII 'SVIS JoJ uorlceJll€ I€rlueJeJoJd e qlrd\ 'uorlecolsrp 3 se qcns 'slsrxe>1urs JoqloueJr t\oJ8,tpo u?c'oldur?xe JoJ 'spro1 'eoJoJSurArJp" eJrnbeJspro^ Jo uuoJ eql ur sorcu?ce^Jo uoq"lntuncce pu? uorle8eJ8ss eql 'Jol{lo IIme el?Ilqluue ,{lIpBaJu€c pu€ slceJ3pJo ed,{1..re11eur-r1ue,, '*Jell?ur,, eJ? sercu?cB^pu? svIS pecnpur uorlerpsJJrecurs 'JeAeA\oH 'erurl ur ruJoJrun pu? oc"ds ur snoeuoSouoq sr sercu€c?A pue svIS 'o'r) suorl Jo uorlcnpord eql leql Sununss? fq (fJoeql eleJ pJ"pu"ls -?nbe elEJ l"crruorlc Sursn ,{roeql pleu-u"etu Jo >lJo^\ewe{ erll uqll/l\ poleoJl ,{yeleudordde eq uec spro^ pu? suorl€colsrpJo ruJoJeql ur uorl?l -nuncc? eE"ursp urelqoJd oqJ 'sos?c uor]?rp€JJr aldul$ qcns Joc Jo '[7] sercuecenpue sVIS Jo sJr?d pol"loJJoc Jo uorl?urquoceJ eql Surlunorsrp JOU€'e1er lueueceyd -slp h] IUN eql ,(q peleurrxordde eq u?c (sorcuec"Apue SVIS 'a'l) slceJepecrll?lJo eleJ uorpnpoJd eql'suorlrpuoc aseqlJepun 'serJusc?A pu" (SVIS) sluol€ l€llllsJelur-Jles elSurs pelslosr Jo ruroJ eql ur srncso o3"u"p lueruoceldsry eql '(suoJlcele AoI trI qll^\ uorl?rp€rrr Euunp '3'a) ploqserql luatuec€ldsry eql eloqe lsnf sr (traue eEeru"p eql ueq^\ sor8JauelroceJ&\ol lV'luerueo"ldsrp elturs €Jo uorleJeuet eql JoJ,{EJeue ploqserr{l eql Jo ssosxe ur sr ,(Ereue eE"w"p pelrsodep eq} pepr^ord suorlrsod acnlel leuuou Jreql ruo{ sluolsJo slueuec"ldsrp asnec plno1l\ prTos euql"ls,{J3 ? Euuelue selcrusd cr}oEJeue1"q1 u^\ou)I IIen sl 1I
NOII)NCOUTNI'I oo^|H'c
(INv HONIS'N'S
0zl
INTRA-CASCADE CLUSTERING
t2l
In recent years,however, the problem has been, to a large extent, overcome by using atomistic computer simulation models such as moleculardynamics(MD) which haveyieldedthe detailsof the spatial distribution and morphology of lattice defectsand have shown that a substantial fraction of vacanciesand SIAs survives in the form of clusters[6-8]. Thepossibilityofintracascade clusteringof SIAshasbeen investigatedusing a diffusion-basedmethodology which also shows that a significant fraction of SIAs produced at the cascadeperiphery are likely to form clusters [9]. It is interesting to note here that the experimentalevidencesuggestingthe formation of clustersof SIAs and vacanciesin the cascades have,in fact, existedalreadysince1975(see Section2). In view oftheseresults,it is ratherunrealisticto treat the problemof damageaccumulationunder cascadedamageconditionsin termsof the conventionalrate theory basedon the assumptionthat all defectsare produced as singleSIAs and vacancies.Even the modified version of the rate theory treatmentdue to Bullough et al.ll0l is not appropriate since it considersthe clustering of only vacanciesand not SIAs and relieson dislocationbiasasthe only driving forcefor void growth. It was the recognitionof the significanceof the intracascadeclusteringof SIAs and vacanciesand of the differencein the thermal stability betweenthe clustersof SIAs and vacancieswhich led Woo and Singh [l l] to proposetheconceptof productionbias.The conceptwasshownto provide a potential driving force for void swelling in the steady-stateand to explain the temperaturedependenceof the steady-statevoid swelling. Subsequently,the evolution of void swellingin the transientregime(i.e. at very low doses)was studiedby Singhand Foreman [2] using the concept of production bias alone (i.e. without contribution of dislocationbias).The resultsdemonstrated that theproductionbiasmodel is indeed capableof predicting the swelling observedin the transient regime.Another important point emergingfrom this study was that in order to explain the observedvoid swelling at higher doses it was necessaryto assumethat l5o/oof the SIA clustersproducedin the cascadesescapedto sinks other than voids (e.g.grain boundariesand dislocations)by one-dimensional glide.This led to a detailedinvestigation of the role of one-dimensional glide of SIA clustersin controllingthe damageaccumulationundercascadedamageconditions[3,14].
'([Ot'gt] osle ees),{reqdt -Jed op€csec qclJ-VIS ? pu? eJoc qcu-,(cuecen olul pels8eJ8es sI aseqd I€uoISITIoceql ut pecnpord slceJepJo uoqnqlJlslp l"I1"ds erlJ (e) :sepecsecut uoqcnpord lreJep Jo sernl€eJ lu"3glu3ls 3uvno11o3eq1 pe1q8lg8tq eneq [3-9] serpnlsuoll?lntuls CIhtrJoslFser eql'[rI]q8uIS pu€ e11ut7,(qpea\eller ,(1ecr1ucueeq s"q lsefqns eql'suolllpuoc e8etu€pepecsecJepun uoll€l -nuncc€ e8?luep Jo epnlluSsru oql eullurelep 1Bg1[1] lapou IUN oql ruor; pol"FOI?c slueueceldstp 3o roqunu eql }ou pue slceJep eql ere '(8-91 'E'e) setpnlsuollelnluls eseqlleql eJeqpelou oq plnoqs 1I CIIAtrJo sllnseJ eql ruo{,(1luecar ,tpo uznou4 eluoseq o^"q ep?cs"3 eql3o eseqd ul\op-Eu{ooc eql Euunp Euwrrns slcaJep oJll}el Jo uol}nlo^e eql Jo slr?lep'[9I'gI] o8e sree,(,(ueurpe8est^ues31I\selSJeuelocar reqSq le sep€cseclueureceldsrprllnluJo uolleuuoJ eqlJo,$qrqtssod eql qSnoqllv
ONY ONIUtrISNTJ
SVIfl NOIIJNOOUd S(IYf,SYJ.YUINI
'Z
'(l uorlceg) sepeos"cqns puB sep"cs€c ogl uI ,t1lcerrp p$npoJd srelsnlc lcoJep Jo (quqc pue epllS) furgolu pue,$r1rqe1splureql'uorleru:oJ eql Jeplsuoc,{1}tc11dxa lsnru suoqlpuoc a8eurep epecsec Jepun uollslnruncce 1ce3ep3o Eu1la -polu eql uolsnlcuoc r?elc 3 01 p€el r€J snql peul"lqo sllnsoJ eql 1"q1 '(9 uorlcag) o8e1s,fuerroceraql ^\oleq sernl?Jadruel 1? pelslperrl slslr A -el"ru Jo uorlsEuole ruJoJrun eql uI eseoJcepclls€Jp " pu" (SuruapJell uorlerpeJ 'e'1) sserls p1er,{ reddn oql ut eseaJcul pecnpul-uoll"IpeJ eql ur?ldxe osle f"tu sepBcs?ceql uI sJslsnlc VIS OISSIIEJo uoqeruJoJ 'lapour wlq uollcnpord eq1 uotlctperd eql leqt lno pelulod eq illlr\ 1I 3o ursrrr eql qlr^\ luelslsuoc f1n3 eJ? sllnseJ eql :9 uollces uI pezlJsluruns eJ? uorlBlnrunm€ e8?Iu€p uo ,{8reua FoceJJo }ceJJeeql Euvrroqs slFSeJ 'sJolsnlc VIS iletus Jo epITAIsuolsuerulp-euo lelueruuedxe ^\eu eruos pue serq uorlcnpord go srrrJolut pauteldxe ,(lp3sseelns eq ^\ou uec s"Iq uo4ecolsrp Eutsn ,{roeql e13Jl?uollue^uoc aql Jo sullel uI paureldxe eq lou pFoc 1"q1 sllnsal l?luelulredxa eql }€ql t uoqcas uI u^\oqs eq ill^\ lI '(g uorlceg) s"Ig uoqcnpord Jo qtEuarls eql pue ldmuoc aql Jo {llplle^ eql lsel 01 lno perJJscsuoll€Ellsa^ul Jo sllnseJ UIBIUeql Jo freruurns oql '(7 uorlcag) selq uollcnpoJd ,(q pe,ro11o3sl sHI Jo ldecuoc aql Jo sIS€q I"crsfqd eglJo ue^6 sI uol]ducsopJolJq e lsrg'roded luaserd eql u1 OOA\'H'J CNV HDNIS'N'S
zzl
INTRA.CASCADE CLUSTERING
t23
