Context Based Learning: learning through ...

66 downloads 186064 Views 4MB Size Report
activities that enhance learning and early student engagement. In this program high school students were able to integrate mechatronics components and ...
Award  Winning  paper  for  Innovating  Technologies  in  Education  presented  at  the  7° Congreso de Innovación Educativa, Tecnológico de Monterrey, Monterrey, NL, December 2012. Contact: [email protected]

 

Context  Based  Learning:  learning  through  understanding   Sergio  William  Sedas  Gersey,  PhD   Tecnológico  de  Monterrey;  Monterrey,  NL  México  

 

Abstract      

Universities  have  been  successful  at  generating  and  teaching  knowledge  however  something  is  still   missing  as  graduates  and  companies  find  them  selves  having  to  invest  many  years  and  dollars  to   develop  the  understanding  and  experience  needed  to  transfer  and  apply  knowledge  in  the  real   world.       This  led  the  exploration  and  development  of  Context  Based  Learning  a  model  that  emphasizes  early   teaching  through  understanding.  Teaching  through  understanding  is  done  by  constantly  and   repeatedly  expanding  the  awareness  and  perception  of  the  student´s  reality  to  build  meaning   through  an  incremental  iterative  model  that  involves  motivation,  past  experience,  active   exploration,  rehearsal,  chunking,  and  challenge.       In  this  paper  we  will  lay  out  cognitive  foundations  that  support  context  based  learning.  We  also   describe  two  test  programs  that  have  been  developed  and  their  early  successes  and  discuss  a   preliminary  application  of  Context  Based  Learning  in  an  advanced  engineering  course.    

   

Introduction    

The  meaning  of  knowing  has  shifted  from  being  able  to  remember  and  repeat  information  to   being  able  to  find  and  use  it.  (H.A.Simon,  1996)     Universities  have  been  successful  at  generating  and  teaching  knowledge.  However  something  is  still   missing  as  graduates  and  companies  find  them  selves  having  to  invest  many  years  and  dollars  to   develop  the  understanding  and  expertise  needed  to  transfer  and  apply  knowledge  in  the  real  world.       The  main  problem  is  that  education  continues  to  evolve  around  the  practice  of  memorization:   teaching  and  testing  knowledge  as  facts,  formulas  and  equations.  Granted  that  these  facts  are   important  for  thinking  and  problem  solving,  however  research  shows  that  a  mere  list  of   disconnected  facts  does  not  constitute  “usable  knowledge”.    An  expert´s  ability  to  transfer  and   apply  this  knowledge  requires  that  it  be  organized  and  connected  around  important  concepts,  that   it  has  meaning,  and  that  it  is  understood  in  a  way  that  it  can  be  applied  in  different  contexts.   (National  Research  Council,  2000).       Bradsford  &  Stein  (Bransford  &  Stein,  1993)  illustrate  this  with  the  following  example.       When  studying  about  veins  and  arteries,  students  may  be  expected  and  tested  on  their  ability  to   remember  that  arteries  are  thicker  than  veins,  more  elastic,  and  carry  blood  from  the  heart;   veins  carry  blood  back  to  the  heart.         But  simply  knowing  these  properties  does  not  give  them  enough  understanding  to  design  an   artificial  artery.    A  person  that  is  attempting  to  design  an  artificial  artery  would  also  have  to   understand  its  function,  its  operation  and  the  reason  behind  its  properties.       The  heart  pumps  blood  in  spurts.  Arteries  are  elastic  which  allows  them  to  expand  to   accommodate  the  increase  in  pressure  present  in  each  spurt  of  blood.  This  elasticity  also  helps  

