Constructing pseudopotentials for ABINIT: about the use of the ...

22 downloads 202 Views 271KB Size Report
Constructing pseudopotentials for ABINIT: about the use of the fhi98PP package. Martin Fuchs. Fritz-Haber-Institut der Max-Planck-Gesellschaft, Berlin, Germany.
Constructing pseudopotentials for ABINIT: about the use of the fhi98PP package Martin Fuchs Fritz-Haber-Institut der Max-Planck-Gesellschaft, Berlin, Germany Unit´e PCPM, Universit´e Catholique de Louvain, Louvain-la-Neuve, Belgium

Email: [email protected]

Description of fhi98PP 1 Generate norm-conserving pseudopotentials (DFT) of – Hamann or Troullier-Martins type – test their transferability on the atomic level, including the fully-separable KB form by a free fortran77 code, operated through commandline interface using UNIX csh scripts 2 View data by GNU GPL plotting tool xmgrace http://plasma-gate.weizmann.ac.il/Grace/ 3 Learn from tutorial (ps booklet) and background write-up M Fuchs, M Scheffler, Comput Phys Commun 119, 67-98 (1999) ➜ download from http://www.FHI-Berlin.MPG.DE/th/fhi98md/fhi98PP/ Interfaced to ABINIT. . .

. . . gives flexibility where needed

Part I: psatom Free atom: all-electron full potential −→ pseudo valence orbitals & pseudopotential

• Kohn-Sham equations for full potential → eigenstates φAE i (r) = "

#

2

1 d l(l + 1) AE AE AE AE AE − + + V [n ; r] u (r) = ² νl νl uνl (r), 2 dr 2 2r 2

uAE νl (r) Y (Ω) lm r

AE

n (r) =

X

... spherial AE

fi|φi (r)|

occ

▲ Relativity: Dirac → scalar relativistic → non-relativistic

Z H AE + V [n ; r] + V XC [nAE ; r] r . . . XC in LDA or GGA: take same as in solid etc.

▲ Full potential

V

AE

AE

[n ; r] = −

• Pseudo atom → pseudo valence orbitals φi(r) = "

2

#

ul (r) r Ylm (Ω)

l(l + 1) 1 d scr + + V [n; r] ul (r) = ²l ul (r), − l 2 dr 2 2r 2

and density n

n(r) =

X occ

. . . formally non-relativistic Schr¨ odinger eq. . . . different for each valence state → l-dependent H XC ➥ Ionic pseudopotentials Vlps [n; r] = V scr [n; r] l (r) − V [n; r] − V

fi|φi(r)|

2

2

Part I: psatom . . . is transferable?

Pseudopotential on screen. . . Ionic Pseudopotentials

• Start with default cutoff radii & neutral atom:

al:abinit 18:22:32 Nov 01 2002 fuchs

Aluminum - Hamann - LDA 2.0

• Norm-conservation conditions ²l = ²AE νl AE hφl|φli = hφAE νl |φνl i

0 rc=1.212

ps

V (r) (hartree)

1.0

1 rc=1.546 2 rc=1.546

0.0

➥ ensure correct scattering properties around atomic valence energies

-1.0

-2.0

-3.0

0.0

1.0

2.0 3.0 r (bohr)

4.0

5.0

• But how about in the solid or molecule? Must test! . . . and if needed improved! • Proposal of how to . . .

Part II: Monitoring transferability with pswatch Test: Logarithmic derivatives

Pseudopotential method Reality/ experiment All-electron method

Dl (r

diag

, ²) =

¯

¯ 1 d R (r, ²) ¯ diag l Rl (²) dr r

norm conservation: o.k. for ²l ± δ² . . . in practice: over range of valence bands? diag

Characteristic tests of PP at atomic level?

10

log derivative (arbitary scale)

◦ compromise with needed smoothness • needed accuracy ∼ O(0.1 . . . 0.01 eV) – electronic structure – cohesive properties – atomic structure, relaxation, phonons – formation enthalpies, activation energies, ... • modifications – separable potentials (computational) – core corrections (methodic) ▲ new materials → GaN (with 3d or not), ... ▲ new XC functionals → GGA, ...