(b) Only about one tenth of the NRT displacements survivesas lattice defects(i.e. SIAs and vacancies). (c) A substantialfraction of SIAs and vacanciesforms clustersduring the cooling-downphaseof thecascade; the high localconcentration of SIAs (i.e. closeproximity), the high temperaturein the cascade volume and the attractive elastic interaction betweenSIAs make clusteringof SIAs inevitable. (d) Both the sizeand the number of SIA clustersper cascadeincrease with increasingrecoil energy[6-8]. The observationof intracascadeclusteringof SIAs and vacanciesis not limited only to the MD simulationstudies.In fact, the transmission electronmicroscopy(TEM) and diffuseX-ray scatteringexperimentson irradiated pure metalshad provided ampleevidencefor the "athermal" clusteringofvacancies120-25landSIAs123-27lincascades evenbefore the intracascadeclusteringphenomenonwas firmly establishedby the MD simulationstudies[6-8]. Thus, the available evidencesuggeststhat under cascadedamage conditions a substantialfraction of SIAs and vacanciesis produced in the form of clustersand not as singleand isolated Frenkel pairs. Furthermore, the clusters of SIAs and vacanciesare spatially separated from eachother. At irradiation temperaturesabovestageV, vacancies would evaporate from the vacancy clusters and a large fraction of them would enter the medium (see next section). The evaporating vacancieswould contribute to the global vacancysupersaturation.At the same time, the density of SIA clusters would build-up with increasingdose.As shown later, the rate of observedvacancyaccumulation suggeststhat a fraction of the SIA clustersmust be escapingto extendedsinks.The interstitialclusters,on the otherhand,areexpected to remain thermally stable,at least up to peak-swellingtemperatures [28-30]andcannotprovidemobilesingleSIAsto themedium.It should also be noted that the fraction of vacanciesimmobilized in the form of clustersis not likely to be the sameasthat of SIAs.Thus,undercascade damageconditions, there is a large asymmetryin the production of mobile vacanciesand SIAs that can subsequentlybecomeavailablefor further interactionsand accumulationsin the form of dislocationsand voids. Theseconsiderationsof intracascadedefectclusteringand the thermal stability of the resulting clustersgave rise to the concept of productionbiasI l,l2].
svls s3 IIOA\s3 selcueJs^ go 3uua1sn1cpu€ uolleulquoceJ epecs?o?Jlul Jo lcedtut eql apnlcul fllrcrldxa suoq"Fcl"J aseql 'lepotu otll Jo glEuoJls aIIl pue ,{ltpqerr 'lc"J oql lsel ol lno peIJJec eror\ pu? Wgd eql;o uot1ec11dd"lsJg eql ur'eJe^\ suoq"Fclec eseql'ereq paleeder eq lou ilI1y\pu" [tt] :eU ut peqrJcsepoJBecuepuedepa:nleredurol sll pu€ eler Euqle,ts e1e1s-fpeels eq1Jo suorlelncl€c Jo sll€1ep pu" ntrgd eql Jo lJoaeurer3 leraueE eq1 Eqla,ng pgol elu1g-,(puels Jo acuepuadeq arnluradurel '1'g 'peur3lur?Iu sr sJelsnlc VIS Jo lelotueJ luelcgJe ue se 3uo1 se Suqle,t.splo^ JoJ ecJoJ Surlrrp Euorls e Eurpvrord go 1er1ue1odoql e^€q seop s€Iq uotpnpord eq1 13q1 ^\oqs poeput op suoll?AJesqo plueruuedxe qlIA\ uosueduoc Jreql pue sllnser aseql'I\lgdJo slruel ut Suqle,r.splo^Jo setcuepuodep esop pue ernleredurel Jo suoll"lncl"o Jo slpseJ ul"ru eql ezlJerutuns oA\ Eur,rollog eq] uI '[0I] Iepou )gg ro ,ftoeqt oter pr"pu"]s oql Jo surel ur peureldxe eq plnoJ ,{llelueuruedxa pe^Jesqo qutor8 eql rou deeJc uort?rperJroql reqtleu 1"q1petou eq plnoqs \'l1tl ntrgdJo {ro^\eru"4 oql uqlr^\ pouteldxe ,(1n;ssoccnsuaeq seq JZ uI ecuepuedep ernlered -Iuel slr pue qu*rorE uoIleIp?JJI 3o uelqord eql 'he] suoll"Aresqo I?luerurJedxe aql qll^\ 1e.,!t ,{re.t eerEe o1 punoJ ueeq o^€q slFseJ pelelncl"o eql pu" deerc uotletp€JJl pue SuqlerrrspIoA ueerrrleqdtqsuotl -"ler eql eleEqsarut ol pesn uooq osl€ seq ntrgd 3qI'(Wgd) [lt-tt] Iopour s"rq uorlonpord aql Jo lJo^reru"{ eql uq}Lh ap€Iu eq uec splol Jo ruJoJ eql uI uollslnruncc? lceJep Jo sluotussess€tllslleal qcns leql u^\oqs ueeq seq ll pue ruelgotd srql ol pelo^op uoeq s"q suotlecrlqnd3o Jeqrunu e 'sreef lueceJ u[ 'sJe]snlJ Sutlpser eq1go sergedord ctsuulur eql pue sVIS pue selcu?c?AJo8uue1sn1cepecseceJlulJosuollsJeplsuoc opnlcur,(1lrcIdxe lsnru suonlpuoc sEeurep ep?cs€3Jepun uoll"lnluncte 'alenbepe 'oJoJeJeql 'st 11 lceJep Jo luelul"eJl 3q1 leql e^Il?Jedrul re8uo1 ou sr s?rg uorlecolslp pue ,ftoaql el?J l€uollueluoc eql Jo sruJol ',{11uenbesuo3 ur uorlelnuncm lceJep go uotlducsep pleg-ueeu oql 's:red 1e>1uorg Jo uoqcnpord snoeueEouoq Jo esec oql uI l"ql ruo4 lueJeJJrp(leluaurepunJ sI suoqlpuoc oE"ru"p op"csec repun uoqcnp -ord lcegop aql leql reelc almb sI 1I 'uollces EuroEero3oql 01 Eulproccv
NOIIYTNtr{N))Y
J,f,fl.fgc ONY SYI{ NOIIJNCOUd
'€ vzl
OO,/l\'H'J CNV HCNIS'N'S
INTRA-CASCADE CLUSTERING
125
As describedin Section 2, the number of defectsproduced in the cascades is only about one-tenthofthe numberofdefectscalculatedby the NRT model [1]. To recognizethis loss of point defectsthrough mutual recombination in the cascadevolume, the calculations were carried out in terms of an effectivepoint defectgenerationrate G. G is taken to be the rate ofgeneration ofall point defectsthat are available for making contribution to the rate of defectaccumulationand is given by G: (l - o)Kwhere o is the fractionof defectsthat recombines in the cascadeand K is the point defectproduction rate as calculatedby the NRT model The influence of intracascadeclusteringon point defect accumulation under cascadedamageconditions is includedin the calculationby partitioningKinto threefractions:thosethat recombine(o), thosethat cluster()) and thosethat escapethe cascaderegion and undergolongrangediffusion(p).With theseconsiderations, Woo and Singh[l l]have shown that the effective point defect generation rute G is given by G : pjKl 0 - e) for j :i, v and ei : Ai(l - a). Using this definition of G, it has beenshown that the production bias is a potent driving force for the accumulationof vacanciesin voids under cascadedamageconditions [l]. In this analysis,it is implicitly assumedthat all the SIA clustersproduced in the cascadesare immobile and that the number densityof SIA clustersis maintained,at a steadystatevalue by some mechanismsuch as dislocation sweeping[11,33]which is also the mechanismvia which interstitial clustersare incorporatedinto the dislocation network. The problem of dislocationsweepinghasbeenfurther investigatedby Woo and Seminov[34]. using the effectivepoint defectgenerationrateG and experimentally derived quantities for various sink strengths describing the microstructure(seeTable I in [l 1]),the steady-state swellingratefor stainless steel has been calculated as a function of irradiation temperature. Figures I and 2 show the resultscalculatedfor an austeniticstainless steelirradiated with fission neutrons producing cascadesand l Mev electrons(e.g.in HVEM) producingFrenkel pairs, respectively.The results plotted in Fig. I illustrate severalimportant characteristicsof void swellingunder cascadedamageconditions: (i) The existenceof two sharply separatedtemperatureregimes;low swelling rate at lower temperaturesand high swellingrate at the
'uonnquluoc sttq uoncnpord oql ol enp eql ur leed druqs eql stol.{'[tt] s/udpr-g1;o eler e8eurep sesuegtrq,{\elur 8uq1e,ns IUN e pu" (gt'O 0'0) 13Jo senF^ snouea roJ suorlneu ls?J qlIA\ pel?Ip?rrl Isels ssepr?tsgle e roJ pel?1ncleceler Suqlear's 3o ecuepuedepernleredurel I iIUnDI{
( c o )r 099
009