to  keep  blood  flowing  in  the  right  direction  as  once  the  spurt  of  blood  passes,  the  pressure   decreases  and  the  arteries  close  thus  preventing  the  blood  from  flowing  backward.         A  person  that  fully  understands  this  behavior  is  in  a  better  position  to  design  an  artificial  artery   than  someone  that  just  knows  the  basic  properties  of  veins  and  arteries       The  challenge  is  how  to  generate  this  kind  of  intrinsic  knowledge  and  expertise?  And  what  has  to   change  in  our  current  educational  model  so  that  it  can  be  done?       In  2007,  we  began  experimenting  with  Context  Based  Learning:  an  educational  model  that   emphasizes  learning  through  understanding.    Based  on  this  model,  we  launched  two  extracurricular   activities  that  enhance  learning  and  early  student  engagement.  In  this  program  high  school   students  were  able  to  integrate  mechatronics  components  and  design  and  build  complex   mechatronic  systems  such  as  robots  that  climb  stairs  in  as  little  as  three  weeks.  This  laid  the   foundation  for  an  ongoing  program  in  which  more  than  1,000  students  have  voluntarily   participated.       College  students,  graduates  of  these  programs,  have  participated  in  undergraduate  research   activities,  launched  companies,  and  consistently  appeared  in  the  list  of  the  most  excelling  students   in  the  school  of  engineering.       In  this  paper  we  will  lay  out  cognitive  foundations  that  support  Context  Based  Learning.  We  also   describe  the  two  test  programs  and  their  early  successes.  We  then  describe  the  application  of   Context  Based  Learning  in  an  advanced  Industrial  Robotics  Course.  Finally,  we  end  with  a   discussion  on  how  to  incorporate  Context  Based  Learning  in  a  conventional  and  non-­‐conventional   curriculum.    

 

How  the  Brain  Learns      

The  key  principles  behind  Context  Based  Learning  have  to  do  with  how  our  brain  works,  what   drives  us,  and  how  we  learn.       We  learn  best  when  we  make  sense  of  new  information,  when  we  can  relate  it  to  past   experience,  and  when  it  has  meaning.  (Sousa,  2011)  (National  Research  Council,  2000)  (Cobb,   1994)  (Maquire,  Frith,  &  Morris,  1999).     We  create  significant  learning  and  experience  through  deep  rehearsal.  (Coyle,  2009)     We  learn  more  when  we  are  challenged  and  engaged.       We  learn  more  when  we  are  intrinsically  motivated,  when  we  believe,  and  when  we  have  a   directed  dream.    

    The  brain  as  a  system     In  order  to  be  considered  for  retention,  new  learning  has  to  make  sense  and  have  meaning.   (Maquire,  Frith,  &  Morris,  1999).         Our  brain  is  a  parallel  system  that  continually  interacts  with  the  physical  and  social  worlds  outside.     These  systems  regulate  our  body,  protect  us  from  perceived  threats,  and  help  us  learn.      

We  receive  an  overwhelming  amount  of  input  from  our  senses  and  other  systems  in  our  body.  This   input  is  first  analyzed  and  filtered  for  threats  and  relevancy.  Anything  perceived  as  a  threat  or   important  for  our  survival  immediately  demands  our  attention  and  may  in  fact  cause  our  brain  shut   down  other  parts  of  our  mind  and  body1.       Then,  the  sensory  information  is  then  compared  against  stored  experiences  to  determine  its   relevancy  or  familiarity.  If  it  is  deemed  relevant  or  familiar,  it  is  processed,  if  not  it  is  simply   released  and  forgotten.    This  affects  our  ability  to  learn  and  remember.  We  can  remember  the   phone  number  to  the  barbershop  for  a  few  seconds,  the  material  we  crammed  for  an  exam  for  a  few   days,  and  important  and  significant  experiences  for  a  lifetime2.  (Sousa,  2011)  (National  Research   Council,  2000)  

  Significant  past  experiences  can  help  in  the  construction  of  new  knowledge.  People  construct  new   knowledge  and  understandings  based  on  what  they  already  know  and  believe  (Cobb,  1994).  New   information  that  is  deemed  important  and  relevant  is  analyzed  and  synthesized  to  obtain   generalities.  It  is  then  compared  and  combined  with  past  experience  to  create  new  meaning.  This   new  information,  experience  and  meaning  are  then  consolidated  and  stored  as  a  sequence  of   patterns  in  long-­‐term  memory.       Because  information,  meaning,  and  experience  are  stored  as  a  sequence  of  patterns,  recalling  just   one  piece  of  a  pattern  can  activate  the  whole.  For  example  listening  to  a  song  can  evoke  thoughts,   memories  and  feelings  of  a  past  event.  Similarly,  just  the  mention  of  a  name  can  evoke  feelings  of   happiness  or  anger.  