Aluminum r

=2.9 bohr lloc=2

0 −10

d

all−electron all−electron semilocal semilocal separable separable

10 0 p

−10

10 0 −10

valence state −1.0

s 0.0

energy (hartree)

1.0

Hardness tests - a ,,good” example ❏ s → p promotion (C, Si, Ge, ...)

Test: Configurational changes (∆SCF)

❏ ionization (Li→Li+, Na→Na+,...)

• eigenvalues (Janak theorem) • chemical hardness1

• total energy (excitations)

2

Ga 4s 4p

x

20

10

frozen core

0

pseudopotential Ga

−20 0

+

Ga 0.5 occupancy 4p

1

4s

1.6

pseudopotential

−10

1

2

Ga 4s 4p

x

error (meV)

error (meV)

20

∂²i(fk ) ∂ 2E(fk ) = ∂fi∂fj ∂fj

∂E(fk ) = ²i(fk ) ∂fi

0

−20

frozen core

hardness (eV)

E[n(fk )]

4p

frozen core relaxed core pseudopotential

Ga

−40 0

0.5 occupancy 4p

1

x

1.4

1.2

+

Ga

2

Ga 4s 4p

0

0.5 occupancy 4p

Grinberg, Ramer, Rappe, Phys Rev B 63, 201102 (2001); Filipetti et al, Phys Rev B 52, 11793 (1995); Teter, Phys Rev B 48, 5031 (1993).

1

Nonlinear core-valence XC

2

• restoring nonlinear core-valence XC E XC = E XC [nc + nv ] different unscreening: ¯ ps scr H v XC c v ¯ Vl = Vl − V [n ] − V [n + n ] atom

• a smooth model core density is used, replaces the true core density inside cutoff radius r core

1

M Fuchs et al, Phys Rev B 57, 2134 (1998)

2

SG Louie et al, Phys Rev B 26, 1738 (1982)

0.5

Potassium

2

r n(r) 5 −

density (bohr )

18e

−3

• Pseudopotential mimicks also interactions of valence and core electrons ✓ electrostatic linear in nv ✗ exchange-correlation nonlinear, terms like (nc + nv )4/3 . . . • so far: linearized core-valence XC . . . different in LDA & GGA 1



1.5e

valence true core model core

0

0

1

0

0 core

r

2

4

=3.2

2 3 4 radius (bohr)

5

... where nonlinear core-valence XC makes a difference Rocksalt (NaCl):

1

✘ semi-metal with linearized CV XC (a) ✓ insulator with nonlinear CV XC (b)

0 nlcv LDA

binidng energy (eV)

−2

NaCl a0 = 10.66 bohr

−4

B0 = 24 GPa EB = 6.5 eV

−6

lcv LDA

−8

−10

6

7

8

9 10 11 12

lattice constant (bohr)

1

Hebenstreit, Scheffler, Phys Rev B 46, 10134 (1992).

... and where linearized core-valence XC is fine Transferability tests would tell. . . 50 frozen core

−50 pseudopotential −100

A test calculation helps...

K total energy −150 −200

linearized CV XC 0

0.5 occupancy 4s

1

−2 K 4s −3 eigenvalue (eV)

error (meV)

0

☛ linearized nlcv XC mostly sufficient! – 1st & 2nd row, As, Se, ... – “two shell” cases → all transition metals, see Cu: 3-4 XC valence-valence interaction

☛ nlcv XC needed: – “soft” valence shells (alkali’s!) – extended core states (Zn, Cd, ...) ↔ varying core-valence overlap – spin-density functional calculations

−4 −5 linearized XC

−6 −7

0

0.5 occupancy 4s

1

✌ turning semi-core into valence states? – Zn 3d, Ca 3d, Rb 4p, ... – Ga 3d, In 4d in III-nitrides (but not GaP, GaAs, ...) ... a bit system dependent

Kleinman-Bylander potentials at work ✓ fully separable potentials computational must

are

Example: KB-pseudopotential for As → ZB GaAs bandstructure

☛ full nonlocality → spectral order of states by radial nodes not guaranteed ➥ ghost states above/below valence levels possible

5

physical

✿ Ghost states detectable in free atom ...