099
009
09t
00t
09e
00'0
0'0
9f
a
r o oF r
'0
z o
a m
0e'0 =
09'0 peue-
9t'0
6'0 = r _ se d p , - o L =
n3
zo'og9'
!3 '10
v e0'0
'(g uorlceg ees ',{8Jeuepocer,{pe1nc -ru€d) suorlrpuoc uoIl€Ip?JJI pue selqelJel sl€IJel"ru uo puodep 01 polcedxe eq ,(eru eroJeJeql sBIq uolpnpord 3o gfueJls eql 'sVIS Jo 3uue1sn1cepecseceJlul 3o ,(cuetcg;e egl 01 s?Iq uollsnp -ord 3o ,{}nrltsues eql sel€Jlsnlll slql '& 'qeqtlsrelul perolsnlc Jo uorlc€{ eql qrl^\ seseeJculseJnl?Jedue} II3 1" eler Suryalrs aq1
(ul)
'eluldeJ
oler Euqlamsrnol aql seulluJeleps€Iquollscolslp oq1seoJol{1r\'selq (D uoqcnpord eq] ,(q pelsulluop sr eurtEereler Suqlamsq8q ^eq1 'edu€J ernleradurel r\oJJeu Joql€J 3 uI sJnsCOUOIIISu€JIeql pu? seJnl -eradurel Jeaol 1e leql u"ql reqErq serull uel lsoull€ sI eJnl?Jed -Iuol {"od eql le eler Euqlar'rs eql 'eJnleredruel Eqlazns lead 9Zl
OOA\'H'J CNV HONIS'N'S
INTRA-CASCADE CLUSTERING
127
0.0s K = 10-3 dpa 5-t a =0.0 Ei = 0.0 €v= 0'0
0.04 (U oE
0.03 ul F (E (5 7
-r0.02 J
UJ
= cr)
0.01
0.00 L 200
400
600 T (oc)
800
1000
FIGURE 2 Temperaturedependence of swellingrate calculatedfor a 316stainlesssteel irradiated under Frenkel pair production (i.e. no cascadeand no intracascadeclustering) condition correspondingto the irradiation in a high voltage electron microscope (HVEM) [l]. Note that the smooth low temperaturecutoffis typical of the cutoff mechanismcontrolled by long-rangerecombination.
In the caseof I MeV electronirradiation (Fig. 2), on the other hand, the swelling rate increasessmoothly with temperatureat lower temperaturesand thereis no indication of an abrupt transition from a lowto a high-swellingregime.This smooth increaseis thought to be due to the small activationenergy(E^12:0.7eV) involvedin increasingthe recombination.This is almost a factor of four lower than the activation energy associatedwith the steep transition in the case of neutron irradiation (Fig. l). The high activation energy associatedwith the steeptransition in the caseof neutron irradiation is very close to the activation energyfor self-diffusion. It should be noted that these general characteristicsof the temperaturedependenceof the steadystate swellingrate predictedby the
roJ [€?] ees)sosop JeqErq1" seseorcappue qEIq ,{rel st sesop ll\ol le elet Euqle,r.soql leql s.troqs (,firsuep uoll€colslp it\ol frorr q11n) slslelu ccJ ernd ur Suqlens pIoA paJns?eur,{lelueuruedxeSo ecuepuedep esop egl uopulnumctY lJeJoO Jo uopnlo^f, produa;
'7'g
'lZV'tVl ernleredtuol uoll€Ip€rrl aql ut so8ueqc ldnrqe o1 enp doerc uotletpeJJl pue Suqye,t.spIoA uI se8ueqcso sluolrleJns?olu leluauruedxe luecoJ Kq peprnord ueeq seq Iepou s"Iq uoqcnpord eql ,(q pelcrperd uoll?lntuncoe e8eruep uo ernleredural uo!"Ip"JJIJo lceJJe 'tOt] 3uorls oril Jo uoIl€IrrJIJuo3 JeqlJnJ V Io{clu pe1"ry€rrl uoJlneu 'ernlerodurel eql JoJ pegodar ueeq s€q ecuepuadepernleredural JBIITUIS (uorlerperrr) snoSolouroq Jo uollcunJ e se pe11o1deJ€ suoJlneu uoIssIJ qlurr pel"Ipe ttr. [69- 29]ssolul€ls cl]Iuelsne od,$ 9 1g e ut aEueqc ,{ltsuep 'EIg uI 'suor]neu uolssg qll^\ pue [9€'S€].raddocornd ut Euqle,rrsplo^'€ 'Erg eas) sllnser pel?rp"JJr s,{o1e pue slelelu uo (g lelueruuadxe qlur lueureer8e pooE ur eJe s?Iq uorlcnpord 30 suuel ut suoll"lnclec luoserd 'l '31.{ ul u^\or{s JJuepuedap ernlerodural pslcrperd eql qll/r\ luauree-r8e 'suoJln€u uolssg poo8 ut st ernleredursl uoIleIp?JJI qlrrtr Eu111a,tsuI es?eJJuI deels aqa qlP\ polerp?rrl t6t-f€l (A) Ieals ssolulels 9lE pue tSEl (f) tSel (!) raddoc arnd ro.; fleluarurredxe pornseeu Suqlans plo^ Jo JJuopuedap ernleradual E :IU1CIC
g srnle.reduelsnoOo;outo e'0 t'0
5
r'0 d o {
g
e'oE
s
bre)_s's u\
I
edpSg-lz'(9le)
pels sselulelsa edpz't'teddoCI E edpe'O'reddoC
8'0
OOAA'H'3 (NV HONIS'N'S
8Zt
INTRA-CASCADE CLUSTERING
t29
review).This behaviourcannotbe explainedin termsof conventional rate theory and dislocationbias(seefor example[44]),particularly when the dislocationdensityis very low. The situation,on the other hand,is very suitablefor testingthe production biasmodel sincethe production biasis expectedto be the most potent driving force for the void swelling at very low doseswhen the densityof the biasedsink (i.e.dislocations) is negligiblylow. The temporalevolutionof SIA clusters,void sizeand swelling was calculatedby Singh and Foreman [12] for pure copper under neutron irradiation at 523K. Thesecalculationswerecarried out taking the production bias to be the only driving force. The escapeof vacanciesfrom the cascadevolumewastakenasthe effectivegeneration rate of vacanciesand wascalculatedusingcascadeparametersobtained from MD simulations.Sincethe dislocationdensityin fully annealed pure copper is generallyfound to be very low [45], the density of dislocationsinkswas taken to be zero. The calculationsdemonstratedthat the productionbiasdoesindeed havethe potential of providing the driving force for void swellingeven in the absenceof dislocationsand without the contributionof dislocation bias.Furthermore,the generaltrendsof the calculateddosedependenceof swellingare in agreementwith experimentalresultsshowingthe high swelling rate at low dosesand a decreasein the swelling rate at higher doses(Fig. 4). However,in order to explainthe experimental resultsquantitatively it was found to be necessaryto assumethat small sIA clustersproducedin the cascademust be mobile and about r5Toof them must be escapingto sinks other than voids. According to MD simulationresultsit seemsquitepossiblethat about I 5% of SIA clusters producedin the cascadeduring fissionneutron irradiation of copperin the peak swellingregimemay contain as few as only 4-6 SIAs [46]. Thesesmallclustersarelikely to be highly glissile[7,8].Indirectexperimental evidencefor the one-dimensionalglide of small sIA clusterscan be deducedfrom the results on the evolution of SIA clustersin the annealing stage II after low temperature irradiation with electrons [47,48]and fast neutrons[48-50]. It shouldbe addedthat at void swellingtemperaturesevaporationof vacanciesfrom vacancyclustersproduced in the cascadeswould generate vacancysupersaturationin the medium. In the presenceof this supersaturation,the sessileSIA clusters produced in the cascades would shrink and eventually disappear.This processwould ensure,
'paul?lul?tu
sl,"1l\le
oq ru,r\ qlA\oJE pIoA JoJ ,fuesseceu uollsJnlssJodns ,(cuecen Eu4ereueE 'sprom Jeqlo u[ 'runlperx oql uI luas JoJ serg uorlcnpordgo 1et1ue1od eql -erd eq s,{errrle [Lt\ sJelsnlc y15 epssllE pu" IIsIus euos l€q] 'terra,t.oq '(Sgl 'tSel ,}'tfql a '[09] A 'lgtl V '1691l) sllnserleluauruedxeqlr,n lueureer8e O poo8 ur sr pu? sprol u?gt roglo s{uls ol edtcsa o1 pelrrnsseele sJelsnlcVIS eql Jo o/oSIueq^\ peur"tqo sI euq uelorq eqt ,(q peluasarderecuepuedspasop eql'[Zt] (auq ,tg do1)spro,ru?qt reqlo s{uls ol srotsnlcVJS 11e3o edecsaeql pu" (eur1urolloq) ep113 srelsnlcVIS Jo ssol ou Sununsse'A€ZS w suorlneu uolssg qlm pelelpeJJl:eddoc ro.; plo^ Jo tf,uopuadapesoq t AU1CIC serq uo4cnpordJo suuel uI pel?1nclec8uq1a,trs