    Mylene     Skills,  knowledge  and  experience  are  built  over  time  and  require  intentional  adversity  and   engagement.  (Coyle,  2009)     In  our  brain  we  have  trillions  of  neurons  that  are  interconnected.  These  interconnections  store  and   facilitate  learning  and  recall.  Information  between  these  connections  is  transmitted  as  electrical   signals.         Mylene,  a  substance  in  the  brain,  is  used  to  fortify  these  connections  and  improve  the  rate  of   transmission.  It  is  deposited  when  exposed  to  prolonged  stages  of  intentional  adversity  and   challenge.         For  example,  a  musician  that  rehearses  for  hours  a  segment  that  is  known  by  him  does  not  produce   an  increase  in  mylene  deposits.  However,  the  same  musician  rehearsing  and  finally  succeeding  over   a  difficult  segment  experiences  high  deposits  of  Mylene.       Something  similar  occurs  when  a  student  is  intentionally  engaged  in  a  challenge  and  reaches  the   highest  level  he  or  she  can  pass.  By  continue  to  engage  into  the  problem  they  will  strengthen  the  

                                                                                                                1  This  is  important  in  education  as  too  much  stress  causes  our  students  to  shut  down.  This  has  been  the   experience  of  bright  students  deeply  concerned  about  their  grades  that  suddenly  shut  down  during  an  exam   and  are  therefore  unable  to  remember,  express  or  demonstrate  what  they  know.    

 

2  This  fact  is  important  in  education,  as  it  implies  that  in  order  to  maintain  the  attention  of  our  students  we  

must  continuously  change  stimulus,  challenge  and  engage  them.    

 

connections  that  develop  the  knowledge,  skills  and  ability  to  beat  it.  Once  this  happens,  the  

challenge  seems  simple  and  the  skill  becomes  permanent  over  time.       This  seems  to  suggest  that  intentional  deep  rehearsal  of  a  difficult  and  challenging  problem  helps  in   developing  significant  learning.       Our  challenge  as  educators  is  how  to  create  a  problem  that  is  both  challenging  and  engaging  for  our   students.    

  The  environment     In  order  to  learn,  a  student  must  feel  challenged,  safe  and  capable.       Things  need  to  be  interesting  to  be  considered  for  more  than  a  few  seconds.  After  that  they  are   simply  forgotten  as  they  are  replaced  with  new  thoughts.  They  must  make  sense  in  order  to  create   meaning.  And,  they  need  to  be  rehearsed  over  and  over  again  in  a  challenging  environment  to   construct  and  reinforce  the  connections  that  store  not  only  knowledge  but  also  understanding.   (Coyle,  2009)     If  the  student  does  not  feel  challenged  or  if  he  believes  that  he  is  incapable  of  succeeding,  his  limbic   system  will  easily  move  his  center  of  attention  to  something  else.         If  the  task  is  too  overwhelming  he  will  fight  (react  aggressively),  flee  (divert  his  attention  into  other   activities)  or  simply  freeze  (not  know  where  to  start).  In  either  case  he  or  she  will  loose   engagement  and  concentration.       If  the  student  believes  that  there  is  much  at  risk,  he  will  avoid  the  challenge,  unless  he  is  driven  by   strong  motivation.       Beliefs  may  also  limit  the  student´s  ability  to  learn.    If  the  student  believes  he  or  she  is  not  good  at   something,  or  senses  a  wide  gap  between  what  he  believes  he  is  able  to  do  and  the  task,  and   believes  that  he  or  she  is  not  capable  of  completing  the  task,  he  will  avoid  the  challenge.    (Seligman,   2006)     Techniques  in  positive  psychology  may  offer  us  a  solution.     Acknowledge  efforts  and  celebrate  success.     Create  the  dream,  the  why,  and  keep  it  alive.   Focus  on  the  dream  and  the  why  over  the  how.     Celebrate  failure  as  the  new  barrier  to  win  over.       Chunk  it  down  –  divide  the  problem  into  smaller  steps.     Get  into  action  –  any  action  is  better  than  stalling.      