• inspect logarithmic derivatives • do spectral analysis ... readily avoided by proper choice of local & nonlocal components n o loc Vl (r) → V (r), δVl (r)

Energy (eV)

0

−5 proper LDA bands wrong KB potential

−10

L

Γ

X

ˆ l = Tˆl + Vˆ loc + |χl iλhχl | Analysis of the spectrum of nonlocal Hamiltonians H ☛ λ = ElKB gives the reference valence level ²l ☛ can compare spectra for ❏ λ = 0 (local potential only) → ²˜i(0) ❏ λ arbitrary (with nonlocal potential) → ²i(λ) ➥ for any λ, ElKB > 0 spectra ordered like

λ ElKB 0 ElKB 0

...

λ ²˜1(λ) ²˜1(0) ²˜0(λ) = ²l ²˜0(0)

no ghost if ²l < ²˜1(0)

1

▲ Higher levels o.k. too?

...

ElKB 0 ElKB 0 ElKB 0 ghost if

²˜2(λ) ²˜2(0) ²˜1(λ) = ²l ²˜1(0) ²˜0(λ) ✘ ²˜0(0) ²l > ²˜1(0)

s-state AE SL NL

energy

p-state AE SL NL



➥ for λ, ElKB < 0 have ²˜0(λ) < ²˜0(0) < ²˜1(λ) . . . no ghost if ²l < ²˜0(0)

ghost if ²l > ²˜0(0)

✿ used as ghost state criteria in fhi98PP (pswatch) X Gonze, R Stumpf, M Scheffler, Phys Rev B 16. 8503 (1992)

✌ not told by ghost state criteria, diagonalize Hl ⇒ all bound levels

. . . in case of ghost states Seen in logarithmic derivatives . . .

☛ local potential lloc = lmax = 2 saves computing

all−electron semilocal separable

Se 4s

✓ unproblematic: 1st & 2nd row, (earth-) alkali’s

10 logarithmic derivative

. . . where they occur, how to avoid them?



can cause strong nonlocality (large |ElKB |)

0 −10

“artifically:” ≈ zero denominator in ElKB (KB-cos) Ga, Ge, As, Se, ... vary cutoff radii of local/ nonlocal components

rd=1.7 a.u.

10 0

“intrinsically:” numerator of ElKB large

−10

rd=1.9 a.u.

−2

−1

0

energy (hartree)

1

Cu: deep V3d (r) ⇒ ElKB À 0 to get 4s right all 3,4,5d-metals: Cu, Pd, Ag, ... make local potential repulsive → ElKB < 0 use to s - or p-component ! ➜ KB-potentials work well in practice

Overview - fhi98PP covers “classic” pseudopotentials Pseudopotential = electron-i on interaction • nucleus’ Coulomb attraction + core-valence interaction (orthogonality, electrostatic, XC) • work throughout periodic table (... almost) ✓ physically motivated approximation • Valence electrons rule chemical bonding • Frozen-core approximation (depends on system) • Cancellation of potential and kinetic energy in core ✓ well controlled • norm-conservation (built in) • nonlinear core-valence XC (depends on system) ✓ Transferability properties & pseudopotential validation • logarithmic derivatives (scattering properties), chemical hardness ◦ plane-wave convergence ✓ Fully separable, nonlocal potentials • analysis & removal of ghost states ✓ present XC: LDA & PW91,BP86,PBE,revPBE,RPBE,BLYP GGA . . . easy to add

• experimental XC: xOEP with KLI approximation, SIC, MGGA ✗ desirable: spin-polarization, L · S -coupling, desirable: potential & performance database on the Web ?

Suggest Documents