(edpruN)lsoc o0L
,-0L
z-ol
e_0L
?-oL
s-0L
(9661) tElo q6uts (686t) lteriPl ? ollutz + (zzol)eppv a
. 0t
v-
(696t) telsel/\| ? ilPquue (geOl) 'P le q6uls V (geOl)'1e1aqs116u3T
a o
I
o/o9l t
/
e-0L ct) =
to
uolloul ralsnlcoN
edEcss o o a a
I t
m f
/
z-ol
to V
z o
bq
edecse JAlsnlcplol
,
,OL
,
y8z9 reddoc o0L (Nv
oo^\.H'c
H9NIS'N'S
INTRA-CASCADE CLUSTERING
3.3. One-DimensionalGlide and Defect Accumulation As discussedin the previoussection,the escapeof small SIA clustersvia one-dimensionalglide may play a significant role in the evolution of dislocation and void microstructures.In order to determinethe effectivenessand importance of the one-dimensionalglide of SIA clusters, the mean rangesfor the one-dimensionalglide motion of SIA loops in microstructurescontaining dislocationsand cavitieshave been calculated [3]. The resultsshowthat the rangefor l-D migration(by glide) is substantiallylargerthan that for 3-D migration.It seemsquite possible that in well annealedpure metals (i.e. with dislocation density 1012 m-2) grainsup to 100pm in diametercouldbevirtuallytransparent for the gliding loops at the beginning of an irradiation experiment (i.e.during the loop and cavity nucleationstage).This meansthat this mechanismcan be very effectivein creatingvacancysupersaturationin pure and fully annealedmetals, particularly at low doseswhen the gliding clustersmay escapeto grain boundaries.Thus, the high swelling rate observedduring the transientat low doses(Fig. 4) in pure and fully annealedcopper can be explained in terms of production bias and clusterannihilationby one-dimensional glide [12,13].This would also explainas to why the calculatedclusterdensity[12] is unrealistically high when the removal of SIA clustersby one-dimensionalglide is not taken into account. Sincethe defect reactionsoccurring at the beginning of irradiation can be decisive for the subsequentmicrostructural evolution, it is important to investigatethe temporal evolution of immobile SIA clusters, vacancyclustersand the build-up of the vacancysupersaturation due to the decayofthe vacancyclustersproducedin the cascades.Such investigationshave beencarried out within the framework of production bias and one-dimensionalglide of SIA clusters assuming that glissile loops are predominantly absorbedat extendedsinks such as dislocationsand grain boundaries.This assumptionis quite reasonable at the beginning of irradiation (i.e. in the transient regime)when the cluster density is still low. A set of kinetic equationsdescribingpoint defect as well as cluster reactions(including the absorption of gliding loops at sessileclusters)is usedto calculatethe dosedependence ofsink strengthsand number densitiesof SIA and vacancyclustersand supersaturation of vacancies.These calculations are carried out for two
'1,. ur n,0l ) inol ,{:e,r st ,(ltsuaP uorlecolsrp eql uoqa ue^e sesop ,no1 .{re,r le suoqernles'radris ,{cuece,r qSlq ol asr: '[gt] pacnpord ul sdooMs ep?cs?c eql e,r6 uec serq uotlcnpord oql l"ql etoN ll€tus *J?'0 Jo ("'.;) ernl ;o aprlS leuorsuerurp-euo pu€ s?rq uorlcnpord.;o ldecuoc sql Sutsn -e.redursl uorl"rp€JJl ue le uoll€Jnlesredns ,{cuece,r.1o eruspuedep ssoq I AUnCId
(ruN'edp) :soc z-ol
e_0L
,_0L
s-0L
e_0L
/-0 L
zol gO'O=Jr'S'O=^3=13
'r?'o = "'l e0L
o z o CJ)
c
\,
r0L m
t U) -l
C
s0L n
s/edpe_o L .roddoC
o z
e0L pue 1._ruo,0I 'e'r) rrrol ,fton sr ,firsuep uorl€colslp eql uoql\ uela uolleJnlesredns ,(cuecel qErq ,{rerr " ol sppel sJalsnlc VIS Jo ep13 leuorsueunp -euo qlr^\ reqlaEol s"Iq uoqcnpord go uoll?replsuoc aq1 leqa (t) 'z-Iuu :d ro3 :sllnseJeseql Iuo{ u1l\?Jpeq uec secuaJeJutoA\I rg1 runrurxerue qEnorql saoE1nq '.,ur or0l - d tol enlen a1e1s-,{pee1s-tsenb e o1 ,(prder JeqleJ ses€eJcuruorleJnlesJedns ,(cuece,r aql l"ql uees eq uec 11'(._urzr0l pu€ or0l:d'e't) setltsuepuoqecolslp o^u JoJ u^\oqs eJe sllnseJ eql 'g '8ld ul u^\oqs sI uolleJnl?sredns ,{cuecel eqlJo uollnl -ole leroduret eq1 '(Eu11ar\s pIoA 'a'r) ql,ror8 pu" uoqealcnu pIoA JoJ releruered luepodun lsotu eql sI uoll€Jnlesredns ,(cuec"A eql eculs
' [g t]- zt' o
go ernleredurol uoqerp"JJr uB JoJ pu€ selllsuep uollscolslp lueJeJJIp zEl
oold'H'c cNv HcNIs'N's
INTRA.CASCADE CLUSTERING
133
(ii) That at high dislocationdensities(> l0r2m-2) voids may nucleate during the transientmaximum of the vacancysupersaturationeven though they may not be stableduring the subsequentsteady-state condition. It shouldbe pointed out that the loop glideis not the only mechanism of cluster removal. Various possibilitiesincluding conservativeclimb have been consideredby Trinkaus et al. 114,331. Possibleeffects of production bias and clusterannihilation on the dislocationcomponent of the microstructure, including the nucleation and growth of SIA loops and the climb of the network dislocationshave beenstudied by Woo and Seminov [34]. These authors conclude that the observed evolution of the dislocation structure can be understood as a consequence of the operationof the productionbias,despitea net flux of freevacancies to SIA clusters.In order to understandthe nucleationof SIA loops in the environmentof a net flux of free vacancies,Seminov andWoo [51]haveuseda Fokker-Planakequationapproachto include stochasticeffectson the evolution of the primary clusters.They have shown that despitea much higher flux of freely migrating vacanciesat the peakswellingtemperatures,the nucleationand growth of SIA loops are possible. 4. DAMAGE ACCUMULATION IN THE VICINITY OF GRAIN BOUNDARIES It is well establishedthat grain boundariesact as neutral and unsaturable sinks for both vacanciesand SIAs. This givesrise to a grain-size dependentvoid swellingdue to the depletionof point defectsfrom the grain interior, i.e. within a certaingrain sizerange,the void swelling would decreasewith decreasinggrain size.The grain sizeeffect under I MeV electron irradiation (i.e. where all defectsare produced as Frenkelpairs)was,in fact, establishedexperimentallyalreadyin l973by Singh[52].The calculationofthe steady-state vacancysupersaturation profiles as a function of grain size[53] led to a satisfactoryexplanation for the observedgrain sizeeffect. It should be noted that thesecalculations were carried out using the conventionalmean-field approach and dislocationbias.Thus, it can be concludedthat under Frenkel pair production conditions, the vacancysupersaturationin a relative large
'[79] i(learlcedse: 'urul'91 pue %gI'0 ere,ftepunoq urur6 eql ruo{ ssJu"lsrpa3re1te) Jouelur urerEeql ur ezrsprol pue 3uq1e,rseqI ')€Zg l? pel"rp"JJr suoJlneureddoc ernd ur frupunoq urerB e tuo{ ecu"tsrp eqr qlp\ ezrs pu? Euqleas pro^ Jo uorl"ue1 9 AU1OIJ
(trrl),luvoNnogNlvueNoul icNvl-stc o'z 0'L 0
o'v
0't
0t
0L'0 I I I I
< 9L
I
T
'r----r-fi3-*_.