   

Context  Based  Learning    

Context  Based  Learning  is  a  model  that  emphasizes  teaching  through  understanding.  Teaching   through  understanding  is  done  by  constantly  and  repeatedly  expanding  the  awareness  and   perception  of  the  student´s  reality  to  build  meaning  through  an  incremental  iterative  model  that   involves  motivation,  past  experience,  active  exploration,  hands-­‐on  experimentation,  rehearsal,   chunking,  and  challenge.      

Our  belief  is  that  once  we  help  a  student  gain  understanding,  meaning  and  sense  of  complex   subjects,  we  can  easily  teach  the  abstractions  in  the  form  of  symbols,  formulas  and  equations   normally  taught  in  school  and  these  will  be  understood  and  remembered.  This  is  contrary  to  the   traditional  approach  in  which  students  are  subjected  to  prolonged  exposure  to  the  abstractions  that   model  and  represent  the  features  we  want  them  to  learn.       For  a  visual  example  of  context  based  learning  please  view  the  following  TEDx  Conference  (Sedas-­‐ Gersey,  2012).       Teaching  with  Context  Based  Learning     When  teaching  a  traditional  pneumatics  course  we  would  draw  a  rectangle  on  the  board,  a   horizontal  “T”,  and  two  arrows  one  pointing  up  and  one  pointing  down.  Next  we  would  write  the   formula  F=p  *  A.  The  rectangle  represents  a  pneumatic  cylinder,  F  is  Force,  p  is  air  pressure  and  A  is   Area  of  the  cylinder.  We  would  then  spend  all  semester  long  teaching  you  how  to  find  F,  p  and  A.   Two  or  three  years  later,  you  would  be  required  to  use  a  cylinder  to  design  a  mechanism  to  open   the  door  to  a  bus,  to  raise  a  car,  or  bring  down  the  safety  harness  in  an  amusement  ride.      

    Context  Based  Learning  takes  a  different  approach.  We  start  with  something  you  are  familiar  with  –   say  a  toy  blowgun  made  by  a  straw  and  some  pieces  of  paper.  We  would  start  playing  and  you   would  learn  three  things  a)  you  can  move  things  with  air;  b)  if  the  paper  hits  you  it  hurts  (you  just   discovered  F);  and  c)  if  you  want  to  hit  someone  harder  –  you  blow  harder  (you  just  discovered  p).      

 

 

 

We  would  then  extend  this  example  to  show  you  how  instead  of  moving  a  piece  of  paper,  you  can   move  a  piece  of  clay  with  a  rod  connected  onto  it.  When  you  blow  on  one  end  of  the  straw  you  move   the  clay  and  the  rod  so  that  it  extend  itself  out  of  the  straw.  When  you  blow  on  the  other  end  of  the   straw  you  make  the  clay  and  the  rod  return  and  return  inside  the  straw.  (Sedas-­‐Gersey,  2012).     Once  you  grasp  this  concept,  we  would  lead  you  to  see  and  visualize  examples  in  which  by   connecting  the  end  of  this  sliding  rod  you  can  open  the  door  to  a  bus,  or  open  and  close  a  drawer  in   IKEA,  or  stop  a  part  on  an  assembly  line.  We  would  then  ask  you  to  use  that  cylinder  to  design   mechanism  that  can  lower  the  safety  bar  on  a  roller  coaster  ride.        

