Context-Aware Parameter Estimation for Forecast ... - ssdbm 2011

2 downloads 34849 Views 2MB Size Report
Adobe, the Adobe logo, Acrobat, PostScript, and Reader are either trademarks or ... particular course of business, product strategy, and/or development. Please ...
Context-Aware Parameter Estimation for Forecast Models in the Energy Domain Lars Dannecker1,2, Robert Schulze1, Matthias Böhm2, Wolfgang Lehner2, Gregor Hackenbroich1 1SAP Research Dresden, 2Technische Universität Dresden

Agenda

1. 

Forecasting in the Energy Domain

2. 

Context-Aware Forecast Model Repository

3. 

Experimental Evaluation

4. 

Summary and Future Work

©  2011 SAP AG. All rights reserved.

2

Forecasting in the Energy Domain

Forecasting Process and Characteristics

Predicting the Future !  Quantitative model describing historic time series behavior !  Uses parameters to represent specific characteristic !  Estimated model mathematically calculates future behavior

Specific Characteristics… …for energy time series •  •  •  •  • 

ε

Xt = "

yt + (1 # " )(X t #1 + bt #1 ) Base Component It #S

Multi-Seasonality Dependence on external influences bt = $(X t # X t #1 )+ (1 # $)bt #1 Evolving over time X Negligible linear trend It = % t + (1 # % )It #S Xt Continuous stream of measurements

©  2011 SAP AG. All rights reserved.

!

ε

Trend Component Season Component

4

European Energy Market Market Organizer TSO

Balancing Energy Demand and Supply

TSO BG2

BG1

Balancing Forecasting

Aggregation

BG3

Guarantee stable grids !  Energy Demand has to be satisfied !  Penalties for oversupply !  Day-Ahead & intraday market !  Integration of more RES in power mix " Accurate predictions at any point in time

Renewable Energy Sources (RES) Increasing support

Supply ©  2011 SAP AG. All rights reserved.

Demand

!  Depending on uncertain influences !  Not plannable like traditional power " Accurate prediction for next day RES supply necessary

5

Energy Data Management for Evolving Time Series $"

Energy Data Management Analytics close to the data

!#," !#+" !#*" !#)"

>/?/@:A:?"

!  Quick reactions to changing time series !  Always up-to-date forecasts

!#(" !#'" !#&" !#%"

Appending new values over time

!#$"

">BC4B7E1F4G"

%! !, -9 :; -$ ,"

:= -! '" %! !+ -
BHD7CDI"

$% $$

Į', ȕ¶, Ȗ¶, VWDWH¶

Forecast Model (Į, ȕ, Ȗ, state)

Model Update

'& '% '$

3 Į, ȕ, Ȗ Time Series

Time Series 1

Subsection 3.3

012,3

Subsection 3.2 Model Evaluation 2 Techniques

Error Metric (SMAPE)

Model Adaptation Techniques ,-./.

New Measurements (consumption/ production)

$# $!

'#

! !"#

'!

!"$

#& #%

!"%

#$

!"&

## !"' !"# !"( !"+ !"& !"* !"% !") !"$

!

,-425

©  2011 SAP AG. All rights reserved.

6

Context-Aware Forecast Model Repository

Context of Energy Time Series

Influences for Supply and Demand !  Time series development influenced by background processes !  Changing context causes changes demand and supply behavior !  Calendar: Special Days, Season !  Meteorological: Wind speed, Temp. !  Economical: Population

Context Drift Different types of drifting context ‫ܥ‬ଶ !

‫ܥ‬ଵ !

‫ܥ‬ଶ !

‫ܥ‬ଵ !

‫ܥ‬ଶ !

‫ܥ‬ଵ ! ‫ܥ‬ଵ !

‫ܥ‬ଶ !

‫ݖ‬௧ !

‫ܥ‬ଶ !

‫ܥ‬ଵ !‫ܥ‬ଵ !

‫ܥ‬ଶ !

‫ܥ‬ଵ !

‫ܥ‬ଶ !

‫ܥ‬ଶ !

‫! ܥ‬ ‫ܥ‬ଵ !ଶ ‫ܥ‬ଵ !

‫ݖ‬௧ ! ‫ܥ‬ଵ !

‫!ݐ‬

©  2011 SAP AG. All rights reserved.

‫ݖ‬௧ ! ‫ܥ‬ଶ !

‫ܥ‬ଶ !

‫ܥ‬ଵ ! ‫!ݐ‬

‫ܥ‬ଶ !

‫ܥ‬ଵ !

‫ܥ‬ଶ !

‫ܥ‬ଵ ! ‫ܥ‬ଵ !

‫ܥ‬ଶ !

‫ܥ‬ଵ ! ‫ܥ‬ଵ ! ‫!ݐ‬

‫ܥ‬ଶ ! ‫ܥ‬ଵ !

8

‫ܥ‬ଶ !

‫ܥ‬ଶ

Basic Idea Case-Based Reasoning = LearningContinuous how toInsertions solve new problems from past experience Continuous Forecasts Energy domain: Seasonal reoccurring contexts ! Reuse previous forecast models Time series zt +1 = f ({ pi }) !  Retain: Save old parameter combinations with their respective context Current Forecast Model Model Evaluation !  Retrieve: Search1.repository for a context most similar to the current context !  Revise: Use parameter combinations of similar context as input for optimization Forecast Error Calculation

Revise

Updating trigger

2. Parameter Storing and Retrieval

Retain

Insert Retrieve

Problem-Solution Case Base

Retrieve

Retain

{p } { pi }i { pi } Model History Tree

Distance Compuation Starting Values for Estimation 3. Parameter Re-Estimation

Revise

Local Search

Start Values Global Search

Retrieve

©  2011 SAP AG. All rights reserved.

Updated Parameters

9

Parameter Insertion day

Tree Structured Repository !  Decision nodes: Splitting attribute, splitting value !  Leaf nodes: Set of parameter combinations, end index !  Splitting attributes chosen using Partial Interquartil Range (PIQR) !  Split via partitioning median