U
o
^.
E
/
P
\
\
9L'0
I I I
U) € m t-
\ l.
ffi02 -{ m a
t-
0 z ' 0z o
o \
be
f
3
AV
9Z
9Z'0
edpg'o->tez9 nc-cHJo 0e
0t'0
lB suoJlnouuorssgqlr^\ pelerpurrlreddocur palJasqoJnon"qoq B qcns go aldruexauB sr\oqs 9 ernErg'(neurerJoJ[tS] ees)suorlrpuoceEeurep ep?cs?cJapun pol"rpeJJr sl"rJelpr.uJo fleuel € ur peAJasqoueaq qtro;ecueq)seuepunoq s"r{ Jnorl"qoq sHI'(..euoz 1eed,,se 01peJJaJaJ urcrE Euole euoz pepnuop prol oql 01 luecelpe ,{lelerpeuruueuoz oql uI pecuBqua,{lluecgruErs are (Euqloms'e'r) seqvrecgoq}uorE S3IIe^\ s?uorl?elonueql l"ql peleJlsuouepeleq 'rene,roq'suorlrpuocaEeurep ep"cs€c Jepun peurelqo slFSeJ lelueuruadxaJo Jeqrunu e3.te1y 'JorJolururerEaql ur pe8ueqcun ur?rueJplnoqs pue ,fuepunoq urerE eq1 tuole euoz pepnuop pro^ oql Jo pue eql puo{eq {lelerpeururrrunrurx€rrrslr qc€er ppoqs uterE OOA\'H'3 CNV HCNIS'N'S
tEl
INTRA.CASCADE CLUSTERING
135
523K. Generally, the enhancementin vacancy accumulation in the peak zone extends over distancesof - 20 cavity spacingsfrom the boundary. The peak cavity density seemsto occur at about 10 cavity spacingsfor all cavity densities,so that the peakdistancefrom the grain boundary decreases with increasingcavity density(seeTable I in [5a]. The formation of the peak zone implies that the vacancy supersaturation must be considerablyhigher in the peak zone than in the grain interior. This requiresa preferentialtransport of SIAs from the peak zoneto the grain boundary. Calculationsof the swellingrate as a function of distance from a grain boundary demonstratedthat the enhanced accumulation of vacanciesin the peak zone cannot be explained in terms of conventional three-dimensionaldiffusion and biasedannihilationof mono SIAs at dislocations[55].Thesecalculations did show,on the other hand, that a one-dimensionaltransport of SIAs via long-rangechannellingcan produce a peak zone. However, this was not consideredto be a realistic mechanismunder cascade damageconditions. Recently,the problem has beentreatedwithin the framework of production bias and one-dimensionalglide of small SIA clusters.Calculationsof the void swellingasa function of distancefrom a grain boundary show that the observedformation of peak zonein the vicinity of grain boundariescan be properly rationalized in terms of transport of SIA loops from the peak zone to the grain boundary by glide [ 3,l4]. one-dimensional
5. DAMAGE ENERGY DEPENDENT DEFECT ACCUMULATION As describedin Section3, one of the major predictionsof the PBM is that at a given temperature and damage rate, the rate of vacancy accumulation should depend on the recoil energy which determines the nature of damage production and the efficiency of intracascadeclusteringof SIAs and vacancies.In order to test this prediction, specimensof fully annealedpure copperwereirradiated at about 523K with 2.5MeV electrons,3 MeV protonsand fissionneutrons[56]. All irradiation experimentswere carried out at a displacementrate of about 5 x l0-8dpa (NRT)/s. Irradiationswith electronsand protons were carried out at Jiilich, whereasfission neutron irradiations were
'wgl ,(q uees eq o1 qEnoue a3re1 eurlleJll srtll Jo ,fitsuolut eql eJ" rlcrqa\ sprolJo aruIleJIIcllsuelcer€qc sI sql'sesec II" ut sd 699 lnoqe 'eures eql ,(g8nor ere erlceds eql Jo Jo seturloJll uorlrsod Eurlcagar qred parrq-Euol eql go sadols eql 'slceJep ut pedderl ueeq e^sl{ qolqrrr suorlrsod luo{ sesue Ja}l"l oql 'sluouodtuoc pelg-3uo1 o^\1 Jo euo pu? pe^q-iloqs " l\oqs suerurcadspel€IpeJJI rog erlceds eeJrll [V 'reddoc pel"rperrrun pu" peleeuu? JoJ sB IIa^\ s€ (edp tO'O tnoqe 01 1e) seltlce! -ord go sad,! aerql oql qll^\ peleIp"JJI nJ roJ erlceds erulleJl uorlrsod sl\oqs , ernErg 'sueurtceds{lnq uo sluerueJnssoluuolleyqluue uorlrsod eql ,(q perrrJguoc ere suorle8rlse^ul I trgI eql Jo sllnsoJ ul"Iu eql 'uorlerpeJJruoJlneu Jo es?ceql uI pe^JesqolBIIl u€ql Je^\ol serurl xrs ,(1uo se,t. reddoc palBIpeJJI uolord AaIN € oql uI 'suotlrpuoc uollelp?JJl etu?s egl Jod 'lelel esop oIUBS leneySuqleanseq1 aql 01 pue arnleredurel elu€s eql 1e reddoc pslelp"rrl uoJltele AeI tr9'Z Jo esec eql ut l"ql ueql req8q seurll 0g ]noqs s?1{ uoIlsIpeJJI uorlneu 'uoIl?Ip€JJI uoJlnou Jo as?c eql uI Jo es?c egl ut Euqle.nrsplo^ eql eseceql ul eu/ar0l x g - ruor3,{8reueltocer *\l rc01x I 01 uorlceloJo ',{1a,r1Pedsar Surseercurqlutr,{puecgruErs peszarcut oqe ,{ltsuep prorr eqa 'zulzzyl x E pu" oz1lx L- eq 01 punoJ ere^\ sueulceds (edptO'O) pelerpeJJr uoJlneu pue uolord aq] ut ,{ltsuep Jelsnlc eql 'sJelsnlc .(cuecenpue VIS Jo ecuosqeelelduoc e pe^\oqs edp t0'0 o1 dn;o 1elel asop " o1 suarurcedspelerp"JJl uoJlcelo Jo suolleuturexe I IAI eql 'e1er e8eurep pue ernlereduol uoIlBIpeJJI ueurrEe le uorlerp?JJr uoJlcele Jo es?c eql uI lseaol oql pu" uollslp -?JJr ppon (e1er palcodxe eq eql eq o1 eql ur uorlneu es"c lsaq8rq Jo 'lepotu Eurqeurs eqye'l) uoll?lnlunooe ,(cuecel Jo e1"r eql ntrgd eql o1 Surprocce 'snqa 'sercuecel pu€ sVIS Jo 8uue1sn1cepecs€ceJlul Jo fcuercgga q8rq frezr " qlIA\ sep€cs?contsseluJo Jeqrunu e?:l.le ecnpord plno^\ 'pu"q Jeqlo oql uo 'suoJlneu uoISsU qlurr suoqelperrl '(3uue1 -snlc epeos"ceJlur Jo lunoru? el"Jeporu " qll^\ 'e'l) sepecseJ llutus Jo Jeqrunu luecgruErs e elereuaE plnol\ suolord AoI I g qlllr\ suoIlsIpeJJI '(sorcuecel pu€ sVIS tuuelsnlc snoeuelu?lsul ou 'a'r) queureceld 3o -srp pelcodxe eJe suorlcolo AaIAIS'Z ellq^\ leql o1 ecnpord e18urs,(yuo oslynseryulueuruadxa oql Sutqucsep eJoJeg 1no lurod ol lueloleJ st 1t 'pozrJerrruns eJ? sllnseJ eseqlJo slcedse uletu eql 'Suvnogog eql uI '[9S] eJeqr\eslouarrr8are suorle8rlsenuleseqlJo slFSeJ eqlJo slIBleC'(SVa) ,{docsorlceds uoIlBIIqIuue uor}lsod pue (;41AI),(docsorctur uoJlcelo uorssrrusu?Jl',{lyrtlsrsor PcIJlJele Eursn paleErlse^ul oJed\ seJnlcnJls -oJcrru lceJep uorlerp"rJl-lsod 'ssQI le Jolc€oJ €-)IC eql uI euop OOA\'H'C CNV HCNIS'N'S