    The  novelty  of  Context  Based  Learning  is  its  emphasis  on  understanding.  It  does  not  oppose  other   well-­‐known  methods.  Rather  it  is  inclusive.  In  Context  Based  Learning,  we  incorporate  exercises   using  collaborative  learning,  challenge  based  learning,  case  based  learning,  problem  based  learning,   and  project  based  learning  in  an  iterative,  hands-­‐on,  incremental  approach.       NOLIMITS  and  I  Bet  You  Can´t  (A  que  no  puedes)     It  is  2007  and  we  created  NOLIMITS  and  “I  bet  you  can´t”,  two  extracurricular  programs  that  would   involve  high  school  and  first  year  undergraduate  students  in  this  new  experience.  (Hernández  B.  ,   2010)  (Jaramillo,  2011).       Our  goal  was  to:   • Apply  Context  Based  Learning   • Create  a  safe  environment  and  a  sense  of  belonging   • Create  Desire  and  Intentional  Adversity   • Develop  Hands  On  Experience   • Create  a  good  relationship  to  failure  by  pushing  yourself  to  your  limits  of  understanding   • Cause  Deep  Practice  (Rehearsal)   • Create  experiences  that  will  serve  as  base  for  future  study     The  teaching  principles  we  used  are:   1. Focus  on  understanding   2. Use  a  Constructivist  approach   3. Iterate  topics  and  elements   4. Have  a  clear  goal  in  mind     5. Create  clarity  by  giving  the  punch  line  early  on   6. Constantly  celebrate  successes     NOLIMITS  is  a  15-­‐week  extracurricular  activity  led  by  students.  Students  teach  high  school  and  first   year  college  students  basics  of  mechatronics  that  include  digital  electronics,  microcontroller   programming,  gears,  sensors,  power,  switches,  transistors,  integrated  circuits  and  operational  

amplifiers.  All  of  these  are  topics  that  they  will  cover  in  their  first  three  years  of  their   undergraduate  program.  At  the  end  of  this  15-­‐week  program,  students  are  required  to  design  and   build  interesting  and  challenging  projects.      

  From  the  beginning  we  spark  motivation  by  letting  them  know  that  when  they  finish,  they  will  be   prepared  to  join  research  centers  and  embark  on  interesting  activities.  We  share  success  stories   from  students  that  have  gone  through  the  program  before  them  such  as  ADAR,  a  student  that   created  a  company  that  now  operates  in  nine  countries,  Guillermo,  a  student  that  led  the  design  and   build  of  a  robot  at  NASA  to  explore  the  Icecaps  of  Greenland.  And  we  set  out  a  challenge.  For  many   years,  our  challenge  was  to  form  a  team  of  high-­‐performance  engineers  that  would  put  on  the   gloves  and  compete  against  MIT.       The  course  is  divided  into  different  learning  objectives  the  sum  of  which  covers  all  of  the  content  in   the  course.  Our  teaching  method  however  is  different.  In  each  class  we  first  let  them  see  what  they   are  going  to  do  and  help  them  understand  the  reasoning  and  meaning  behind  what  they  are  doing.   We  invert  the  process.  They  first  do,  then  we  discuss,  then  we  extrapolate  and  transfer  to  other   examples.       At  the  end  of  the  15  weeks,  students  are  required  to  design  and  build  a  project.  Sometimes,  the   project  is  pre-­‐defined  and  geared  toward  a  college  level  contest.       I  Bet  you  can´t     That  same  year,  we  created  a  challenge  that  would  help  students  generate  experience  which  they   would  take  on  to  advanced  courses  and  also  serve  to  break  barriers  of  limiting  beliefs.       The  first  year  we  challenged  students  to  design  and  build  a  mobile  robot  that  could  autonomously   climb  and  negotiate  up  four  flights  of  stairs.       The  students  did  it.       The  second  year  we  challenged  them  to  design  and  build  a  mobile  robot  that  could  navigate   between  two  buildings,  traverse  a  field  of  huge  tree  pots,  find  two  that  were  randomly  selected  and   water  them  with  ½  liters  of  water  during  30  seconds  each.       And  they  did  it.      