9[I
TNTRA-CASCADE CLUSTERING
104
c
a) Annealed(unirradiated) e) 2.5 MeV Electrons n) FissionNeutrons p) 3.0 MeV Protons
f
o O 103 o, o
J
101
3
Time(nsec) FIGURE 7 Positron lifetime spectra for copper in different conditions: (a) fully annealed and unirradiated, (e) electron (2.5MeV), (p) proton (3.0MeV) and (n) neutron irradiated.A11irradiations were carried out at - 523K with a doserate of -5 x 10-"dpa (NRT)/s and to a doselevelof -0.01 dpa. For clarity, all spectraare shown by continuous curves obtained as fits to the experimentalspectra. For the proton irradiated specimenexperimentalpoints are also shown [56].
component for the proton irradiated sample is clearly intermediate between the electron and the neutron irradiated caseswhich gives evidenceof a similar relationshipbetweenthe void densities. The resultsshowingthat the clusterdensityas well as void swelling increasewith increasingrecoil energy demonstratethe sensitivity of void swellingto intracascadeclusteringof SIAs. Theseresultsare fully consistentwith the main predictionof productionbias that the magnitude of void swelling is strongly dependent on the intracascade clusteringefficiencyof SIA (e.g. see Fig. l). Furthermore,it was demonstratedalmost ten yearsago that the high swellingrate observed in the neutron-irradiatedcopper could not be explainedin terms of the standardrate theory and dislocationbias l44l.lt is quite interesting to note here that the swellingrate in the electronirradiated copper at
'a't) selcelsqo ,(q esop uorl?rperrr oql ol peleler uoql sI (Eutuapreq esoql qEnorql suoqecolslp eql o^lJp o1 fresseceu sseJlsoql uI es?oJcul eq1 'sdoo1/sJelsnlceseql q8norql Eurpnc Jo Irleql uee^\leq 1no Eutnoq ,(q reqlre sJeuJ?qeseql'sserlspolldde aIIlJo uollc€ aql Jepun'etuooJelo 'lepour slql o1 pesoddns ere aueyd opg8 eqt uI suollscolslp eyqorr oql uI '[9I]uor]ou uoqecolsrp ol sJeuJ€qs" pB ol pelunsseere qctq,trsdool /sra1sn1cpecnpul-uoq€Ip?JJl eql fq pesn€c eq o1 peJeplsuoc sI uollslp -?JJr uoJlnou 01 enp sserls plad eql ur es?aJcul eql ',{geuoqtperl '8 'EId ur uaoqs am.1tZS pve 1ZE ]B suoJlneu uolssg qll^\ palerp"JJr Jeddoc arnd ut pelJosqo Jnol^eqeqJo spuq qloqJo saldruexg 'n oEels frerrocor eql e^oq" soJnl?Jodluel uoIleIpBJJI l" lstxe ]ou saop,(1qr1cnpJo ssol pecnpur-uollelpeJrl Jo uelqord eql l€ql ecueuadxe uouruooJo Jalleru ? osl€ sI 'eJnlc"{ ernleruerd pue,$ltqe1sut ctlsuld U 'sprolt 'uepreq 'dorp pyerf " ruo{ reJJnspeelsut 1nq {Jo^\ lou op ,{eqt Jeqlo uI 'uorqs"J snoaueSoruoq e ut ,{gecrlseld urogep o1 ,,$qtqe rtoql 'uotltppe esool ,(eql '1ene1esop ulslJec e puofaq ol pelelpeJJl uel{a\ uI 'luoruuoJlAue uoJlneu o1 pasodxe ueq.{ JopJBq,{lluecgtu8ts aluoceq s,{o11elercraruruoc sB IIOII\se slelalu ernd (--6E'g ro I e8els ,tronocer 'h€] dae:c uotlerperrt eql aoleq 'e'r) sernleredurel uoqetp?JJl ^\ol lV sB qcns sornleredurel polelale l" Jnoll€qeq uolleruJoJap eql Eututur -Jelep ur oyor luegodurr ue ,(e1d 01 u.t\oqs ueaq seq setq uo4cnpord pue Euuelsnlc ep"cs"c"Jlur eql 'g uorlcag uI peuolluoru ,{peeqe sy TYJINYHJf,IAI SgIIUtrdOUd trCYJSVJYUINI ONV 9NIUSISN]J
'9
's3pecs?raql ur pecnpord srelsnlc VIS il"rus go apqE Ieuolsueulp-euo pue sBIq uollJnpord 3o ldacuoc oql esn o1 ,ftessoceusI lI suolllpuoc a8euep epscs?c Jepun eleJ 'sBIq uoll?colslp pue ,fuoeql 3q11eznsqErq eql puelsJapun o1 'teure.tro11 al"J I?uorlue^uoc eql Jo {Jo1l\erue4 aql uqll^\ poolsJepun eq u"c se pecnpord eJ? sluetueceldstp areqznuolllpuoc eEeurep s-rred leluarg 'p p sreJJa'I plo^ eqt leql segduu slql'[td eql repun pe^rasqo Eu111ens Jo slFSeJ pelulncl€c eql qll^\ lueuaerEe ut sI qclg^\ edpoTryg'gJo el"J Euqyems e sp1eil reddoc polsIp"JJI uoJlcele AoIAI S'Z JoJ 'p p snJJe-I sllnser luesard eq1 'edp nd o7o1'gu"ql ssal eq ol [tt] .{q pelepclec sen s/edps_Ol x g- Jo oler e8eurep 3 qll^\ pu€ )€Zs OOA\'H'3 CNY HCNIS'N'S
8€r
INTRA-CASCADE CLUSTERING
800
139
Tn:47 "C
OFHC-Cu
(o)
It"'t=22 oC
600 6-
o.-
7 4oo U'
0.01dpa
o 6
200 Unirradiated
OFHC-Cu
T,,,:T,..r:2b0"C
200 o o-
r50 U>
c)
+ U)
r00 50
oo'
20
AA 30 Stroin(%)
AN
60
70
FIGURE 8 Deformation behaviour of unirradiated and irradiated OFHC-copper at 320 and 523K with hssionneutronsto different doselevels(shown on the stress-strain curves).Note that the specimensirradiated at 320K and tested al 295K show yield drop and plastic instability [63] at doses above 0.01dpa (a), whereas at 523K deformation occursin a homogeneousfashionwith work hardeningt64] (b).
seJnlee; 1ects,{qd uI uollJnpoJd eEeruep eql sepecsec Jo luaureceydstp 'srea,( lueceJ uI aql l"q1 polsJlsuouep eABq selpnls uollelntuls q141 SNOISNTJNOf,
ONV AUYIAIIANS
'4
'[gS'tS] aql Jo [?a€-{eerq sserls 'EtS) uorlnouJo sseJls pelslperJl reddoc surrol ur poolsJepun eq u"c (g '..uoll€turxordde sdool pyer,(eqf uI eseeJculaql l"ql ^\oqs slFSeJ eql eql 'ureql Surle.rocapsdool IIBrus,,Sursnpelelncl€c sI sseJls,{u.tre-1eerq sserls 3o ereqdsoru]e eql ruo4 ,(e.ne suotlecolsp eql gnd o1 ,ftesseceu 'ssarlsp1ar,{ eq1Eurlepclec,(q pelerultseueeq s?q sserlsp1ar,{reddn eq1 raddn eql slueserdersuoll€colslp pel"Jocep eseql {Jolun ol ,{resseceu sseJlseql 'ecua11'sesJnosu-l sElcB u?c,(aql leql os pe{coFn eq lsn{u suorleJolsrpeseql 'sdoo1II"us qll^\ peleJoJep suoll?colslp Eututeluoc sl€rJelelu pel"Ip€JJI eql uI uoll€luJoJep crlseld elelllul ol JepJo uI 'IgE] uotlecllqnd aler -edes e ur poqIJJSepare ssecord uoll?Jocep 3q1Jo suollelncl"c pellelo6l 'uorlecolsrp B ur-urrror8 Jo pleu ul€Jls eql ut (sapucseceql ur fllcartp Eurdderl ,(q rncco 01 peJeplsuoosl pecnpord) sdool epsst18 ["urs Jo 'ereqdsourls uorleJocepuol]Bcolslp eq; IIeJlloJ eql 01 JelIuIS Jouuzru € ur 'secJnos uollecolslp se 3ut1ce ruo{ suoll€colslp eseql luelerd 'e'r) ereqdsou4e 01 peJeprsuocsI suolletolslp uI-u^\oJB uo (uoqerocep areqdsorule ue ,{q peuepJ"q uoqeurloJ eqa 'sdoo1 srql Jo IIsIus Jo 'e'r) seJJnos (U-D pea)I-{u"Jd eqi Jo 1eB (suorlecolslp ul-u^ror8 '[tS] tsoru uorlerperrt Surrnp 1"q1sl Iepou HSIJ eqlJo slseql uI€Iu eql pesodo.tdueoq s€q (gSIC) Euruaprell ecrnos pacnpul op"cse3 pell"c 's1ettel"ur polslperrl Jo uollsurJo;ep cqseld Jo uollelllul Iepou .neu e '3Aoq" peuolluotu eql ut pello^ut sessecordog1 puelsJepun o1 JapJo uI Ieporu (HSA) Suruepreq relrr"q pasradsrppell"c-os eqlJo fllllg€cqdde '[t9] pes,(1eue-er eql SurpreEe.rsruelqord snolJes sl?oler sts,{1eueeql ,(11uecerueeq s"q Euruapreq uoIl€IpsJJI Jo ruelqord egl'seJnlcnJlsoJcllu peuJoJepun pue paluJoJep uonelpeJrt-1sod pue -erd pu€ JnoIABqeq uorl"rruoJep aql uo ecuepl^e lelueuruadxo elqsll"As eql Jo ^\eIA uI 'ecuenu uoJlneu eql Jo looJ oq pFoqs Sutuep:eq pecnpul-uoll"Ip"JJl oql eJ€nbseql o1 leuollrodord 'suollsJaplsuooosoql slseq oql uO '(elcelsqo Jo leql slcrperd Iepou eql 'e'r) dool/re1sn1c ,buecen euo socnpoJd uorsqloc qcee 13ql Surrunsse OOA\'H'C (INV HDNIS'N'B
0rl
INTRA-CASCADE CLUSTERING
t4l
are fundamentallydifferent from that of the Frenkelpair production at low recoil energies.While consideringthe problem of defect accumulation under cascadedamageconditions,it is necessary, therefore,to treat explicitly the impacts of intracascadeeventssuch as clusteringof SIAs and vacanciesand one-dimensionaltransport of small SIA clusters. Considerationsof thesefeaturesand the thermal stability of the resulting clustersof SIAs and vacanciesform the basisof the production biasmodel. Various aspectsof the damageaccumulationunder cascadedamage conditions have been investigatedwithin the framework of the production bias and one-dimensionalglide of small SIA clusters. The calculateddependencies, for example,of void swellingon irradiation dose and temperatureagreevery well with the availableexperimental results. Experimental results on the effect of recoil energy on void swelling are also in good agreementwith the prediction of the production bias model. A larger number of experimental observations showingan enhancementin damageaccumulationnear grain boundaries in metals and alloys irradiated under cascadedamageconditions can be satisfactorilyunderstoodin terms of production bias and onedimensionalglide of small SIAs to grain boundaries.It should be emphasizedhere that none of these experimental results could be explainedin terms of standardrate theory using dislocationbias as the only driving force. Finally, it should be mentioned that mechanical properties such as irradiation creep and irradiation hardening of materials irradiated under cascadedamage conditions can be also understoodin termsof productionbias and one-dimensional glide of small SIA clusters. It is reasonableto conclude,therefore,that the standardrate theory approachbasedon dislocationbiasalonemust be modified. The kinetic equations describing damage accumulation under cascadedamage conditions must account for the production,annihilationand dissociation of the clusters,their function assrrks,and their reactionwith otner defectsin the medium. Acknowledgements This work was partly funded by the European Fusion Technology Programme.CHW is gratefulfor CANDU OwnersGroup for frnancial