  Successes     Prior  to  NOLIMITS,  mechatronics  students  had  limited  access  and  limited  interest  in  extracurricular   academic  activities.         Since  NOLIMITS,  students  that  have  participated  in  the  program  have  consistently  excelled.  They   involve  themselves  in  early  research,  industrial  and  entrepreneurial  activities  and  they  start  study   groups  and  organizations.  Graduates  of  NOLIMTS  have  competed  internationally,  have  started   internships  at  NASA,  opened  up  an  international  business,  and  have  consistently  been  named  in  the   10  outstanding  students  of  the  school  of  engineering  mechatronic  program  (Nava,  2011;  Bodero,   2010)  (Parra,  2010)  (CNN  Expansión,  2012),  (Hernández  J.  ,  2012).     The  two  programs  -­‐  NOLIMITS  and  “I  bet  you  can´t”  have  been  adopted  as  ongoing  capstone   activities  in  the  School  of  Engineering  at  Tecnológico  de  Monterrey.    Over  1,000  students  have   participated  and  it  has  inspired  the  creation  of  similar  programs  in  other  states  and  disciplines.  The   students  themselves  have  extended  NOLIMITS  to  a  full  year  program.       Driven  by  student  interest,  the  Department  of  Mechatronics  at  Tecnológico  de  Monterrey  has   implemented  extracurricular  machine  shop  courses,  which  increase  the  abilities  of  our  students.       In  summer  of  2009,  we  designed  a  course  around  NOLIMITS  for  the  Johns  Hopkins  University`s   Center  for  Talented  Youth  summer   program  at  Tec  de  Monterrey.  (SNC  Portal   Informativo,  2009)  In  only  three  weeks,   high  school  students  learned  electronics,   how  to  program  a  microcontroller  and  an   industrial  robot.  Their  final  project  was  to   design  and  build  a  robot  that  could   autonomously  climb  a  flight  of  stairs.     Interestingly,  by  themselves,  they  were   able  to  analyze  their  mechanisms  and   infer  things  such  as  spring  back  and  gear   ratios  and  use  this  knowledge  to  improve   their  robot  design  thus  proving  transfer.    

     

The  benefits  of  NOLIMITS  and  I  bet  you  can´t     From  this  experience,  we  can  identify  a  number  of  important  benefits  derived  from  an  early   development  program:     Early  student  engagement   Intrinsic  Motivation   Increased  self  confidence   A  strong  and  positive  relationship  to  failure   Accelerated  learning     Accumulated  experiences  to  latch  on  to     Increased  confidence  and  ability  to  design,  build  and  test  their  designs   Higher  involvement  in  research  activity   Higher  involvement  in  industrial  activities   Ability  to  understand  higher  and  deeper  concepts     We  also  noticed  that  students  that  participated  in  the  NOLIMITS  programs  and  beyond  have:     An  increased  feeling  of  significance   An  Increased  sense  of  community   An  Increased  sense  of  purpose   Increased  self-­‐confidence   An  Increased  sense  of  challenge   An  Increased  growth   An  Increased  self  sought  opportunities  

 

Context  Based  Learning  in  an  Industrial  Robotics  Course     The  industrial  robotics  course  is  offered  to  students  in  their  final  year.  By  this  time,  students  must   have  the  knowledge  and  understanding  to  be  able  to  design  and  implement  industrial  automation   systems.       Preliminary  results  seem  to  indicate  that  this  is  not  so.    60  senior  mechatronic  students  were   shown  a  video  of  a  manufacturing  automation  system  and  asked  to  reverse  engineer  it.  They  were   then  asked  to  go  to  a  real  cell  where  they  could  explore  and  look  at  the  components  and  reverse   engineer  it.         In  both  cases  they  were  found  lacking.  Although  the  group  had  basic  knowledge  of  components,   formulas  and  equations,  they  were  unable  to  use  this  information  to  select  and  connect  real  to   world  components.  Furthermore  they  did  not  understand  how  to  piece  everything  together.  This   seriously  limited  their  ability  to  design  and  implement  an  automation  system  from  scratch.     In  this  course  I  set  the  goal  to  help  the  students  to  develop  a  level  of  understanding  that  would   enable  them  to  successfully  transfer  their  knowledge  and  design  a  real  world-­‐engineering  problem.         Following  POL,  students  were  asked  to  look  for  and  identify  a  real  and  challenging  industrial   manufacturing  problem  to  be  developed  throughout  the  course.  Their  solution  would  include   analysis;  mechanical,  electrical,  pneumatic,  and  hydraulic  design;  modeling;  and  simulation.  As  part   of  the  process  they  would  have  to  generate  concepts  and  identify  and  solve  important  issues  that   could  cause  failure.  And  they  would  have  to  constantly  interact  with  their  clients.       Some  of  the  problems  they  brought  include:  the  design  of  a  system  to  pack  tomatoes  into  clam   shells;  a  flexible  system  to  cut  and  punch  a  variety  of  sheet  metal  parts;  redesign  to  reduce  cycle   time  in  a  robot  welding  manufacturing  cell  by  20%;  integrate  of  a  new  laser  cutting  head  to   manufacture  automotive  frames;  eliminate  downtime  in  a  part  punching  operation;  etc.    