'V'J 'oo,,lyH'J 'lloH 'V'U 'GO1D 'Stl I dIS 1IISV 'sue8e6 ''Ipu? reureg 'A'N 'ur"'I 'b'N [lg] n 'SI 'sttld '(SgOt) puu u?oq [Oe] 7 OOf I 'I0€'d'(086I'r(cuaEy,{8raug cruroly 'g 'i[ 'euuern) :eteuln utapo7tl splDtDA[ [67] lo sctsttl4'3ut11tt4cs pue'3uq1tqcg I?uorl"utrretul 'A\ '01-69'tapl1['pnN't '(SfOt) [8Zl SSt 'g'e:nruourlqS 'ueulnD'r^['N pue '(0661) 'lLl'Dpn eurtqso{nJ a [13] lrnN't 0lZ '(986r) ') 'Hse:{v '1 'epqsol'p 'ntow 'pnN'1 'lu?llr!) ';41pue eurr[u1r;1 [99] sot't€I-€€I 'qcnea'a ;(fSOt)tOt'ggl'ntol1J'pnN'['lculle6L'Cpueren"q4"uq3s'V'lsled'1 [97] 'OZI 'Dwn .pnN 'f 'lslad 'f pu" preronC uorg 'osserS 'g [77] '(tSOt) mg '(SrOt) st.p' lddy' 7 : 297'd'VCUASn'900I S4-CNOJ'(S16I) 191'g'.t3o11or '8requllleg 'sptary ut aSoutog Sunoa 'g'14 pu" uosulqo1 'I'n 'spg 'eessaual uogolpoylo ucadsyloruauopunguo'!uo7'lutq')otd :ur.'Islod'fpu" pr?reng uorg [g3] '(€86r) 6r80€8-{NO3 'l1oc"urls31vrw'H pu? ,(4suorg 'u sreqslc 'n'u 'spg "(e1e)IJeg'wg/lH uo '!uo) tql ')ord iut 'Igsehl 'I I pue el{rol I "I') '8uDI 'g'16 '.(11eS'3'y 'e?eg'51 l77l 'tppw DpY 'treqr}'lA.'u pu" urnccw 'd'f 'el'roH 'I{''I [Iz] '(ssot) log'il '.I'ni pue qs6ua 'V'J .gl-91 wnntr .tcs .ratDry.suDluof .OSO1) [OZl SOO1 'N'g 'qAWS '&DI 't!qd pue qcsluleH ''I'H [6I] [ GAA} tOV'LgY ''I'H '(OOO1) gS 'Ell spltos ut srcapq puo vcatlg uoumpoy 'qcsluleH [8I] '(EOO1) '66I'ntory 'pnN 'f 'IIEulS'N'g pu" eplutz 'f'S [tI] ef t '(ZSO1) '(,{cue8y'{3reug curoly 'ure1u1'euueatn) tOt '(suor1e51 pellun lro1 ,nap) 9 '1on OSZ I'loL'spllos ur aSowoquollDlpuf,:(SSO1) ;e reu-g' t2nug c1wo7 pu7 arylo'ao.r;''re6sag'y [91] y lo sas a4 uo'!uo2' uta4u1 2 1nfaco 'tddV 't'u?utluFg 'V'f 't 'utY :O96D 'OSA} [9I] 196'92'stttd SVZ'fZ'stfttd '(ffOt) gt gL-Zl7'DtoW 'pnN 7'oo1ryH'f, pue q8uls 't{'e 'sne1uul 'g p1l '(eoot) '9oz',:lDn
ooz
'pn1{'7:(766i1'G6I'ral'lory'pnN't'ueurarod'g'1'ypueqSuts'N'g'sn?{ugJ'H [tI] '3DW'/t{d 'u"urarod'A'f'V pu€ qtulS 'N'g [Zt] kAAi StA'9p Y ,Q661) 'sr014'qAuls'N'S pu?oo/t[ 'H'J '7o1s '65I '3oW 'pta:(OOOt) [I I] @)'tos OOg 6gg'9gy'(SfOt) 'tog 'toy 'rord 'ueqsuy ';1 put er,(g '1'g 'qEnolpg 'a [61] 18'gW V '(OOOt) 'iLl'rarDry 'pnN 't'qcsluleH ''I'H pue q8uls 'N'g 'ooAyH'C [6] OOt .GA'D SVZ.EZZ.tapW 'pnN 'I'uoceg 'C pu" roplsC 'g'y 'ueurarog'A'f'V 'rellols 'g'a 'ueqfq4 'f'A\ [8]
'(zeeD
'3o14 'tttld'uerqy(qg 'f'A\ pue qsq8ug 'y'3 'u€uleroC 'A'f'V t l IL9 pue 9Sg'99 V ' n uilrotr' (Z^AD S' DtDW :OAADSgtZ'99' rta7 W' 66- 116 'oy 'stt14:(0661) 'VLI 'ratDly'pnN 't'u?ulnD 'AlI I pu" "IqnU el ep zetg 'a [9] I9I '(esot) '(ot)e€ 'ppaq 'stg'tDN ''rylas 'ysuap!1'uog'13y
t
'1 'I JIr"qcS I pue uesl3lN'n'preqputl 'waw[9] '(esor)
r'GDee
'W 'preqputl '1 pl 'llolqcs 'A'H pu? 'st(g 'toy47''l/sps 'vsuapll 'uoq lJr?qcs 13y 'reurulu'a'c pue poolt\ue3rc'ld'g'ueurtrod'a'f'v [e] 'v'bwn'pnN't '(esot) Eog 'rel?u{n 'g pue Eurqrqcs'711 :$eSD [Z] AU'gg1 t8olouqtaa puDnuans slbuatDry '(€86I) spr?puelsWISV €8-tZSg 'f'I{ 'a'11 '11e8ro1r,1 :(SfOt)OS'EE'sa7 '*u&ug 'pn67'suarrol 'W'I pu" uosulqo1 [l]
sacuatapy 'H 'sJC 'iI'f'V 'Jnoleopue pu" sn?{uul Jo lurol srql ol uerueJod 'goddns suoqnqrJluoc lueuodru egl eEpelaoulc" 01 qsl^\ sJoqlne aq1
znr
ooA\.H'3 (NV HCNIS'N'S
INTRA-CASCADE CLUSTERING
t43
[32] R.A. Holt, C.H. Woo and C.K. Chow,J. Nucl. Mater.205,293(1993). [33] A.J.E. Foremanand M.J. Makin, .I. Nucl. Mater.79, 43 (1979). [34] C.H. Woo and A.A. Seminov,Phil. Mag. A tr|,1247 (1993). [35] S.J.Zinkle and K. Farrell, J. Nucl. Mater. 16f,262 (1989). [36] B.N. Sing], A. Horsewell,P. Toft and D.J. Edwards,"/.Nucl. Mater. 2U, l3l (1995). Novemberl,1973. [37] W.B. Slossand A. Davidson,TRG-Memo Report-6308, [38] E. Edmonds, W. Sloss,K.Q. Bagley and W. Batey, in: Proc. Int. Conf. on Fast BreederReactorFuel Performance,Monterey, March 5-8, 54 (1979). [39] C. Brown, R.M. Sharpe,E.J. Fulton and C. Cawthorne,in. Proc. Sym. on Dimensional Stability and Mechanical Behaviour of Irradiated Metals and Alloys, Bitish Nuclear Energy Society,London, 63 (1983). [40] J.L. Brimhall, H.E. Kissingerand G.L. Kulcinski, in: Proc. Int. Conf. on RadiationInduced Voids in Metals, Albany, June 9-ll, 1971, Eds. J.W. Corbett and L.C. Inniello,CONF-710621, 338(1971). [41] F.A. Garner and R.J. Puigh, J. Nucl. Mater. 179,577(1991). [42] W.J.S.Yang and F.A. Garner,ASTM STP 782, 186(1982). [43] B.N. Singhand S.J.Zinkle, J. Nucl. Mater.2M,2l2 (1993). [44] T. Leffers,B.N. Singh,A.V. Volobuyevand V.V. Gann, Phil. Mag. A 53,243(1986). [45] B.N. Singh,T. Leffers and A. Horsewell,Phil. Mag. A 53,233 (1986). [46] B.N. Singh,A.J.E. Foremanand H. Trinkaus,PlasmaDevicesand Operatiozs3, I l5 (1994). [47] O. Benderand P. Ehrhart, J. Phys.F f3, 911 (1983). [48] P. Ehrhart and R.S. Averback,Phil. Mag. A 60,283 (1989). [49] B.C. Larson and F.W. Young, Phys.Sta. Sol.A 104,27 (1987). and G. Wallner,,L Phys.Condens. Matt.2,9009 [50] R. Rauch,J. Peisl,A. Schmalzbauer
(lee0).
[51] A.A. Seminovand C.H. Woo,,/. Nucl. Mater.212-215,310(1994). [52] B.N. Singh,Nature, PhysicalScience224, A2 (1973);Phil. Mag.29,25 (1974). [53] B.N. Singhand A.J.E. Foreman,Phil. Mag.29,847 (1974). [54] B.N. Singhand S.J.Zinkle, J. Nucl. Mater.206,2l2 (1993). [55] A.J.E. Foreman, B.N. Singh and A. Horsewell, Mater. Sci. Forum 15-18, 895 098D. [56] B.N. Singh,M. Eldrup, A. Horsewell,P. Ehrhart and F. Dworschak,in preparation. [57] B.N. Singh,A.J.E. Foremanand H. Trinkaus, J. Nucl. Mater. ?A9, 103(1997). [58] H. Trinkaus,B.N. Singhand A.J.E. Foreman,J. Nucl.Mater.249,91 (1997). [59] C.A. English,B.L. Eyre and J.W. Muncie, Phil. Mag. A ffi,453 (1987). [60] J.J. Brimhall and B. Mastel, J. Nucl. Mater.29, 123(1969). Voidsin Metals,Albany, New York, [61] Y. Adda, Proc. Int. Conf.on Radiation-Induced 9-ll June 1971, U.S. Atomic Energy Commission ConferencePublication No. p. 3r (1972). CONF-710601, [62] B.N. Singhand A. Horsewell,J. Nucl. Mat.212-215,410 (1994). [63] B.N. Singh,D.J. Edwards,A. Horsewelland P. Toft, Riss-R-839(EN), September 1995;J. Nucl. Mater.238,2M (1996). [64] B.N. Singh, D.J. Edwards, M. Eldrup and P. Toft, Riss-R-937, January 1997; J. Nucl. Mater.Z 9, I (1997).