  I  organized  the  course  around  some  of  the  Context  Based  Principles  described  above.         By  taking  on  a  real  problem  that  they  hand  picked,  they  created  intentional  adversity,  significance   and  desire.       By  running  multiple  examples  of  reverse  engineering,  discussing  it  in  the  class  and  in  groups,  and   providing  constant  feedback,  we  created  experiences  that  they  could  build  on.     I  created  a  safe  environment  by  allowing  them  to  err.      Students  were  encouraged  to  submit  their   hand-­‐ins  and  assignments  as  many  times  as  they  wanted  to  improve  their  grade  and  to  meet  with   me  frequently  to  discuss  it  and  give  them  feedback.       Every  week  students  presented  their  projects.  They  first  celebrated  successes  and  recognized  what   is  new  and  good.  We  then  addressed  problems  and  showstoppers.  This  allowed  them  to  face   adversity  without  fear  of  failure,  organize  their  ideas,  and  receive  prompt  feedback.       We  also  discussed  non-­‐technical  issues  that  had  to  do  with  their  teams  and  their  customer.  This   gave  them  awareness  on  human  motivation  and  human  communication.       I  chunked  their  project  down  into  small  tasks  and  deliverables.  This  reduced  fear.  Each  week,   students  had  to  address  one  part  of  the  problem  and  the  sum  of  these  deliverables  produced  their   final  report.       Each  time  they  complete  a  task,  students  are  able  to  see  their  progress  thus  realizing  that  they  were   closer  to  the  end.       By  the  end  of  the  semester,  students  completed  every  one  of  the  projects  and  presented  designs,   simulations  and  models  to  their  customer.    

    Conclusions  and  Further  Work    

Our  role  as  educators  is  to  teach  students  to  solve  real  world  problems.  They  are  not  going  to  be   able  to  do  this  if  all  they  have  is  knowledge  and  some  skills.  They  require  understanding  and  the   ability  to  transfer  into  new  and  different  problems.       Understanding  requires  a  different  way  of  teaching.  One  that  constantly  creates  experiences  they   can  build  upon.  One  that  engages  the  student  and  invites  them  to  push  the  limits  of  their  own   knowledge  and  once  they  do,  moves  them  to  go  on.       We  can  do  it.       This  might  require  us  to  change  the  way  we  teach.  Move  from  repetition  to  rehearsal.  Move  from   knowledge  and  skills  to  understanding,  knowledge,  skills  and  dexterity.    It  might  cause  us  to  change   our  curricula.  Move  away  from  a  linear  view  of  education  to  a  more  constructivist,  iterative,  and   integrated  view.  Create  a  line  of  extracurricular  academic  activities.       More  importantly,  we  need  to  trust  our  students.  Students  are  able  to  handle  the  challenge.  Let  us   challenge  them.  Let  us  be  there  for  them.  And  they  will  always  rise  up  to  our  expectations.    

Bibliography   Csikszentmihalyi,  M.  (2008).  Flow:  The  Psychology  of  Optimal  Experience  (1st  Edition  ed.).  Harper  Perennial   Modern  Classics.   CNN  Expansión.  (2012,  Ene  26).  Sembró  Tecnología  y  cosechó  éxitos.  Retrieved  Nov  18,  2012,  from  CNN   Expansión:  http://www.cnnexpansion.com/emprendedores/2012/01/17/estudiante-­‐emprendedor-­‐es-­‐toda-­‐ una-­‐039lec   Coyle,  D.  (2009).  The  Talent  Code:  Greatness  Isn't  Born.  It's  Grown.  Here's  How  (1st  Edition  ed.).  Bantam.   Cobb,  P.  (1994).  Theories  of  mathematical  learning  and  constructivism:  A  personal  view.  Symposium  on   Trends  and  Perspectives  in  Mathematics  Education.  Austria:  Institute  for  Mathematics,  University  of   Klagenfurt.   Seligman,  M.  E.  (2006).  Learned  Optimism:  How  to  Change  Your  Mind  and  Your  Life  (Reprint  Edition  ed.).   Vintage.   Seligman,  M.  E.  (2003).  Authentic  Happiness:  Using  the  New  Positive  Psychology  to  Realize  Your  Potential  for   Lasting  Fulfillment.  Free  Press.   Sedas-­‐Gersey,  S.  W.  (2012,  October).  Dr.  Sergio  Sedas  at  TEDxChennai.  Retrieved  November  17,  2012,  from   Youtube  -­‐  TEDxTalks  Channel:  http://www.youtube.com/watch?v=i3Xiy-­‐1VcH4   SNC  Portal  Informativo.  (2009,  Jul  27).  Verano  para  jóvenes  talentosos  concluye  su  segunda  edición.  Retrieved   Nov  18,  2012,  from  SNC  Portal  Informativo:   http://www.itesm.edu/wps/wcm/connect/snc/portal+informativo/por+tema/educacion/not(27jul09)cty   Sousa,  D.  A.  (2011).  How  the  Brain  Learns  (Fourth  Edition  ed.).  Corwin  Press.   Bodero,  I.  (2012,  Nov  18).  Liderará  alumno  proyecto  de  NASA.  Retrieved  Nov  18,  2012,  from  Reportec:   http://reportec.mty.itesm.mx/noticias.php?id=2132   Bodero,  I.  (2010,  Feb  23).  De  verano  en  la  NASA.  Retrieved  Nov  18,  2012,  from  SNC  Portal  Informativo:   http://www.itesm.edu/wps/wcm/connect/snc/portal+informativo/por+tema/investigacion/not(23feb10)n asa   Bransford,  J.,  &  Stein,  B.  (1993).  The  IDEAL  Problem  Solver  .  New  York:  Freeman.   H.A.Simon.  (1996).  Observations  on  the  Sciences  of  Science  Learning.   Hernández,  B.  (2010,  Mar  19).  Demuestran  que  su  robot  si  puede.  Retrieved  Nov  18,  2012,  from  Crónica   Intercampus:  http://www.itesm.mx/cronicaintercampus/no_99/estudiantil_sec_1.html   Hernández,  J.  (2012,  Nov  15).  Panorama.  Retrieved  Nov  18,  2012,  from  Premia  la  EITI  a  sus  alumnos   destacados:  http://web2.mty.itesm.mx/panorama/pdf/2012/11-­‐15/p13.pdf   Jaramillo,  J.  (2011,  Nov  01).  No  limits  y  A  que  no  puedes.  (Roboteknia,  Ed.)  Retrieved  Nov  18,  2012,  from   www.Roboteknica.mx:  http://www.roboteknia.mx/revistaR/roboteknia01/roboteknia01.pdf   Maquire,  E.  A.,  Frith,  C.,  &  Morris,  R.  (1999).  The  functional  neuroanatomy  of  comprehension  and  memory:   The  importance  of  prior  knowledge.  Brain  ,  122,  1829-­‐1850.   Nava,  A.  (2011,  Mar  28).  El  Tec  firma  convenio  con  la  NASA…  Al  infinito  y  más  allá.  Retrieved  Nov  18,  2012,   from  Crucero:  http://red-­‐crucero.com/2011/04/el-­‐tec-­‐firma-­‐convenio-­‐con-­‐la-­‐nasa-­‐al-­‐infinito-­‐y-­‐mas-­‐alla/   National  Research  Council.  (2000).  How  People  Learn:  Brain,  Mind,  Experience,  and  School:  Expanded  Edition   (2  edition  ed.).  (J.  D.  Bransford,  A.  L.  Brown,  &  r.  R.  Cocking,  Eds.)  National  Academies  Press.   Parra,  P.  (2010,  Feb  21).  La  NASA  lo  integra  a  programa.  Retrieved  Nov  18,  2012,  from  Milenio:   http://www.milenio.com/cdb/doc/impreso/8723405   Robinson,  K.,  &  Aronica,  L.  (2009).  The  Element:  How  Finding  Your  Passion  Changes  Everything  (Reprint   Edition  ed.).  Penguin  Books.    

Suggest Documents